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User Scheduling and Trajectory Optimization for

Energy-Efficient IRS-UAV Networks with SWIPT
S. Zargari, A. Hakimi, C. Tellambura, Fellow, IEEE, and S. Herath, Member, IEEE

Abstract—This paper investigates user scheduling and tra-
jectory optimization for a network supported by an intelligent
reflecting surface (IRS) mounted on an unmanned aerial vehicle
(UAV). The IRS is powered via the simultaneous wireless infor-
mation and power transfer (SWIPT) technique. The IRS boosts
users’ uplink signals to improve the network’s longevity and
energy efficiency. It simultaneously harvests energy with a non-
linear energy harvesting circuit and reflects the incident signals
by controlling its reflection coefficients and phase shifts. The
trajectory of the UAV impacts the efficiency of these operations.
We minimize the maximum energy consumption of all users by
joint optimization of user scheduling, UAV trajectory/velocity,
and IRS phase shifts/reflection coefficients while guaranteeing
each user’s minimum required data rate and harvested energy
of the IRS. We first derive a closed-form solution for the IRS
phase shifts and then address the non-convexity of the critical
problem. Finally, we propose an alternating optimization (AO)
algorithm to optimize the remaining variables iteratively. We
demonstrate the gains over several benchmarks. For instance,
with a 50-element IRS, min-max energy consumption can be as
low as 0.0404 (Joule), a 7.13% improvement over the No IRS case
(achieving 0.0435 (Joule)). We also show that IRS-UAV without
EH performs best at the cost of circuit power consumption of
the IRS (a 20% improvement over the No IRS case).

Index Terms—Intelligent reflecting surface (IRS), unmanned
aerial vehicle (UAV), simultaneous wireless information and
power transfer (SWIPT).

I. INTRODUCTION

THE sixth-generation (6G) wireless will appear around

2030 [1], and intelligent reflecting surface (IRS), also

called reconfigurable intelligent surface (RIS), is one of the

critical enabling technologies [2]. IRS comprises many low-

cost reflecting elements. They can intelligently adjust the

incident signals’ phase and amplitude to enhance the received

signal strength at the receiver [3]. IRSs can be mounted on

walls and similar places, increasing the spatial degrees of

freedom. Thus, the wireless channel itself becomes an opti-

mization variable. IRSs are nearly passive devices, requiring a

small amount of energy, which opens the possibility of energy

harvesting (EH) to power them.

Likewise, unmanned aerial vehicles (UAVs), also known

as aerial base stations (BS), offer another 6G wireless op-

tion. UAVs augment the coverage area and provide reliable
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communication along with fast and on-demand deployment,

which is suitable for relaying, information gathering, and

data distribution [4]. However, the drawbacks of these UAV

schemes are a few:

1) The limited onboard power of UAVs restricts their

service time [1], [5]. In particular, EH techniques such

as simultaneous wireless information and power transfer

(SWIPT) may help [6]–[10]. However, harvesting suffi-

cient energy may take a long time [11].

2) The power consumption of the UAV is for the com-

munication tasks and propulsion energy for hovering

and supporting high mobility over the air. The latter is

usually several orders of magnitude higher than the for-

mer. This issue imposes critical limits on communication

performance [12].

3) Relays operate in either decode-and-forward (DF) or

amplify-and-forward (AF) modes, reducing the overall

spectral efficiency (SE). This deficiency may be ad-

dressed using full-duplex (FD) relays [13]. However,

complex self-interference cancellation (SIC) techniques

are needed to mitigate the SI [14].

The challenges mentioned above strongly motivate the

integration of UAVs and IRS. Compared to conventional

relays, IRS is more energy-efficient [2]. Furthermore, IRS is

inherently FD, does not need SIC, and does not add noise.

All these reasons suggest the benefits of IRS/UAV networks.

However, there are two ways of doing that.

i) Terrestrial IRS UAV networks: Many existing works (see

[15]–[17] and references therein) consider a terrestrial

IRS at a fixed location and the UAV as an aerial BS.

However, the UAV as an aerial BS has stringent size,

weight, and power constraints, which impose critical

limits on its flight time or endurance.

ii) IRS-UAV networks: These deploy an IRS on the UAV

[18]–[20], which establishes line-of-sight (LoS) links

with the ground-level users. Hereafter, the trajectory of

the IRS-UAV can be more flexibly optimized. Also,

the IRS-UAV can achieve 360o panoramic full-angle

reflections, i.e., one IRS-UAV can manipulate signals

between any pair of ground nodes.

We now further elaborate on the benefits of the IRS-UAV

concept. First, the onboard power of the UAV limits its

operating time as an aerial BS. Instead, with an IRS, the UAV

can serve users by reflection signals. This may save the UAV

hovering and flight energy consumption [5]. Second, IRS-UAV

operates in the FD mode, which further extends the effective

SE [2]. Third, deploying multiple antennas at the UAV may

increase the cost [11]. However, an IRS comprises reflecting
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elements that provide spatial gains. The advantages of the IRS,

such as being lightweight, small size, low energy consumption,

and cohesive geometry will enhance the performance of UAV-

only networks.

On the other hand, the energy consumption of the IRS is

often assumed negligible due to its passive reflection mode.

However, this assumption is not entirely correct as this energy

consumption increases with the number of reflecting elements,

a critical issue [2]. For example, for 3 and 5-bit resolution

phase shifting, each elements consumes about 1.5 to 6 mW, re-

spectively [21]. Furthermore, active IRS has emerged recently,

which can amplify the incident signals [22], albeit at the cost

of increased power consumption. Because energy efficiency

is a key performance indicator in 6G wireless, we investigate

potential EH benefits using SWIPT.

A. Contributions

To overcome the limitations above, this work investigates

the IRS-UAV network (Fig. 1). In particular, the IRS is

powered by means of EH [11], [21]. This improves overall

energy efficiency (EE) yet does not cost extra power signals

or resources because EH is based on the SWIPT technique. For

a more realistic model, we assume that the EH process follows

a non-linear model, unlike many other published works. Note

that in our system setup (Fig. 1), the function of the UAV is to

move the IRS close to the users (via three-dimensional (3D)

trajectory optimization). We investigate the uplink transmis-

sion because that allows the power minimization of mobile

users, which is critical to extending their battery life [23].

Indeed, the IRS-UAV establishes a reflection link that increases

the throughput and reduces the transmit power of the users

[7], [17], [24]–[26]. Therefore, performing EH and reflecting

signals simultaneously at the IRS are conflicting objectives

affecting users’ transmission power. When the IRS uses power

splitting (PS)-based SWIPT, a portion of harvested power is

used for ID and the remainder for the reflection. However,

since users are transmitting in the uplink, their transmit power

affects the EH/reflection performance of the IRS. Overall, this

paper studies a new approach to realizing energy-efficient

IRS-UAV networks.

The main contributions of this work are stated as follows.

• Unlike [15]–[17], which study separate IRS and UAV net-

works, we investigate IRS-UAV networks capable of EH

using the PS architecture. The PS circuit diverts a fraction

of incident RF power at the IRS to the EH circuit. We

also improve the EH process modeling because previous

studies [6], [7], [9], [11], [18]–[20], [24], [25], [27], [28]

adopt a simplified linear EH model. Linear models do

not capture the two most significant nonlinear effects of

actual EH circuits. First, the harvested power saturates

as the input power grows large. Second, harvested power

drops to zero as the input power falls below the sensitivity

level of the EH circuit. To ease these issues, we adopt

a non-linear EH model at the IRS, which results in a

fundamentally different optimization problem [8], [29].

• While [15], [16], [30]–[32] optimize the UAV trajectory

in a two-dimensional (2D) plane, we consider the altitude

of the UAV in 3D space. On the other hand, in practice,

the UAV velocity is variable [15]–[17], [30]–[33]. Ac-

cordingly, we also study the behavior of the UAV velocity

under different trajectories.

• We optimize user scheduling and trajectory optimization

to ensure that the energy consumption of all users is low.

To this end, we minimize the maximum energy consump-

tion of users by jointly optimizing the user scheduling,

UAV trajectory/velocity, and IRS phase shifts/reflection

coefficient while guaranteeing the minimum data rate and

energy requirement of each user and the IRS, respectively.

