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Abstract—In this paper, we consider a joint unicast and
multi-group multicast cell-free distributed massive multiple-input
multiple-output (MIMO) system, while accounting for co-pilot
assignment strategy based channel estimation, pilot contam-
ination and different precoding schemes. Under the co-pilot
assignment strategy, we derive the minimum-mean-square error
(MMSE) channel state information (CSI) estimation for unicast
and multicast users. Given the acquired CSI, the closed-form
expressions for downlink achievable rates with maximum ratio
transmission (MRT), zero-forcing (ZF) and MMSE beamforming
are derived. Based on these expressions, we propose an efficient
power allocation scheme by solving a multi-objective optimization
problem (MOOP) between maximizing the minimum spectral
efficiency (SE) of multicast users and maximizing the average SE
of unicast users with non-dominated sorting genetic algorithm
II (NSGA-II). Moreover, the MOOP is converted into a deep
learning (DL) problem and solved by an unsupervised learning
method to further promote computational efficiency. Numerical
results verify the accuracy of the derived closed-form expressions
and the effectiveness of the joint unicast and multigroup multicast
transmission scheme in cell-free distributed massive MIMO
systems. The SE analysis under various system parameters and
the trade-off regions between these two conflicting optimization
objectives offers numerous flexibilities for system optimization.

Index Terms—Cell-free distributed massive MIMO, joint uni-
cast and multigroup multicast, multi-objective optimization, deep
learning, spectral efficiency.

I. INTRODUCTION

CELL-FREE distributed massive multiple-input multiple-
output (MIMO) systems are practical and scalable sce-

narios of MIMO network [1]–[3]. By reaping the benefits from
both massive MIMO and network MIMO systems, cell-free
distributed massive MIMO can effectively improve the spec-
tral efficiency (SE), energy efficiency (EE) and reliable data
transmission [4]–[6]. In cell-free distributed massive MIMO
systems, connected to a central processing unit (CPU), a great
number of remote antenna units (RAUs) are geographically
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distributed and coherently serve the users. Compared with cen-
tralized massive MIMO, cell-free distributed massive MIMO
provides a higher macro-diversity gain and lower proximity,
thus achieves better performance [7], [8]. [2] extended the
cell-free approach to the case of a user-centric massive MIMO
approach and proposed power allocation strategies aimed at
either sum-rate maximization or minimum-rate maximization.
[9] provided a extensive survey of cell-free massive MIMO
systems and discussed the benefits of cell-free massive MIMO
systems including energy and cost efficiency. [10] investi-
gated the user-centric cell-free massive MIMO with distributed
units to serve users. In such systems, a specific cluster of
RAUs is served for each user and the user-centric scheme
reduces edging effect, thus help to inprove the coverage
and performance for users across the whole network. [11]
proposed a cloud-based cell-free distributed massive MIMO
system meet 5G NR requirements. [12] revealed the cell-
free massive MIMO systems outmatch small-cells design for
both coverage and rate because it takes advantage of both
network MIMO and classical massive MIMO systems. Uplink
SE in cell-free massive MIMO systems is analyzed in [13].
The spacial correlated propagation in cell-free massive MIMO
with short-term power constrains is studied in [14]. [15]
analyzed the uplink average ergodic capacity and gave a
closed-form approximation in distributed massive MIMO. [16]
investigated an energy efficiency resource allocation scheme in
downlink transmission to maximize system energy efficiency
considered power consumption including transmitting power,
calculation power and circuit power. [17] proposed an iterative
algorithm for maximizing the minimum achievable rate of
downlink transmission among the UEs in cell-free massive
MIMO. [18] proposesd two power allocation algorithms based
on quantizing the downlink transmitted powers of APs for
reducing complexity with Conjugate Beamforming (CB) and
Zero-Forcing (ZF) precoding. [19] evaluated different trade-
offs between precoding strategies, power allocation techniques
and pilot allocation strategies affecting the performance in cell-
free massive MIMO networks. [20] proposed an method for
dividing the pilot power and data power in the downlink trans-
mission to maximize the minimum achievable rate of the users
in a cell-free massive MIMO system. [21] proposed a new
FP-based algorithm for spectral efficiency power allocation
to solve several convex problems with closed-form solutions.
[22] studied the power control and allocation in uplink MIMO
systems with different data traffic and developed a dynamic
scheduling algorithm (DSA) with Lyapunov optimization
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techniques to optimize the long-term user throughput. [23]
developed an robust minimum mean-square error(RMMSE)
precoder iteratively to alleviate interference with imperfect
channel state information (CSI) and an optimal and uniform
power allocation schemes based on SINR. Additionally, some
works combined machine learning with distributed massive
MIMO and achieved a considerable improvement [24]. These
current works are mainly focus on the performance analysis
and resource allocation of unicast in cell-free massive MIMO.

Traditional unicast requires a large number of channels to
transmit data when the number of users is huge, which is in-
efficient and wasteful. To improve the transmission efficiency,
the theory of multicast transmission called physical layer
multicasting was first proposed in [25]. Multicast is an efficient
technique designed for wireless communication to meet the
demands of high data rate and low latency. In multicast, the
server can send a single data stream to the users who need
the same data and this scheme greatly reduces redundant
data. This idea was extended to multigroup multicast in [26].
However, [25] and [26] both simply assumed the CSI was
known at the transmitter.

A multicast large-scale antenna system (also called massive
MIMO system) was considered in [27] and the channel esti-
mation for multicast group was accomplished by a common
pilot sequence for all the users who needed the same data.
In traditional unicast, the number of channels larger than the
number of users need to be allocated for pilot transmission to
ensure orthogonality, however,this new method allows more
user terminals to be supported with lower pilot cost. To reduce
the computational complexity, [28] proposed that by using the
large number of antennas, the intergroup interference could
be cancelled. Several optimization problems were investigated
in previous studies. An optimization problem of multigroup
multicast under the per-antenna power constraint was studied
in [29]. An optimal multicast beamforming structure focusing
the max-min fairness (MMF) problem was investigated in
[30]. A joint user scheduling and precoding for multigroup
multicast with perfect channel state information was studied
in [31] through a convex-concave algorithm. Joint unicast and
multicast transmission in large-scale MIMO was studied in
[32], but only the centralized large-scale MIMO system. These
works all studied multicast in traditional centralized massive
MIMO systems.

