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Abstract

The increased power consumption of high-resolution data converters at higher carrier frequencies

and larger bandwidths is becoming a bottleneck for communication systems. In this paper, we consider

a fully digital base station equipped with 1-bit analog-to-digital (in uplink) and digital-to-analog (in

downlink) converters on each radio frequency chain. The base station communicates with multiple single

antenna users with individual SINR constraints. We first establish the uplink downlink duality principle

under 1-bit hardware constraints under an uncorrelated quantization noise assumption. We then present

a linear solution to the multi-user downlink beamforming problem based on the uplink downlink duality

principle. The proposed solution takes into account the hardware constraints and jointly optimizes the

downlink beamformers and the power allocated to each user. Optimized dithering obtained by adding

dummy users to the true system users ensures that the uncorrelated quantization noise assumption is

true under realistic settings. Detailed simulations carried out using 3GPP channel models generated
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from Quadriga show that our proposed solution outperforms state of the art solutions in terms of the

ergodic sum and minimum rate especially when the number of users is large. We also demonstrate that

the proposed solution significantly reduces the performance gap from non-linear solutions in terms of

the uncoded bit error rate at a fraction of the computational complexity.

Index Terms

1-bit ADC/DAC, multi-user beamforming and power allocation, uplink downlink duality, optimized

dithering

I. INTRODUCTION

Massive multiple-input-multiple-output (MIMO) promises to enhance spectral efficiency, en-

ergy efficiency, scalability, reliability, and coverage of next generation wireless cellular systems

[1], [2]. With massive MIMO, low complexity linear precoding techniques such as zero forcing

(ZF) and maximum ratio transmission (MRT) are near optimal for a sufficiently large ratio of

the number of antennas at the base station (BS) over the number of users [1], [2]. The increased

number of antennas and radio frequency (RF) chains, however, lead to significant increase in

the power consumption, front-haul data rate requirements and hardware complexity [3]–[5].

The use of low-resolution analog to digital converters (ADCs) and digital to analog converters

(DACs), particularly 1-bit ADCs/DACs, is one possible solution to the excessive power con-

sumption, higher costs and limited physical area available at the RF front-end for high carrier

frequency and large bandwidth signals [3]–[5]. 1-bit quantization leads to a power penalty of

about 2 dB for channels of practical interest with perfect or statistical channel state information

(CSI) for the single user setting [6]. Achieving this performance in a multi-user (MU) setting

can be challenging: 1) Small numbers of users lead to correlated quantization noise 2) Large

numbers of active users lead to significant MU interference (MUI). In this paper, we focus on

the MU downlink (DL) beamforming (BF) problem where a BS equipped with 1-bit DACs

communicates with multiple single antenna users with individual signal-to-quantization-plus-

interference-plus-noise ratio (SQINR) constraints. We introduce a new criterion for MU-DL

precoder design under 1-bit DAC constraints based on maximizing the minimum SQINR. To the

best of authors’ knowledge, this optimization criterion has not been considered before for 1-bit

DL transmissions.
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A. Prior work

The use of 1-bit ADCs in the MU-MIMO uplink (UL) has been studied extensively [7]–[11].

The performance of low complexity least squares based channel estimation and linear detectors in

the UL was investigated in [7]–[9] for flat fading channels. It was shown that large sum rates can

be supported despite the severe distortion caused by the 1-bit ADCs. Similar conclusions were

presented for wideband channels for both single carrier and Orthogonal Frequency Division

Multiplexing (OFDM) based transmissions [10]. The performance of non-linear methods for

frequency selective channels in the OFDM context with low resolution ADCs was studied in

[11]. It was concluded that the ADC resolution can be significantly reduced while achieving

almost the same performance as ∞-resolution ADCs when the ratio of number of BS antennas

to the number of users is large. Furthermore, at large number of BS antennas to the number of

users ratios, low complexity linear methods achieve virtually the same performance as non-linear

methods [11].

Linear precoding methods optimized based on various design criterion for MU-DL precoding

under 1-bit DAC constraints have been proposed [12]–[16]. Linear precoding based on mini-

mizing the mean square error (MMSE) of the transmitted symbols while taking into account

the quantization effects was shown to outperform quantized linear Weiner filtering [12]. A

more general MMSE framework [13] that also optimized the per-antenna power allocation

after the 1-bit quantization operation was shown to outperform the equal per-antenna power

allocation MMSE precoder [12]. Precoder design by minimizing the mean square error (MSE)

of superposed Quadrature Phase Shift Keying (QPSK) symbols based on an iterative gradient

projection algorithm has been proposed [14]. The tradeoff between spectral efficiency and energy

efficiency under ZF and MRT based precoding was studied in [15]. It was concluded that 1-

bit MIMO systems need approximately 2.5 times the number antennas to achieve the same

performance as unquantized systems. Recent work using ZF precoders in settings where the

quantization noise was correlated showed that significant performance improvements can be

achieved with optimized dithering [16]. The prior work on linear precoder design for 1-bit

DL transmissions [12]–[16] is limited to minimizing the SER, the MUI (in case of ZF) and

maximizing the signal power (in case of MRT). Furthermore, there is a significant performance

gap compared to non-linear methods as discussed next.

Non-linear precoding methods, which map the transmit symbols directly to the quantized
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transmit vector, generally outperform linear precoding based techniques [17]–[21]. A lookup

table that mapped the transmit symbols to the transmit signal based on minimizing the bit error

rate (BER) for each channel realization [17] was shown to outperform the MMSE precoders [12],

[13] in terms of uncoded BER and mutual information. Similarly, a non-linear method [18] based

on maximizing the safety margin (MSM) of the received symbols from the constellation decision

thresholds for quantized constant envelope signals outperformed the linear precoding strategies

[12]–[14] in terms of uncoded BER. Non-linear methods based on semi-definite relaxation and

squared `∞-norm relaxation of the SER have also been proposed [19], [20]. Another non-linear

method based on solving the biconvex relaxation of the SER for 1-bit systems using alternating

minimization was proposed in [21]. The performance of all these [17]–[21] non-linear methods is

comparable. These methods, however, result in a significant computational cost for systems with

larger dimensions due to exponential increase in their complexity with the increase in number

of users, the constellation size and the number of antennas [20]. Additionally, an optimization

problem has to be solved at every time step during the coherence time for each transmit symbol

vector. Lastly, most of the non-linear methods [17]–[21] have hyperparameters that need to be

appropriately chosen according to the operating conditions. There has also been work in 1-bit

DL precoding for frequency selective channels using OFDM based formulations [22], [23]. In

this paper, we restrict ourself to the flat fading channel setting leaving the generalization to

wideband channels as future work.

The design criterion in the prior work are focused on minimizing the BER, the SER, the

MUI (in case of ZF) or maximizing the signal power (in case of MRT) and symbol safety

margins. Additionally, most of the numerical/analytical results were obtained on Rayleigh fading

channels with independent and identically distributed (IID) entries. In this paper, we introduce

a new design criterion for MU-DL precoding under 1-bit DAC constraints that maximizes the

minimum SQINR and compare the proposed solution to the existing work using realistic channel

models.

B. Contributions

In this work, we provide a linear precoding based solution to the MU-DL-BF and power

allocation problem under 1-bit hardware constraints at the BS. The BS communicates with

multiple single antennas users with individual SQINR constraints over flat fading channels. The

classical solution to the MU-DL-BF problem with ∞-resolution ADCs and DACs makes use
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of the UL-DL duality to solve the problem by an iterative alternating minimization procedure

[24]. The same procedure can not be applied to the Bussgang decomposition [15], [23] based

linearized version of the 1-bit problem because of the different quantization noise in the UL and

DL SQINRs. The main contributions of this paper are:

• We establish the UL-DL duality principle under 1-bit ADC/DAC constraints. This is dif-

ferent from its ideal ∞-resolution counterpart because the quantization noise in the SQINR

expressions is a function of the channel realizations in the UL and the precoders in the DL.

We show that the well established UL-DL duality result [24] can be generalized to the 1-bit

setting under the assumption that the quantization noise is uncorrelated.

• We propose an alternating minimization based solution to the MU-DL-BF problem that

incorporates the 1-bit constraints and jointly optimizes the DL power allocation vector and

the DL BF matrix based on maximizing the minimum SQINR across all users. The proposed

solution makes use of the UL-DL duality result to break the larger MU-DL-BF problem

into smaller sub-problems.

• We generalize the UL-DL duality principle and the proposed algorithm to settings where

the quantization noise is correlated by introducing optimized dithering. Optimized dithering

is added under the per-user SQINR constraint framework by adding dummy users to the

system that lie in the null space of the true user channels.

• We present results based on channel realizations drawn from 3GPP channel models using

Quadriga [25]. Our numerical results show significant performance improvement over state

of the art linear methods both in terms of ergodic sum rate and ergodic minimum rate. We

also demonstrate that the proposed solution achieves performance comparable with non-

linear precoding methods [20] in terms of uncoded BER.