• To attack this highly coupled optimization problem, we

propose an alternating optimization (AO) algorithm to

decouple optimization variables. The basic idea of AO

is to break down the overall problem into simpler sub-

problems and solve the sequentially until convergence.

By following this approach, we first derive a closed-form

solution for the IRS phase shifts. Second, we formulate

three sub-optimal problems and obtain sub-optimal so-

lutions for the user scheduling, UAV trajectory/velocity,

and IRS reflection coefficients, respectively. Finally, we

leverage the difference of convex (DC) programming

and successive convex approximation (SCA) to tackle

the last two sub-optimal problems. While for the user

scheduling, we perform a continuous relaxation of the

binary constraint into a continuous interval.

• We present numerical results to evaluate and assess the

performance of the proposed network. We find that it

outperforms baseline schemes in terms of the energy

consumption of users except for the case of No EH at

the IRS.

B. Related Works

The related works fall into three groups. We next discuss

each group separately; namely, i) Terrestrial IRS UAV net-

works; ii) IRS-UAV networks; iii) EH technologies for IRS

networks.

i) Terrestrial IRS UAV networks: In these, the IRS is

placed anywhere on the ground (terrestrial IRS) and assists

UAV communication [15]–[17]. For instance, [15] maximizes

the minimum average data rate of the IRS by joint design

of the UAV trajectory and IRS phase shifts/scheduling. The

authors in [16] consider an UAV-aided IRS network supporting

terahertz (THz) communications where the minimum average

achievable data rate of all users is maximized by jointly

optimizing the IRS phase shifts, UAV trajectory, and power as

well as THz sub-bands allocation. Reference [17] considers

an IRS-UAV-based orthogonal frequency division multiple

(OFDM) access network and maximizes the network sum rate

by jointly optimizing the UAV trajectory, IRS phase shifts, and

resource allocations.

ii) IRS-UAV networks: In these, the IRS is mounted on

the UAV [5], [6], [18]–[20], [31]–[33]. In [33], an IRS-

UAV network is studied along with only-IRS and only-UAV

modes. The network outage probability, ergodic capacity, EE,

and optimization over some critical network parameters are

derived. Also, the symbol error rate and outage probability
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are analyzed for an IRS-UAV assisted network in [30]. In [6],

an IRS-UAV downlink network is considered where the IRS-

UAV supports the energy and information transmission to a

single Internet of Things (IoT) device. This work maximizes

the average achievable data rate by optimizing the transmit

beamforming, PS ratio, IRS phase shifts, and UAV trajectory.

In [31], the achievable secrecy rate of an IRS-UAV network

is maximized by jointly optimizing the UAV trajectory, IRS

phase shifts, and collaborative beamformers at the sensor

nodes. In [32], a new 3D wireless relaying network aided

by an aerial IRS is proposed where the worst-case signal-

to-noise ratio (SNR) is maximized by joint design of the

location as well as 3D passive beamforming at the aerial IRS

and active beamformers at the source node. Furthermore, to

have an energy-efficient network, multiple UAV-IRS objects

are introduced in a macro-cell power domain non-orthogonal

multiple access (NOMA) Heterogeneous network [5]. Finally,

the resource allocation for transmitting power minimization

problem is considered where dueling deep Q-Network learning

and semi-definite relaxation techniques (SDR) are employed

for this purpose. Besides, [18] considers an IRS-UAV network

that operates based on the NOMA. The rate of the strong user

is maximized by joint design of the UAV horizontal location,

beamforming vectors, and IRS phase shift matrix. To enable

energy-efficient communications with cell-edge users, [19]

optimizes an IRS-UAV network. In addition, a comparison

between the achievable rate of IRS-UAV with terrestrial IRS

UAV networks while tackling eavesdroppers is investigated in

[20]. The simulation results show that the IRS-UAV integration

outperforms other benchmarks.

For both types of networks mentioned above, EE is a critical

issue. Therefore, we briefly mention some relevant works

below.

ii) EH technologies for IRS networks: Because of massive

numbers of devices and their energy consumption, e.g., IoT,

wireless power transfer (WPT) is a fundamental solution [34].

WPT is the foundation of WPCN and SWIPT networks, where

wireless devices harvest energy from radio frequency (RF)

signals. In a WPCN, each device follows the harvest-and-

then-transmit protocol [34]. However, in PS-based SWIPT net-

works, each device harvests energy and decodes information

simultaneously [25]. The IRS can be deployed in both WPCN

and SWIPT networks to improve performance. For instance, a

WPCN utilizes an IRS with a single antenna hybrid access

point (AP) and two users capable of EH and information

decoding (ID) [27]. The throughput is then maximized by joint

design of the power allocations, transmit time, and IRS phase

shifts. The total energy consumption and the EE of an IRS-

assisted PS-based SWIPT network are optimized by jointly

optimizing the PS ratios, active BS beamformers, and IRS

phase shifts [7], [8]. In addition, the BS transmission power is

minimized in [10] for an IRS-aided downlink multiple-input

single-output (MISO) PS-based SWIPT network. Reference

[9] introduces a multi-objective optimization framework to

balance the sum-rate maximization and the total harvested

energy maximization.

Since the IRS consumes a small amount of power only, we

can power it with SWIPT [11], [26], [28]. This option makes

the IRS a self-sustainable device that can operate for a long

time and a hybrid energy/information relay. For such a self-

sustainable IRS-empowered network, [28] maximizes the SNR

by jointly optimizing the active and passive beamformers at

the AP and the IRS, respectively. Reference [26] maximizes

the network sum rate by joint design of the AP beamformers

and IRS phase shifts/EH schedule. Moreover, [11] maximizes

the sum rate by jointly optimizing the resource allocation

and IRS phase shifts based on time switching (TS) and

PS architectures. Besides, [21] studies the robust and secure

MISO downlink communication with a self-sustainable IRS,

which is powered by EH. The sum rate is maximized by jointly

optimizing the AP beamformers and IRS phase shifts/EH

schedule while ensuring security. The result indicates that a

significant tradeoff between the sum rate and self-sustainable

IRS exists.

This paper is organized as follows. Section II presents

the network model, the channel model, and the transmission

scheme. Section III formulates the key problem. In Section

IV, we propose our approach and solution to obtain the opti-

mization problem. In Section V, we analyze the complexity of

the proposed algorithm. In Section VI, numerical results are

presented. Finally, Section VII concludes the paper.

Notations: Vectors and matrices are expressed by boldface

lower case letters a and capital letters A, respectively. For

a square matrix A, AH and AT are Hermitian conjugate

transpose and transpose of a matrix, respectively. IM denotes

the M -by-M identity matrix. diag(·) is the diagonalization

operation. The Euclidean norm of a complex vector and the

absolute value of a complex scalar are denoted by ‖ · ‖ and

| · |, respectively. The distribution of a circularly symmetric

complex Gaussian (CSCG) random vector with mean µ and

covariance matrix C is denoted by ∼ CN (µ, C). ∇x and ∂x
denote the gradient vector and the respective partial derivative

with respect to x, respectively. The expectation operator is

denoted by E[·]. Besides, CM×N and RM×1 represent M×N
dimensional complex matrices and M × 1 dimensional real

vectors, respectively. Finally, ⌊x⌉ denotes the nearest integer

of x, and O expresses the big-O notation.

II. NETWORK MODEL

In Fig. 1, an IRS-empowered UAV network comprising

a single-antenna BS, an IRS-UAV, and K users indexed by

K = {1, ...,K} is considered. The IRS is equipped with an

EH circuit to power its operations (Fig. 2) [11], [26], [28]. In

particular, the IRS-UAV establishes LoS links for the users to

transmit information in the uplink to the BS. Without loss of

generality, we consider a 3D Cartesian coordinates network

to describe the locations of transceivers. The locations of the

BS and user k are denoted by qb = [qxb , q
y
b , q

z
b ]

T ∈ R3×1 and

qk = [qxk , q
y
k, q

z
k]

T ∈ R3×1, ∀k ∈ K, respectively, which are

assumed to be fixed. The location and velocity of the IRS-

UAV for 0 < t < T , where T is the total time slot, are

represented by qu(t) = [qxu(t), q
y
u(t), q

z
u(t)]

T ∈ R3×1 and

vu(t) = [vxu(t), v
y
u(t), v

z
u(t)]

T ∈ R3×1, respectively. Since

the trajectory of the IRS-UAV regularly varies over time, the

total time slot of the IRS-UAV operation is divided into N



4

Fig. 1: A multiuser IRS-UAV network.

discrete points i.e., δT = T/N sufficiently small time slots

in which the IRS-UAV position is assumed static [16], [17].