Recently, multigroup multicast was extended to cell-free
massive MIMO. Conjugate beamforming was used in [33]–
[35] to analyze the performance of multicast. The security
of multigroup multicasting transmission was studied in [36].
They all investigated the performance of multigroup multicast
in cell-free massive MIMO, however, to the best of our
knowledge, the closed-form expression of SE or signal-to-
interference-plus-noise ratio (SINR) with different precoding
schemes under multicast transmission has not been analyzed
in cell-free massive MIMO scenarios yet.

This paper investigates the SE of joint unicast and multi-
group multicast transmission in cell-free distributed massive
MIMO systems with different precoding schemes. The main
contributions of this paper are listed as follows:

1) We propose a joint unicast and multigroup multicast

transmission scheme in cell-free distributed massive
MIMO systems. We derive the closed-form expressions
for estimated CSI of unicast and multigroup multicast
users in cell-free distributed massive MIMO systems.

2) With the estimated CSI, the closed-form expressions of
the SE of unicast users and multigroup multicast users
with maximum ratio transmission (MRT), zero-forcing
(ZF) and minimum-mean-square error (MMSE) precod-
ing schemes in cell-free distributed massive MIMO are
derived.

3) We fomulate a multi-objective optimization problem
(MOOP) between two conflicting objectives of maxi-
mizing the average SE of unicast users and the MMF
problem of multicast for joint unicast and multigroup
multicast transmission schemes in cell-free distributed
massive MIMO systems. The trade-off regions between
these two conflicting problems is obtained by solving the
MOOP with non-dominated sorting genetic algorithm II
(NSGA-II).

4) We convert the MOOP to a deep learning (DL) problem
of maximizing the sum of average achievable rate of
unicast users and minimum achievable rate of multicast
users. We propose an unsupervised learning method to
maximize the objective function by training the loss
function to the lowest. A deep neural network (DNN)
is designed to learn the nonlinear mapping between the
input (channel large-scale fading vector) and the output
(power allocation scheme).

5) The accuracy of the derived closed-form expressions and
the effectiveness of the joint unicast and multigroup mul-
ticast transmission scheme in cell-free distributed mas-
sive MIMO systems are verified. Insightful conclusions
are drawn from the SE analysis under various system
parameters and the trade-off between the considered two
conflicting optimization objectives.

The rest of this paper is organized as follows: System model
consisting of system configuration, channel model and channel
estimation is presented in Section II. Downlink data trans-
mission including downlink channel precoding is presented
in Section III. SE with three precoding schemes is analyzed
in Section IV. The efficient power allocation scheme with
NSGA-II is investigated in Section V. The power allocation
scheme based on unsupervised DL is proposed in Section VI.
Numerical result and discussions are presented in Section VII.
Finally, some conclusions are drawn in Section VIII.

Notation: Boldface letters in lower (upper) case denote
vectors (matrices). IN means an N -dimensional identity ma-
trix. (·)H and (·)T represent the Hermitian transpose and
transpose, respectively. | · | and ‖ · ‖ represent the absolute
value and spectral norm, respectively. E[·] denote expectation.
⊗ denotes the Kronecker product. A circularly symmetric
complex Gaussian random variable x with mean zero and
variance σ2 is denoted as x ∼ CN (0, σ2).

II. SYSTEM MODEL

We consider a cell-free distributed massive MIMO system
that consists of a CPU, several RAUs equipped with numerous
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Fig. 1. Joint unicast and multicast in cell-free distributed massive MIMO
systems.

antennas and a large number of unicast and multicast user
terminals. The CPU is used to design the precoding and
process the received signals and the RAUs collaborate with
each other to jointly receive and send signals.

A. System Configuration

We assume N RAUs with L antennas on each RAU, U
unicast users and M multicast groups, among which the m-
th multicast group contains Km multicast users, and all users
and RAUs are randomly distributed in the cell-free scenario.
Fig. 1 presents such a system. During the joint unicast and
multigroup multicast transmission, there are also downlink
interferences affect the performance of the system.

B. Channel Model

Considering frequency-flat fading channel, the channel vec-
tor between all RAUs and the u-th unicast user or the k-th
multicast user in m-th multicast group can be described as

cu = β1/2
u hu∈ CNL×1, (1)

tm,k = η
1/2
m,khm,k∈ CNL×1, (2)

where βu = E
[
cuc

H
u

]
= diag ([β1,u, ..., βN,u]) ⊗ IL and

ηm,k = E
[
tm,kt

H
m,k

]
= diag ([η1,m,k, ...,ηN,m,k]) ⊗ IL refer

to the channel covariance matrix, βn,u and ηn,m,k represent the
large-scale fading between the n-th RAU and the u-th unicast
user or the k-th multicast user in the m-th multicast group,
hu ∼ CN (0, INL) and hm,k ∼ CN (0, INL) are the small-
scale fast fading. It is assumed that the channels of different
users are uncorrelated.

C. Channel Estimation

The system adopts time division duplex (TDD) mode. Due
to the reciprocity between uplink and downlink channels, the
CSI obtained by uplink channel estimation can be used for
the precoding of downlink data transmission. The system uses
uplink pilot sequences sent by users for channel estimation.
Since all the user terminals within a multicast group need
the same data, they are combined to share one pilot signal,
thus only M + U pilot signals need to be transmitted, which
greatly alleviates the pilot tension caused by the large number
of multicast users.

The uplink received pilot signal at CPU can be written as

Y =

U∑
u=1

√
τpul,ucuφ

H
pu,u

+

M∑
m=1

Km∑
k=1

√
τqul,m,ktm,kφ

H
pm,m +N, (3)

where pul,u and qul,m,k denote the uplink transmitted power
of the u-th unicast user and the k-th multicast user in the m-
th multicast group. φpu,u and φpm,m represent the orthogonal
pilot sequences of the u-th unicast user and the m-th multicast
group with length τ . The length of pilot sequences τ need to
satisfy (M + U) ≤ τ ≤ T . To achieve lower pilot cost, τ can
be chosen as τ =M +U . N is a NL× τ dimension complex
additive white Gaussian noise (AWGN).