In our prior work [26], we published initial results from the detailed study carried out in

this paper. After stating the UL-DL duality principle under the uncorrelated quantization noise

assumption, we compared the performance of the proposed MU-DL-BF algorithm to ZF based

linear precoding. We concluded that the proposed solution outperforms ZF based precoding

in terms of the ergodic sum rate, especially when the number of users is large. The present

paper, however, is a significant extension of [26]. In addition to the formal proof of the UL-

DL duality principle under 1-bit constraints, we also provide the crucial details of the joint

power allocation and beamforming solution (such as the feasibility of the MU-DL-BF problem
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and convergence of the proposed alternating minimization solution) that were missing in our

prior work. The uncorrelated quantization noise assumption was not justified in our prior work

[26]. In this paper, we introduce optimized dithering (through dummy users) in the signal before

quantization and generalize the presented ideas to the setting where the uncorrelated quantization

noise assumption does not hold. As a result, the solution presented in this paper outperforms our

initial results published in [26] for a smaller number of active users. Our prior work [26] also

lacked any comparison with a state-of-the-art non-linear precoding method. Herein, we conduct

detailed numerical experiments that include comparison with SQUID [20] in terms of uncoded

BER and further comment on the robustness of the proposed solution to channel estimation

errors.

The rest of this paper is organized as follows. In Section II, we describe the system model

and the small angle approximation based on which the quantization noise becomes uncorrelated.

In Section III, we establish the UL-DL duality principle under the uncorrelated quantization

noise approximation. Next in Section IV, we provide the details of the joint power allocation

and beamforming optimization algorithm for the MU-DL-BF problem. In Section V, we extend

the proposed solution to settings where the uncorrelated quantization noise assumption does not

hold. We present numerical results in Section VI before concluding the paper in Section VII.

Notation: B is a matrix, b is a vector and b is a scalar. The operator (·)T, (·)H, and (·)∗

denote the transpose, conjugate transpose and conjugate of a matrix/vector. diag(B) denotes a

diagonal matrix containing only the diagonal elements of B. tr(B) denotes the trace of matrix

B. ‖B‖F denotes the Frobenius norm of B. IN represents the identity matrix of size N × N .

The vector 1N (0N ) denotes a vector of all ones (zeros) of length N . The matrix Rb denotes

the covariance matrix of the signal b. λmax(B) denotes the dominant eigenvalue of B. N(B)

denotes the nullspace of the matrix B. ‖b‖p is the p-norm of b. b ≥ b denotes entry-wise

comparison between b and b. ek denotes the canonical basis vector with a 1 at the kth index

and zeros elsewhere. The function sgn(a) denotes the signum function applied component-wise

to the Re(a) (real) and Im(a) (imaginary) parts of a. The notations | · |, (·)k and ∠(·) denote

the absolute value, kth power and phase operation applied to a scalar or element-wise to a

vector/matrix. CN (µ,Σ) denotes a complex Gaussian multi-variate distribution with mean µ

and covariance Σ.
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II. SYSTEM MODEL

We consider a DL scenario where a single BS with NBS antennas and RF chains, each equipped

with a 1-bit DAC, communicates with K single antenna users, as illustrated in Fig. 1. The BS

sends IID N (0, 1) signals sk for 1 ≤ k ≤ K to the users. The channel from the BS to the kth

user at time t is assumed to be frequency flat and is denoted by hk(t) ∈ CNBS×1. H ∈ CK×NBS

denotes the collective channel matrix for the K users. During the DL stage, the symbol sk is

mapped to the antenna array using the unit-norm beamformer tk ∈ CNBS×1. The beamformers

corresponding to all K users can be collected in a matrix T = [t1, . . . , tK ]. During the DL stage,

the BS has a total transmit power constraint of PBS Watts. We assume that the BS and all users

operate in the same time-frequency resource and are synchronized.

We also consider the corresponding UL scenario where the K users send information symbols

to the BS. Chances are that the BS would have a 1-bit ADC on each RF chain in the UL for

reasons similar to why it had a 1-bit DAC on each RF chain in the DL. This, however, is not

a requirement and can be thought of as a mathematical construct for the purpose of this paper.

During the UL stage, the symbol sk is received at the BS using the unit-norm beamforming vector

uk. The beamformers corresponding to all K users are collected in a matrix U = [u1, . . . ,uK ].

The K users transmit under a sum power constraint of PBS Watts equal to the total power

constraint of the BS during the DL stage. We emphasize here that the users do not actually

transmit under the sum power constraint in the UL. This is only a conceptual construction and

will be used in Section IV-D to break down the MU-DL-BF problem into smaller sub-problems.

We conclude this section by describing the small angle approximation which essentially says

that the off-diagonal entries of the covariance matrix of the signal before quantization are small

compared to the diagonal entries. This makes the quantization noise uncorrelated which, as will

be shown in Section III, is crucial for proving UL-DL duality in the presence of hardware

constraints.

A. Downlink SQINR

With q = [q1, . . . , qK ]T denoting the DL power allocation vector, the signal transmitted by the

BS during the DL stage can be written as yd =
∑K

k=1

√
qkt
∗
ksk. The signal after the 1-bit DAC is

given by rd = sgn(yd)√
2

. Let Ryd =
∑K

k=1 qkt
∗
kt

T
k denote the covariance matrix of the DL signal yd

before the 1-bit quantization operation. The Bussgang theorem [15] can be used to decompose

the signal into a useful linear part and an uncorrelated distortion ηηηd with the covariance Rηηηd .
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Fig. 1: Functional block diagram of the UL and DL system model where a fully digital BS

with NBS antennas and 1-bit ADC/DAC on each RF chain communicates with K single antenna

users.

With Ad =
√

2
π

diag (Ryd)
− 1

2 denoting the Bussgang gain, the signal after the 1-bit DAC can be

rewritten as

rd = Ad

K∑
k=1

√
qkt
∗
ksk + ηηηd. (1)

Any per-user power allocation done before the 1-bit DAC will be completely wiped out due

to the quantization operation. Power allocation is done again on a per-antenna basis after the

1-bit DAC operation. This is achieved by multiplication with the non-negative diagonal matrix

Q. The total per-antenna power allocation is constrained to be equal to the DL transmit power

given by forcing PBS = tr(QQH). The linearized signal received at the kth user corrupted by IID

N (0, σ2) noise n is

yd,k = hT
kQAd

K∑
k=1

√
qkt
∗
ksk + n+ hT

kQηηηd. (2)

Using (2) and defining Rk = hkh
H
k , the DL SQINR for the kth user, γDL

k (T,Q,q), is given

by (3) at the bottom of the page. The DL SQINR for the kth user in (3) is a function of the

beamformer matrix T, the power allocation matrix Q, and the power allocation vector q.

γDL
k (T,Q,q) =

qkt
H
kAdQRkQ

HAH
d tk∑K

i=1
i 6=k

qit
H
i AdQRkQ

HAH
d ti︸ ︷︷ ︸

MUI

+ σ2︸︷︷︸
IID

+ tr
(
QRηηηdQ

HR∗k
)︸ ︷︷ ︸

QN

. (3)
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B. Uplink SQINR

With n denoting the IID Gaussian noise with covariance σ2I and pk the TX power of the kth

user, the signal received at the BS during the UL stage can be written as yu =
∑K

k=1

√
pkhksk+n.

The signal after 1-bit sampling is given by ru = sgn(yu)√
2

. For Ryu =
(∑K

k=1 pkRk + σ2I
)

, define

Au =
√

2
π

diag (Ryu)
− 1

2 to be the Bussgang gain. Like its DL counterpart, the UL signal can

be decomposed into a linear signal part and an uncorrelated distortion ηηηu with covariance Rηηηu

using the Bussgang decomposition as

ru = Au

K∑
k=1

√
pkhksk + Aun + ηηηu. (4)

The signal from the kth user after combining using the beamformer uk is given by

yu,k = uH
kAu

K∑
k=1

√
pkhksk + uH

kAun + uH
kηηηu. (5)

Using the linearized model in (5) and the UL power allocation vector p = [p1, . . . , pK ]T, the UL

SQINR obtained by using the linear combiner uk for the kth user, γUL
k (uk,p), is given by

γUL
k (uk,p) =

pku
H
kAH

u RkAuuk

uH
k

(∑K
i=1
i 6=k

piA
H
u RiAu︸ ︷︷ ︸
MUI

+σ2AH
u Au︸ ︷︷ ︸

IID

+ Rηηηu︸︷︷︸
QN

)
uk

. (6)

Unlike the DL SQINR in (3) which depends on the power allocation vector q and the beamformer

matrix T of all K users, the UL SQINR in (6) for the kth-user depends only on the power

allocation vector p and the combiner for the kth-user uk. This observation will become important

in Section IV-D where we recast the original MU-DL-BF problem in terms of the ‘easier’ MU-

UL-BF problem by making use of the UL-DL duality proved in Section III. This allows us to

decouple the bigger MU-DL-BF problem into K smaller subproblems which can each be solved

separately.