Accordingly, we have qu[n] = [qxu[n], q
y
u[n], q

z
u[n]]

T , where

Hmin ≤ qzu[n] ≤ Hmax, ∀n ∈ N = {1, 2, ..., N} indicates the

minimum and maximum altitude limitation of the IRS-UAV.

Remark 1: Note that although the UAV can fly at higher

altitudes, it approaches each user as close as possible to

maximize EH. Unlike previous works [15], [16], [30]–[32],

we optimize the UAV altitude, making EH at the IRS more

realistic. Accordingly, the IRS maximum altitude does not

significantly impact our optimization problem.

Subsequently, the constraints on the IRS-UAV position and

velocity can be expressed as

qu[1] = qs, qu[N + 1] = qe, (1)

qu[n+ 1]− qu[n] = vu[n]δT , ∀n ∈ Ñ = {2, 3, ..., N − 1},

‖vu[n+ 1]− vu[n]‖ ≤ amaxδT , ∀n ∈ Ñ ,

‖vu[n]‖ ≤ Vmax, ∀n ∈ N ,

respectively, where Vmax, amax, qs, and qe denote the maxi-

mum flying speed, the maximum flight acceleration, and the

first and final positions of the IRS-UAV, respectively.

A. Channel Model

This network model presupposes the availability of all

channel state information (CSI)1. We assume quasi-static block

fading channels where the channels remain constant in each

block and vary over blocks. Since the duration of each fading

block is typically much smaller than δT , the number of fading

blocks at time slot n ≫ 1 in practice [35]. The baseband

equivalent channel links at time slot n from the BS to the IRS-

UAV, user k to the IRS-UAV, and user k to the BS are given

by hbu[n] ∈ CM×1, hk,u[n] ∈ CM×1, and hk,b[n] ∈ C1×1,

respectively.

1The IRS network may acquire CSI in two ways, depending on whether
the IRS reflecting elements are equipped with receive RF chains or not. If the
IRS has RF chains, traditional techniques can be used to estimate the user-
IRS and IRS-BS channel links. Otherwise, uplink pilots and IRS reflection
patterns can be designed to estimate the channel links [3].

Fig. 2: Architecture of the IRS.

In addition, we consider a Mx × My reflection units at

IRS where Mx and My denote the number of reflecting

elements along the x-axis and y-axis, respectively. In

contrast to [15] where a uniform linear array (ULA) is

considered at the IRS, we study a more general case and

assume that reflection units at the IRS are spanned as a

uniform planar array (UPA). The reflection coefficients

matrix of IRS is given by Θ[n] = diag(θ[n]), where

θ[n]=
[

ρ1,1[n]e
jβ1,1[n],...,ρMx,My

[n]ejβMx,My [n]
]T

∈CMxMy×1.

Specifically, ρmx,my
[n] ∈ [0, 1] and βmx,my

[n] ∈ (0, 2π],
∀mx,my ∈ M = {1, ...,MxMy} are the reflection coefficient

and phase shift of the (mx,my)-th reflecting element at the

IRS, respectively. For simplicity, we denote mx,my and

Mx,My as m and M , respectively. All channel links follow

the Rician model, and the channel link between the BS and

the IRS-UAV as well as user k and the IRS-UAV at time slot

n are given by

hbu[n] =

√

βbu[n]

(

√

Kbu

Kbu + 1
hLoS
bu [n] +

√

1

Kbu + 1
hNLoS
bu [n]

)

,

(2)

hk,u[n] =

√

βk,u[n]

(√

Kk,u

Kk,u + 1
hLoS
k,u [n] +

√

1

Kk,u + 1
hNLoS
k,u [n]

)

,

(3)

respectively, where Kbu and Kk,u represent Rician factors. In

addition, we have βbu[n] =
β0

d
αbu
bu

[n]
and βk,u[n] =

β0

d
αk,u
k,u

[n]
,

where αbu and αk,u denote the path loss exponents and

β0 indicates the channel power at the reference distance of

one meter. Furthermore, dbu[n] and dk,u[n] are the distance

between the IRS-UAV and the BS-user k and the IRS-UAV,

respectively, which are given by dbu[n] = ‖qb[n]− qu[n]‖
2

and dk,u[n] = ‖qk[n]− qu[n]‖2, respectively2. The elements

of hNLoS
bu and hNLoS

k,u are assumed to be independent and

identically distributed with zero mean and unit variance, i.e.,

hNLoS
k,u ,hNLoS

bu ∼ CN (0, IMxMy
). As shown in Fig. 3, we have

hLoS
bu [n]=

[

1, e−j̺sin θ[n] cosϕ[n], ..., e−j̺(Mx−1)sin θ[n] cosϕ[n]
]T

2Due to significant path loss and reflection loss, it is assumed that the power
of the reflected signals by the IRS two or more times is negligible and hence
ignored [17].
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Fig. 3: The vertical and horizontal AoDs/AoAs between the IRS-
UAV, the BS, and user k are presented on the left-hand side and the
right-hand side, respectively.

⊗
[

1, e−j̺sin θ[n] sinϕ[n], ..., e−j̺(My−1)sin θ[n] sinϕ[n]
]T

,

(4)

hLoS
k,u [n]=

[

1, e−j̺sinωk[n] cos ζk[n], ..., e−j̺(Mx−1)sinωk[n] cos ζk[n]
]T

⊗
[

1, e−j̺sinωk[n] sin ζk[n], ..., e−j̺(My−1)sinωk[n] sin ζk[n]
]T

.

(5)

Specifically, ̺ = 2πfcd
c

where d is the distance between two

adjacent reflecting elements at the IRS and fc is the carrier

frequency. θ[n] and ϕ[n] are the vertical and horizontal angle

of departure (AoD) between the IRS-UAV and the BS at time

slot n, respectively. Similarly, ωk[n] and φk[n] are the vertical

and horizontal AoD between user k and the IRS-UAV at time

slot n, respectively. In particular, the AoDs/AoAs are given

by

sin θ[n] =

(

qzb − qzu[n]

dbu[n]

)

, sinωk[n] =

(

qzu[n]

dk,u[n]

)

, (6)

sinϕ[n] =





qxu[n]− qxb
√

(qxu[n]− qxb )
2 + (qyu[n]− qyb )

2



 , (7)

cosϕ[n] =





qyu[n]− qyb
√

(qxu[n]− qxb )
2
+ (qyu[n]− qyb )

2



 , (8)

sin ζk[n] =





qxk − qxu[n]
√

(qxu[n]− qxk )
2
+ (qyu[n]− qyk)

2



 , (9)

cos ζk[n] =





qyk − qyu[n]
√

(qxu[n]− qxk )
2 + (qyu[n]− qyk)

2



 . (10)

Moreover, the channel link between the BS and user k at time

slot n is given by

hk,b[n]=
√

βk,b

(√

Kk,b

Kk,b + 1
hLoSk,b [n]+

√

1

Kk,b + 1
hNLoS
k,b [n]

)

,

(11)

where Kk,b is the Rician factor, hLoSk,b [n] = e−j
2πfcdk,b[n]

c , and

hNLoS
k,b [n] ∼ CN (0, 1). In addition, we have βk,b = β0

d
αk,b
k,b

,

where αk,b denotes the path loss exponent and dk,b is the

distance between user k and the BS.

Fig. 4: The power splitter basic schematic comprises transformers
(Tr), resistors (R), and a capacitor (Cc) [37].

B. Transmission Scheme

The received signal at the m-th reflecting element of the

IRS-UAV at time slot n for all m ∈ M, n ∈ N , and k ∈ K
can be expressed as

y
(m)
u,k [n] =

√

Pkh
(m)
k,u [n]xk[n], (12)

where Pk and xk denote the transmit power and information of

user k, respectively. Based on the received signal, the reflection

coefficients of reflecting elements3 at the IRS can be adjusted

in such a way as to reflect and harvest energy simultaneously.

