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Abstract—Aiming at the limited battery capacity of widely
deployed low-power smart devices in the Internet-of-things (IoT),
this paper proposes a novel intelligent reflecting surface (IRS)
empowered unmanned aerial vehicle (UAV) simultaneous wireless
information and power transfer (SWIPT) network framework, in
which IRS is used to reconstruct the wireless channel to enhance
the wireless energy transmission efficiency and coverage area
of the UAV SWIPT networks. In this paper, we formulate an
achievable sum-rate maximization problem by jointly optimizing
UAV trajectory, successive interference cancellation (SIC) decod-
ing order, UAV transmit power allocation, power splitting (PS)
ratio and IRS reflection coefficient while taking account of user
non-orthogonal multiple access (NOMA) and a non-linear energy
harvesting model. Due to the coupling of optimization variables,
this problem is a complex non-convex optimization problem, and
it is challenging to solve it directly. We first transform the prob-
lem, and then apply the alternating optimization (AO) algorithm
framework to divide the transformed problem into four sub-
problems to solve it. Specifically, by applying successive convex
approximation (SCA), penalty function method and difference-
convex (DC) programming, UAV trajectory, SIC decoding order,
UAV transmit power allocation, PS ratio and IRS reflection
coefficient are alternately optimized until the convergence is
achieved. Numerical simulation results verify the effectiveness
of our proposed algorithm compared to other algorithms.

Index Terms—IRS, UAV, simultaneous wireless information
and power transfer, NOMA, alternating optimization.

I. INTRODUCTION

OWADAYS, with the vigorous development of the
Internet-of-things (IoT), the number of smart devices is
growing rapidly [1]-[3]. These smart devices for sending and
collecting information have the characteristics of low power
consumption and limited battery capacity. It is an effective
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way to replace the battery or charge the battery. However, if
the smart devices in IoT are large-scale, such operations are
time-consuming and labor-intensive, i.e., its deployment cost
increases a lot.

Wireless power transfer (WPT) is a promising technology
that can solve the above-mentioned challenges. The technology
is flexible, easy to deploy, and does not require contact, so it
has received extensive attention from industry and academia
[4]-[6]. For devices with low power consumption and limited
battery capacity in IoT, wireless charging devices can dynam-
ically join or leave the network, which is more effective. Si-
multaneous wireless information and power transfer (SWIPT)
technology is a scheme in WPT [7]. Through SWIPT, users
can get information and energy transmission at the same time,
which brings great convenience to the deployment of IoT
devices. As one of the design schemes of SWIPT practical
receivers, the power splitting (PS) scheme divides the signal
received by the receiver into two different power streams,
one part is used to decode information, and the other part
is used to harvest energy. However, smart devices are usually
widely distributed to collect various types of data in IoT, and
traditional WPT is not efficient. Therefore, it is challenging for
these smart devices to obtain energy from stationary energy
stations. Although this problem can be solved by increasing
the number of power stations in the target area, this will greatly
increase the deployment cost of the network.

In recent years, unmanned aerial vehicles (UAVs) have been
widely used in different fields. Compared with traditional
fixed access points (APs), UAVs equipped with APs have the
advantages of dynamic mobility, flexibility, ease of deploy-
ment and low cost [8]-[13]. UAVs equipped with wireless
energy stations can better solve the battery capacity limitation
problem for widely deployed smart devices in IoT networks.
Therefore, the research on UAV-enabled WPT networks has
also attracted the attention of the academia [14]-[16]. Sun et
al. investigated physical layer security enhancement methods
for millimeter-wave (mmWave) UAV SWIPT networks [14].
Wang et al. proposed UAV-assisted non-orthogonal multi-
ple access (NOMA) to achieve SWIPT and guarantee the
secure transmission for ground passive receivers (PRs), in
which the nonlinear energy harvesting model is applied [15].
However, for UAV-assisted WPT networks, due to distance-
related propagation loss, the energy transmission efficiency
will decrease as the distance increases, which greatly limits



the coverage of UAV-assisted SWIPT. If the wireless channel
can be reconstructed and the channel gain can be increased, the
coverage area of the networks can be greatly improved, which
greatly stimulates the utilization of new networking paradigms
to improve the performance for UAV enabled WPT networks.

Intelligent reflecting surface (IRS), also called reconfig-
urable intelligent surface (RIS), as a revolutionary technology,
has been studied extensively by industry and academia [17]-
[22], which can reconstruct the wireless channel from the
transmitter to the receiver by adjusting the amplitude and
phase of the incident signal, thereby improving network per-
formance. In detail, an IRS is an array composed of a large
number of low-cost passive reflecting elements, which can be
easily deployed on indoor walls or buildings. Since the IRS is
a passive device, it only passively reflects the incident signal
without signal processing, so it will not introduce unnecessary
noise compared with the relay technology [23]. Meanwhile,
compared with MIMO technology, since it is not equipped
with a complex signal processing unit and it is passive, the
required hardware cost and power consumption are much
lower [24]. These have greatly promoted the application of
IRS in the next generation communication networks.

Based on the advantages of the IRS, the coverage and wire-
less energy transmission efficiency of the IRS-enabled UAV
SWIPT network can be improved. Currently, the optimization
and design on the IRS-assisted WPT network [25], [26], the
IRS-assisted UAV network [27]-[29], and the UAV WPT
network [14]-[16] are in progress. However, the coverage and
transmission efficiency potential of these networks cannot be
fully released. IRS empowered UAV SWIPT network can well
address the above-mentioned challenges in the deployment of
IoT devices with limited battery capacity, which is of practical
significance. To the best of our knowledge, research on IRS-
assisted dynamic UAV WPT networks in IoT scenarios is still
in its infancy, which is novel and practical. To fully unleash
the potential of drones, we consider the IRS-assisted dynamic
UAV SWIPT network while considering user NOMA. In this
paper, the achievable sum-rate is maximized by jointly op-
timizing UAV trajectory, successive interference cancellation
(SIC) decoding order, UAV transmit power allocation, PS ratio
and IRS reflection coefficient. Due to the high coupling of
optimization variables, the concavity and convexity of the
objective function and some constraints cannot be determined,
so it is challenging to solve this problem directly. Therefore,
we need to design an effective algorithm for IRS-assisted UAV-
enabled SWIPT networks.

Based on the above background, the main contributions of
this paper can be summarized as follows:

o Facing the limited battery capacity of smart devices

with widely deployed and low power consumption in
IoT networks, we proposed an IRS empowered UAV
SWIPT framework. Smart devices apply PS scheme,
which allows them to harvest energy while receiving
information. In addition, these devices use the NOMA
scheme. Meanwhile, we formulate an achievable sum-rate
maximization problem by jointly optimizing UAV trajec-
tory, SIC decoding order, UAV transmit power allocation,
PS ratio and IRS reflection coefficient. Since this problem

is a complicated non-convex optimization problem, it is
challenging to solve it directly.

o In order to solve the above sum-rate maximization prob-
lem, we first transform the problem, and then use the
alternating optimization (AO) framework to divide the
transformed problem into four sub-problems. Specifically,
first, given UAV transmit power allocation, PS ratio,
and IRS reflection coefficient, UAV trajectory and SIC
decoding order can be jointly obtained by applying suc-
cessive convex approximation (SCA) and penalty func-
tion method. Given the UAV trajectory, SIC decoding
order, UAV transmit power allocation and IRS reflec-
tion coefficient, the PS ratio scheme can be obtained.
Similarly, UAV transmit power allocation and IRS phase
shift coefficients can also be obtained separately by
using SCA, penalty function method and difference-
convex (DC) programming when the other three variables
are given. Finally, the four sub-problems are alternately
optimized until convergence is achieved.

o Through numerical simulation, we verify the effective-
ness of the proposed optimization algorithm for UAV
trajectory, SIC decoding order, UAV transmit power allo-
cation, PS ratio and IRS reflection coefficient compared
with the algorithms, i.e., it can improve the achievable
sum-rate of the system. For the UAV SWIPT network
assisted by IRS, the sum-rate is significantly higher than
that of the network without IRS assistance. Meanwhile,
as the number of reflecting elements of the IRS increases,
the achievable sum-rate can improve.