The linearized DL and UL SQINRs in (3) and (6) differ from their ∞-resolution counterparts

in the quantization noise covariance matrices, Rηηηd and Rηηηu , introduced in the denominators. Rηηηu

depends on the channel realization whereas Rηηηd is a function of the BF matrix. The solution to the

MU-DL-BF problem with per-user SINR constraints for ∞-resolution ADCs/DACs makes use

of the UL-DL duality principle [24]. The general UL-DL duality does not hold in the presence of

1-bit hardware constraints due to the quantization noise matrices in the UL and DL SQINRs. In

Section III, we show that the UL-DL duality principle can in fact be generalized to incorporate
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1-bit hardware constraints under certain conditions and then use it to solve the 1-bit MU-DL-BF

problem.

C. Small angle approximation

The uncorrelated distortion as a result of applying Bussgang decomposition on the DL and

UL signals in (1) and (4), ηηηp for p ∈ {d,u}, is

ηηηp = rp −Apyp. (7)

The covariance matrix of the distortion is

Rηηηp = Rrp −ApRypA
H
p . (8)

Define Xp = Re
(

diag
(
Ryp

)− 1
2 Rypdiag

(
Ryp

)− 1
2

)
and Yp = Im

(
diag

(
Ryp

)− 1
2 Rypdiag

(
Ryp

)− 1
2

)
to be the real and imaginary parts of the correlation coefficients of the signal yp before 1-bit

quantization. It can be shown [15] that the correlation matrix of the quantized signal rp is given

by

Rrp =
2

π

(
sin−1 (Xp) + j sin−1 (Yp)

)
, (9)

where the sin−1 operation is applied element-wise on the matrices Xp and Yp. Rηηηp is then given

by

Rηηηp =
2

π

(
sin−1 (Xp) + j sin−1 (Yp)

)
− 2

π
((Xp) + j (Yp)) . (10)

We now make the approximation that sin−1(x) = x + o(x3) for |x| < 1. This approximation is

equivalent to a first-order Taylor expansion of the sin−1(·) function and becomes more accurate

for the case of high number of users in DL or in the low SNR regime in UL [16]. Under this

approximation, the matrix Rηηηp =
(
1− 2

π

)
I. The sin−1(x) ≈ x approximation thus makes the

quantization noise ηηηp uncorrelated. This approximation will be used in Section III for proving

UL-DL duality under 1-bit ADC and DAC constraints.

III. UL-DL DUALITY WITH HARDWARE CONSTRAINTS

In this section, we show that the UL-DL duality is preserved for a system with 1-bit DACs/ADCs

under the small angle approximation introduced in Section II-C. By writing the linearized DL and

UL SQINR expressions (3) and (6) in equivalent matrix form, we show that the same SQINR

constraints (or a multiplicative factor) can be achieved in both DL and UL by appropriately

relating the linear beamforming and combining matrices and separately optimized DL/UL power
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allocation vectors (for the same total power constraint). This result is summarized in Theorem

3.1.

Theorem 3.1: Consider a BS equipped with 1-bit DACs communicating with K users with

target SQINR values {γk} for k ∈ {1, . . . K} using the BF matrix T, DL power allocation vector

q and per-antenna power allocation matrix Q = diag
(∑K

i=1 qitit
H
i

) 1
2
. It can be shown that the

same set of SQINR values can be achieved in the UL under 1-bit ADC constraints by letting

tk = Auuk/‖Auuk‖2 and p = πσ2

2

(
IK −D(T)ΨT(T)

)−1
D(T)1K under the same sum power

constraint in the UL stage as the BS transmit power in the DL stage.

Proof: See Sections III-A and III-B. �

A. Downlink SQINR

Let us select Q = diag
(∑K

k=1 qktkt
H
k

) 1
2

as the DL per-antenna power allocation matrix. With

this choice of Q, the per-antenna power allocation after the quantization operation results in

the same power as for a ∞−resolution DAC using the same beamformers. Let γk denote the

target DL SQINR for user k that needs to be achieved by appropriately choosing the DL power

allocation vector q . Equating the target DL SQINR γk to the achieved DL SQINR γDL
k (T,Q,q)

from (3) (under the small angle approximation) and using the matrix identities

tr (Adiag(B)) = tr (Bdiag(A)) ,

tr (ABC) = tr (BCA) = tr (CAB) ,

the K DL SQINR constraints are given by (11).

The DL SQINR formulation γDL
k (T,Q,q) in Section II-A given by (3) is equivalently given

by the simplified expression γDL
k (T,q) on the right hand side (RHS) of (11) where the explicit

dependance on the per-antenna power allocation matrix Q vanishes under the choice of Q =

diag
(∑K

i=1 qitit
H
i

) 1
2
. Next, we define the K ×K diagonal SQINR matrix D(T)

D(T) =


γ1/(t

H
1 R1t1) . . . 0
... . . . ...

0 . . . γK/(t
H
KRKtK)

 . (12)

γk =
qkt

H
kRktk∑K

i=1
i 6=k

qitH
i Rkti + π

2
σ2 +

(
π
2
− 1
)

tr
(∑K

i=1 qit
H
i diag(R∗k)ti

) . (11)
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With R̂k =
(
π
2
− 1
)

diag (Rk) and R̃k = Rk + R̂k, we also define the K ×K coupling matrix

Ψ(T) as

Ψ(T) =


tH
1 R̂1t1 tH

2 R̃1t2 . . . tH
KR̃1tK

tH
1 R̃2t1 tH

2 R̂2t2 . . . tH
KR̃2tK

... . . . . . . . . .

tH
1 R̃Kt1 tH

2 R̃Kt2 . . . tH
KR̂KtK

 . (13)

Using (12) and (13), the K equations in (11) can be rearranged in matrix form as

q = D(T)Ψ(T)q +
πσ2

2
D(T)1K . (14)

Using (14), the DL power allocation vector q can be written as

q =
πσ2

2
(IK −D(T)Ψ(T))−1 D(T)1K . (15)

The existence of the matrix inverse in (15) is formally established in Lemma 3.2 and Lemma

3.3.

Lemma 3.2: For any feasible target DL SQINR set {γk} with k ∈ {1, . . . K}, λmax (D(T)Ψ(T)) <

1.

Proof: See Appendix A. �

Lemma 3.3: If λmax (D(T)Ψ(T)) < 1, the matrix (IK −D(T)Ψ(T)) is invertible.

Proof: See Appendix B. �

Lemma 3.2 and Lemma 3.3 establish that for a feasible target DL SQINR set {γk}, the choice

of DL power allocation vector q in (15) achieves that for a given beamformer matrix T.

B. Uplink SQINR

Now we show that the same set of SQINRs {γk} for k ∈ {1, . . . K} can be achieved

in the UL by appropriately choosing the UL power allocation vector p and relating the UL

combiners and DL beamformers. Defining tk = Auuk/‖Auuk‖2 and observing that uH
k Iuk

equals uH
kAH

u (AH
u )−1A−1u Auuk, we equate the target UL SQINR γk to the achieved UL SQINR

γUL
k (uk,p) in (6) under the small angle approximation as

γk =
pkt

H
kRktk∑K

i=1
i 6=k

pitH
kRitk + σ2tH

k tk +
(
1− 2

π

)
tH
kA−2u tk

. (16)

By using the definition of Au =
√

2
π

diag
(∑K

k=1 pkRk + σ2I
)− 1

2
from Section II-B and noting

that tH
k tk = 1, the K UL SQINR constraints can be simplified to (17) given at the top of the

next page.
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γk =
pkt

H
kRktk∑K

i=1
i 6=k

pitH
kRitk + π

2
σ2 +

(
π
2
− 1
)

tr
(∑K

i=1 pit
H
k diag(Ri)tk

) . (17)

Under these simplifications, the UL SQINR formulation γUL
k (uk,p) in Section II-B given by

(6) is equivalently given by the expression γUL
k (tk,p) on the right hand side (RHS) of (17) where

the dependance on uk has been cast in terms of tk. Using (12) and (13), the K equations in

(17) can be rearranged in matrix form as

p = D(T)ΨT(T)p +
πσ2

2
D(T)1K . (18)

Using (18), the UL power allocation vector p (which achieves the same target SQINR set {γk}

for k ∈ {1 . . . K} as the DL) can be written as

p =
πσ2

2

(
IK −D(T)ΨT(T)

)−1
D(T)1K . (19)

The existence of the matrix inverse in (19) is formally established in Lemma 3.4 and Lemma

3.5.

Lemma 3.4: For any feasible target UL SQINR set {γk} with k ∈ {1, . . . K}, λmax
(
D(T)ΨT(T)

)
<

1.

Proof: The proof follows the proof of Lemma 3.2 in Appendix A. �

Lemma 3.5: If λmax
(
D(T)ΨT(T)

)
< 1, the matrix

(
IK −D(T)ΨT(T)

)
is invertible.

