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Abstract—World Endurance Championship (WEC) racing
events are characterised by a relevant performance gap among
competitors. The fastest vehicles category, consisting in hybrid
vehicles, has to respect energy usage constraints set by the
technical regulation. Considering absence of competitors, i.e.
traffic conditions, the optimal energy usage strategy for lap
time minimisation is typically computed through a constrained
optimisation problem. To the best of our knowledge, the majority
of state-of-the-art works neglects competitors. This leads to a
mismatch with the real world, where traffic generates consider-
able time losses. To bridge this gap, we propose a new frame-
work to offline compute optimal strategies for the powertrain
energy management considering competitors. Through analysis
of the available data from previous events, statistics on the
sector times and overtaking probabilities are extracted to encode
the competitors’ behaviour. Adopting a multi-agent model, the
statistics are then used to generate realistic Monte Carlo (MC)
simulation of their position along the track. The simulator is then
adopted to identify the optimal strategy as follows. We develop
a longitudinal vehicle model for the ego-vehicle and implement
an optimisation problem for lap time minimisation in absence
of traffic, based on Genetic Algorithms. Solving the optimisation
problem for a variety of constraints generates a set of candidate
optimal strategies. Stochastic Dynamic Programming is finally
implemented to choose the best strategy considering competitors,
whose motion is generated by the MC simulator. Our approach,
validated on data from a real stint of race, allows to significantly
reduce the lap time.

Index Terms—Monte Carlo, multi-agent model, Genetic Algo-
rithms, Stochastic Dynamic Programming, lap time minimisation,
racing, traffic, hybrid vehicles

I. INTRODUCTION

IN motorsport events, strategic decisions may have a rele-
vant impact on the result of the competition. Particularly,

with reference to World Endurance Championship (WEC) [1],
there are four vehicle categories characterised by very different
performance. This results in the formation of traffic conges-
tion, obliging the fastest category, i.e. Le Mans Prototype 1
(LMP1), to overlap other vehicles many times during the six
hours of an event. LMP1 consists in hybrid vehicles that have
to respect constraints set by the technical regulation [2] for the
usage of both the electrical and thermal energy. Race engineers
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define how to use the energy budget in an optimal way along
the track with the aim to minimise the lap time.

In the last years, many state-of-the-art works have addressed
the problem of lap strategy optimisation for race electric
[3]–[8] and hybrid [9]–[11] vehicles. In the majority of the
cases, the formulations include very detailed and complex
models of the powertrain, but do not include the presence of
competitors in the driving scenario, which instead represents
a fundamental aspect for what said above. Competitors are
therefore neglected due to the difficulties in effectively sim-
ulating their behaviour, as well as including this information
into the optimisation problem, which may become burden-
some and not real-time solvable. However, this may result in
overtakings being performed in points along the track where a
significant deviation from the pre-computed optimal trajectory
is necessary, thus determining relevant time losses.

Statement of contributions. To bridge this gap, we propose
a computationally efficient procedure to offline identify the
best strategy for the energy budget utilisation along the track,
taking into account realistic traffic conditions. By best strategy
we refer to the one that statistically minimises the lap time
while respecting the technical regulation.

Our contribution is threefold.
a) Statistical modelling of the competitors’ behaviour:

we perform a statistical analysis to practically describe the
behaviour of the competitors along the track in WEC events,
in terms of travel time and their mutual interactions, i.e.
overtaking probability. The statistical analysis is necessary
since we do not know the behavioural model of the com-
petitors. Statistical analyses of previous events have been
carried out to extract the free sector times and overtaking
probability distributions. The latter refers to the probability
of occurrence of overtakings between two vehicle categories
along the track. This information is later employed to generate
realistic simulations of the competitors’ behaviour.

b) Computation of traffic-free optimal strategies: theo-
retically, it would be necessary to define the best points of
application of the electric motor in real time according to the
actual traffic conditions, but this task is computationally too
expensive to guarantee sufficiently fast cycle times. Therefore,
the following solution is proposed.

We generate a set of possible traffic-free optimal solutions,
which aim to minimise the lap time while respecting the con-
straints imposed by the technical regulation. The set of varied
solution is obtained by imposing different extra constraints
on the distribution of the powertrain energy budget along the
track, according to engineering expertise. The optimisations
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are solved using Genetic Algorithms, for their computational
quickness and ease of tuning. This choice is supported by a
comparison with a more classical Mixed Integer Quadratically
Constrained Program (MIQCP). In both cases, the ego-vehicle
is described through a longitudinal model. The set of traffic-
free candidate optimal strategies will be finally tested in
real traffic conditions to determine the most suitable one, as
explained in the next point.

c) Optimal strategy in presence of traffic: to identify
the optimal strategy in presence of traffic, we propose an
evaluation metrics based on Stochastic Dynamic Programming
(SDP) [12], [13]. The dataset used by SDP is generated
through the Monte Carlo (MC) [14] simulations, relying on
a multi-agent influence/reaction model and on the previously
computed statistics of the competitors.