The remainder of this paper is organized as follows. Section
IT elaborates the system model and optimization problem
formulation for the IRS empowered UAV SWIPT networks.
Section III presents the proposed optimization algorithm for
the formulated optimization problem. In Section IV, numerical
results demonstrate that our algorithm has good convergence
and effectiveness. Finally, conclusions are given in Section V.

Notations: Scalars are denoted by lower-case letters, while
vectors and matrices are represented by bold lower-case let-
ters and bold upper-case letters, respectively. || denotes the
absolute value of a complex-valued scalar z, and ||x|| denotes
the Euclidean norm of a complex-valued vector x. diag(x)
denotes a diagonal matrix whose diagonal elements are the
corresponding elements in vector x. For a square matrix
X, tr(X), rank(X), X and X,,,, denote its trace, rank,
conjugate transpose and m,n-th entry, respectively, while
X > 0 represents that X is a positive semidefinite matrix.
CM>*N denotes the space of M x N complex matrices. j
denotes the imaginary unit, i.e., 7> = —1. E{-} represents
the expectation of random variables. Finally, the distribution
of a circularly symmetric complex Gaussian (CSCG) random
vector with mean p and covariance matrix C is denoted by
CN (11, C), and ~ stands for ‘distributed as’.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

In this paper, we consider an IRS empowered downlink
UAV SWIPT network in IoT consisting of a rotary-wing
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Fig. 1. IRS empowered UAV SWIPT networks.

UAV with a single omni-directional antenna, an IRS and K
single antenna users (i.e., smart devices with limited battery
capacity). As shown as in Fig. 1, the UAV simultaneously
sends signals to users. The IRS can be deployed on a building
to assist the SWIPT networks from the UAV to users, which is
equipped with a uniform linear array (ULA) of M reflecting
elements'. Meanwhile, the IRS is also equipped with a smart
controller, which coordinates the UAV and IRS for both
channel acquisition and information and power transmission.
We assume that all channels in this paper are quasi-static flat-
fading and the channel state information (CSI) of all channels
is perfectly known at the UAV. For the channel estimation
of IRS empowered UAV networks, we can use state-of-the-
art algorithms such as direct cascaded channel estimation [30]
and separable cascaded channel estimation [31].

Without loss of generality, we consider a 3D Cartesian coor-
dinate system, where the k-th single-antenna user’s coordinate
is Wi =[x, Y, 0]". The UAV flies at a fixed altitude h,,,
which is the minimum altitude to avoid any collision with
building. We consider a finite time period 7' to guarantee the
efficiency of simultaneous information and power transmis-
sion. For simplicity, the time period 7" is divided into /N time
slots, indexed by n = 1,...,N. Each time slot § = % is
selected to be small enough to ensure that the UAV position is
approximately unchanged when flying at the maximum speed
Vmax. Hence, the 3D trajectory of UAV can be approximated
by q[n] = [#[n],y[n],h]" n = 1,...,N. We consider the
initial and final position of the UAV can be denoted by q;
and qp, respectively. The trajectory of UAV should satisfy
the following constraints

ar =qfl], (D

ar = q[N], 2

laln+1] —q[n]> < (Vmaxd)n=1,.., N =1. (3)
For the IRS with M reflecting elements, each element
reflects the received signal from the UAV with an adjustable
amplitude and phase shift. Let 8 [n] = [0y [n], ...,0h [n]]" €

CM*1 ¥n, and we model the IRS reflection matrix by using
® [n] = diag (,81 [n] edlnl B [n)] ejGM[”]) e CMxM,

11t is worth noting that the algorithm proposed in this paper can be extended
to the IRS equipped with a uniform planar array (UPA) by considering the
corresponding antenna array response.

where 6, [n] € [0,27),Ym,n and B, [n] € [0,1],Vm,n
denote the phase shift and amplitude reflection coefficient of
the m-th IRS element, respectively. For simplicity, we set
Bm [n] = 1 to achieve the maximum reflecting power gain. In
the n-th time slot, the phase shift of the m-th element should
satisfy the following constraint

0 < 0, [n] < 2m,Ym, n. 4)

Furthermore, the first element of the IRS is regarded as
the reference point whose 3D coordinate can be denoted by
w, = [z, Yr, hT]T, respectively. Hence, the distance between
the IRS and the UAV or the ground users can be approximated
by that between the reference point and the corresponding
node. The channel gain from the UAV to the IRS, from the
UAV to the k-th ground user, and from the IRS to the k-th
ground user can be denoted by hy; € CM*1, hvu,k € C, and
hyy . € CM*1 respectively.

Since the UAV usually flies at a high altitude and the IRS is
commonly placed on the building, the channel from the UAV
to the IRS (i.e., Ul-channel) can be modeled to be a line-of-
sight (LoS) channel. Since the UAV is flying or hovering at
a certain height in the air, the channel from the UAV to the
k-th user (i.e., UU-channel) has both LoS and non-line-of-
sight (NLoS) components, so we model it as a Rician channel
[32]. Besides, the channel from the IRS to the k-th ground
user (i.e., [U-channel) can also be modeled by a Rician fading
channel. The LoS component of the channel associated with
the IRS can be expressed by the responses of the ULA. The
array response of M-element ULA of the IRS in the n-th time
slot can be given by

h [n] =1, e_jQﬂ-% cos ¢[n] . e_jzﬂ%(M—l) cos d)[n]} T, Vn,

&)
where ¢ [n] is angle-of-arrival (AoA) from the UAV to the
IRS in the n-th time slot, cos ¢ [n] = wd;a[;[;f] with dyt [n] =
|la[n] — w..|| denotes the distance from the UAV to the IRS
in the n-th time slot, \ is the carrier wavelength, and d
represents the array interval. Therefore, the channel gain of

the Ul-channel in the n-th time slot can be denoted by

Bo
(dut [n])”
where [y is the path loss when the reference distance is 1m.