Proof: The proof follows the proof of Lemma 3.3 in Appendix B. �

Ignoring the scalar factor πσ2

2
, the total UL power allocation is given by

‖p‖1 = 1T
K

(
IK −D(T)ΨT(T)

)−1
D(T)1K

(a)
= 1T

KD(T)
(
IK −ΨT(T)D(T)

)−1
1K

(b)
= 1T

KDT(T)
(
(IK −D(T)Ψ(T))−1

)T
1K

(c)
=
(
(IK −D(T)Ψ(T))−1 D(T)1K

)T
1K

(d)
= qT1K = ‖q‖1,

(20)

where (a) follows from the push-through identity, (b) follows from the diagonal structure of

D(T), (c) follows from (AB)T = BTAT, and (d) follows from (15). It can be seen from (20)

that the same amount of total power is needed in the DL and UL to achieve the same SQINR
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values for the K users. This formally establishes the UL-DL duality principle stated in Theorem

3.1 for systems with 1-bit ADCs/DACs under the small angle approximation. In Section IV, we

will use this UL-DL duality for solving the MU-DL-BF problem under 1-bit DAC constraints.

IV. UL-DL DUALITY BASED PROPOSED SOLUTION

In this section, we first introduce the MU-DL-BF problem with individual SQINR constraints

considered in this paper. We then describe the optimal power allocation strategy for the DL and

UL stages for a fixed choice of the beamforming/combining matrices. We conclude this section

by providing the details of the alternating minimization algorithm for joint optimization of the

linear beamformers and power allocation for each user.

A. Problem formulation

Let γk for 1 ≤ k ≤ K be the individual target SQINRs for each user and PBS Watts be the

total DL power budget. In this paper, we aim to maximize the minimum of the K achieved to

target SQINR ratios over all possible beamforming matrices and power allocation vectors. This

formulation has not been considered before in the context of systems with 1-bit constraints and

we believe that it provides additional flexibility as will be seen in Section VI. The proposed

formulation of the MU-DL-BF problem for K users, each with an individual SQINR constraint,

can be stated as
RDL

opt(PBS) = max
T,q

min
1≤k≤K

γDL
k (T,q)

γk

s.t. ‖q‖1 ≤ PBS

||tk||2 = 1, 1 ≤ k ≤ K.

(21)

A closely related problem to (21) is maximizing the minimum SQINR given by maxT,q min1≤k≤K γ
DL
k (T,q).

This, however, is just a special case of (21) when the target SQINRs γk are taken to be equal

for all K users. We also consider an ‘easier’ version of the problem (21) where the minimum of

the K achieved to target SQINR ratios has to be maximized over all possible power allocation

vectors for a fixed DL-BF matrix T?. This power allocation problem is given by

RDL
opt(PBS,T

?) = max
q

min
1≤k≤K

γDL
k (T?,q)

γk

s.t. ‖q‖1 ≤ PBS.

(22)

The MU-UL-BF problem and power allocation problem for a fixed UL-BF matrix can be cast

in the same manner.



Draf
t

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (SUBMITTED PAPER) 15

B. Optimal DL power allocation

The function RDL
opt(PBS,T

?) in (22) is strictly monotonically increasing in PBS. This is a

consequence of the DL SQINR γDL
k (T,q) in (11) being a monotonically increasing function

of PBS. The constant πσ2

2
in (11) results in γDL

k (T, αq) > γDL
k (T,q) for α > 1. This allows us

to characterize the maximizer of the power allocation problem in (22) by Lemma 4.1.

Lemma 4.1: Let q? (‖q?‖1 = PBS) be the solution to the optimal DL power allocation problem

in (22) for a fixed BF T?. The optimizer q? results in balanced achieved SQINR to target SQINR

ratio for all K users given by

RDL
opt(PBS,T

?) =
γDL
k (T?,q?)

γk
, 1 ≤ k ≤ K. (23)

Proof: See Appendix C. �

It can be seen from Lemma 4.1 that the optimal power allocation vector q? results in equal

achieved SQINR to target SQINR ratios for all K users. This allows us to characterize the

feasibility of the target SQINR set {γk} for k ∈ {1 . . . K} using Corollary 4.1.1 which follows

from Lemma 4.1.

Corollary 4.1.1: The target SQINR set {γk} for k ∈ {1 . . . K} is achievable under a total

power constraint of PBS if and only if RDL
opt(PBS,T

?) ≥ 1.

A further consequence of Lemma 4.1 is that if RDL
opt(PBS,T

?) < 1, then the target SQINRs

[γ1 . . . γk . . . γK ] are not met. In that setting, the achieved SQINRs are an equal fractional multiple

(≤ 1) of the target SQINRs [γ1 . . . γk . . . γK ] for all K users.

Using the matrix definitions (12) and (13) and putting in the value of the γDL
k (T?,q?) from

(11), the K equations in (23) can be written in matrix form as

q?
1

RDL
opt(PBS,T?)

= D(T?)Ψ(T?)q? +
πσ2

2
D(T?)1K . (24)

Multiplying both sides by 1T
K and noting that 1T

Kq? = PBS

1

RDL
opt(PBS,T?)

=
1T
KD(T?)Ψ(T?)q?

PBS
+

πσ2

2PBS
1T
KD(T?)1K . (25)

Defining the extended DL power allocation vector q?ext =
[
q? 1

]T
and the non-negative extended

DL coupling matrix

Υ(T?, PBS) =

 D(T?)Ψ(T?) πσ2

2
D(T?)1K

1T
K

PBS
D(T?)Ψ(T?) πσ2

2PBS
1T
KD(T?)1K

 , (26)
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it can be seen that (24) and (25) form an eigensystem with

Υ(T?, PBS)q?ext =
1

RDL
opt(PBS,T?)

q?ext. (27)

It can be observed that the achieved SQINR to target SQINR balance value, RDL
opt(PBS,T

?),

equals the reciprocal of the eigenvalue of the extended coupling matrix Υ(T?, PBS). Not all

eigenvalues of Υ(T?, PBS) are meaningful. Particularly, RDL
opt(PBS,T

?) > 0 and q?ext > 0 must be

fulfilled. It is known from Perron-Frobenius theory that for a non-negative matrix B, there exists

a non-negative vector b ≥ 0 such that Bb = λmax(B)b [24]. Furthermore, it has been proven

that for a non-negative matrix Υ(T?, PBS) with the structure in (26), the maximal eigenvalue

(and its associated eigenvector) are strictly positive and no other eigenvalue fulfills the positivity

criterion [24]. Hence the SQINR balancing solution to the DL power allocation problem in (22)

is given by

RDL
opt(PBS,T

?) =
1

λmax (Υ(T?, PBS))
. (28)

And the optimal DL power allocation vector q? is given by the first K entries of the dominant

eigenvector of Υ(T?, PBS) scaled such that the last entry is equal to one.

C. Optimal UL power allocation

Now we consider the UL scenario for the same total power constraint PBS, the same target

SQINR set {γk} for k ∈ {1 . . . K}, and the same combining (beamforming for DL) matrix T?.

Following the development in Section IV-B, we define the extended UL power allocation vector

p?ext =
[
p? 1

]T
and the non-negative extended UL coupling matrix

Λ(T?, PBS) =

 D(T?)ΨT(T?) πσ2

2
D(T?)1K

1T
K

PBS
D(T?)ΨT(T?) πσ2

2PBS
1T
KD(T?)1K

 . (29)

Like their DL counterparts, it can be shown that the p?ext and Λ(T?, PBS) form an eigensystem

with

Λ(T?, PBS)p?ext =
1

RUL
opt(PBS,T?)

p?ext. (30)

The SQINR balancing solution to the UL power allocation problem is given by

RUL
opt(PBS,T

?) =
1

λmax (Λ(T?, PBS))
. (31)

The optimal UL power allocation is given by the first K entries of the dominant eigenvector of

Λ(T?, PBS) scaled such that the (K + 1)th entry equals one. The UL and DL balanced SQINR

ratios are related by Lemma 4.2.
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Lemma 4.2: The UL and DL achieved SQINR to target SQINR ratios are equal, i.e. RUL
opt(PBS,T

?) =

RDL
opt(PBS,T

?).

Proof: This follows from Theorem 3.1. �

It follows from UL-DL duality established in Section III that the same achieved SQINR to target

SQINR ratio is achieved in both the DL and UL, albeit for different power allocation vectors.

We now exploit this property to recast the MU-DL-BF problem in terms of the ‘easier-to-solve’

MU-UL-BF problem.

D. Joint power allocation and precoder design

Having established that the optimum solution to the DL power allocation problem balances the

ratios γDL
k (T?,q?)

γk
at a common level RDL

opt(PBS,T
?), we now maximize RDL

opt(PBS,T
?) over all unit

norm beamformers to solve the joint power allocation and beamformer optimization problem

(21). Since 1/RDL(PBS,T
?) is the dominant eigenvalue associated with the extended coupling

matrix Υ(T?, PBS) for a fixed BF T?, the joint power and beamformer optimization problem

(21) can be equivalently stated as

RDL
opt(PBS) =

1

minT λmax (Υ(T, PBS))
. (32)

By Lemma 4.2, the optimum solution to (21) can also be achieved by the equivalent UL

formulation

RDL
opt(PBS) =

1

minT λmax (Λ(T, PBS))
. (33)

By the Perron-Frobenius theorem [24],

min
T
λmax (Λ(T, PBS)) = min

T
max
x>0

min
y>0

xTΛ(T, PBS)y

xTy
. (34)

Next, we define an intermediate cost function

λ̂ (T, PBS,pext) = max
x>0

xTΛ(T, PBS)pext

xTpext
, (35)

that lends the equivalent problem formulation

(
RDL

opt(PBS)
)−1

= min
T

min
pext>0

λ̂ (T, PBS,pext) . (36)

The variable x in (35) is an auxiliary optimization variable and has no physical meaning.