The linear MMSE estimation [37] of fu can be given by

ĉu =

√
τpul,uβu

τpul,uβu + σ2
ulINL

(√
τpul,ucu + nu

)
=λ1/2u ĥu, (4)

where λu = diag([λ1,u, λ2,u, ..., λN,u]) ⊗ IL is the equiv-
alent large-scale fading, λn,u =

τpul,uβn,u
2

τpul,uβn,u+σ2
ul

and ĥu ∼
CN (0, INL) is the equivalent small-scale fast fading.

Similarly, the linear MMSE estimation of tm,k can be given
by

t̂m,k = ξ
1/2
m,k ĥm,k, (5)

where ξm,k = diag ([ξ1,m,k, ..., ξN,m,k]) ⊗ IL is the equiva-

lent large-scale fading, ξn,m,k =
τqul,m,kη

2
n,m,k

σ2
ul+

∑Km
j=1 τqul,m,jηn,m,j

and

ĥm,k ∼ CN (0, INL).
By adopting co-pilot strategy, we can obtain the equivalent

channel state information of the multicast group [27]. Com-
pared with the case of fully orthogonal pilots, this method
greatly saves pilot overhead. In addition, the same multicast
group requires the same information to be transmitted, so
the error due to pilot multiplexing is small. To reduce pilot
cost, we design a unified precoding for each multicast group.
The co-pilot assignment strategy based channel estimation of
multicast groups tm =

∑Km

j=1

√
τqul,m,jtm,j is adopted and

the closed-form expression can be given by

t̂m =

∑Km

j=1 τqul,m,jηm,j

(∑Km

j=1

√
τqul,m,jtm,j + nm

)
∑Km

j=1 τqul,m,jηm,j + σ2
ulINL

=µ1/2
m ĥ∗m, (6)

where µm = diag ([µ1,m, µ2,m, ..., µN,m]) ⊗ IL is the equiv-

alent large-scale fading, µn,m =
(
∑Km

j=1 τqul,m,jηn,m,j)
2∑Km

j=1 τqul,m,kηn,m,j+σ2
ul

and

ĥ∗m ∼ CN (0, INL).
Remark 1: As seen from (5) and (6), the channel es-

timation of multicast group m can be given by t̂m =∑Km

j=1

√
τqul,m,j t̂m,j which is a linear combination of the

channel estimations of all users within the m-th multi-
cast group. Under the traditional orthogonal pilot estimation
scheme, each user in the multicast group need to be assigned
orthogonal pilots as unicast and the pilot overhead will be
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extremely large. As a result, the channel estimation of multi-
group multicast (6) and unicast (4) are completed respectively
to save pilot cost and increase accuracy simultaneously.

III. DOWNLINK DATA TRANSMISSION

In this section, the downlink transmission of joint uni-
cast and multigroup multicast in cell-free distributed massive
MIMO is studied. Since the transmission expressions of mul-
ticast and unicast are relatively similar, only the expression of
multigroup multicast in joint unicast and multigroup multicast
transmission is given below.

The received signal of the k-th multicast user terminal in
the m-th multicast group can be presented as:

zm,k =tHm,k(Wx+Vs) + nm,k

=tHm,kwmxm +

M∑
r=1,r 6=m

tHm,kwrxr

+

U∑
u=1

tHm,kvusu + nm,k, (7)

where nm,k ∼ CN (0, σ2
dl) are complex AWGN vectors, x =

[x1, ..., xM ]
T and s = [s1, ..., sU ]

T are the data transmitted to
multicast groups and unicast users. W = [w1,w2, ...,wM ]

T

and V = [v1,v2, ...,vU ]
T are the precoding matrixes of

multicast groups and unicast users.

A. Downlink Channel Precoding

To facilitate the comparison of the performance under
different precoding schemes, we use the average power nor-
malization criterion [38], [39] to design the precoding vectors.
The precoding for each multicast group can be given by

wpre
m =

√
qdl,mâprem

E
[
(âprem )

H
âprem

]1/2 , (8)

where pre ∈ {MRT,ZF,MMSE}, qdl,m are the downlink
power of multicast precoding vectors and E

[
‖wpre

m ‖
2
]

=

qdl,m. By replacing the corresponding items with unicast, the
unicast precoding vector vpre

u can be obtained.
The item E

[
(âprem )

H
âprem

]
in (8) needs further calculation.

For MRT precoding, we have âMRT
m = t̂m,

E
[(
âMRT
m

)H
âMRT
m

]
=L

N∑
n=1

(
∑Km

j=1 τqul,m,jηn,m,j)
2∑Km

j=1 τqul,m,jηn,m,j + σ2
ul

=L

N∑
n=1

µn,m. (9)

With the definition of υm =
∑N
n=1 µn,m, we have

wMRT
m =

√
qdl,m
Lυm

t̂m. (10)

For ZF precoding, we have âZFm =
[
Q̂(Q̂HQ̂)

−1
]
U+m

,

where Q̂ =
[
Ĉ, T̂

]
, Ĉ = [ĉ1, ĉ2, ..., ĉU ], T̂ =[̂

t1, t̂2, ..., t̂M
]
, [·]i represents the i-th column of the matrix,

E
[(
âZFm

)H
âZFm

]
=tr

(
Q̂H

((
Q̂HQ̂

)−1)H

×
(
Q̂HQ̂

)−1
Q̂

)
=((NL−M − U)υm)

-2
tr
(
Q̂HQ̂

)
=((NL−M − U)υm)−1, (11)

and the precoding vector can be given by

wZF
m =

√
Aqdl,mυm

[
Q̂(Q̂HQ̂)

−1
]
U+m

, (12)

where A = NL−M − U .
For MMSE precoding, with the estimated vector âMMSE

m =[
Q̂
(
Q̂HQ̂+ σ2

dl ⊗ INL

)−1]
U+m

, the pending item can be

given by

E
[(
âMMSE
m

)H
âMMSE
m

]

=tr
(Q̂H

((
Q̂HQ̂+ σ2

dl ⊗ INL

)−1)H

×
(
Q̂HQ̂+ σ2

dl ⊗ INL

)−1
Q̂

)

=(Aυm + σ2
dl)

-2
tr
(
Q̂HQ̂

)
=(Aυm + σ2

dl)
-2
Aυm, (13)

and the precoding vector can be given by

wMMSE
m

=

√
qdl,m(Aυm + σ2

dl)
2

Aυm

[
Q̂
(
Q̂HQ̂+ σ2

dl ⊗ INL

)−1]
U+m

.