In addition, the channel gain of the UU-channel in the n-th
time slot can be expressed by

hUI [n] = h [n] ,VTL, (6)

B Bo K1
hUU,k [’I”L] - (dUU,k [n])a ( 1+ Ky

1
+ h%‘f [n]) ,Vk,n,

)

14+ k1

where « is the corresponding path loss exponent related to
the UU-channel and k; is the Rician factor’. dyy x[n] =

2In fact, the Rician factor is related to the trajectory of the UAV [33]. Since
the channel gain between the UAV and the user is largely dependent on the
path loss caused by the distance, for the convenience of analysis, we assume
that the Rician factor in each time slot is fixed.



|la[n] — wg|| denotes the distance from the UAV to the k-
th user in the n-th time slot. hy$7, [n] = 1 and Ay [n] ~
CN (0,1) represents the random scattering component. Simi-
larly, the channel gain of the IU-channel can be denoted by

hy = \/ dIUk (1/ 1T r %{?Sk + hﬁ}f)

®)
where + is the corresponding path loss exponent related to the
IU-channel, and k. is the Rician factor. diy y = ||w, — wy]|
denotes the distance from the IRS to the k-th user in the n-th
time slot. The LoS component h{ﬁsk € CM*1 can be denoted
by

iord
LoS __ |:1’€j2ﬂ'>\COS&pk,”'

j2m 2 (M—1) cos @ T
hiyy, = ;e } Yk, (9)

where ¢y, is the angle-of-departure (AoD) from the IRS to
the k-th user, cos ¢ = M The NLoS component can be
denoted by h%\gﬁs ~ CJ\/ (0 I5r). Therefore, with the aid of
the IRS, the combined channel power gain from the UAV to
the k-th user in the n-th time slot can be expressed as

Hy [n] = |huu e [) + bl .0 [n) oy ]|, vk, n. (10)

In this paper, we assume that all uses share the same
frequency, thus the UAV applies NOMA to provide commu-
nication for the users. specifically, the transmission signal of
UAV by invoking superposition coding (SC) can be denoted

as § = Z /P [n]sk [n], where si [n] ~ CN (0,1) denotes

the transmlssmn data sent by UAV to the k-th user, and py, [n]
denotes the transmit power allocated to the k-th user in the
n-th time slot. Without loss of generality, it should satisfy the
following constraints

pr [n] > 0,Vk, n, 11

Zpk

where P, denotes the maximum transmit power of the UAV.
Therefore, the signal received by the k-th user in the n-th
slot can be expressed as

(hUU,k [n} + h{IIJ,kG [n] hUI [n])
desired big‘ndl

Z\/}Tsz

i#k

12)

maxv vn’

yr [n] = pr [n]sy [n] +

(huuk [n] + hif; ,© [n] hyr [n | +ng, Yk, n,

interference signal
13)
where nj, ~ CN (0,0%) is additive white Gaussian noise
(AWGN).

According to the NOMA mechanism, each user adopts SIC
to remove inter-user interference. Specifically, a user with a
stronger channel power gain first decodes the signal of a user
with a weaker power channel gain before decoding its own
signal. Therefore, the decoding order needs to be paid more
attention in NOMA. Herein, we introduce a set of binary
variables 1;  [n] € {0,1},Vn,i # k to describe the decoding

Energy
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Rx 1
7 o

UAVTX —» Rxk — Fower
splitter

\ : \ Information
l-p decoder

Rx K

Fig. 2. PS receiver architecture.

order among users. If the channel power gain of the ¢-th user
is stronger than that of the k-th user in the n-th time slot, we
let 9; 1, [n] = 1. Otherwise, 1; , [n] = 0. Therefore, it should
satisfy the following constraints:

_ [ 1, if Hi[n] > Hi [n]
Vi [n] = { 0, otherwise ’ 14)
Vi [n] + e [n] =1,Yn,i # k. (15)

Moreover, for a given decoding order, the UAV transmit power
allocation should satisfy

which ensures that higher power needs to be allocated to users
with weaker channel power gain [34]. This communication
method can well guarantee the fairness of users, i.e., it can well
guarantee the communication of users with weaker channel
conditions.

(16)

In addition, we consider the power splitting (PS) receiver
architecture at the users for information decoding and energy
harvesting, which is actually one of the most widely used
architectures in SWIPT networks. The architecture diagram
is shown in the Fig. 2. Specifically, In the n-th time slot, the
radio frequency (RF) signal received by the k-th ground user is
split with a PS ratio py, [n], which should satisfy the following
constraint

0< Pk ['I’L] < 17VI€7TL7 (17)

which represents the PS ratio of each ground user in the n-th
time slot should be between zero and one. The py, [n] portion
of the received power is used by the k-th user for energy
harvesting in the n-th time slot, and the remaining (1 — py, [n])
portion is used by the k-th user for decoding information in
the n-th time slot. Hence, the signal split to the k-th user in
the n-th time slot for decoding information can be denoted by

1 — pi [n] ((hvuk [0 ]JrhIU 1© [n] hur [n])

=1

i [n] =
n] +ng | + 2z, Yk, n,

(18)
where z, ~ CN (0,67) denotes the noise introduced by
information decoder for the k-th user.

Therefore, the received signal to interference plus noise
ratio (SINR) of the k-th user by applying SIC for information



decoding in the n-th slot can be expressed as

SINRy, [n] = (1; pr [n]) pr [n] Hy, [n] |
(1*Pk [TL]) (;vl/%,k [n] i [n] H, [n]+0£>+5’3

Vn,i # k,

(19)

Therefore, the achievable rate (bps/Hz) of the k-th user in the

n-th time slot can be expressed as
Ry, [n] = logy (14 SINRy, [n]) , VE, n. (20)

The achievable sum-rate in the time period 7" can be expressed

S H WAL

n=1k=1

Rsum 2y

In addition, the signal split to the k-th user in the n-th time
slot for harvesting energy can be denoted by

P [n] ((hUU k [n] + hi{; ,© [n] hup [n])
Z V' pi [n]si [n +nk> ,VEk,n.

Hence, the received power of the k-th user in the n-th time
slot can be given by

Py [n] = pi;[n <Zp1

Furthermore, in order to accurately describe the energy har-
vesting, this paper adopts the non-linear energy harvesting
model based on the practical system, thus the harvesting power
of the k-th user in the n-th time can be given by

€k

(Xk (1+exp (—ak (P [n] b)) _Y’f> "k, n,
(24)

where & denotes the maximum power that the k-th user can
harvest, a;, and by are parameters related to specific circuit
specifications, Xj, = exp (axbr)/(1 + exp (agbr)) and Yy, =
&k /exp (arby) [35]. Then the energy harvesting of the k-th
user in the n-th time slot can be expressed as

Ey [n] = 62 (Py [n]) ,VEk,n,

yi [n] =
(22)

n] + 0k> ,Vk,n. (23)

E (P [n])=

(25)

In order to meet the energy constraint of the k-th user in the
n-th time slot, Ej [n] needs to meet the following constraint

Ek ['I’L] Z Xth7Vk7 n, (26)

where Yy, is the energy threshold of the k-th user in the n-th
time slot. It can be seen from Eq. (20) and (26) that there is
a tradeoff between the achievable rate and energy harvesting
for the k-th user in the n-th time slot.

B. Problem Formulation

In this paper, we maximize the achievable sum-rate for all
users in the IRS empowered UAV SWIPT networks by jointly
optimizing UAV trajectory Q = {q [n],Vn}, SIC decoding or-
der ¥ = {4 1 [n],Vn,i # k}, UAV transmit power allocation

p = {px[n],Vk,n}, PS ratio p = {px [n],Vk,n} and IRS
reflection coefficient 8 = {0, [n],Vm,n}. The optimization
problem can be formulated as follows

PO : max  Reum, (27a)
Q.p,¥,.p.0
s.t. ar =q[l], (27b)
qr = q[N], (27¢)
la[n+ 1] — q[n]> < Vmaxd)*n=1,..,N — 1,
(27d)
pk[ ] >0,VEk,n, (27¢)
Zpk ] < P, V12, 271)
O S O [n] < 2m,Vm,n, (272)
0 < px [n] < 1,Vk,n, (27h)
bl ={ T e
Yik [n] + ki [n] =1,Yn,i #k, (27))
i [n] = Yigpi [n],Vn,i £k, (27k)
Ey [n] > xtn, Yk, n, (271)

where (27b)-(27d) denote the UAV trajectory constraint. (27e),
(27f) and (27k) are the UAV transmit power allocation con-
straint. (27g) denotes the IRS reflection coefficients constraint
and (27h) is the PS ratio constraint in SWIPT. (27i) and (27j)
are the SIC decoding order constraint in NOMA. (271) denotes
the energy harvesting threshold constraint. It can be seen that
the joint optimizaton problem P0 is a non-convex optimization
problem since the optimization variables are highly coupled,
and the objective function is not joint concave with respect to
(w.r.t.) the optimization variables. In addition, the constraints
(271)-(27k) contain binary constraints. Hence, the problem P0
is a mixed integer non-convex optimization problem, and it is
challenging to solve the problem P0 directly. Next, based on
the AO algorithm framework, we propose an efficient iterative
algorithm to obtain a high-quality suboptimal solution.