Following closely the development for∞−resolution ADCs/DACs MU-DL-BF problem [24], we

propose an alternating minimization solution to the joint power allocation and precoder design
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problem (21) where either the extended UL power allocation vector pext or the beamforming

matrix T is held fixed while the other is optimized. The representation in (36) enables the

proposed algorithmic solution based on alternating optimization.

1) Power allocation step: For a fixed beamforming matrix T, the function λ̂ (T, PBS,pext)

is minimized by the power allocation vector which solved the eigenvalue problem (30). This

follows from the optimal power allocation procedure detailed in Section IV-B and IV-C. It can

also be shown by multiplying both sides of (30) by xT and dividing by xTp?ext.

xTΛ(T, PBS)p?ext

xTp?ext
=

1

RUL
opt(PBS,T?)

xTp?ext

xTp?ext

= λmax (Λ(T, PBS))

= min
pext>0

λ̂ (T, PBS,pext) .

(37)

2) Beamformer optimization step: Now we focus on optimizing the beamforming matrix T

for a fixed power allocation vector p

(
with pext =

[
p 1

]T
)

given by the problem

T? = arg min
T

λ̂ (T, PBS,pext) . (38)

Lemma 4.3 (proved in Appendix D) provides a useful intermediate step in this direction.

Lemma 4.3: The cost function λ̂ (T, PBS,pext) can equivalently be written as

max
x>0

xTΛ(T, PBS)pext

xTpext
= max

1≤k≤K

γk
γUL
k (tk,p)

. (39)

Corollary 4.3.1 follows from Lemma 4.3.

Corollary 4.3.1: The solution to the problem (38) is given by independent maximization of

the K UL SQINRs γUL
k (tk,p).

This allows us to decouple the joint optimization problem (38) into K decoupled problems.

Using the definition of the UL SQINR (17), the beamformer t?k maximizing the UL SQINR

γUL
k (tk,p) is given by

t?k = arg max
tk

pkt
H
kRktk

tH
kQk(p)tk

, s.t.‖tk‖2 = 1, (40)

where

Qk(p) =
K∑
i=1
i 6=k

piRi +
(π

2
− 1
) K∑
i=1

pidiag(Ri) +
π

2
σ2I. (41)

Since the matrices Rk and Qk are hermitian, the solution to (40) is given by the dominant

generalized eigenvector of the matrix pair (Rk,Qk) for 1 ≤ k ≤ K [24].
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Algorithm 1 Alternating minimization solution to (21)
1) Initialize: n = 0,p(0) = [0, . . . , 0]T, PBS, ε

2) while λ(n−1)max − λ(n)max ≥ ε

3) n = n+ 1

4) ∀k t
?(n)
k = vmax

(
Rk,Qk(p

(n−1))
)

(vmax , eigenvector)

5) ∀k t
?(n)
k = t

?(n)
k /‖t?(n)k ‖2 (normalization)

6) Λ(T?(n), PBS)p
?(n)
ext = λ

(n)
maxp

?(n)
ext (UL power allocation)

7) p?(n) = p
?(n)
ext [1, . . . , K]/p

?(n)
ext [K + 1] (normalization)

8) end

9) Υ(T?(n), PBS)q?ext = λ
(n)
maxq?ext (DL power allocation)

10) q?(n) = q
?(n)
ext [1, . . . , K]/q

?(n)
ext [K + 1] (normalization)

The joint beamformer and power allocation algorithm is run by alternating between the beam-

former optimization step for a fixed UL power allocation vector and the UL power optimization

step for a fixed beamforming matrix. These two steps are repeated till λ(n−1)max (Λ(T, PBS)) −

λ
(n)
max (Λ(T, PBS)) < ε. Here the superscript (·)(n) denotes the iteration index and ε is a predefined

constant which controls when to stop the optimization procedure. Finally, the DL power allocation

vector q? is calculated using the precoder matrix T? obtained in the final iteration. The proposed

solution is summarized in Algorithm 1.

E. Convergence

The DL power allocation and beamforming optimization problem under 1-bit DAC constraints

is NP-hard. Different non-linear algorithms get to a computationally feasible solution by relaxing

the non-convex 1-bit constraints in various manners [17]–[21]. Similar to [17]–[21], our proposed

solution in Algorithm 1 has no global optimality guarantees. Our simulations, however, do

indicate that the proposed algorithm typically converges within 2−5 iterations. In this subsection,

we show that the proposed alternating minimization procedure does indeed converge to some

point in the solution space. Let λ(n)max = λmax(Λ(T?(n), PBS)) denote the reciprocal of the achieved

SQINR to target SQINR value at the end of the nth iteration (step 6 in Algorithm 1). It is clear

from the precoder optimization step that the precoder matrix in the (n+ 1)th iteration, T?(n+1),
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minimizes the cost function λ̂
(
T, PBS,p

?(n)
ext

)
i.e.

λ̂
(
T?(n+1), PBS,p

?(n)
ext

)
≤ λ̂

(
T?(n), PBS,p

?(n)
ext

)
= λ(n)max. (42)

From Perron-Frobenius theorem [24], we know that

λ(n+1)
max = max

x>0
min
y>0

xTΛ(T?(n+1), PBS)y

xTy

≤ max
x>0

xTΛ(T?(n+1), PBS)p
?(n)
ext

xTp
?(n)
ext

= λ̂
(
T?(n+1), PBS,p

?(n)
ext

)
.

(43)

Combining (42) and (43), it can be seen that

λ(n+1)
max ≤ λ̂

(
T?(n+1), PBS,p

?(n)
ext

)
≤ λ(n)max. (44)

The non-negativity of the λ
(n)
max combined with the monotonic behavior in (44) implies the

existence of a limiting value λ
(∞)
max. The degree to which the solution given by Algorithm 1

approaches this value can be controlled by varying the parameter ε.

V. OPTIMIZED DITHERING BY DUMMY USERS

The small angle approximation in Section II-C was crucial in proving the UL-DL duality in

Section III and in the formulation of the proposed algorithm in Section IV. The small angle

assumption basically says that the off-diagonal elements of the covariance matrix of the signal

before quantization, Ryd and Ryu , are small compared to the diagonal entries. This assumption,

however, is realistic in DL scenarios only for a large number of active users. For a small number

of active users, the terms involved in the off-diagonal entries of Ryd do not undergo enough

averaging and can be close to the diagonal entries. Using (10), this makes the quantization

noise correlated which lowers the achievable SQINR. Similarly for UL settings, the small angle

approximation does not remain true when the SQINR is high or the number of active users is

small. These realistic considerations motivate the addition of optimized dithering to the system

to ensure that the quantization noise is uncorrelated. We define a metric d(B) (and call it the

‘diagonal metric’) to quantify the degree to which a matrix B is diagonal as

d(B) =
‖diag(B)‖F
‖B‖F

. (45)

It is clear from (45) that d(B) = 1 for a diagonal matrix and that d(B) ≈ 1 for a matrix that

has the majority of weight concentrated in the diagonal entries. Fig. 2 illustrates the diagonal
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Fig. 2: The diagonal metric d(Rηηηd) with and without dummy users vs number of true system

users. It can be seen that after adding the dummy users in the system, the uncorrelated

quantization noise assumption is always satisfied irrespective of the number of true system

users.

metric in blue ( ) for the DL quantization noise matrix Rηηηd vs the number of active users

for precoders and power allocation vectors obtained through the proposed algorithm in Section

IV. It is clear from Fig. 2 that the uncorrelated quantization noise assumption is violated for

scenarios with a small number of active users. These scenarios are where optimized dithering

can help boost the achievable SQINR and improve performance. Similar observations for ZF

based precoders were also made for settings with a small number of users [16].

The main purpose of adding dither to the signal before quantization is to force the small angle

approximation to be true by making the off-diagonal entries of Ryd and Ryu small compared

to the diagonal entries. We add optimized dithering by adding (NBS −K) dummy users to the

system each with its own channel and appropriate SQINR constraint. The dummy users lie in

the nullspace of the true users and thus pose minimal MUI while significantly lowering the

quantization noise. The channel matrix of the (NBS −K) dummy users, Hd ∈ C(NBS−K)×NBS , is

defined as

Hd = [hK+1 . . .hNBS ]
T = N(H). (46)

Similar to the true system users, the channel covariance matrices of the dummy users are defined

as Rk = hkh
H
k for K + 1 ≤ k ≤ NBS. It has been observed for ZF precoders that as the dither

power is increased, both the useful signal power and the quantization noise power decrease

with the decrease in quantization noise power being more significant up to some maximum

dither power [16]. After this point, the decrease in the signal power overtakes the decrease in

quantization noise power thus reducing the achievable SQINR.