(14)

The corresponding precoding vectors of unicast vpre
u can

be obtained by replacing qdl,m and υm with the downlink
power of unicast precoding vectors pdl,u and the estimated

covariance matrix of unicast θu =
∑N
n=1

τpul,uβ
2
n,u

τpul,uβn,u+σ2
ul

and

E
[
‖vpre

u ‖
2
]
= pdl,u.

Remark 2: Different from pure unicast or multicast, the joint
unicast and multicast transmission system not only retains the
individualization of unicast, but also promotes the efficiency
of transmitting repeated information by multicast.

IV. SPECTRAL EFFICIENCY ANALYSIS

In this section, we analyze the downlink achievable SE
of user terminals with different precoding schemes in joint
unicast and multigroup multicast transmission systems under
cell-free distributed massive MIMO scenarios. According to
the standard capacity bounding technique in [8], [32], [40],
the received signal from the RAUs to the k-th unicast user
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SINRpre
k,un =

∣∣E [cHk vpre
k

]∣∣2
σ2
dl −

∣∣E [cHk vpre
k

]∣∣2 + U∑
u=1

E
[∣∣cHk vpre

u

∣∣2]+ M∑
r=1

E
[∣∣cHkwpre

r

∣∣2] , (18)

SINRpre
m,k,mu =

∣∣∣E [tH
m,kw

pre
m

]∣∣∣2
σ2
dl −

∣∣∣E [tH
m,kw

pre
m

]∣∣∣2 + U∑
u=1

E
[∣∣∣tH

m,kv
pre
u

∣∣∣2]+ M∑
r=1

E
[∣∣∣tH

m,kw
pre
r

∣∣∣2] , (19)

SINRpre
k,un =

Jpdl,kθk

σ2
dl +

U∑
u=1

[
1
NLpdl,u

N∑
n=1

βn,k

]
+

M∑
r=1

[
1
NLqdl,r

N∑
n=1

βn,k

] , (20)

SINRpre
m,k,mu =

Jqdl,mζm,k

σ2
dl +

U∑
u=1

[
1
NLpdl,u

N∑
n=1

ηn,m,k

]
+

M∑
r=1

[
1
NLqdl,r

N∑
n=1

ηn,m,k

] , (21)

and the k-th multicast user in the m-th multicast group can
be rewritten as

yk =E
[
cHk vk

]
sk +

(
cHk vk − E

[
cHk vk

])
sk

+

U∑
u=1,u6=k

cHk vusu +

M∑
r=1

cHkwrxr + nk, (15)

zm,k =E
[
tHm,kwm

]
xm +

(
tHm,kwm − E

[
tHm,kwm

])
xm

+

M∑
r=1,r 6=m

tHm,kwrxr +

U∑
u=1

tH
m,kvusu + nm,k, (16)

where E
[
cHk vk

]
sk, E

[
tHm,kwm

]
xm can be regarded as the

signals needed and the others are interferences and noises.
In terms of [4], the achievable SE can be given by

SEpre =
(
1− τ

T

)
log2 (1 + SINRpre) , (17)

where the SINR of unicast and multicast can be represented
as (18) and (19).

Theorem 1: Each item can be solved with different pre-
coding schemes obtained in the previous section and the
closed-form expressions of achievable SINR with different
precoding can be given by (20) and (21), where ζm,k =∑N
n=1

τqul,m,kη
2
n,m,k

σ2
ul+

∑Km
j=1 τqul,m,jηn,m,j

,

J =


L, for MRT,
NL−M − U, for ZF,

(NL)
2
/ (NL−M − U) , for MMSE.

Proof: Please refer to Appendix A.
Remark 3: In cell free distributed massive MIMO scenarios,

due to the operation between RAUs, the SE of unicast and
multicast can be greatly promoted and since the closed-
form expressions we derived only rely on large-scale fading
parameters which change much slower than small-scale pa-
rameters, this is much highly practical. The complex formulas
in distributed scenario can be transformed into simpler forms
in centralized scenarios by setting the number of RAUs N = 1

while the formulas for centralized scenarios cannot be easily
applied to distributed scenarios.

V. JOINT SPECTRAL EFFICIENCY OPTIMIZATION

The derived closed-form expression of achievable SE (also
SINR) shows that SE can be influenced by downlink transmit-
ted power, uplink pilot power and length of the pilot sequence
τ . To achieve higher SE, the allocation of these resources
needs to be considered, subject to various constraints. For
multicast, a problem worth studying is the MMF, in which
the minimum SINR or SE of the system needs to be max-
imized with a limited transmitted power. However, due to
the interference between unicast and multicast, the SE of
multicast and unicast users are conflicting with each other, i.e.
with the increase of the downlink power of multicast, the SE
of unicast users will decrease and vice versa, which means
that multicast and unicast users can not achieve the highest
SE simultaneously. Therefore, a multi-objective optimization
problem(MOOP) is formulated. One objective is the average
achievable SE of unicast users and the other one is the MMF
problem for multicast users. Finally, we solve this MOOP
problem with NSGA-II.