III. JOINT OPTIMIZATION ALGORITHM FOR THE IRS
EMPOWERED UAV SWIPT NETWORKS

Since the objective function of problem P0 contains random
variables, we take expectation on it to transform the problem.
Then, for the transformed problem, we use AO algorithm
to solve it. More specifically, we divide the optimization
problem into four sub-problmes, i.e., {Q,%}, p, p and 6.
For given UAV transmit power allocation p, user PS ratio
p and IRS reflection coefficient 6, the trajectory of UAV Q
and SIC decoding order 1) can be obtained. Next, for given
the UAV trajectory Q, SIC decoding order 1), UAV transmit
power allocation p and user PS ratio p, we can get the IRS
reflection coefficient 8. Then, UAV transmit power allocation
p can be obtained when the UAV trajectory Q, SIC decoding
order v, IRS reflection coefficient @ and user PS ratio p
are fixed. Fianlly, We can also get user PS ratio p by fixing
the UAV trajectory Q, SIC decoding order 1), IRS reflection
coefficient @ and UAV transmit power allocation p. The four



E{Hy[n]} =E {‘ (EUU,k [n] + HUUJ.c [n]) + (flIHUk + ﬂgjk) O [n] hyy [n]

2 _ _H 2
} = ‘hUU,k [n] + hIU7k@ [n} hyr [n] +

2

_ 2 _H 2 ~ ~H -9 M — ¥y
E {]hUU,k | } +E { ‘hm@ [n] hut ] } = ‘hUU,k [n] + By 4+ © [n] hor [0]| + (dfz e (dmﬁ[{; }()ﬁ;(dm,k))w
2 &k [n], Yk, n,
(29)
E{Ry[n]} ~E{log, | 1+ K(l_p’“ [2]) Pk [n] 1=
U—MW%WH][HQﬁ%%%
(30)
log, | 1+ (1= o [n]) i [n] éRk [n],Vn,i # k,

(1= pial) 3 i )
i#£k

pi [n] +

(1—px[n]))oR+53
&kln]

sub-problems are optimized alternately until convergence is
achieved, and the SCA, penalty function method and DC
programming are applied when we solving the above sub-
problems. Herein, we first introduce the joint UAV trajectory,
SIC decoding order, UAV transmit power allocation, PS ratio
and IRS reflection coefficient optimization algorithm, and then
explain in detail how to solve each sub-problem. The overall
optimization algorithm can be summarized as Algorithm 1.

A. Optimization Problem Transformation

Since the objective function Ry, [n] of the optimization prob-
lem PO contains random variables, we take the expectation
E {Rk [n]} to analyze it. Since the probability distribution of
Ry, [n] is difficult to obtain, it is not easy to find a closed-form
solution of E { Ry, [n]}. Thus, we use the following Lemma 1
to approximate E { R, [n]}.

Lemma 1: If X is a positive independent random variable,
for any ¢ > 0, w > 0 and ¢ > 0, the following approximation
result holds

¢ )} ¢
E<1 1+ ——- ~E<I 14— .
{oe (157 {g< w{“x}>}
(28)

Proof: The proof of Lemma 1 is similar to Theorem 1 in
[36], which is omitted here. |
We first take an expectation of Hy [n] as shown in Eq.

(29), with huu 0] = |/ Gl PEE s [l huuk 0] =

2 3 s T
(dfgk[n]) hg{jk[ [ bruk = Y (dwzk)”’h%USk’ hiy, =

(gﬁU i H}%S Y = f_‘f_’;l and ¥y = [3"”2 . According to

Lemma 1, the expectation of the Ob]eCtIVC functlon Ry [n]
can be approximately expressed as Eq. (30). Therefore, the
objective function of problem PO can be transformed into
Rsum, which can be expressed as

Algorithm 1 Joint UAV Trajectory, SIC Decoding Order,
UAV transmit power Allocation, PS Ratio and IRS Reflection
Coefficient Optimization Algorithm

1: Initialize Q@ (@, p(® p© and ), Let r =0, e =
1073.

2: repeat

: Solve the sub-problem 1 for given p(r), p(r) and ("),

and obtain UAV trajectory Q("+1) and SIC decoding order
P,

4:  Solve the sub-problem 2 for given Q("), (), p(*)
and ("), and obtain PS ratio p("t1).

5: Solve the sub-problem 3 for given Q("), 4("), p(") and
0", and obtain UAV transmit power allocation p(r+1).

6:  Solve the sub-problem 4 for given Q("), ("), p(*)
and p("), and obtain IRS reflection coefficient (1),

Update r = r + 1.

8: until The fractional decrease of the objective value is
below a threshold e.

9: return UAV trajectory, SIC decoding order, UAV transmit
power allocation, PS ratio and IRS reflection coefficient.

N K
Z > Ry 31)
n=1k=1
In addition, according to Eq. (14), it can be seen that the
SIC decoding order of users is determined by Hy, [n]. For ease
of analysis, we approximate Eq. (14) as

Vi k [n] = { é’ if dUUJc [’n] > dUU,i [n]

, otherwise (32)

This approximation indicates that the decoding order of the
users is determined by the distance between the user and
the UAV, which has practical significance. First, the cascaded
channels of Ul-channel and IU-channel have a large path



loss, so the channel power gain is largely determined by
the UU-channel. Second, for UU-channel, small-scale fading
is negligible compared to large-scale fading. Therefore, the
channel power gain is usually determined by the distance from
the UAV to the user, i.e., the shorter the distance, the higher
the channel power gain.

Therefore, the optimization problem P0 can be transformed
into the problem P1 as follows

Pl max  Reum, (33a)
Q.p,Y,p.0
s.t. (27b)-(27h), (32), (27))-(271). (33b)

B. Optimization of UAV Trajectory Q and SIC Decoding
Order

Given UAV transmit power allocation p, user PS ratio p
and IRS reflection coefficient 8, the UAV trajectory Q and
SIC decoding order 1) optimization problem can be given by

P2 max Rsum7 (34a)
Q¥
s.t. (27b)-(27d), (271)-(271). (34b)

The problem P2 is still a mixed integer non-convex opti-
mization problem due to the non-concave objective function,
integer constraints (271)-(27k) and non-convex constraint (271).
Herein, we introduce some auxiliary variables to deal with the
problem P2. Let {uy [n] > 0,Vk,n} denote the upper bound
of dyy k [n], and {u[n] > 0,Vn} denote the upper bound of
dyi [n]. Therefore, they satisfy

(ur [n])* > |lq [n]
(uln])* > lan]

Therefore, the lower bound of the expected combined channel

® Yk, n, (35)

(36)

— Wil

—w, |, Vk

power gain, denoted by {§ . ], Yk, n},

€, [n] =Bo(ur, [n) ™ + Ay [n] (u[n]) ">+
By [n] (ug, [n]) " **(u[n]) ", Vk, n,

_H 2
Ai[n] = Bolhyy x© [n]hn]| + MpBo (Bo — V2) (druw)”

and By [n] = 2Re{ﬁ91ﬂoﬁm@ [n]h[n]}, Re{-} is the
operator for taking the real part of complex numbers. In
addition, we further introduce the auxiliary variable as follows

can be expressed as

(37)

DS v bl + A= Pl + 2

Ag [n] =
' ik & [l

(1= px[n

(38)
Accordingly, the objective function of problem P2 can be
lower bounded by

Ry [n] > log, (1 + U= pnlnl)pe [”]) ik (39)

Ay [n]
where the equation holds when Eq. (35) and (36) are equal
respectively.