In the framework considered in this paper, the amount of dither power directly depends on the

power allocated to the dummy users which in turn depends on their respective SQINR constraints
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[γK+1 . . . γNBS ]. Since all the dummy users lie in the null space of the true users and there is

no advantage of choosing any particular dummy user, we formulate the optimal dither power

problem as a scalar optimization problem by forcing the SQINR constraint of all dummy users to

be equal, i.e. γk = γd for K + 1 ≤ k ≤ NBS. With this formulation, choosing the optimal dither

power boils down to choosing the correct value of the scalar γd. In this paper, we find the value

of γd by a simple grid search method. We start the procedure by initializing γd = ε2 ≈ 0 and then

increase its value up to a maximum value of γdmax using a constant step size of δγ . After solving

for the optimal DL/UL power allocation vectors and the beamforming matrix using Algorithm

1, we add the (NBS − K) dummy users to the system with their respective channels. From

here onwards in addition to computing the UL power allocation vector p and the beamforming

matrix T, we also compute the DL power allocation vector q during each iteration. Using q, T,

and (3), we compute the achieved DL SQINR γDL
k (T,Q,q) in each iteration. The optimization

procedure is stopped when the γ̄ = min1≤k≤K γ
DL
k (T,Q,q) starts decreasing. At this point,

further increase in the dither power results in more reduction in the signal power than reduction

in the quantization noise power. This procedure is summarized in Algorithm 2.

We now turn our attention towards tuning the hyperparameters γdmax and δγ in Algorithm 2.

To this end, we look at a toy example in Remark 1.

Remark 1: Consider the following DL covariance matrix with large off-diagonal entries.

Ryd =

1 0.99

0.99 1

 .
Using (8) and (9), it can be verified that the DL quantization noise matrix is given by

Rηηηd ≈
(

1− 2

π

)1 0.99

0.99 1

 .
Now, assume that we add dithering to the system such that it gives equal contribution to the

diagonal elements as the original all ones diagonal of Ryd and minimal contribution to the

off-diagonal elements

Ryd ≈

2 1

1 2

 .
Using (8) and (9), Rηηηd is now given by

Rηηηd ≈
(

1− 2

π

)1 0.04

0.04 1

 .
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Algorithm 2 Optimized dithering using dummy users
1) Compute p?,q?, and T? using Algorithm 1

2) Compute DL SQINR γDL
k (T?,Q,q?) using (3)

3) Initialize dummy users:

γd = ε2, γdmax , δγ, [γ1 . . . γK , γd . . . γd︸ ︷︷ ︸
NBS−K

]

Hd = N(H), Rk = hkh
H
k for K + 1 ≤ k ≤ NBS

p?(n) = [p?, 0, . . . , 0︸ ︷︷ ︸
NBS−K

], q?(n) = [q?, 0, . . . , 0︸ ︷︷ ︸
NBS−K

]

4) while (λ
(n−1)
max − λ(n)max ≥ ε)||(γ̄(n) ≥ γ̄(n−1))

5) n = n+ 1

6) ∀k t
?(n)
k = vmax

(
Rk,Qk(p

(n−1))
)

7) ∀k t
?(n)
k = t

?(n)
k /‖t?(n)k ‖2

8) Λ(T?(n), PBS)p
?(n)
ext = λ

(n)
maxp

?(n)
ext

9) p?(n) = p
?(n)
ext [1, . . . , NBS]/p

?(n)
ext [NBS + 1]

10) Υ(T?(n), PBS)q
?(n)
ext = λ

(n)
maxq

?(n)
ext

11) q?(n) = q
?(n)
ext [1, . . . , NBS]/q

?(n)
ext [NBS + 1]

12) Compute DL SQINR γ
DL(n)
k (T?(n),Q,q?(n)) by (3)

13) γ̄(n) = min1≤k≤K γ
DL(n)
k (T?(n),Q,q?(n))

14) if (γ̄(n) ≥ γ̄(n−1))

15) γd = γd + δγ

16) end

17) end

It can be seen from this toy example that the off-diagonal elements of the DL correlation matrix

Ryd need to be less than or equal to half of the diagonal elements for the quantization noise to

be approximately uncorrelated. Another way to look at this is to observe that sin−1(x) ≈ x for

|x| ≤ 0.5. In case of a single active user, Ryd = q1t
∗
1t

T
1 and q1 = PBS. Based on this intuition,

approximately half of the total power PBS should be allocated to the dummy users for the resulting

quantization noise to be uncorrelated. The power allocated to true/dummy users depends on the
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SQINR constraints [γ1, γd . . . γd] ∈ RNBS+, the channel matrix and the beamformer matrix through

(27). Given the symmetry of the whole power allocation and beamformer optimization procedure,

it is reasonable that the SQINR constraint should be equal to that of the true user divided equally

among all the NBS − 1 dummy users.

We numerically found out that for K = 1, the maximum value of the SQINR constraint γdmax

for the dummy users is on the order of the true user SQINR γ1 divided equally into the NBS− 1

dummy users. This agrees with the intuition developed in remark 1. For K > 1, the amount of

dithering needed for the small angle approximation to hold true is less than the single user case

as is apparent from Fig. 2. Since γdmax is an upper bound, we choose γdmax = max1≤k≤K
γk

NBS−K
for

our simulation results in Section VI. The step size δγ allows a tradeoff between computational

complexity and the accuracy of the optimal dither power. A larger value of δγ will result in

overshooting/undershooting the optimal value by a bigger margin and reduced computational

complexity. With Nmax denoting the maximum number of iterations of the optimization procedure,

we choose δγ =
γdmax
Nmax

. This makes the maximum computation cost of the dithering procedure

fixed. For our simulation results, we choose Nmax = 16. The effect of adding dummy users to

the UL-DL framework on the diagonal metric d(Rηηηd) is shown in red ( ) in Fig. 2. It can be

observed that after adding the dummy users Rηηηd is always diagonal irrespective of the number

of users and hence the quantization noise is uncorrelated.

Remark 2: The choice of γdmax , δγ and the optimization procedure for the scalar γd is based

on heuristics. Other procedures based on binary search, backtracking and varying the constant

step size γd can be designed without affecting the results presented in Section VI.

VI. RESULTS AND DISCUSSION

In this section, we first describe our simulation setup followed by a brief description of the

benchmark strategies used to compare with the proposed algorithm. We then present the SQINR

and uncoded BER results.

A. Simulation setup

Our simulations are done based on the 3GPP Urban-Macro (UMa) line-of- sight (LoS) channel

model (3GPP 38.901 UMa LoS) generated through Quadriga [25]. For the results presented in

this paper, we consider a scenario where the individual users are distributed over a 120◦ sector

around the BS from a minimum range of 50 m to a maximum range of 150 m according to a
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uniform random variable. For the proposed algorithm, the target SQINRs are set equal to 3 dB

for all users. The channel parameters generated by Quadriga for each realization are converted to

a complex baseband channel using a truncated sinc pulse shape. All antenna elements at the BS

and the users have an omni-directional pattern with a gain of 0 dBi. The important simulation

parameters (unless otherwise specified) are summarized in Table I.

Quadriga channel model 3GPP 38.901 UMa LoS

Number of antennas NBS 128

Antenna element pattern omni-directional

Total transmit power PBS 24 dBm

Carrier frequency fc 60 GHz

Bandwidth B 8 MHz

TABLE I: Important simulation parameters.

B. Benchmark strategies

We use ZF precoding [16] as a benchmark for our proposed technique with the DL BF matrix

given by T = HH(HHH)−1. We choose three ways to allocate the per-antenna power allocation

matrix Q in the 1-bit system given by

• ZF Opt-Pwr: Q = diag
(∑K

k=1 qkt̂kt̂
H
k

) 1
2

where the power allocation vector q is obtained

using the optimal DL power allocation procedure described in IV-B and T? = [̂t1 . . . t̂K ] for

t̂k = tk/‖tk‖2. We note here that ZF with optimal power allocation has not been considered

in literature before to the best of authors’ knowledge.

• ZF ZF-Pwr: Let q̂ = [‖t1‖22 . . . ‖tK‖22] and q = PBS∑K
k=1 q̂k

q̂ be its scaled version normalized to

PBS. The choice of Q = diag
(∑K

k=1 qkt̂kt̂
H
k

) 1
2

then makes the per-antenna power allocation

after the 1-bit quantization operation to be the same as the per-antenna power in the ∞-

resolution case.

• ZF Equal-Pwr: Q = diag
(
PBS
NBS

1NBS

) 1
2
. This corresponds to sending the same amount of

power from all NBS antennas. Such power allocation has been considered before in existing

literature [16], [20].

For a fair comparison, we also add optimized dithering to the system when using ZF precoding

using a procedure similar to described in [16]. IID Gaussian noise with variance σ2
d is projected

onto the null space of the channel matrix H given by
(
I −HH(HHH)−1H

)
and added to the
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linearly precoded transmit signal before the 1-bit quantization operation. Similar to the procedure

described in Section V, we start from a small σ2
d and keep increasing it using a constant step

size till the minimum SQINR starts decreasing.