A. Problem Formulation

For multicast, the MMF problem can be described as

max
P,τ

f1 =min SEpre
m,k,mu (22)

s.t. C1 :SEpre
m,k,mu ≥ SEpre,min

m,k,mu, ∀m ∈M,∀k ∈ Km,

SEpre
k,un ≥ SEpre,min

k,un ,∀u ∈ U , (23)

C2 :pul,k ≤ Pul,un,∀u ∈ U ,
qul,m,k ≤ Pul,mu,∀m ∈M,∀k ∈ Km, (24)

C3 :

U∑
k=1

pdl,k ≤ Pdl,un,

M∑
m=1

qdl,m ≤ Pdl,mu, (25)

U∑
k=1

pdl,k +

M∑
m=1

qdl,m ≤ Pdl, (26)
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C4 :pul,k ≥ 0, qul,m,k ≥ 0, pdl,k ≥ 0, qdl,m ≥ 0, (27)
C5 :τ ∈ {M + U, ..., T} , (28)

where P = {pul,qul,pdl,qdl}, pul = [pul,1, · · · , pul,U ],
pdl = [pdl,1, · · · , pdl,U ], qdl = [qdl,1, · · · , qdl,M ], qul =
[qul,1,1, · · · , qul,1,K1

; · · · ; qul,M,1, · · · , qul,M,KM
]. C1 are the

ergodic downlink QoS constraints where SEpre,min
m,k,mu > 0 and

SEpre,min
k,un > 0 are the required minimum SE of multicast

and unicast users. C2 are the uplink power constraints where
Pul,un and Pul,mu are the upper limits of the uplink transmitted
power per user of unicast and multicast. C3 are the total
downlink power constraints of all RAUs where Pdl,un and
Pdl,mu are the upper limits of total downlink transmitted power
of unicast and multicast and Pdl is the total downlink power
threshold. According to the discussion about the pilot sequence
length in Section II, we can give the optimal value of C5 is
τ∗ = M + U . Due to the non-convexity of SEpre

m,k,mu, it is
very difficult to find the maximum value.

For unicast, the average SE optimization problem can be
formulated as

max
P,τ

f2 =

U∑
u=1

SEpre
u,un/U, (29)

s.t. C1− C5. (30)

The MMF problem of multicast f1 and the maximization
of average achievable SE of unicast f2 are conflicting. Thus
we propose a MOOP to investigate the trade-off between these
two problems

max
P,τ

F=[f1, f2]
T
, (31)

s.t. C1− C5, (32)

where F is the optimal vector containing the objective func-
tions f1 and f2. The MOOP aims to maximize the minimum
SE of multicast and the average SE of unicast simultaneously.

B. Solutions by Multi-objective Genetic Algorithm

Most optimization methods transform a MOOP into mul-
tiple single-objective optimizations by giving one Pareto-
optimal solution at a run. However, these kinds of methods
may obtain different solutions at different runs and not give
a joint optimal solution. f1 and f2 are both non-convex
problems due to the non-convexity of SEpre

m,k,mu and SEpre
u,un

. In order to solve the two objectives simultaneously in a
single simulation run, the multi-objective evolutionary algo-
rithms (MOEAs) is utilized to obtain the Pareto boundary of
(31). Therefore, we adopt MOEAs to obtain the simultaneous
Pareto-optimal solutions in this paper. Specifically, NSGA-II
[41] which has been proved to be reliable and effective in [42]
is utilized to solve the proposed MOOP.

NSGA-II is an elitist nondominated sorting genetic algo-
rithm with a lower complexity of O(XY 2), where X is the
number of objective functions and Y is the population size.
According to NSGA-II, firstly, an initial population with a
size of Y is randomly generated. In our case, the uplink pilot
power, the downlink transmitted power and the coherence
time are selected under the constraints given in (25) - (28).

Secondly, the two objective functions are evaluated based
on the current population by calculating the minimum SE
of multicast users and the average SE of unicast users as
(22) and (29). Thirdly, we rank the population based on fast
non-dominated sorting and crowdedness. Then a new parent
population is selected from the currently ranked population by
tournament selection and an offspring population is generated
by selection, mutation, and crossing. Finally, the offspring
population and initial population are combined together and
ranked to a new initial population. The cycle repeats until the
optimization criteria are met and the Pareto boundary of the
MOOP can be found. The power allocation algorithm based
on NSGA-II is shown in Algorithm 1.

Algorithm 1 Power Allocation Algorithm Based on NSGA-II
Initialization:
• initialize system parameters: the uplink transmitted

power of unicast and mulicast pul, qul, the downlink
transmitted power of unicast and mulicast pdl, qdl, the
size of population Y and so on

• generate the population randomly under the constraints
given in (25) - (28)

Evaluation:
• evaluate the two objective functions: the minimum SE

of multicast users and the average SE of unicast users
as (22) and (29)

• select an excellent parent population to generate off-
spring population by selection, mutation, and crossing

Sort:
• rank each individual based on non-dominating sorting

and crowding distance
Repeat:
• select an excellent parent population to generate off-

spring population by selection, mutation, and crossing
• rank the 2Y combined offspring population and the old

population to generate a new population
Until the stop criterion of optimization
Return a series of Pareto optimal solutions of (31)

VI. UNSUPERVISED DEEP LEARNING BASED POWER
ALLOCATION

Given the proposed MOOP in (31), to further reduce the
computational complexity, we introduce an unsupervised DL
method to optimize the achievable rate of multicast and unicast
users and compare it with NSGA-II algorithm.

A. Network Design

The traditional DL approach is to decrease the loss function
continuously and minimize the loss function [43], [44]. To
meet the demands of maximizing the average SE of unicast
and the minimum SE of multicast users, we take the negative
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Fig. 2. The detailed structure of the output layer of the unsupervised learning
based DNN.

SE as the loss function, so while the loss function is decreas-
ing, the SE is increasing. The loss function can be given by

loss
P

=E [lossase + lossmmf ]

=E

[
−

U∑
u=1

SEpre
k,un/U −min

(
SEpre

m,k,mu

)]
. (33)

Through the optimization of the coherence time T with
NSGA-II, we can obtain the approximately optimal value T ∗

and the loss function can be given by

loss
P

=E
[(

1− M + U

T ∗

)(− U∑
u=1

log2

(
1 + SINRpre

k,un

)
/U

−min log2

(
1 + SINRpre

m,k,mu

))].
(34)

Since some of the optimization variables have been de-
termined, the optimization problem can be transformed into
maximizing the achievable rate and loss function

loss
P

′
= E

[− U∑
u=1

log2

(
1 + SINRpre

k,un

)
/U

−min
(
log2

(
1 + SINRpre

m,k,mu

))]. (35)

B. Network Structure

In this part, we consider a fully connected deep neural
network (DNN) to maximize the achievable rate of unicast
and multicast users. The input of DNN are the channel large-
scale fading of the system βu and ηm,k. The output of DNN
is the power allocation strategy P to maximize the achievable
SE, where the first U+M outputs denote the optimal downlink
transmitted power of unicast and multicast and the following
outputs denote the optimal uplink pilot power. The DNN is
trained to learn the nonlinear mapping between the large-scale
fading and the power allocation scheme.