In addition, the binary constraint (27i) can be transformed
into the following constraints with continuous variables be-

tween O and 1,

Vi [n] (1 — ik [n]) <0,Vn,i #k, (40)
0 <k n] <1,Vn,i#k, (41)
duv,; [n] < m; [n],Vn,i, (42)

Yir [n]mi [n] <duvug[n],Vn, k #i, (43)

where Eq. (40) and (41) make the continuous variable 1; j [n]
either 0 or 1. The auxiliary variable {m; [n],Vn,i} represents
the upper bound of dyu ; [n], and Eq. (42) and (43) ensure
that when dyu ; [TL} < dyu.k [TL], Vi k [TL} =1

Therefore, the problem P2 can be equivalently transformed
1nto

SRS (1 — pi [n]) pi [n]
P2.1: éniugr nz::l glogz (1 + A ] ),
(44a)
st & [n] < Boluk [n]) ™ + Ag [n] (u[n]) "+
By, [n] (u [n])*“”( [n]) "' Wk,n,  (44b)
Arln] = (1= pi[n Zm
i#k
2 2
(1= o [n])ak+5k,Vn,i7€k, (44c)
¢, [n]
(sz +0k> == (%) ,Vk,n,
(444d)
(27b)-(274d), (27)), (27k), (35), (36), (40)-(43),
(44e)
where =1 (x) = by — (€ /((@+Y)Xe)=b) 04 T —

ak
{un ) [0 &, In] Ak [n] i ] ¥,
set of all auxiliary variables. It is worth noting that at the
solution to the problem P2.1, if any of constraints in Eq. (35)
and (36) is satisfied with strict inequality, the corresponding
ug [n] or u[n] can be decreased to make Eq. (35) and (36)
satisfy with equality. Thus, the corresponding &, [n] and Ay, [n]
can be increased or decreased to make constraint (44b) and
(44c) satisfy with equality. Therefore, at the optimal solution
to problem P2.1, all constraints must be satisfied with equality,
i.e., the problem P2 and P2.1 are equivalent. Next, we adopt
a penalty function-based approach to solve the problem P2.1.
By adding Eq. (40) as a penalty term to the objective function,
the problem P2.1 can be transformed into the problem P2.2
as follows

} denotes the

P2.2: max
Q.Y n=1k=1
N K K
1 S STS T Wi In] (1 — i []),
n=1k=1 ik
(45a)

st (27b)-(27d), (27)), (27K), (35), (36),

(41)-(43), (44b)-(444d), (45b)



N K (1
(Mg [n], ¥ix [n]) > Z Z log, <1 + ™
n=1k=1 A} [n]
N K K
SODH (G
n=1k=1 i#k

— pr[n]) Pe M) e (Ak ) — 437 [n})
Al

V0 (A B+ (= gl pell) 2 )

— (w8 )" = 208 ] (vl = 02 ) ) 2 A ] )

where 7, > 0 denotes the penalty factor, and its role is to
penalize the objective function when 1); ; belongs to 0 to
1. It can be seen that when 7, — oo, the problem P2.1
and the problem P2.2 are equivalent. However, the problem
P2.2 is still non-convex optimization problem due to the non-
concave objective function and non-convex constraints (35),
(36), (43) and (44b). Next, we apply SCA to iteratively obtain
a suboptimal solution to problem P2.2.

We define that f (A [n],¢;k[n]) denotes the objective
function of the problem P2.2, which is convex w.r.t By [n]
and v; i, [n]. For the r-th iteration of SCA, the lower bound
of f (Ag [n],1ix [n]) can be given by Eq. (46), where By,[n]"")
and wfr,g [n] are value of the r-th iteration. Similarly, we can
apply SCA to carry out the first-order Taylor expansion of the
left-hand-side (LHS) convex functions of constraints (35) and
(36), and obtain their lower bounds respectively as following

() + 207 ] (i ] — 7 o]

> |lq[n] ? Yk, n,

47)
— wi|

and

(ut [n])2+2u<r> ] (ufn) = w []) = llafn] = w |, vn

(48)
Moreover, the non-convex constraint (43) can be rewritten as
follows

ik 0] + 7 [n])° (i [n] — mi [n])° <

4 4 -

la[n] = w* ¥,k # .

It can be seen that the LHS of the Eq. (49) is the difference of

the two convex functions w.r.t 1; ;, [n] and 7; [n], and the right-

hand-side (RHS) is also a convex function w.r.t g [n]. Hence,

for the r-th SCA iteration, Eq. (49) can be approximately
expressed as

(49)

— wi|

(r) ? T
) < [[a® o] — | + 2] - w)
(50)
(q ] — g [n]) Nk £,
where dv% n] = M i
(T)TL wm]) — (r) ¥ n i mi[n
(11 2(wu [n]) (s )= []Vk L

In addition, the RHS of constraint (44b) is intractable due to
the AoA in Ay, [n] and By [n] depend on the UAV location in
the n-th time slot g [r]. Herein, we introduce the following
constraint

< 62

Hq[n] —q" [”]H maxs V10, (51)

where q(") [n] is the value of the r-th SCA iteration, and &pax
denotes the maximum allowed displacement of UAV after
each SCA iteration. When the value of d,,x is small enough,
we can consider that AoA is approximately unchanged after
each SCA iteration. Therefore, A, [n] and By, [n] also remain
unchanged. The UAV trajectory optimization of the (r + 1)-
th SCA iteration is based on the AoA obtained at the 7-th
iteration. In order to ensure the accuracy of the approximation,
according to [9], we require that the ratio of the maximum
allowed deployment of the n-th time slot to the minimum
height of the UAV should meet dmax/(hu) i < Emaxs 1-€.,
the value of ., under the accuracy threshold e,,,, can be
represented by 0y ax < (hu)minsmax3. Accordingly, the RHS
of constraint (44b) only depends on wuy [n] and u[n]. We use
the following lemma to deal with constraint (44b).

Lemma 2: For given a1 > 0, as > 0 and as > 0,

g1 (z1,29) = ai(z1)"" + as(x2)”? and go(z1,22) =
az(z1)"*?(22) " are both convex jointly w.rt. z; > 0 and
zo > 0.