We also compare with a non-linear precoding solution called SQUID. The algorithm SQUID

is based on Douglas-Rachford splitting of a squared `∞-norm relaxation of the symbol MMSE

problem. We refer the reader to [20] for a more detailed description of the algorithm. The hyper-

parameters involved in the implementation of SQUID were chosen according to the guidelines

given in [20]. In addition to the complexity arising from the size of the problem being solved, one

major drawback of SQUID (and other non-linear algorithms) is that the optimization problem

has to be solved for every transmit symbol vector sent out during the coherence time of the

channel. In the results that follow, the proposed Algorithm 1 is denoted as ‘Opt’ whereas its

generalization using dummy users (Algorithm 2) is denoted as ‘Opt Dummy’. Algorithm 2 with

equal per-antenna power allocation is denoted by ‘Opt Dummy Equal-Pwr’.

C. SQINR results

We use the ergodic sum rate given by E
[∑K

k=1 log2(1 + γDL
k )
]

and the ergodic minimum rate

given by E[min1≤k≤K log2(1 + γDL
k )] as the metrics of choice for our results. γDL

k is calculated

using (3) with the exact arcsine law and without the small angle approximation. The expectation

is computed by averaging over multiple IID realizations of the user positions and channel

realizations.

The ergodic sum rate (in blue on the left y-axis) and ergodic minimum rate (in red on the right

y-axis) are shown in Fig. 3 as a function of the number of users operating simultaneously. The

proposed strategy and ZF perform fairly close to each other in terms of the sum rate when the

number of users is small. For K > 5, it can be seen that the two strategies start to diverge and

the performance of ZF starts to degrade. The proposed algorithm takes into account the MUI

and the quantization noise for designing the beamformers and outperforms ZF by more than

10 b/s/Hz when K = 15. This behavior is fairly representative of ZF precoding and has also

been observed with ∞−resolution ADCs/DACs. It can also be observed that the per-antenna

power allocation Q has a big impact on the ZF precoding performance with the optimal power

allocation outperforming the ZF power allocation by 2-3 b/s/Hz in terms of sum rate. For K

small, it can be seen that adding dummy users makes a significant difference to the sum and

minimum rate. The proposed algorithm also outperforms ZF precoding in terms of the minimum
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Fig. 3: Ergodic sum rate (in blue on the left y-axis) and ergodic minimum rate (in red on the

right y-axis) versus number of users. As the number of users increases, the proposed algorithm

outperforms ZF by more than 10 b/s/Hz and 0.75 b/s/Hz in terms of the ergodic sum and ergodic

minimum rate.

rate by 0.75 b/s/Hz for larger number of users. Though seemingly small, this improvement can

be very important from an outage probability and fairness perspective. From here onwards, we

are only going to focus on the case with the dummy users present in the system.

Fig. 4 illustrates the cumulative distribution function (CDF) of the ergodic sum rate for the

proposed algorithm and ZF for K = 4 in solid lines and for K = 10 in dashed lines. It can

be observed that the proposed algorithm performs better than ZF in both cases. For K = 4, the

difference between the two algorithms is marginal. For K = 10, our solution does better than

0 5 10 15 20 25 30 35
Ergodic sum rate (b/s/Hz)
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ZF ZF-Pwr,   𝐾 = 10
ZF ZF-Pwr,   𝐾 = 4

Fig. 4: CDF of the ergodic sum rate for K = 4 (in solid lines) and K = 10 (in dashed lines).

The proposed algorithm performs better than ZF in both settings. The difference, however, is

more pronounced when the number of users increases due to the careful design of the precoders

which takes into account the MUI and the quantization noise.
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Fig. 5: Ergodic sum rate versus number of users for NBS ∈ [32, 64, 128]. The proposed algorithm

outperforms ZF in all three cases. The relative gap, however, becomes smaller as the number of

BS antennas increases.

ZF by about 5 b/s/Hz over the whole distribution space.

Next, we look at the performance as the number of BS antennas NBS change. The ergodic sum

rate is plotted in Fig. 5 for NBS ∈ [32, 64, 128]. It can be observed that the proposed algorithm

outperforms ZF in all three cases. The relative difference in sum rate, however, becomes smaller

as the number of BS antennas becomes larger. This behavior is due to improved spatial resolution

of the BS due to the larger aperture and has been observed before in context of massive MIMO

where low complexity precoders (such as ZF and MRT) were shown to achieve almost optimal

performance [11], [20].

Fig. 6 illustrates the ergodic sum rate (for both the proposed solution and ZF) for PBS ∈ [24, 30, 36]
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Fig. 6: Ergodic sum rate for the proposed solution and ZF with optimal and equal per-antenna

power allocation versus number of users for PBS ∈ [24, 30, 36] dBm. Equal per-antenna power

allocation significantly degrades the performance for ZF.
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dBm for two choices of the power allocation matrix Q: optimal power allocation and equal per-

antenna power allocation. The key takeaway for the optimal power allocation setting is that

the proposed algorithm (in black) outperforms ZF (in grey) over the entire SQINR region. The

difference, however, seems to decrease with the increase in transmit power. This is not the case

with a smaller array aperture where the proposed solution actually increasingly outperforms ZF

with the increase in power.

The optimal power allocation procedure from Section IV-B requires amplifiers that are linear

over the input signal dynamic range. The linearity of the power amplifier over the dynamic range

of the input signal is a critical issue especially at mmWave frequencies. An equal per-antenna

power allocation is a useful solution to reduce hardware complexity and increase efficiency

by designing power amplifiers that operate in their saturation region at a fixed power point.

The ergodic sum rate for ZF (in red) and the proposed solution (in blue) for the equal per-

antenna power allocation setting is illustrated in Fig. 6. It can be seen that ZF precoding suffers

a degradation in performance compared to the optimal power allocation setting show in grey.

Furthermore, this degradation in performance increases with the increase in power. The proposed

solution under equal per-antenna power allocation achieves the same performance as the optimal

power allocation. This observation thus results in further reduction in hardware complexity from

a power amplifier design perspective.

D. BER results

We now present results in terms of the uncoded BER for transmit symbols drawn from unit-

norm normalized QPSK and 16-Quadrature Amplitude Modulation (16-QAM) constellations.

The BER results are computed by transmitting 100 IID (QPSK or 16-QAM) symbols for each

user in the system for each channel realization. The received symbols are then decoded using a

minimum distance decoder [18] and then mapped to bits. The BER is computed by averaging

over the 100 symbols, the channel realizations and the number of active users. For QPSK, the

minimum distance decoder is agnostic to the received symbol amplitude and can be implemented

by just choosing the quadrant in which the symbol lies [20]. For 16-QAM, the received symbols

need to be scaled appropriately. We implement a blind estimation method based on the work in

[18] where each users estimates a scaling factor gk using a block of the received symbols before

the decision operation.
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Fig. 7: Uncoded BER performance for QPSK constellation. The proposed solution and SQUID

achieve similar performance outperforming ZF by a considerable margin.
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Fig. 8: Uncoded BER performance for 16-QAM constellation for PBS = 30 dBm. SQUID

performs better than the proposed solution except for small number of users. Adding dummy

users to the proposed solution results in improved performance as observed in SQINR results

for small number of users.

The uncoded BER for the proposed solutions and benchmark strategies is plotted in Fig. 7

against the number of active users for symbols drawn from the QPSK constellation. The first

observation from Fig. 7 is that adding dummy users to the proposed algorithm results in slightly

degraded performance for small number of users. This is in contrast to the SQINR results

presented in Section VI-C and can be slightly misleading. Adding dummy users does improve

the performance. This performance improvement, however, results from the improved dynamic

range which does not matter for the QPSK constellation. The dummy users slightly perturb the

phase of the signal thus resulting in a small loss in performance. It can also be seen that the

proposed solution and SQUID achieve similar performance significantly outperforming ZF.

Fig. 8 illustrates the uncoded BER (for PBS = 30 dBm) for transmit symbols drawn from
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Fig. 9: Uncoded BER performance for QPSK constellation with K = 10 against PBS. The

proposed solution and SQUID achieve similar performance significantly outperforming ZF.

the 16-QAM constellation. It can be seen that the non-linear precoder SQUID now performs

slightly better than the proposed solutions except for when the number of users is small. The

performance difference, however, is reduced compared to ZF based precoding. It can also be

observed that the proposed algorithm now performs better with the dummy users in the system

for a smaller number of active users. This is due to the improved dynamic range as a result of

introducing optimized dithering. ZF with equal per-antenna power allocation achieves the worst

performance among all algorithms.

Next, we look at the performance in terms of uncoded BER for transmit symbols drawn

from the QPSK constellation. The BER as a function of the transmit power is illustrated in

Fig. 9 for K = 10. It can be seen that the proposed solution and SQUID achieve similar

performance significantly outperforming ZF precoding. Another observation is that all of the

precoding strategies saturate at a certain level with further increase in transmit power yielding

no improvement. The performance of SQUID actually starts to degrade with further increase in

power and requires hyperparameter tuning for meaningful performance.