To simplify the circuit design of the IRS, we assume that all

reflecting elements have the same reflection coefficient, i.e.,

ρ̄[n] = ρ1[n] = · · · = ρM [n], which is a practical assumption

[11], [28]. Accordingly, the linear EH model of all reflecting

elements at time slot n is given by Eh
u,k[n] = ηsk[n]Pk(1 −

ρ̄2[n])‖hk,u[n]‖
2, where η ∈ (0, 1] is the energy conversion

efficiency.

The EH and signal reflection parts at the IRS are managed

by its microcontroller. The power splitter is a simple passive

device [36], whose basic schematic is shown in Fig. 4 [37].

The Tr1 transformer is used to bring the 50 Ω input impedance

down to the 25 Ω needed to feed the second transformer,

Tr2. This latter is doing the actual power splitting feeding

the two outputs. The resistor between the outputs is needed

for isolation [37]. With such a circuit, the power split ratio can

be readily controlled. The received signal at the IRS can thus

be split into two streams with one being reflected to the user

and the remaining one fed into the EH circuit. Besides, sk[n]
denotes the user scheduling indicator at time slot n which is

represented as

sk[n] =

{

1, if user k is scheduled at time slot n,

0, otherwise.

However, the linear EH model is not practical since it cannot

capture the effect of the non-linearity behavior of circuits [38].

Hence, we resort to a parametric non-linear EH model based

on the sigmoidal function [8], [29]. Then, the total harvested

energy at the IRS can be written as

Ēh
u,k[n] =

Υk[n]−MkΩk

1− Ωk

, Ωk =
1

1 + eckνk
, ∀n, k,

3Positive-intrinsic-negative (PIN) diodes, field-effect transistors (FET),
micro-electromechanical network (MEMS) switches, and variable resistor
loads can be employed for tuning the reflection coefficients of reflecting
elements at the IRS [2], [11].
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Υk[n] =
Mk

1 + exp(−ck(Eh
u,k[n]− νk))

, ∀n, k, (13a)

where Υk is the traditional logistic function and Ωk is a

constant to guarantee a zero input/output response. In addition,

ck and νk are constants parameters related to the circuit

characteristics and Mk is a constant denoting the maximum

harvested energy at the IRS. Note that all parameters can be

obtained by a curve fitting tool [29].

Remark 2: Assume that the energy consumption of each

reflecting element at the IRS is denoted by pm, so the

overall energy consumption of the IRS can be written as

Emin =MxMypm. To ensure that the harvested energy is able

to power the IRS, we need to have the following constraint:

Ēh
u,k[n] ≥ Emin, a non-convex and non-linear constraint.

However, it can be rewritten as Eh
u,k[n] ≥ νk−

1
ck

ln(Mk−Emin

Emin
)

[8], which thus makes optimization problem more tractable.

The received signal at the BS which is the superposition of

the direct and reflected signal can be written as

yk,b[n] =
√

Pk

(

hk,b[n] + ρ̄[n] (hk,u[n])
T
Θ[n]hbu[n]

)

xk[n]

+ zk[n], ∀n, k, (14)

where zk[n] ∼ N (0, σ2) is the received noise with variance

σ2. The achievable data rate at time slot n can be expressed

as

Rk[n] = sk[n] log2 (1 + SNRk[n]) , ∀k, (15)

where signal-to-noise ratio (SNR) is given by

SNRk[n] =
Pk

σ2

∣

∣hk,b[n] + ρ̄[n]hH
k,u[n]Θ[n]hbu[n]

∣

∣

2
, ∀k.

(16)

Remark 3: Note that because of the variation of the IRS-

UAV locations, the distribution of the channel remains con-

stant in each time slot but changes over different time slots.

Consequently, over each time slot, the transmission rate by the

scheduled user can be adapted to the IRS-UAV location. When

the trajectory, velocity, user scheduling, and transmission rate

are obtained, the IRS-UAV, with the help of the BS, schedules

the corresponding users and notifies each user of the optimized

transmission rate over time slots by utilizing the downlink

control links.

In the following theorem, we derive the average achievable

data rate for the formulated optimization since the involving

channel links vary relatively fast due to the small-scale fading

phenomenon.

Theorem 1: The upper bound of the average achievable data

rate for each user is given as follows:

E{Rk[n]} ≤ sk[n] log2

(

1 +
Pk

σ2

(

|bk|
2 +

βk,b
Kk,b + 1

+
ρ̄2[n](Kk,u +Kbu + 1)MxMyβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)

))

,

(17)

where

bk =

√

Kk,bβk,b
Kk,b + 1

hLoSk,b [n] +

√

Kk,uKbuβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)

× ρ̄[n](hLoS
k,u [n])

HΘ[n]hLoS
bu [n]. (18)

Proof 1: See Appendix B.

As can be observed, this data rate is a function of the large-

scale fading coefficients, LoS channel components, and IRS

phase shifts. We note that the above approximation will be

tight if the SNR is sufficiently high [15], [39]. Compared to

previous works [18]–[20], where the UAV carries the IRS,

we average out the small-scale fading. However, we apply

previously recognized techniques to obtain the upper bound

of the average achievable data to a new problem and system

model [15], [39]. Subsequently, based on Theorem 1, we

obtain the average harvested energy at the IRS which is given

by

E{Eh
u,k[n]} ≤ sk[n]Pk(1− ρ̄2[n])MxMyβbu[n]. (19)

III. PROBLEM FORMULATION

In this section, we formulate an optimization problem to

jointly optimize the user scheduling s = {sk[n], ∀k, n}, UAV

trajectory qu = {qu[n], ∀n}, UAV velocity vu = {vu[n], ∀n},

IRS phase shifts Φ = {Θ[n], ∀n}, and IRS reflection co-

efficient ρ = {ρ̄[n], ∀n} to minimize the maximum energy

consumption of all users. By defining Ek , δTPk in (Joule),

and Rmin,k , Sk

BδT
in (bits/Hz), where B denotes the channel

bandwidth in (Hz); then the problem can be mathematically

formulated as below:

(P1) : minimize
s,qu,vu

Φ,ρ,κ

κ

s.t. C1 :

N
∑

n=1

sk[n]Ek ≤ κ, ∀k,

C2 :

N
∑

n=1

E{Eh
u,k[n]} ≥ νk−

1

ck
ln(

Mk−Emin

Emin

), ∀k,

C3 :

N
∑

n=1

E{Rk[n]} ≥ Rmin,k, ∀k,

C4 :

K
∑

k=1

sk[n] ≤ 1, ∀n,

C5 : sk[n] ∈ {0, 1}, ∀k, n,

C6 : 0 ≤ βm[n] ≤ 2π, ∀m,n,

C7 : 0 ≤ ρ̄[n] ≤ 1, ∀n,

C8 : qu[1] = qs, qu[N + 1] = qe,

C9 : qu[n+ 1]− qu[n] = vu[n]δT , ∀n,

C10 : ‖vu[n+ 1]− vu[n]‖ ≤ amaxδT , ∀n,

C11 : ‖vu[n]‖ ≤ Vmax, ∀n, (20)

where C1 ensures that the energy consumption of each user

does not exceed κ, where κ is the slack variable indicating

the maximum energy to be minimized. C2 and C3 ensure the

minimum required data rate and harvested energy, respectively.

C4 and C5 are user scheduling constraints. C6 and C7 are

the phase shifts and reflection coefficient constraints at the

IRS, respectively. C8 indicates the initial and final locations

of the IRS-UAV. C9 denotes the relation between the UAV’s
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Fig. 5: A flow chart of the proposed AO algorithm.

trajectory and its flight velocity.C10 and C11 are the maximum

flight velocity and the maximum flight acceleration, respec-

tively.

IV. PROPOSED SOLUTION

The optimization problem (P1) is a non-convex and mixed-

integer problem due to the non-linear multiplication of op-

timization variables in C1 − C3 and C5, which renders the

solution challenging. Such problems are, in general, NP-hard

and mathematically intractable. Although an exhaustive search

in the feasible set of the variables may provide a globally

optimal solution, it has exponential complexity. To enable real-

time computations and reduce complexity, we propose an AO

algorithm.

The key idea of the AO algorithm is as follows. To solve,

minx f(x), where x ∈ Rs, we partition x into m > 1
blocks as x = (x1, x2, . . . , xm)T , where xk ∈ Rsk and
∑m

k=1 sk = s. The minimization is then performed over x1
while {xk|k 6= 1} are kept constant over their previous values;

next, it is performed over x2 while {xk|k 6= 2} are kept

constant over their previous values. This process thus cycles

until convergence. The AO algorithm yields a locally optimum

solution.