Proof: By proving that when z; > 0 and zo > 0, the
Hessian matrices of g (z1,z2) and go (x1,22) are positive
semi-definite, therefore, both are convex functions. The proof
of Lemma 2 is completed. ]

Let § = Bo(ur[n])™" + Ax[n](u[n]) " and h =
(up [n])_a/g(u [n])~". The RHS of the Eq. (44b) can be given
by g+ By, [n] h. Since 5y > 0, if By, > 0, then g+ |By; [n]| h is
convex jointly w.r.t. ug [n] and wu [n] according to Lemma 2.
Otherwise, § — |By, [n]| h is the difference between the two
convex functions. Thus, constraint (44b) is non-convex. Given
the value of the r-th iteration u,(:) [n] and u(") [n], we apply
SCA to obtain the lower bound of § + By, [n] h, which can be
given by

(3+ B [n]ﬁ)"’z{

and h'® are as follows.

o(w? 1) (ua ] — ) [n)

-3

3" + By In]

‘}Nllb
— B [n]|

(52)

where §'*

3 = fo(u’ () " -
] (w0 [a]) 245 ] () ()

wln] —u [n]),Vk,n,
(wln] = ) ] w

31t is worth noting that a sufficiently small emax will improve the accuracy
of the approximation, but it will also increase the computational complexity.
Therefore, the choice of a suitable emax can well balance the relationship
between accuracy and complexity.



and

Rlb — (“1(:) [n]) —a/2 (u(” [n]) -1 B % (u,(:) [n]) —a/2—1

@“WM)i Q%Pﬂ—UgHM)_(ug”nDiaﬂ(uwWM)72

(wln] = ]} , ¥k,
(54)
Therefore, constraint (44b) can be transformed into

&, [l < (§ + By [n] ﬁ)lb,Vk,n.

Accordingly, the problem P2.2 can be transformed into the
problem P2.3, which can be expressed as

(55)

P23:  max f(Ax[n], i )", (56a)
s.t. (27b)-(274d), (27)), (27k), (41), (42),
(44¢), (44d), (47), (48), (50), (55). (56b)

The problem P2.2 is a standard convex optimization problem,
which can be solved by using the standard solvers, e.g., CVX
toolbox [37].

C. Optimization of PS Ratio p

For given UAV trajectory Q, SIC decoding order ¢, UAV
transmit power allocation p, and IRS reflection coefficient 0,
the user PS ratio p optimization problem can be transformed
into the problem P3, which can be expressed as

N K
P3: max Z Z Ry [n), (57a)
n=1k=1
s.t (27h), (57b)
K
piln] (;pz[ | ]+o—k> >= (%) Wk
(57¢)

It can be proved that the objective function Ry, [n] is concave
w.L.t pi [n], and it is omitted here. Hence, the problem P3 is
a standard convex optimization problem, which can be solved
by using CVX toolbox [37].

D. Optimization of UAV Transmit Power Allocation p

For given UAV trajectory Q, SIC decoding order 1, user
PS ratio p, and IRS reflection coefficient 8, the UAV transmit
power allocation p optimization problem can be expressed as

P4: max Y > Rilnl, (58a)
st (27e), 22:715:(1271() (58b)
(sz +ok> >z (%) \Vk,n

(58¢)

The problem P4 is a non-convex optimization problem due to
the non-concave objective function. The objective function of
the problem P4 can be further expressed as

Ry, [n]=10g2<1 Pi [n <Z¢1k n] pi[n] &k [n ]+0’13> +5/3>

Zi k[n]
—logy | (1= px[n Zm A AET AP
i#£k
lzyk[n]
vn, k # i.
(59

For the convenience of analysis, we set ; ; [n] = 1. Ry, [n] is
non-concave w.r.t. p; [n] due to it is a form of difference of
concave functions. Thus, we apply SCA to obtain the upper
bound of ¢; , [n] on the RHS of Eq. (59) as follows

fo In] < o[ (97 ) +

> Il e ] (e ] — 7 [n])
i#k
((1—pk ) (z b bl o ] e ]+a,g> +a,g> In2
i#k

A

2 ()" .k 2

(60)
where pgr) [n] is value of the r-th SCA iteration. Accordingly,
the problem P4 can be transformed into the problem P4.1,

which can be given by

P4.1: max ZZ < ik ( Ln ])ub)’ 613
n=1k=1

s.t. (27e), (27f), (27k), (61b)

(sz —l—ok) >z1 (X;h) vk, n.

(61c)

It can be seen that the problem P4.1 is a standard convex
optimization problem, which can be solved by applying CVX
toolbox [37].

E. Optimization of IRS Reflection Coefficient 0

For given UAV trajectory Q, user PS ratio p, and UAV
transmit power allocation p, the IRS reflection coefficient 6
optimization problem can be expressed as

P5 : Rsum,
st (279), (27).

(62a)
(62b)

max
4

The problem P5 is non-convex due to the non-concave objec-
tive function and non-convex constraint (27g) and (271). We

introduce auxiliary variables a}! [n] = ﬂIU,kdiag (hyt [n]) €
CY™M k. n and bn] = [ejel[”]w”’ej@M[n]]T e CMx1,



Rk[n]:10g2<1_pk Zﬂ%k n]tr (Ay [n] B [n D‘*’Uk[n])_

Ui,k [n]

(65)
logy | (1= px[n Zm nltr (Ag [n]Bn]) + 0 [n] |, Vn, k # i
i#k
Tik[n]
K
(1= pr [n]) Af [n] %¢k [n] pi [n]

VB mlik 1] (B(r) [n]) = s Vn, k # i (69)

((1 ~ pi [n) § i ln] pi [n] tr (A [n] BO) [n]) + [n1> In?

Thus, the Eq. (25) can be written as follows

2

&k [n] = @i [n] + |ag’ [n] b n]|", V&, n, (63)
where @ [n] = (70l + Ut Let Ay [n] =
ai [n]afl [n] € CM*M and B[n] = b [n]bn)” e CMxM

They satisfy rank (A [n]) = 1 and rank (B [n]) = 1. Then
Eq. (63) can be further expressed as
&k [n] = wg [n] + tr (Ag [n] B [n]).

Hence, the Eq. (30) can be rewritten as the Eq. (65). Next,
we can apply DC programming to transform the non-convex
constraint rank (B [n]) = 1.

(64)

Proposition 1: For the positive semi-definite matrix M €
CN*N _tr (M) > 0, the rank-one constraint can be expressed
as the difference between two convex functions, i.e.,

rank (M) = 1 < tr (M) — [|M], = 0, (66)

N
where tr(M) = > 0, (M), |M], = o1 (M) is spectral

n=1
norm, and o,, (M) represents the n-th largest singular value
of matrix M [38].

According to Proposition 1, we transform the non-convex
rank-one constraint on matrix B[n], and then add it as a
penalty term to the objective function of problem P5. There-
fore, problem P5 can be transformed into

P5.1: maxzz Tik [n]=Ti k[n])—cp(tr(B[n])—|Bn]|l,) ,

n=1k=1
(67a)
st (sz ]+ tr (A [n] B ) + az)
- Xth
>z (6>an (67b)
Bn|,,,, =1,Ym,n, (67c)
B [n| >— O Vn, (67d)

where ¢, > 0 denotes the penalty factor related to the rank-

one constraint. It can be seen that when ¢, — oo, the problem
P5.1 and the problem P5 are equivalent. The problem P5.1
is still non-convex optimization problem due to the objective
function is non-concave. As I; i, [n] is concave w.r.t B [n], the
upper bound can be obtained by adopting SCA as follows

Fi (0] < [7) (B[] ) +tr ((VBMM 7o ] (B [n]))H
n] —B™ [])) 2 Bix )", v, i,
(Binl =B [l)) £ @ ()", ¥ bt

where Vg )i,k 1] (B [n]) is denoted by Eq. (69). In
addition, since ||B[n]||, is a convex function, we can also
adopt SCA to obtain its lower bound as follows

] H2 +tr (umax (B(T) [n]) Upnax (B(T) [n]) "

(B ~BO W) 2 (B Rl,)", n,

(70)

where U, .« (B(7') [n}) denotes the eigenvector corresponding

to the largest singular value of the matrix B(") [n]. Therefore,

the non-convex problem P5.1 can be approximately trans-
formed into

P5.2: ZZ(W

n=1k=1

IB [, > B

(71a)

s.t. (67b)-(67d). (71b)

It can be seen that the problem P5.2 is a standard SDP
problem, which can be solved by using CVX toolbox [37].