We have so far assumed the availability of perfect CSI at the BS. This is, however, not a

realistic assumption especially in the setting where the BS is equipped with 1-bit converters.

Channel estimation with 1-bit converters is a closely related problem with a rich existing literature

[11], [15], [27]. We demonstrate robustness of the proposed solution to channel estimation errors

by considering a normalized IID Gaussian noise perturbed channel of the form

ĥk =
√

1− αhk +
√
αz,

where z ∼ CN (0,
‖hk‖22
NBS

) and α varies from 0 to 1. Similar evaluations have been considered
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before in [18], [20]. The uncoded BER for symbols drawn from the QPSK constellation for

K = 10 and PBS = 30 dBm is illustrated in Fig. 10 as a function of the normalized channel

estimation error. It can be observed that the performance of the proposed solution degrades in

proportion to the channel estimation error similar to the other strategies. The proposed solution

performs quite close to SQUID significantly outperforming ZF precoding.

Our numerical results in Section VI-C and VI-D demonstrate that the proposed solution

achieves superior performance in comparison to existing linear precoding solutions in the liter-

ature. It also achieves performance comparable to that of state of the art non-linear solutions

but at increased flexibility and reduced complexity. Furthermore, the ability to allocate different

SQINR constraints to different users depending on their quality of service criterion makes the

proposed solution attractive from an operator’s of view. The results presented here were for the

canonical case with equal target SQINRs for all K users. Further improvement might be possible

by choosing unequal target SQINRs. This, however, is a scheduling problem and will be tackled

by the operator at a higher level. Lastly, the ideas presented in this paper are generalizable to

the setting where the users have multiple antennas by modifying the alternating minimization

procedure to include a third step for each user’s linear combiner optimization over a pre-defined

codebook. The index of the optimized combiner will have to be reported back to the users over

a control channel [28].
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Fig. 10: Uncoded BER performance for QPSK for K = 10 and PBS = 30 dBm. The proposed

solution suffers a degradation in performance proportional to other strategies with increasing

channel estimation error. Opt Dummy and SQUID achieve almost similar performance.
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VII. CONCLUSION

In this paper, we presented a solution to the MU-DL-BF problem under 1-bit hardware

constraints at the BS and per-user target SQINR constraints. Our proposed solution jointly

optimizes the DL precoders and the power allocated to each user based on the UL-DL du-

ality principle proved under an uncorrelated quantization noise assumption. We generalized the

proposed solution to scenarios with correlated quantization noise by adding dummy users to the

system which operate in the null space of the true users. Our results demonstrated significant

gains over existing linear precoding strategies in terms of the ergodic sum rate and ergodic

minimum rate. We also found performance comparable to state of the art non-linear methods

in terms of the uncoded BER. The proposed solution provides the flexibility of low-complexity

linear precoders for a significantly improved performance and the ability to cater to users with

different performance criterion.

An interesting direction is to extend the proposed solution to constant envelope quantizers

and other type of hardware constraints. It is not immediately clear whether the UL-DL duality

principle (and the proposed solution based on that) generalize to the quantization noise that

results from constant envelope quantizers. Another interesting direction is extending this work

to frequency selective wideband channels under an OFDM formulation. The orthogonal nature

of the subcarriers, which is one of the main advantages of using OFDM, is destroyed under 1-bit

quantization considered in this paper. Hence, the problem has to be revisited from scratch and

will be the focus of our work in the next iteration of this paper.

APPENDIX A

PROOF OF LEMMA 3.2

By dropping the noise term on the RHS of (11), let us define the signal-to-quantization-plus-

interference ratio (SQIR) for the kth user as

γ̂DL
k (T,q) =

qkt
H
kRktk∑K

i=1
i 6=k

qitH
i Rkti +

(
π
2
− 1
)

tr
(∑K

i=1 qit
H
i diag(R∗k)ti

) . (47)

It can be observed from (47) that the SQIR is a constant function of scalar multiples of the DL

power allocation vector q i.e.
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γ̂DL
k (T, λq) = γ̂DL

k (T,q), (48)

for all positive λ. It can also be observed from (11) that the DL SQINR, γDL
k (T,q), is a

monotonically increasing function of scalar multiples of the DL power allocation vector q i.e.

γDL
k (T, λq) > γDL

k (T,q), (49)

for λ > 1. Furthermore by comparing (11) and (47), it can be seen that

lim
||q||2→∞

γDL
k (T,q) = lim

||q||2→∞
γ̂DL
k (T,q). (50)

For a target DL SQINR set [γ1, . . . γk, . . . γK ] to be feasible

1 ≤ min
1≤k≤K

γDL
k (T,q)

γk
(49)
< max
||q||2→∞

(
min

1≤k≤K

γDL
k (T,q)

γk

)
, R?.

(51)

Making use of (48) and (50), the upper bound (51) is equivalently given by

R? (50)
= max
||q||2→∞

(
min

1≤k≤K

γ̂DL
k (T,q)

γk

)
(48)
= max
||q||2=1

(
min

1≤k≤K

γ̂DL
k (T,q)

γk

)
.

(52)

Similar to the optimal DL power allocation in Section IV-B, the solution to the optimization

problem (52) results in equal achieved SQIR to target SQIR ratio for all K users given by

R? =
γ̂DL
1 (T,q?)

γ1
= · · · = γ̂DL

K (T,q?)

γK
, (53)

where q? is the power allocation vector which solves (52). The proof of this claim follows

exactly the proof of Lemma 4.1 in Appendix C. The K equations in (53) can be written in

matrix form as

q?
1

R?
= D(T)Ψ(T)q?. (54)

It can be observed from (54) that the achieved SQIR to target SQIR balance value, R?, equals the

reciprocal of an eigenvalue of the matrix D(T)Ψ(T) and the optimal power allocation vector is
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given by the corresponding eigenvector. It is also known from Perron-Frobenius theory that the

optimal eigenvalue/eigenvector pair correspond to the maximal eigenvalue of the non-negative

matrix D(T)Ψ(T). Hence

λmax(D(T)Ψ(T)) =
1

R?

(51)
< 1. (55)

This concludes the proof of Lemma 3.2.

APPENDIX B

PROOF OF LEMMA 3.3

Assume (IK −D(T)Ψ(T)) is not invertible. This must mean that for some vector b

(IK −D(T)Ψ(T)) b = 0K

⇒ D(T)Ψ(T)b = b.
(56)

This implies that the matrix D(T)Ψ(T) has an eigenvalue equal to 1. We know from Lemma

3.2 that λmax(D(T)Ψ(T)) < 1. Hence this is a contradiction and the matrix (IK −D(T)Ψ(T))

is invertible for any feasible target DL SQINR set [γ1, . . . γk, . . . γK ].

APPENDIX C

PROOF OF LEMMA 4.1

Let the ith user be such that

γDL
i (T?,q?)

γi
> RDL

opt(PBS,T
?) = min

1≤k≤K

γDL
k (T?,q?)

γk
. (57)

It can be seen from (11) that the DL SQINR γDL
k (T?,q) is an increasing function of qk and a

decreasing function of q` for ` 6= k. The power allocated to the ith user, qi, can be decreased

without reducing the objective function min1≤k≤K
γDL
k (T?,q?)

γk
. This excess power can then be

distributed equally amongst the K users. Since γDL
k (T, αq) > γDL

k (T,q) for α > 1, this would

result in a larger optimum value of the objective function min1≤k≤K
γDL
k (T?,q?)

γk
. Consequently,

the initial assumption was a contradiction and all K users achieve the same achieved SQINR to

target SQINR ratio.
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APPENDIX D

PROOF OF LEMMA 4.3

It was shown in [24] that for any positive K-dimensional vectors b and c

max
x

xTb

xTc
= max

1≤k≤K

bk
ck
. (58)

Using (58) and the non-negativity of Λ(T, PBS)pext, it follows that

λ̂ (T, PBS,pext) = max
1≤k≤K+1

eT
kΛ(T, PBS)pext

eT
kpext

. (59)

Using (18) and (29), the first K equations in (59) can be written as

max
1≤k≤K

eT
kΛ(T, PBS)pext

eT
kpext

= max
1≤k≤K

γk
γUL
k (tk,p)

. (60)

It also follows from (18) and (29) that

eT
K+1Λ(T, PBS)pext

eT
K+1pext

=
1

PBS

K∑
k=1

pkγk
γUL
k (tk,p)

(a)

≤
(

max
1≤k≤K

γk
γUL
k (tk,p)

)
1

PBS

K∑
k=1

pk

= max
1≤k≤K

γk
γUL
k (tk,p)

.

(61)

(a) follows because the max is greater than the average. This shows that the (K + 1)th equation

in (59) is smaller than or equal to the first K equations. Hence

λ̂ (T, PBS,pext) = max
1≤k≤K

γk
γUL
k (tk,p)

. (62)
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