To apply the AO algorithm, we take two steps. First, we

derive a closed-form solution for the IRS phase shifts. Second,

we divide the main problem into three sub-problems. In the

first one, we relax the binary constraint of user scheduling

into a continuous one and then solve it by CVX [35], [40].

In the second and third ones, we apply the DC programming

and successive convex approximation (SCA) techniques to get

suboptimal solutions for the UAV trajectory/velocity and IRS

reflection coefficient, respectively. Fig. 5 shows the essential

steps for the solution of (P1). The terrestrial BS executes the

proposed iterative algorithm. Thus, the energy consumption

of this execution is minuscule compared to the total power

consumption of the BS, which must execute power-hungry

operations, including RF processing, analog-to-digital conver-

sions, and many others.

A. Optimizing Phase Shits:

We next derive a closed-form solution for IRS phase shifts

while other optimization variables remain fixed. To do this, we

maximize the primary data rate expression (17). As a result,

we first rewrite |bk| given in (21), where

ϑmi,mj
[n] = (mi − 1) sin θ[n] cosϕ[n]

+ (mj − 1) sin θ[n] sinϕ[n]

+ (mi − 1) sinωk[n] cos ζk[n]

+ (mj − 1) sinωk[n] sin ζk[n]. (22)

Then by using the triangle inequality, the upper bound of (21)

can be obtained as follows: |F1+F2| ≤ |F1|+|F2| [40], where

the inequality holds if and only if the phase of first and second

terms hold with equality which thus yields the optimal phase

shifts4 as follows:

βopt

m,k[n] =
2πfc(dbu[n]− dk,u[n])

c
+

2πfcd

c
ϑm[n]

−
2πfcdk,b[n]

c
, ∀m. (23)

Based on (23), the phase shifts at the IRS should be tuned

such that the direct path aligns with the reflected one. In this

way, coherent combining improves the signal strength of each

user.

B. Optimizing User Scheduling:

We next derive the user scheduling for fixed UAV trajec-

tory/velocity and IRS reflection coefficient. Consequently, (P1)

can be recast as follows:

(P2) : minimize
s,κ

κ

s.t. C1 − C5. (24)

To derive a computationally efficient resource allocation and

handle the non-convexity of (P2), we relax the binary con-

straint of the user scheduling into a continuous one, i.e.,

0 ≤ sk[n] ≤ 1. Accordingly, the new optimization problem

can be written as

(P3) : minimize
s,κ

κ

s.t. C1 − C4,

C5 : 0 ≤ sk[n] ≤ 1, ∀k, n. (25)

Since (P3) is a standard linear program (LP), it can be effi-

ciently solved by CXV [40]. The binary user scheduling vari-

ables can be recovered as follows. Indeed, there are LN fading

blocks in total with the time horizon T . If the obtained solution

of the relaxed problem is not binary, Nk[n] = ⌊Lsk[n]⌉ fading

blocks can be allocated to user k in any time slot n [35].

C. Optimizing UAV Trajectory and Velocity:

We next optimize the UAV trajectory/velocity for fixed user

scheduling and IRS reflection coefficient. Indeed, the UAV

trajectory/velocity are optimized to maximize the weighted

minimum of the data rate of all users, where the weight is

inversely proportional to Rmin,k. In particular, the optimization

problem has the following structure:

(P4) : maximize
qu,vu,χ

χ

4The phase shifts in closed-form expressions facilitate the control, synchro-
nization, and channel estimation requirements as the channel link only depend
on the UAV position. In this way, the phase control and required signaling
overhead of the CSI acquisition can be reduced significantly.
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|bk| =

∣
∣
∣
∣

√

Kk,bβk,b

Kk,b + 1
e−j

2πfcdk,b[n]

c

︸ ︷︷ ︸

F1

+

√

Kk,uKbuβbu[n]βk,u[n]ρ̄2[n]

(Kk,u + 1)(Kbu + 1)
e−j

2πfc(dbu[n]−dk,u[n])

c ×

Mi∑

mi=1

Mj∑

mj=1

e
−j

2πfcd
c

ϑmi,mj
[n]+jβmi,mj

[n]

︸ ︷︷ ︸

F2

∣
∣
∣
∣

(21)

s.t. C2, C8 − C11,

C3 :
1

Rmin,k

N
∑

n=1

E{Rk[n]} ≥ χ, ∀k. (26)

Based on (23), the term |bk|2 in constraint C3 can be stated

as

|bk|
2 =

Kk,bβk,b
Kk,b + 1

+
M2

xM
2
yKk,uKbuβbu[n]βk,u[n]ρ̄

2[n]

(Kk,u + 1)(Kbu + 1)

+ 2MxMy

√

Kk,bKk,uKbuβk,bβbu[n]βk,u[n]ρ̄2[n]

(Kk,b + 1)(Kk,u + 1)(Kbu + 1)
.

(27)

To this end, the objective function in (P4) can be transformed

into

E{Rk[n]} ≤ sk[n] log2

(

1+
Pk

σ2

(

(ψ1[n] + ψ2[n])βbu[n]βk,u[n]

+ ψ3[n]
√

βbu[n]βk,u[n] + ψ4βk,b[n]
)

)

∆
= Γk[n],

(28)

where

ψ1[n] =
Kk,uKbuM

2
xM

2
y ρ̄

2[n]

(Kk,u + 1)(Kbu + 1)
,

ψ2[n] =
ρ̄2[n](Kk,u +Kbu + 1)MxMy

(Kk,u + 1)(Kbu + 1)
,

ψ3[n] = 2MxMy

√

Kk,bKk,uKbuβk,bρ̄2[n]

(Kk,b + 1)(Kk,u + 1)(Kbu + 1)
,

ψ4 =
Kk,b

Kk,b + 1
. (29)

Upon rearranging terms, problem (P4) can be rewritten as

(P5) : maximize
qu,vu,χ

χ

s.t. C2, C8 − C11,

C3 :
1

Rmin,k

N
∑

n=1

Γk[n] ≥ χ, ∀k. (30)

Note that (P5) is not a convex optimization problem. To

simplify the problem formulation, we propose βbu[n] = u[n]
and βk,u[n] = rk[n] as slack variables for trajectory planning.

Thus, (28) and constraint C2 can be represented as

Γ̄k[n]
∆
= sk[n] log2

(

1 +
Pk

σ2

(

(ψ1[n] + ψ2[n])u[n]rk[n]

+ ψ3[n]
√

u[n]rk[n] + ψ4βk,b[n]
)

)

, (31)

C̄2: sk[n]Pk(1−ρ̄
2[n])MxMyu[n] ≥ νk−

1

ck
ln(
Mk−Emin

Emin

),

(32)

respectively. Therefore, (P5) can be reformulated as

(P6) : maximize
qu,vu,χ

u[n],rk[n]

χ

s.t. C̄2, C8 − C11,

C3 :
1

Rmin,k

N
∑

n=1

Γ̄k[n] ≥ χ, ∀k,

C12 : βbu[n] ≥ u[n], βk,u[n] ≥ rk[n], ∀n, k. (33)

By doing such transformation, constraint C12 holds with the

equality at the optimal solution, yielding that (P6) and (P5)

are equivalent. This is because by increasing the value of

u[n] and rk[n], the value of the objective increases as well.

However, problem (P6) is still non-convex due to coupling

between optimization variables, i.e., βbu[n] and βk,u[n]. To

overcome it, we obtain a lower bound by using first-order

Taylor expansion and the SCA technique. Consider a function

f(x) that depends on variable x, the first-order Taylor series

at point a is given by f(x) = f(a) + ∂xf(x)
∣

∣

x=a
(x − a).