F. Computational Complexity and Convergence Analysis

1) Computational complexity analysis: In each iteration,
the problem P2.3 is solved with the computational complexity
of O (N 35+ KN ), the problem P3 and problem P4.1 both
are solved with computational complexity of O (KN3%).
The problem P5.2 solves a SDP problem by interior point
method, so the computational complexity can be represented
by O (M 3'5) [39]. We assume that the number of iterations

(7 [n])") =55 (e (B In))= (B [n],)")



required for the algorithm to reach convergence is 7, the
computational complexity of the proposed algorithm can be
expressed as O (r <N3'5 + KN+ (KN)*® + M3'5>).

2) Convergence analysis: The convergence of the proposed
joint UAV trajectory, SIC decoding order, UAV transmit power
allocation, PS ratio and IRS reflection coefficient optimization
in IRS empowered UAV SWIPT networks can be elaborated
as follows.

We define QM), ), p() p() and ) as the r-
th iteration solution of the problem 7P2.3, P3, P4.1
and P5.2. Herein, the objective function is denoted by
R (Q("'), P p) pl), 0(7')). In the step 3 of Algorithm 1,
since the UAV trajectory and SIC decoding order can be
obtained for given p("), p(") and ("), Hence, we have

R (Q<r>,¢<r>, p<r>,p<r>79<r>) <
R (Q<r+1>’ pTD p) p), 9<r>> ,

Similarly, in the step 4 of Algorithm 1, we can obtain the
user PS ratio when Q"1 4("t1_ p(") and (") are given.
Herein, we also have

%(Qwﬂ)’ﬂ,(m)’ p<r>’p<r>’9<r>> <

R (Q<r+1>,¢<r+1>, P+ p(0) gm) .
(73)
In the step 5 of Algorithm 1, UAV transmit power allocation
can be obtained when QU1 o (+1  p(r+1) and (") are
given. Therefore, we have

R (Q<7-+1)’¢(r+1)7 p<r+1)’p<r>79(r>) <

R (Q<r+1>,¢<r+1>, P+ pr+1) g(r)) ,

(74)

Finally, in the step 6 of Algorithm 1, IRS reflection coefficient

can be obtained when Q"1 ("+1) p(r+1) and p(*+1) are
fixed. Therefore, we have

R (Q<r+1>’ ¢(T+1)7p(r+1)’p(r+1),9(r)) <

R (Q<r+1>7¢<r+1>, P +D) plr+D), 9<r+1)) .
(75)

(72)

Based on the above, we can obtain
? (Qm, ¢<r>,p(r>,p<r>79<r>) <

(76)
R (Q(T+1)’¢(T+1)7p(r+1)’p(r+1)’0(r+1)) '

which shows that the value of the objective function is non-
decreasing after each iteration of Algorithm 1. Since the
objective function is upper bounded by a finite value due
to the limited transmit power of UAV, the convergence of
Algorithm 1 can be guaranteed.

IV. NUMERICAL RESULTS

In this section, we verify the effectiveness of the proposed
algorithm through the numerical results. In this paper, we
consider that K = 6 ground users are randomly distributed
in a 500 x 500 circular area. We assume that the UAV flies

Sum-rate (bps/Hz)

—O6—T=60s,M=20
—A—T=80s,M=20
T=80s,M =50

1 2 3 4 5 6 7 8 9 10 11
Number of iteration

Fig. 3. Convergence behaviour of the proposed optimization algorithm.

at a fixed height h, = 100m, and its maximum flight speed
Vinaz = 20m/s. The maximum transmit power of UAV is P4
= 43dBm. The coordinates of the initial horizontal position
and final horizontal position of the UAV are (0, 250) and
(500, 250), respectively. In addition, we consider that the IRS
is fixed on a building with a height of h, = 30m, and its
horizontal position coordinate is (250, 0). The number of IRS
reflecting elements is M = 20. The channel power gain at when
the reference distance dy = Im is By = -30dB. We assume that
the parameters of all users are the same, i.e., § = 24mW,
ar = 150 and b, = 0.024 [40]. The Rice factor is K1 = ko=
= 3dB. The additive white Gaussian noise of the transmission
channel is o = -80dBm. The path loss exponents of the UU-
channel and IU-channel are « = v = 2.2. In addition, we
set €,ax = 0.1 and d.x = Dm. The threshold of proposed
algorithm is set as 10~2. In addition, the initialization method
of the optimization variables is as follows: For the initialization
of the user PS ratio, we make it randomly generated within
[0,1]. The initial value of the IRS reflection coefficient is
randomly generated within [0, 27). The UAV transmit power
is initialized by using an equal allocation scheme. The initial
value of the UAV’s trajectory is the position where the UAV is
randomly generated in the coordinate plane in each time slot
n, and the SIC decoding order is generated depending on the
distance between the user and the UAV.

We first evaluate the convergence of the proposed algorithm.
Fig. 3 shows the change of sum-rate with the number of itera-
tion under different time periods 7" and different IRS reflection
elements M. We can see that the sum-rate increases rapidly
with the number of iteration and can reach stable convergence
in about six iterations, which verifies the convergence of the
proposed algorithm. It can also be seen that when the IRS
reflection elements are the same, a larger time duration 7" can
bring a larger system performance gain. Similarly, when the
time duration 7" is the same, more IRS reflection elements can
also increase the system sum-rate.

Next, we elaborate the optimized trajectory of UAV at
different time periods 7" assisted by IRS in Fig. 4. From Fig. 4,
we can see that when the time period T is larger, UAV can be
closer to more ground users, and can provide better wireless



300
initial position % Ground users final position
2508 —— IRs &
R —6—T=60s &
200 [ 4
150 .
=
100 - g
50 - 4
(e 4
> .
0 50 100 150 200 250 300 350 400 450 500
x(m)

Fig. 4. UAV optimization trajectory at different time periods 1" assisted by
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proposed algorithm and different benchmark algorithms.

information transmission and wireless energy transmission.
With the assistance of IRS, UAV can fly to IRS to balance
the channel conditions of UU-channel and combined channels
to provide better quality-of-service (QoS) for ground users. In
addition, when the time period 7T is large enough, the UAV
can spend more time staying near the IRS to provide higher
quality services for ground users.

Then, we compare the proposed algorithm with several other
benchmark algorithms as follows: (1) Benchmark 1 (Equ-
power): UAV transmit power allocation adopts the scheme of
equal allocation. The optimization scheme for other variables
is the same as Algorithm 1. (2) Benchmark 2 (No-opt-
trajectory): The UAV trajectory is not optimized, and a random
scheme is used. The optimization scheme for other variables
is the same as Algorithm 1. (3) Benchmark 3 (No-opt-phase):
The IRS phase shift is not optimized and a random phase
shift is used. The optimization scheme for other variables
is the same as Algorithm 1. (4) Benchmark 4 (Com-opt):
All optimization variables are optimized only once using the
optimization algorithm for each sub-problem in Algorithm 1,
and no alternate optimization is performed. (5) Benchmark 5

(Ran-opt): All optimization variables are random. (6) Bench-
mark 6 (Static-opt): Optimize the deployment of static UAV.
(7) Benchmark 7 (Static-ran): Random deployment of static
UAV. For benchmark 6 and benchmark 7, the optimization for
other variables is the same as the proposed algorithm 1 except
that UAV trajectory optimization is not considered. They
consider the static deployment problem of UAV. Benchmark 6
considers the UAV to be deployed at a random position in the
circular area, and benchmark 7 uses the exhaustive method
to find the sub-optimal deployment position of the circular
area after optimizing other variables. (8) Benchmark 8 (Non-
max-rate): UAV without maximum flight rate constraint. (9)
Benchmark 9 (Str-trajectory): UAV flies in a straight line from
the initial position to the final position. (10) No-IRS: Without
the assistance of IRS, the optimization algorithm for other
variables is the same as Algorithm 1.