The detailed structure of the output layer is shown in Fig.
11, where oL−1 is the output of the hidden layer. WL is
the weight matrix and bL is the bias vector of layer L,
which needs to be optimized in neural networks. Processed
by a linear transformation g = WLoL−1 + bL, a temporary

output g can be obtained. Then g = [g1, · · · , gK ] is divided
into two groups. One is from g1 to gM+U and the other is
from gM+U+1 to gK where K = 2U +M +

∑M
m=1Km. In

order to achieve the power constraints proposed in (24) - (27),
each group is first submitted to a Softmax function to achieve
normalization and then multiplies the power constraints of the
group, which can be expressed as

pk =

{
ptot

dl σ (gk) , 1 ≤ k ≤M + U,

ptot
ul σ (gk) , M + U + 1 ≤ k ≤ K,

(36)

where

σ (tk) =


etk∑M+U

k=1 etk
, 1 ≤ k ≤M + U,

etk∑K
k=M+U+1 e

tk
, M + U + 1 ≤ k ≤ K,

(37)

and ptot
dl =

∑M+U
k=1 pk, ptot

ul =
∑K
k=M+U+1 pk are the total

power constraints of uplink and downlink.
We adopt the Adaptive Moment Estimation (Adam) al-

gorithm for optimization, which is essentially an RMSprop
algorithm with a momentum term. Adjusting the learning rate
of each parameter, it can minimize the loss function and
maximize the optimization objective. The main advantage of
Adam is that after bias correction, each iteration of the learning
rate has a certain range, which makes the parameters relatively
stable.

The complexity of training phase can be regarded as

O

(
2

(
KNn1 +KτnL−1 +

L−1∑
l=2

nl−1nl

)
st

)
, where s is the

size of mini-batch, t is the number of iterations and nl
denotes the number of nodes of the l-th layer. Through
the training of the DNN with the large-scale fading coef-
ficients, the considered DL problem can be solved. There-
fore, the complexity of solving the DL problem mainly
depends on forward propagation, which can be given by

O

(
KNn1 +KτnL−1 +

L−1∑
l=2

nl−1nl

)
and it indeed reduces

the complexity than NSGA-II.

VII. NUMERICAL RESULTS

In this section, we use Monte Carlo simulation to verify the
closed-form expression derived. With the numerical result, we
analyze the SE of unicast and multigroup multicast users under
different precoding schemes.

A. Simulation Parameters

As it is shown in Fig. 3, in simulation, assuming in a
curricular area, there are 5 RAUs and 20 user terminals
randomly distributed. The path loss for unicast and multcast
users are defined as βn,u = bd−an,u and ηn,m,k = bd−an,m,k
respectively, where d is the distance between RAUs and users,
a is path loss index and b is the median of the average path gain
at the reference distance d = 1km. The specific parameters are
shown in Table I.
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Fig. 3. Simulation system configure.

TABLE I
SIMULATION PARAMETER SETTINGS

Item Number
Number of unicast users U 10

Number of multicast groups M 2
Number of multicast users in each group Km [5,5]

Path loss index a 3.7
Uplink power pul,u and qul,m,k [0.5w, 0.5w]
Downlink power pdl,u and qdl,m [1w, 0.5w]

Noise power -70 dBm
Coherence time T 196

B. Simulation Result Analysis

Fig. 4 verifies the theoretical and simulation values of the
achievable SE of unicast users and multigroup multicast users
with MRT, ZF and MMSE precoding against the number of
total antennas. It is illustrated that the simulation results agree
well with the theoretical results we deduced, which verifies
the accuracy of (20) and (21).

Since both RAUs and multigroup multicast users are dis-
persedly distributed in cell-free distributed massive MIMO
scenarios. The distance from each multicast group to the
RAUs is more even. Thus multigroup multicast users are less
susceptible than unicast by the location of RAUs.

Fig. 5 illustrates the comparison of SE between unicast and
multicast under the same parameters. We have twenty users
in each mode and in multicast, the users are divided into four
groups with five users in each group. To guarantee the fairness
of the comparison, the user positions are set the same. The
downlink transmitted power is set to 2 W for each multigroup
and unicast user. However, as shown in Fig. 4, the achievable
SE of multicast users is obviously higher than that of unicast
users. It shows that in the same condition, the power utilization
of multicast is higher than unicast and it can significantly
increase the SE when the number of users in a multicast group
is big.

Fig. 6 compares the SE of unicast and multicast against the
coherence time T . The number of antennas per RAU is set to
50 and the coherence time T is ranging from the number of
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pilots τ to 300. To avoid pilot contamination, it needs to be
bigger than the number of unicast users or multicast groups.
As shown in the figure, when T is small, especially when T
is below 50, the achievable SE of multicast user is extremely
higher than that of unicast user. This is because the demand of
pilot cost is much lower in multicast. As a result, the advantage
of multicast in reducing pilot cost can effectively enhance
the SE of users especially when the coherence time T is not
relatively high.

Fig. 7 compares the SE of multicast in cell-free distributed
massive MIMO and traditional centralized massive MIMO sys-
tems. The validity of multicast in centralized massive MIMO
has already been indicated in [32], thus the SE of multicast
under the two scenarios can be compared. The position of
users, the number of total antennas and the other parameters
are set exactly the same. It can be seen from the figure that the
SE of multicast users in cell-free distributed massive MIMO
is twice over that in centralized massive MIMO systems.
Actually, it should be indicated that the performance of
multicast in cell-free scenarios to some extent depends on the
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distribution of the RAUs and the multicast users. However,
in most times it can achieve better performance due to the
interactions between RAUs and the dispersed distribution of
multicast users. As a result, combining cell-free scenarios with
multicast can effectively improve the spectrum utilization of
users.