By applying this, the lower-bound of constraint C12 can be

obtained as follows:

βk,u[n] ≥

β0

(‖q
(i)
u [n]−qk[n]‖2)

αk,b
2

−
αk,uβ0

2(‖q
(i)
u [n]−qk[n]‖2)

αk,b
2 +1

× (‖qu[n]−qk[n]‖
2−‖q(i)

u [n]−qk[n]‖
2)

βbu[n] ≥

β0

(‖q
(i)
u [n]−qb[n]‖2)

αbu
2

−
αbuβ0

2(‖q
(i)
u [n]−qb[n]‖2)

αbu
2 +1

× (‖qu[n]−qb[n]‖
2−‖q(i)

u [n]−qb[n]‖
2). (34)

To facilitate the solution design, we also introduce a new

variable given as

u[n] ≥
t2k[n]

rk[n]
, ∀k, n. (35)

Consequently, Γ̄k[n] in (31) is transformed into:

Γ̄k[n]
∆
= sk[n] log2

(

1 +
Pk

σ2

((

ψ1[n] + ψ2[n]
)

t2k[n]

+ ψ3[n]tk[n] + ψ4βk,b[n]
)

)

. (36)

Since Γ̄k[n] is a differentiable function with respect to tk[n],
(36) can be lower bounded as follows:

Γ̄k[n] ≥ Γ̄k[n]

∣

∣

∣

∣

t
(i−1)
k

[n]

+

(

∂tk[n]Γ̄k[n]

∣

∣

∣

∣

t
(i−1)
k

[n]

)

(tk[n]−t
(i−1)
k [n])

∆
= Ψk[n]. (37)
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Algorithm 1 Successive Convex Approximation

Input: Set the number of iterations t, initial point q
(1)
u , and

error tolerance ǫ1 ≪ 1.

1: repeat

2: For given {s(t),ρ(t)}, solve (P7) and store the

intermediate solutions {q
(t)
u ,v

(t)
u }.

3: Set t = t+ 1;

4: until |χ(t) − χ(t−1)| ≤ ǫ1.

5: Return {q∗

u,v
∗

u} = {q
(t)
u ,v

(t)
u }.

Finally, the UAV trajectory/velocity optimization problem can

be expressed as

(P7) : maximize
u[n],rk[n],tk[n]

qu,vu,χ

χ

s.t. C̄2, C8 − C12, (35)

C3 :
1

Rmin,k

N
∑

n=1

Ψk[n] ≥ χ, ∀k. (38)

As a result, (P7) is a convex optimization problem and pro-

vides a lower bound for (P5). In particular, (P7) can be solved

at iteration i by employing a convex optimization solver, e.g.,

CVX, which is summarized in Algorithm 1.

Remark 4: The feasible solution to (P7) is always feasible to

(P4) [35]. On the other hand, let us denote F (s(i), q
(i)
u ,ρ(i)) =

1
Rmin,k

∑N
n=1 Ψk[n] at iteration i, it then follows that

1
(a)

≤ min
k

1

Rmin,k
F (s(i), q(i)

u ,ρ(i))
(b)
= χ(s(i),v(i)

u , q(i)
u ,ρ(i)),

(39)

where (a) holds since {s(i), κ(i)} is a solution set of (P2) with

given {q
(i)
u ,v

(i)
u ,ρ(i)}, thus it must satisfy C3 in (20). Besides,

(b) is due to the definition of problem (P4).

Proposition 1: The approximation (37) produces a tight

lower bound of Γk[n], leading to a sequence of improved

solutions for (P4).

Proof 2: See Appendix A.

D. Optimizing IRS Reflection Coefficient:

For any given user scheduling and UAV trajectory/velocity,

we maximize the weighted minimum of the harvested en-

ergy, where the weight is inversely proportional to ek =
(

νk −
1
ck

ln(Mk−Emin

Emin
)
)

. Thus, the reflection coefficient opti-

mization problem can be written as

(P8) : maximize
ρ,Π

Π

s.t. C3, C7,

C2 :

∑N
n=1 E{E

h
u,k[n]}

ek
≥ Π, ∀k, (40)

Upon rearranging terms, problem (P8) can be rewritten as

(P9) : maximize
ρ,Π

Π

s.t. C3, C7,

Algorithm 2 Overall Algorithm for Solving Problem (P1)

Input: Set the number of iterations i and error tolerance ǫ2 ≪
1.

1: repeat

2: Solve problem (P4) to obtain the user scheduling s(i).

3: Use Algorithm 1 to optimize the UAV

trajectory/velocity and obtain q
(i)
u and v

(i)
u .

4: Obtain the optimal IRS reflection coefficient, ρ(i)

according to (P9).

5: Set i = i+1;

6: until |κ(i) − κ(i−1)| ≤ ǫ2.

7: Return {ρ∗,v∗

u, s
∗, q∗

u} = {ρ(i),v
(i)
u , s(i), q

(i)
u }.

C2 :

∑N
n=1 sk[n]Pk(1 − ρ̄2[n])MxMyβbu[n]

ek
≥ Π.

(41)

However, (P9) is non-convex with respect to ρ. To handle

non-convexity, we resort to the SCA technique to approximate

constraint C3, which leads to the following lower bounded:

Γ̄k[n]≥ Γ̄k[n]
∣

∣

ρ
(i−1)
k

[n]
+
(

∂ρk[n]Γ̄k[n]
∣

∣

ρ
(i−1)
k

[n]

)

(ρk[n]−ρ
(i−1)
k [n]).

(42)

It is worth mentioning that similar to Remark 4, it can be

proven that the feasible solution to (P9) is always feasible

to (P8). In this way, (P9) becomes a convex optimization

problem that can be efficiently solved by CVX [40]. The

SCA algorithm for solving (P9) is similar to Algorithm 1

and is omitted here for brevity. Similar to Proposition 1,

the SCA algorithm for solving (P9) monotonically increases

the objective function of (P9) at each iteration and finally

converges. The whole steps for solving (P1) are provided in

Algorithm 2. In particular, the resulting objective values of

(P7) and (P9) are non-decreasing over the iterations, which

ensures the convergence of Algorithm 2.

Proposition 2: In steps of Algorithm 2, the objective values

of (P1) are monotonically increasing after each iteration of

Algorithm 1. However, these values are non-negative. Thus,

the proposed AO algorithm is guaranteed to converge.

Proof 3: See Appendix C.

V. COMPLEXITY ANALYSIS

In this section, we investigate the complexity of Algorithm

2 which consists of 3 main steps and can be solved by the

interior-point method [40]. Specifically, in step 2, the complex-

ity order for solving (P4) is O(KN +N +3K+1)3.5, where

KN +N +3K +1 indicates the number of variables. In step

3, the complexity of computing the UAV trajectory/velocity

is O
(

I1(2K + 3N + 1)3.5
)

, where 2K +3N +1 denotes the

number of variables and I1 is the number of iterations. Finally,

in step 4, the reflection coefficient with the complexity of

O(2K+N+1)3.5 is obtained, where 2K+N+1 stands for the

number of variables. Accordingly, the total complexity order

of Algorithm 2 is O(I2((KN +N + 3K + 1)3.5 + I1(2K +
3N + 1)3.5 + (2K + N + 1)3.5)), where I2 is the number

of iterations expected for convergence [40]. The complexity

analysis provides several insights into the network design.
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TABLE I: Simulation Parameters

Parameters Values

Maximum flying acceleration of the UAV, amax 4 m/s2

Maximum flying speed of the UAV, Vmax 20 m/s

Maximum altitudes of the UAV, qzu[n] 20 m

Received antenna noise power, σ2 −140 dBm/Hz

Number of reflecting elements, M 25
Number of discrete time slots, δT 0.5 s

Non-linear EH model parameters [29]
ck = 6400,

νk = 0.003
Maximum harvested power, Mk 0.02 Watt

Maximum transmit power, Pk [23] 0.1 Watt

Target data rate, Rmin 10 Mbits

Rician factor, Kr 10 dB

Carrier frequency 3.4 GHz

Network bandwidth 1 MHz

Although the LoS links provided by UAV-carried IRS facilitate

communication, the complexity of Algorithm 2 grows as the

number of reflecting elements at the IRS increases. In other

words, scaling up the IRS can improve EH efficiency and

reduce the energy consumption of users, but this comes at the

cost of higher complexity. Thus, there is a trade-off between

complexity and performance gain.