Sections organisation. The remainder of this paper is organ-
ised as follows. Sec. II presents state-of-the-art related work.
In Sec. III, we perform the statistical analysis of the past
WEC events, to compute the free sector times and overtak-
ing probability distributions. Sec. IV details the longitudinal
vehicle model that is used to solve the powertrain energy
budget optimisation problem. The latter, considering traffic-
free conditions, is then formulated and solved in Sec. V, com-
paring a Mixed Integer Quadratically Constrained Program
(MIQCP) formulation and Genetic Algorithms. In Sec. VI,
we show how to generate Monte Carlo numerical simulations
of the competitors’ positions along the track, employing the
free sector times and the overtaking probabilities distributions,
as well as a multi-agent model. Finally, in Sec. VII, the
previously computed traffic-free strategies are combined with
the traffic-aware Monte Carlo simulations, and Stochastic Dy-
namic Programming is employed to evaluate the statistically
best strategy in presence of traffic. Finally, conclusions are
discussed in Sec. VIII.

II. RELATED WORK

Simulating the competitors’ motion in racing events is
an active field of research. A realistic simulator for circuit
motorsports is proposed in [15]. It includes the effects of tire
degradation, fuel mass loss, pit stops and overtaking. However,
it employs a lap-wise discretisation, which is incompatible
with the goal of our work. In fact, we aim to generate an
optimal lap strategy that is section-wise. A discrete-event
simulation model is developed in [16], which is suitable
for decision making to define the race strategy. The track
is divided into sections. For each of them, the vehicle and
environment characteristics, such as the fuel mass and the
air resistance penalty, are taken into account. However, the
computation of the lap time is performed using a deterministic
approach, without considering the uncertainty related to the
interactions between the vehicles, which is our target.

Many state-of-the-art works deal with energy management
for electric and hybrid vehicles under a lower-level perspective
compared to our work. Time-optimal energy management
and gear shift for hybrid race cars is investigated in [9].
Given fuel and battery consumption targets, they implement
a computationally efficient algorithm to solve the problem,

mixing convex optimisation, Dynamic Programming and the
Pontryagin’s minimum principle. In [17], a similar problem is
solved for real-time control of the Formula 1 power unit using
a two-level Model Predictive Control scheme. Minimum-
lap-time optimisation for all-wheel drive electric race cars
is presented in [8]. An optimal adaptive race strategy for
Formula-E cars is presented in [3]. It is based on an adap-
tive equivalent consumption minimisation strategy (A-ECMS)
approach, and compared with a global optimal benchmark
provided by Dynamic Programming. In [4], they introduce a
lap strategy optimisation method based on a Big Bang - Big
Crunch approach for Solar cars in long-distance races. Finally,
for Solar cars, heuristic methods are compared in [5]. One
of the implemented methods is Genetic Algorithms, which is
adopted in our framework.

The works presented here accurately represent the dynamics
of the vehicle powertrain. They cannot however be employed
in our framework since they neglect competitors and overtak-
ings, which affect higher-level strategic decisions.

III. STATISTICAL ANALYSIS OF THE COMPETITORS’
PERFORMANCE

One of the key contributions of the proposed methodology
for lap strategy optimisation is modelling competitors’ motion
along the track. Modelling and simulating the behaviour of the
competitors allows in fact to design and evaluate lap strategies
that can be effectively actuated in realistic racing situations. In
this section, we detail how to extract a set of useful statistical
indices from the publicly available fraction of data collected in
previous races by WEC. The set of statistical indices is meant
to synthetically describe the competitors’ performance during
the race, and they will be lately used to simulate their motion
along the track.

Being WEC events long-lasting races, the generated amount
of data provides a relevant statistical basis for our scope.
However, since GPS data of the vehicles are provided by
Federation Internationale de l’Automobile (FIA) to every team
(for their own vehicle only) during the race but they are
not publicly available, the proposed approach relies on an
alternative procedure. Based on the statistical distribution of
sector times data, we aim to describe the behaviour of each
competitor during the race in a probabilistic fashion. The
following sections illustrate the entire procedure.

A. Dataset and data cleaning

In motorsport competitions, circuits are typically divided
into three main sectors. The sector times indicate the time
interval spent by a car in each sector of the circuit for a specific
lap. Differently from the GPS data, the sector time database
is freely available1. An example of the database structure is
reported in Table I, where the columns S1, S2 and S3 contain
the three sector times.