Fig. 8 illustrates the SE of unicast and multicast users
against the downlink transmitted power of multicast. The
number of antennas per RAU is set to 50 and it is assumed
that the downlink transmitted power of multicast ranging from
0.1 W to 9.6 W and the power of unicast remains 1 W. Fig.
8(a) and Fig. 8(b) are the results under the noise power of -70
dBm and -120dbm respectively. The rest simulation parameters
are set in accordance with Table I. It can be seen from the
two figures that the SE of multicast users increases with the
increasing downlink transmitted power of multicast groups,
while the SE of unicast users are affected mildly and dropped
slightly especially in Fig. 8(a). As a result, in joint unicast and
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Fig. 8. Spectral efficiency against downlink transmitted power of multicast.

multigroup multicast transmission, increasing the transmitted
power of multicast can promote the SE of multicast and not
cause a big trouble to unicast. This supports the feasibility
of the joint unicast and multicast system proposed in this
paper. Besides, under the condition of lower noise power,
which means high signal-to-noise ratio (SNR), the downlink
transmitted power of multicast has a greater impact on unicast.
This is because both unicast and multicast are more sensitive
to the interferences between them in high SNR cases. In these
cases, the confliction between maximizing the SE of unicast
and multicast are more obvious, which leads to the MOOP
proposed in (31).

Fig. 9 illustrates the trade-off between the minimum SE
of multicast users and average SE of unicast users under
different precoding schemes. The picture shows the Pareto
boundary obtained by solving the MOOP (31) with NSGA-
II. The number of antennas per RAU is set to 50. The
upper limit of downlink transmitted power per RAU is given
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by 10W. The required minimum SE of both unicast and
multicast users is set to 3 b/s/Hz. It can be seen that the
minimum SE of multicast users increases with the decrease
of the average SE of unicast users, which means that they can
not achieve the highest value simultaneously and verifys the
confliction between these two objectives in joint unicast and
multigroup multicast transmission under cell-free distributed
massive MIMO scenarios. As is marked in the picture, the
approximately optimal value of the trade-off between multicast
and unicast can be obtained by NSGA-II, which is also the
optimal solution of the MOOP (31).

Fig. 10 illustrates the comparison of the maximum sum
of average achievable rate of unicast users and minimum
achievable rate of multicast users between NSGA-II and DL.
We input the channel large-scale fading between 5 RAUs and
4 unicast users and 4 multicast users evenly divided into 2
multicast group to the DNN and the corresponding parameters
in NSGA-II is set the same. To adapt the input environment
of DL, the 2× 2 two-dimensional matrix and 5× 2× 2 three-
dimensional matrix need to be merged into one matrix and
reshaped into a 1 × 40 column vector. The total power for
downlink transmission are 47 W. To set a higher standard,
we select the best point of the sum rate in NSGA-II for
comparison. It can be seen from the figure that the sum rate
obtained by DL can achieve above 92% of the highest rate
obtained by NSGA-II. Fig. 11 shows the elapsed time of DL
and NSGA-II with L = 60. In DL, it only takes about 14
seconds to train, however, with NSGA-II, it takes about 50
seconds, which is above 3.5 times of the elapsed time with DL.
The effect of NSGA-II algorithm optimization is quite good,
but the calculation time is long and the complexity is high.
In DL, the optimization method is to train the loss function
to the lowest, so the result will be affected by some neural
network parameters and the performance will not achieve the
best, but the optimization time of DL is quite short and it is
considerable for DL to be close to NSGA-II.

VIII. CONCLUSION

In this paper, we studied the joint unicast and multigroup
multicast transmission in cell-free distributed massive MIMO
systems. With the estimated CSI obtained by co-pilot as-
signment strategy, we deduced the closed-form expression of
downlink SE of unicast users and multicast users with MRT,
ZF and MMSE precoding schemes. With these expressions,
we proposed a MOOP between the MMF of multicast and
the maximum of the average SE of unicast under several
constraints. Based on the MOOP, we further converted it
into a DL problem to reduce computational complexity. We
verified the derived closed-form expressions by Monte Carlo
simulation and compared the SE of unicast and multicast under
the same parameters to show that multicast can achieve higher
SE and occupy less coherence time slots. Besides, it was
verified that the combination of distributed massive MIMO
systems and multicast transmission can effectively achieve
higher SE. The effects of downlink transmitted power and
noise power on SE were analyzed and the two objectives in the
proposed MOOP was proved conflicting. The trade-off region
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between these two conflicting problems obtained with NSGA-
II under various constraints offered numerous flexibilities for
system optimization. Furthermore, the comparison between
NSGA-II and DL showed that solving the MOOP by DL can
also achieve relatively good results with quite short elapsed
time and low complexity.

APPENDIX A
PROOF OF THEOREM 1

We first calculate the needed signal for unicast users
(MMSE as an example). By substituting the MMSE precoding
vector into the item E

[
cHk v

pre
k

]
, we have

E
[
cHk v

MMSE
k

]
= E

cHk
√
pdl,k(Aθk + σ2

dl)
2

Aθk
χk


=

√
pdl,k(Aθk + σ2

dl)
2

Aθk
(Aθk + σ2

dl)
−1
NLθk

=

√
(NL)

2
pdl,kθk
A

, (A1)

where χk =

[
Q̂(Q̂HQ̂+σ2

dl ⊗ INL)
−1]

k

.