VI. NUMERICAL RESULTS

This section provides numerical results to evaluate the per-

formance of our proposed scheme. A 3D coordinate network

is considered. The total number of reflecting elements at the

IRS is assumed to be M = MxMy. To get a better insight

into the network model, we consider two different trajectories

for the IRS-UAV namely trajectory 1 and trajectory 2. The

initial and final positions of trajectory 1 is (0, 30, 10) m and

(300, 65, 10) m, receptively, while for the second trajectory,

it is (0, 45, 10) m and (300, 45, 10) m, respectively. For

simplicity, we consider three users (K = 3) [17]. The location

of the BS is (150, 50, 8) m and the location of users are set as

follows: u1 = (20, 50, 1) m, u2 = (120, 40, 1) m, and u3 =
(240, 55, 1) m. Table I gives the simulation parameters, unless

otherwise specified. In addition, we consider the maximum

altitude of the UAV equal to 20 m. This assumption is standard

throughout the literature (e.g., see [16], [41]–[45]) and fairly

realistic. In this way, the IRS-UAV flies at the lowest allowable

flight altitude to obtain a higher channel gain for maximizing

the harvested energy at the IRS and reflect the incident signals

simultaneously. The distance-dependent path loss model is

given by L(d) = C0(
d
D0

)−α, where C0 =
(

3×108

4fπ

)2

indicates

the path loss at the reference distance D0 = 1 m [46], d is

the link distance , and α denotes the path loss exponent. More

specifically, the path loss exponents of links are assumed to

be α = 2.4 [15]. We also study the following comparative

baselines:

i) Proposed scheme (Algorithm 2): Optimizing the user

scheduling, UAV trajectory/velocity, and IRS reflection

coefficients.

ii) Baseline 1: Proposed scheme with a fixed velocity.

iii) Baseline 2: Proposed scheme with a fixed velocity and

straight trajectory where the UAV flies in a straight line

from qs to qe.
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Fig. 6: Convergence behavior of the proposed scheme under different
network setups.

iv) Baseline 3: Proposed scheme without IRS (No IRS).

vi) Baseline 4: Proposed scheme without considering EH at

the IRS (No EH), i.e., ρ̄[n] = 1, ∀n.

A. Convergence Behavior

We study the convergence of the proposed scheme in

Fig. 6, which shows the min-max energy consumption as a

function of the number of iterations. The plots include different

network setups to highlight the convergence behavior of the

proposed scheme after optimizing the user scheduling, UAV

trajectory/velocity, and IRS reflection coefficient. As observed,

the scheme achieves the bulk of its performance gain in just

a few iterations (about seven). Thus, from the implementation

point of view, so few iterations heighten the appeal of the

proposed scheme. In addition, it converges faster for trajectory

2 than for trajectory 1. This serves to illustrate that the UAV

trajectory significantly impacts the convergence behavior.

B. Trajectory and Velocity Behavior of the IRS-UAV

Fig. 7 and 8 demonstrate the trajectory and velocity behav-

ior of the IRS-UAV under different trajectories for different

baseline schemes and total time slots in the 3D and 2D

planes5. In these figures, the IRS-UAV flies near the users

by adjusting its trajectory with fixed or optimized velocity

for all proposed schemes. For the proposed scheme where the

IRS-UAV serves as a reflector, the IRS-UAV flies close to the

BS to increase the performance gain in terms of the min-max

energy consumption of all users. This is because flying near the

BS can establish better channel conditions for the IRS-UAV,

leading to better performance gains. Besides, by modifying

the IRS phase shifts to align the cascaded angle of arrival

(AoA) and AoD with the user-BS link, we can reduce the

5Specifically, the IRS elements are typically sub-wavelength in size (e.g.,
a square patch of size λ/10× λ/10 to λ/5 × λ/5 ) to behave as scatterers
without strong intrinsic directivity [47], [48]. For instance, an IRS of size 9×9
with a square patch of size λ/5×λ/5 has a side length of approximately 50
cm. A metasurface possesses an overall areal weight density of 0.11 g/cm2

[49]. Thus, for an IRS of size 9× 9, the weight is roughly 0.37 kg [50]. For
a typical UAV (model md4-1000), the maximum payload mass is 1.25 Kg.
Due to the compact size, lightweight, low energy consumption, and conformal
geometry of the IRS, the UAV can readily carry it.
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(a) Trajectory 1 in the 3D plane.

(b) Trajectory 2 in the 3D plane.

(c) Trajectory 1 in the 2D plane.

(d) Trajectory 2 in the 2D plane.

Fig. 7: Trajectory behavior of the IRS-UAV under different initial
and final positions for different baseline schemes.

maximum energy consumption of all users. The UAV adjusts

its trajectory to move closer to the BS for baseline 4 where

no EH is performed at the IRS. This is interesting since the

number of users in the 6G is proliferating, but each may not

have an LoS link with the BS. However, thanks to IRS-UAV,

LoS links can be established between each user and the BS

via adjusting the UAV trajectory/velocity and the IRS phase

shifts.

With existing LoS links, the IRS-UAV can still help each

user reduce the transmit power, leading to improvements in the

SNR at the BS. Subsequently, in Fig. 8(a) and 8(b), we show

the velocity of the IRS-UAV under different total time slots,

T , for trajectory 1 and trajectory 2. In both figures, the IRS-

UAV reduces its speed by moving sufficiently close to each

user and then increasing it to serve the subsequent user. In the

end, it approaches the final location with a sudden increase in

speed. We observe that by increasing the total operational time,

T , the IRS-UAV has a sufficiently large flying time to move

its preferred position to serve the user near the BS. Another

interesting result is that with T = 60, the IRS-UAV flies at a

lower speed to enhance the received signal strength. However,

with T = 40 the IRS-UAV requires to increase its speed to

serve all users.

On the other hand, in practice, there may be areas (No-fly

zones) such that UAVs are strictly prohibited to fly over them.

Therefore, these areas need to be taken into consideration for

UAV trajectory planning. Accordingly, we consider two non-

overlapped No-fly zones in which the trajectory of the UAV

needs to satisfy the following constraints:

C13 : ‖qu[n]− qNF,1[n]‖
2 ≥ (QNF,1)

2, ∀n,

C14 : ‖qu[n]− qNF,2[n]‖
2 ≥ (QNF,2)

2, ∀n,

where qNF,1[n] = (80, 44, 20) m and qNF,1[n] =
(200, 50, 20) m are the location of the No-fly zones. Also,

QNF,1 = 4 m and QNF,1 = 4 m are the radius of the No-fly

zones. As these constraints are non-convex, we resort to the

first-order Taylor expansion to obtain the lower bounds similar

to (34). In Fig 9, one can observe the IRS-UAV adjusts its

trajectory in such a way as to pass these two No-fly zones.

C. Min-Max Energy Consumption vs. Minimum Data Rate

Fig. 10 investigates the min-max energy consumption of

all users versus the minimum data rate requirement of each

user for different schemes. We see that by increasing the

minimum data rate, the min-max energy consumption grows

significantly. The reason is that for large minimum data rates,

each user requires higher transmit power, leading to high

energy consumption and accordingly deteriorating the network

performance.

Besides, IRS without considering energy harvesting has a

better performance compared to the proposed scheme since no

additional power is needed to empower the IRS reflecting ele-

ments. Finally, the proposed scheme with a straight trajectory

has worse performance compared to other cases except the

No IRS case. This is because without optimizing trajectory,

the IRS-UAV cannot fly close or even stay above the users

with better channel conditions which accordingly increase the
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(b) UAV velocity under T = 60.

Fig. 8: Velocity behavior of the IRS-UAV under different trajectories and total time slots.

Fig. 9: Behavior of trajectory 1 in the 3D plane under the existence
of No-fly zones.

transmit power of the user to satisfy the minimum data rate

requirement. The No IRS case has the worst performance

among other schemes. On the other hand, we observe almost

the same result by considering No-fly zones, which indicates

that our proposed scheme can preserve the performance gain

even in the non-flying zones.

D. Min-Max Energy Consumption vs. the number of IRS

Elements

Fig. 11 shows the min-max energy consumption of all

users versus the number of IRS reflecting elements. As they

increase, the energy consumption of all users decreases mono-

tonically. The elements also create a powerful reflective chan-

nel link, extending the communication range by adjusting the

trajectory and phase shifts of the UAV and IRS, respectively.