Fig. 5 shows the variation of the system sum-rate with the
number of IRS reflection elements for the proposed algorithm
and benchmark algorithms. It can be seen that when the
number of IRS reflection elements increases, the performance
of the proposed algorithm improves. This is because the
number of IRS reflection elements increases, the number of
combined channels will also increase, which can provide better
channel quality for ground users, i.e., the sum-rate will also
increase accordingly. Compared with other benchmark algo-
rithms, our proposed algorithm has obvious performance gains.
Specifically, when the number of IRS reflection elements is
the same, the performance of the proposed algorithm is better
than that of benchmark 1, which is mainly due to the fact
that in benchmark 1, the UAV transmit power is not opti-
mized, but an equal allocation scheme is adopted. Similarly,
the main reason why the proposed algorithm outperforms
benchmark 2 and benchmark 3 is that the latter two are
not optimized for the UAV trajectory and the phase shift of
IRS, respectively. In addition, the performance of benchmark
2 is better than that of benchmark 3, indicating that the
gain of the proposed algorithm mainly comes from the phase
shift optimization of IRS. This is because if the phase shift
setting of the IRS is unreasonable, it is likely to deteriorate
the system performance. Moreover, the performance of the
proposed algorithm is better than benchmark 4, mainly because
benchmark 4 does not have alternate optimization to achieve
global convergence. Benchmark 5 has the worst performance
due to its random scheme. Finally, it can be seen that in terms
of system performance, the IRS-assisted system has a larger
gain than the non-IRS-assisted system, because the IRS can
improve the system performance by increasing the directional
beam. Therefore, it is practical to improve the performance of
conventional UAV SWIPT network by this low-cost passive
IRS.

In Fig. 6, we compare the change of sum-rate with the
UAV height h, for the proposed algorithm and benchmark
algorithms. It describes that when the height of the UAV
increases, the system sum-rate decreases. This is mainly due to
when the UAV is close to the ground users, the quality of the
air-ground channel provided can be improved, thus the user’s
rate can also be increased, thereby enhancing the system sum-
rate. When the height of the UAV is the same, the performance
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Fig. 6. Sum-rate versus the UAV flight altitude for the proposed algorithm
and different benchmark algorithms.

of our proposed algorithm still has a significant performance
gain. The reasons for generating the gain are similar to those
mentioned above, and will not be repeated here.

Fig. 7 shows the effect of UAV on system sum-rate with
dynamic flight and static deployment. It can be seen that
compared with benchmark 7, benchmark 6 has better perfor-
mance in terms of sum-rate. Moreover, the proposed algorithm
considers the UAV’s optimized trajectory, i.e., the UAV can
fly dynamically and serve as many ground users as possible.
Therefore, the performance of the proposd algorithm has a
significant gain compared to benchmark 6 and benchmark
7. In addition, benchmark 3 considers the equal allocation
of UAV transmit power, i.e., for all users to distribute the
same power, the rate of users farther from UAV will be
reduced. Therefore, the proposed algorithm considering UAV
power allocation optimization has a gain in terms of sum-
rate compared to benchmark 3. Next, we consider the case
that the UAV without maximum flight rate constraint, i.e.,
benchmark 8. In benchmark 8, the UAV can hover directly
above each ground user long enough without considering
the flight rate constraints, and then fly to the next user,
which can significantly improve the throughput of ground
users. Therefore, compared with the proposed algorithm, the
performance of this algorithm in terms of sum-rate is better.
However, in practical scenarios, UAV usually has a maximum
flight rate constraint. In summary, the proposed algorithm is
closer to the practical setup and has a higher performance gain
compared to several benchmark algorithms.

Next, Fig. 8 illustrates the effect of different UAV trajectory
schemes in terms of sum-rate. benchmark 8 has been men-
tioned above, here we can understand it as a UAV trajectory
scheme, i.e., UAV provides services to ground users through
hover-flight. UAV flies directly above each user to provide
services, and then flies to another user. Therefore, compared to
the proposed algorithm, the rate of each user can be improved,
thereby the system sum-rate can be improved. In benchmark
9, UAV does not fly according to the user’s position, and not
all users’ rates are guaranteed well, so the system sum-rate
will decrease compared to the proposed algorithm.
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Fig. 7. Sum-rate versus time period 7" for the proposed algorithm and
benchmark algorithms.
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Fig. 8. Sum-rate versus time period T for the proposed algorithm and different
UAV trajectory designs.

In Fig. 9, the sum-rate versus UAV maximum transmit
power for the proposed algorithm and benchmark algorithms is
shown. It can be seen that when the UAV maximum transmit
power increases, the sum-rate will also increase, which can
be explained as the increase of the UAV transmit power, the
rate of all users can be improved, so sum-rate of system will
also increase. In addition, the performance of our proposed
algorithm is superior to the benchmark algorithms, mainly
because we consider the joint optimization of all variables
and achieve the convergence of the problem by applying AO
technique.

Finally, in Fig. 10, we depict the change of sum-rate with
the user energy harvesting threshold under different UAV
maximum flight speed. It can be seen from Fig. 10 that when
the user energy harvesting threshold is fixed, the maximum
flight speed of UAV has an impact on the system sum-rate,
i.e., the sum-rate increases as the UAV maximum flight rate
increases. This is because the greater the UAV maximum flight
speed, the longer UAV can hover at the user, so it can provide
better QoS for the users. In addition, considering the SWIPT
architecture in this paper, the change of sum-rate with the
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energy harvesting threshold of ground users reflects the trade-
off in the IRS-empowered UAV SWIPT networks. When the
user energy harvesting threshold continues to increase, i.e.,
the user’s energy requirement becomes greater, the sum-rate
of system will gradually decrease. The main reason is that the
increase in energy requirements of ground users triggers the
power splitting ratio to use more power resources of UAV for
wireless energy transmission and a smaller portion for wireless
information transmission, which leads to a reduction in the rate
of ground users, thereby the system sum-rate will decrease.

V. CONCLUSION

This paper investigates the sum-rate maximization problem
of IRS empowered UAV SWIPT networks. Specifically, under
the constraints of the energy harvesting threshold, UAV tra-
jectory, SIC decoding order, UAV transmit power allocation,
PS ratio and IRS reflection coefficient are jointly optimized.
First, we transform the problem into a tractable problem.
Then, in order to solve the transformed problem, we apply
the AO algorithm framework to divide the original problem
into four sub-problems for solving. Specifically, when the

other three sets of variables are given, we apply SCA, penalty
function method and DC programming to alternately opti-
mize the optimization variables until convergence is achieved.
Then, the computational complexity and convergence analysis
of the proposed algorithm is given. Finally, the numerical
simulation results verify the convergence and effectiveness of
the algorithm, which shows that the proposed algorithm can
significantly improve the sum-rate of the system, and the role
of IRS is extremely important, and the system performance
can be improved at a lower cost, which is very meaningful.
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