Then, for the denominator part E
[∣∣cHk vMMSE

u

∣∣2], when u =

k, due to the independence of ck and nk, we have E [cknk] =
0, and we can obtain

E
[∣∣cHk vMMSE

k

∣∣2]
=
pdl,k(Aθk + σ2

dl)
2

Aθk
E
[(
cHk χk

) (
χH
k ck

)]
= pdl,k(Aθk)

−1E
[
cHk ĉkĉ

H
k ck

]
(a)
=
pdl,kE

[
cHk (
√
τpul,kck + nk)(

√
τpul,kck + nk)

H
ck

]
A

(
τpul,k

N∑
n=1

βn,k + σ2
ul

)

(b)
=

pdl,k

(
τpul,k

(
NL

N∑
n=1

βn,k

)2
)

A

(
τpul,k

N∑
n=1

βn,k + σ2
ul

) +
1

NL
pdl,k

N∑
n=1

βn,k

=
(NL)

2
pdl,kθk
A

+
1

NL
pdl,k

N∑
n=1

βn,k, (A2)

where (a) is obtained by plugging θk into (4) and (b) is got
by means of uncorrelated vectors and the large-scale random
matrix conclusions [45].

Lemma ( [45]): If A ∈ CM×M has the uniformly
bounded spectral norm (relative to M ), vector x and y follows
CN

(
0, 1

M IM
)
, and x, y is independent of each other and

matrix A, it has

xHAy
a.s.−−−−→

M→∞
0

xHAx− 1

M
Tr (A)

a.s.−−−−→
M→∞

0

When u 6= k,

E
[∣∣cHk vMMSE

u

∣∣2] = 1

NL
pdl,u

N∑
n=1

βn,k. (A3)

For the denominator part E
[∣∣cHkwMMSE

r

∣∣2], based on large-
scale random matrix theory, we have

E
[∣∣cHkwMMSE

r

∣∣2] = 1

NL
qdl,r

N∑
n=1

βn,k. (A4)

The conclusion can be proved by substituting the values of the
above fractions into (18).

For multicast, we can calculate the needed signal for user
(Molecularpart) similarly, by substituting the preocoding vec-
tor, we have

E
[
tHm,kw

MMSE
m

]
=

√
qdl,m

(Aυm + σ2
dl)

2

Aυm
E
[
tHm,kχm

]
(a)
=

√
qdl,m

(Aυm + σ2
dl)

2

Aυm

NL
N∑
n=1

κn,m
√
τqul,m,kηn,m,k

(Aυm + σ2
dl)

=

√
(NL)

2
qdl,mζm,k
A

, (A5)

where χm =

[
Q̂
(
Q̂HQ̂+σ2

dl ⊗ INL

)−1]
U+m

, κn,m =∑Km

j=1 τqul,m,jηn,m,j/
(∑Km

j=1 τqul,m,jηn,m,j + σ2
ul

)
, ζm,k =∑N

n=1

τqul,m,kη
2
n,m,k∑Km

j=1 τqul,m,jηn,m,j+σ2
ul

, (a) is obtained by large-scale
random matrix conclusions [45].

For the denominator part E
[∣∣∣tHm,kwMMSE

r

∣∣∣2], when r = m,

we have

E
[∣∣tHm,kwMMSE

m

∣∣2]
=qdl,m

(Aυm + σ2
dl)

2

Aυm
E
[(
tHm,kχm

)
χm

Htm,k
]
. (A6)

Then, for the term E
[(

tHm,kχm

)
χm

Htm,k

]
, due to the

large-scale random matrix theory [45], we have

E
[(
tHm,kχm

)
χm

Htm,k
]

=
E
[
tHm,k

[
Q̂
]
U+m

([
Q̂
]
U+m

)H
tm,k

]
(Aυm + σ2

dl)
2

=

N∑
n=1

κn,mtr
(
τqul,m,k

∑Km

j=1 Igj,m,k + Ign,m,k
)

(Aυm + σ2
dl)

2
. (A7)
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Based on the above analysis and combining the result into
(A6), we obtain

E
[∣∣tHm,kwMMSE

m

∣∣2]
=

qdl,m

(
τqul,m,k

(
NL

∑N
n=1 ηn,m,k

)2)
A
(∑N

n=1

(∑Km

j=1 τqul,m,jηn,m,j + σ2
ul

))
+

1

NL
qdl,m

N∑
n=1

ηn,m,k

=
(NL)

2
qdl,mζm,k
A

+
1

NL
qdl,m

N∑
n=1

ηn,m,k. (A8)

When r 6= m,

E
[∣∣tHm,kwMMSE

r

∣∣2] = 1

NL
qdl

N∑
n=1

ηn,m,k. (A9)

Then, to the other denominator part

E
[∣∣tHm,kvMMSE

u

∣∣2] = 1

NL
pdl,u

N∑
n=1

ηn,m,k. (A10)

The conclusion can be proved by combining the results of
the above fractions into (19). The closed-form expression of
ZF can be derived similarly and the derivation of the needed
signals with MRT have some difference and is given below

E
[
cHk v

MRT
k

]
=

√
pdl,k
Lθk

E
[
cHk ĉk

]
=

√
pdl,k
Lθk

N∑
n=1

√
τpul,kβn,k

σ2
ulINL+τpul,kβn,k

(√
τpul,kE

[
cHk ck

]
+ E

[
cHk nk

] )
(a)
=

√
pdl,k
Lθk

N∑
n=1

Lτpul,kβn,k
2

σ2
ulINL+τpul,kβn,k

=
√
Lpdl,kθk, (A11)

where (a) is got by the uncorrelated vectors between channels
and noises and the large-scale random matrix conclusions.

E
[
tHm,kw

MRT
m

]
=

√
qdl,m

Lυm
E
[
tHm,kt̂m

]
=

√
qdl,m
Lυm

N∑
n=1

κn,m
√
τqul,m,kE

[
tHm,ktm,k

]
(b)
=

√√√√√√qdl,m

(
L
∑N
n=1 κn,m

√
τqul,m,kL

∑N
n=1 ηn,m,k

)2
∑N
n=1

(
∑Km

j=1 τqul,m,jηn,m,j)
2∑Km

j=1 τqul,m,jηn,m,j+σ2
ul

=

√√√√ N∑
n=1

Lqdl,mτqul,m,kη2n,m,k∑Km

j=1 τqul,m,jηn,m,j + σ2
ul

=
√
Lqdl,mζm,k, (A12)

where (b) is obtained by large-scale random matrix conclu-
sions.
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