However, the proposed scheme has a limited impact on the

performance gain for a few reflecting elements compared

to the No IRS case, showing that the number of reflecting

elements is a bottleneck. This figure also reveals an exciting

result: although many reflecting elements will increase the

EH requirements, the IRS-UAV can lower the users’ energy

consumption, highlighting the critical importance of joint

optimization of the trajectory and the phase shifts. We can

readily increase the number of IRS reflecting elements at a

much lower cost since these elements eschew RF chains. The

proposed scheme is also superior to that of fixed velocity

and straight trajectory. In addition, no EH at the IRS option

achieves better performance than our proposed scheme since

the IRS in this case reflects incident signals completely without

performing EH. The IRS reflecting elements are not entirely

passive, and their energy consumption cannot be neglected.

Hence, we must consider the energy consumption of the IRS,

especially when it is mounted on a UAV. This is because the

UAV should supply the energy consumption of the IRS. To

reduce energy consumption, EH is a helpful solution that is

investigated in this paper.

VII. CONCLUSION

This paper analyzed the user scheduling and trajectory

optimization of the UAV-carried IRS network. The overall

system model constitutes the following features. The IRS is

mounted on the UAV. The UAV moves along a 3D trajectory.

The IRS can harvest its operational power through the uplink

signals from users. It helps the uplink data transmission

from users to the BS by establishing reflected channel links.

The EH process is modeled as a realistic non-linear EH

circuit. With the aid of this system model, we minimized

the maximum energy consumption of users by joint opti-

mization of user scheduling, UAV trajectory/velocity, and IRS

phase shifts/reflection coefficient. To solve this optimization

problem, we first derived closed-form IRS phase shifts and

then obtained other optimization variables by resorting to

the AO algorithm. The efficiency of the proposed scheme

was investigated relative to the following benchmarks: fixed

velocity UAV, straight trajectory, No EH at the IRS, and

No IRS. Simulations demonstrate the gains of the proposed

scheme over the benchmarks. For instance, with a 50-element

IRS, min-max energy consumption can be as low as 0.0404
J, a 7.13% improvement over the No IRS case (achieving

0.0435 J). We also show that IRS-UAV without EH performs

best at the cost of circuit power consumption of the IRS (a

20% improvement over the No IRS case). To our knowledge,
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Fig. 11: Min-max energy consumption vs. the number of
IRS reflecting elements under trajectory 1 and T = 60.

this is the first manuscript to design user scheduling and

trajectory optimization for IRS-UAV networks. The results of

this study suggest a number of new avenues for research. First,

further research is necessary for the case of users with multiple

antennas. That opens up the possibility of beamforming and

other MIMO techniques to enhance the network performance.

Second, one can minimize the maximum energy consumption

of all users under imperfect CSI scenarios and develop robust

algorithms against CSI imperfections. There are many more

future directions, and this list is not exhaustive.

APPENDIX

A. Proof of Proposition 1

The approximation in (37) produces a tight lower bound

of Γk[n]. This is because Γ̄k[n] is a concave function. The

gradient of Γ̄k[n] is a supper-gradient given by Γ̄k[n] ≤ Ψk[n]
[8], where H = {u[n], rk[n], tk[n], qu,vu, χ} indicates the

set of feasible solutions at iteration t. Besides, the equality

holds when H = H(t−1), which confirms the tightness of

the lower bound. By denoting Ψk[n] at iteration t as Ψ
(t)
k [n],

we have the following relations: Ψ
(t+1)
k [n] ≥ Ψ

(t)
k [n] which

leads to the increase of the objective values of (P7) after

each iteration of Algorithm 1. Accordingly, by solving the

convex lower bound in (P4), the iterative-based SCA algorithm

creates a sequence of feasible solutions, i.e., H(t+1), which

is monotonically increasing over each iteration. Thus, it is

guaranteed to converge.

B. Proof of Theorem 1

According to the Jensen’s inequality [40], i.e., E{log2(1 +
f(z)} ≤ log2(1 + E{f(z)}), the following inequality holds

E{Rk[n]} ≤ sk[n] log2

(

1 +
Pkgk
σ2

)

, (43)

where gk = E

{

∣

∣

∣hk,b[n] + ρ̄[n]hH
k,u[n]Θ[n]hbu[n]

∣

∣

∣

2
}

. Since

the NLoS components of each link, i.e., hNLoS
k,u [n], hNLoS

k,b [n],

and hNLoS
bu [n] are independent of each other, the square term

in gk can be written as |b|2 +E{|a|2}+E{|c|2}+E{|d|2}+

E{|e|2}, where a =
√

βk,b

Kk,b+1h
NLoS
k,b [n] and

b =

√

Kk,bβk,b
Kk,b + 1

hLoSk,b [n] +

√

Kk,uKbuβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)

× ρ̄[n](hLoS
k,u [n])

HΘ[n]hLoS
bu [n],

c =

√

Kbuβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)
ρ̄[n](hNLoS

k,u [n])HΘ[n]hLoS
bu [n],

d =

√

Kk,uβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)
ρ̄[n](hLoS

k,u [n])
HΘ[n]hNLoS

bu [n],

e =

√

βbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)
ρ̄[n](hNLoS

k,u [n])HΘ[n]hNLoS
bu [n].

(44)

By taking the term c into consideration, this can be calculated

as follows:

c =
ρ̄2[n]Kbuβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)
(hLoS

bu [n])H(Θ[n])H

× E
{

hNLoS
k,u [n](hNLoS

k,u [n])H
}

Θ[n]hLoS
bu [n]. (45)

By adopting the following equalities:

E{hNLoS
k,u [n](hNLoS

k,u [n])H} = IMxMy
,

(hLoS
bu [n])HhLoS

bu [n] =MxMy, (Θ[n])HΘ[n] = IMxMy
,

(46)

we can obtain c =
ρ̄2[n]MxMyKbuβbu[n]βk,u[n]

(Kk,u+1)(Kbu+1) . Also, for other

terms, we have the following equations:

a =
βk,b

Kk,b + 1
, d =

ρ̄2[n]Kk,uMxMyβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)
,

e =
ρ̄2[n]MxMyβbu[n]βk,u[n]

(Kk,u + 1)(Kbu + 1)
. (47)

Thus, the proof is completed.

C. Proof of Proposition 2

As the phase shifts are obtained in closed-form expression,

the main problem is divided into three subproblems which op-

timize user scheduling (s), UAV trajectory/velocity (qu,vu),
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and IRS reflection coefficient (ρ), via solving problems (P4),

(P7), and (P9), while keeping the other two blocks of variables

fixed. Let us define f(s, qu,vu,ρ) as a function of s, qu,

vu, and ρ for the objective value of (P1). First, in step 2
of Algorithm 2 with fixed variables qu, vu, and ρ, problem

(P1) is a LP problem and s(i+1) is the optimal solution that

maximize the value of the objective function. Accordingly, we

have

f(s(i+1), q(i)
u ,v(i)

u ,ρ(i)) ≥ f(s(i), q(i)
u ,v(i)

u ,ρ(i)). (48)

Next, in step 3 of Algorithm 2, q
(i+1)
u and v

(i+1)
u are the

suboptimal UAV trajectory/velocity with given variables s(i+1)

and ρ(i) to maximize f via solving (P9). Thus, it guarantees

that

f(s(i+1), q(i+1)
u ,v(i+1)

u ,ρ(i)) ≥ f(s(i+1), q(i)
u ,v(i)

u ,ρ(i)). (49)

Finally, in step 4 of Algorithm 2 with the given s(i+1), q
(i+1)
u ,

and v
(i+1)
u , problem (P9) is solved to obtain a sub-optimal

solution for ρ(i), which yields:

f(s(i+1), q(i+1)
u ,v(i+1)

u ,ρ(i+1)) ≥ f(s(i+1), q(i+1)
u ,v(i+1)

u ,ρ(i)).
(50)

According to (48)–(50), we can conclude that

f(s(i+1), q(i+1)
u ,v(i+1)

u ,ρ(i+1)) ≥ f(s(i+1), q(i+1)
u ,v(i+1)

u ,ρ(i+1)),
(51)

which indicates that the objective values of (P1) are monoton-

ically increasing after each iteration of Algorithm 2. Mean-

while, the objective values of (P1) are non-negative. As a

result, the proposed AO algorithm is guaranteed to converge.

On the other hand, based on the fact that the initial point

of each iteration is the ending point of the previous one, the

algorithm continues running to achieve a better solution in

each iteration. In other words, the objective function increases

in each iteration or remains unchanged until the convergence

is satisfied. Thus, the proof is completed.
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