To eliminate spurious laps from the dataset, f.i. laps led
by the safety car, the corresponding sector times have been
clustered through the DBSCAN algorithm [18], and only the

1http://fiawec.alkamelsystems.com/

http://fiawec.alkamelsystems.com/
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TABLE I
GENERAL STRUCTURE OF THE FIA SECTOR TIMES DATABASE

# Lap Stop S1 S2 S3 Elapsed Class Group Team
[s] [s] [s] [s]

1 1 33.978 38.779 32.358 105.115 LMP1 H Porsche
1 2 33.846 37.727 31.753 208.441 LMP1 H Porsche
1 3 33.340 37.789 36.823 316.393 LMP1 H Porsche
...

...
...

...
...

...
...

...
...

77 30 40.246 46.643 40.224 3833.398 LMGTE Am
... Porsche

77 31 B 40.622 47.265 45.367 3966.652 LMGTE Am
... Porsche

77 32 121.453 45.261 38.340 4171.706 LMGTE Am
... Porsche

data belonging to the cluster with the fastest sector times have
been considered for successive analyses. The clusters of fast
sector times and the outliers are shown in Figure 1 for each
car.

B. Forecasting the competitors’ speed profiles

Resorting to the sector times, we aim to estimate the speed
profile of each competitor. Then, it is straightforward to derive
an estimate of the competitors position during the race, which
is fundamental to statistically model their behaviour.

The proposed procedure to estimate the speed profiles is
now described. Considering a lap performed by our vehicle
in absence of traffic and without using KERS, we extract a
reference profile from GPS data, as shown in Fig. 2. We then
scale it according to the measured sector times to estimate the
speed profile of each competitor. The adopted linear scaling
equation is

Vc,i,j(k) =
V ref
i (k)Tc,i,j

T ref
i

, (1)

where
• T ref

i is the i-th sector time performed by the car in the
reference video;

• V ref
i (k) is the speed of the car in the reference video, at

the frame k of the i-th sector;
• Tc,i,j is the i-th sector time of the j-th lap performed by

the c-th competitor;
• Vc,i,j(k) is the reconstructed speed of the c-th competitor,

at the frame k in the i-th sector of the j-th lap;
• i = 1, 2, 3 indicates the three sectors;
• j = 1, . . . , J(c), with J(c) ∈ N0 being the total number

of laps performed by the competitor c;
• c = 1, . . . , C, with C ∈ N0 being the total number of

competitors.

C. Statistics of the competitors’ behaviour

Referring to the predicted speed profiles, the following
statistics have been extracted from the cleaned dataset:

• the free sector times distributions;
• the overtaking probabilities.
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Fig. 1. Clusters subdivision of the sector times according to DBSCAN.
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Fig. 2. Speed profile reconstructed using the linear scaling approach.

The free sector times are defined as the sector times performed
by a competitor with the preceding vehicle far at least 100 m
for the whole duration of the sector. Under these conditions,
it is possible to assume that the competitor performance and
behaviour have not been influenced by the other competitors.
Free sector times are useful to forecast the performance of
competitors in absence of interactions. In Figure 3, an example
of the sector times distribution is shown for a competitor.
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Fig. 3. Free sector times distributions for a single competitor.

The overtaking probabilities are modelled as functions of the
section and category of the two competitors involved. These
statistics are useful to practically describe the interactions
between competitors along the sectors. Sections are a finer
subdivision of the circuit with respect to the sectors and
they allow to distinguish between straights and curves, which
are typically characterised by very different probabilities of
overtaking. Figure 4 represents an arbitrary subdivision of the
circuit of Bahrain into 37 sections, which has been considered
as the test circuit to validate the proposed approach. Denoting
with A the category of the vehicle that is attempting an

Fig. 4. Subdivision of the Bahrain circuit into sections.

overtake and with B the category of the vehicle that may be
overtaken, the overtaking probability P(A,B, i) of the pair
(A,B) along section i is computed as

P(A,B, i) =
ξ(A,B, i)

φ(A,B, i)
,

where ξ(A,B) is the number of overtakings of A on B in
section i, and φ(A,B, i) is the number of times A and B have
been in section i with at most 10 meters distance one from
the other. Let us define the following notation:

• LMP1: Le Mans Prototype 1;
• LMP2: Le Mans Prototype 2;
• LMGTE Pro: Le Mans Grand Touring Endurance Profes-

sionals;
• LMGTE Am: Le Mans Grand Touring Endurance Ama-

teurs.
Then, we can represent the overtaking probabilities for each
pair of vehicle categories and each section. An example is
provided in Figure 5, for the classes LMP1 and LMP2.

IV. EGO-VEHICLE MODEL

The statistics derived in the previous section are used
to model the behaviour of the competitors, whose actual
dynamics is unknown due to lack of information. Considering
the ego-vehicle instead, for which we aim to design the optimal
lap strategy, the necessary information to model its dynamics
is supposed to be available. Therefore, we propose here a
dynamic model of the ego-vehicle, which is used to study
the effect of the electrical energy usage on the speed profile.
In the next section, the model will be used to compute optimal
lap strategies.

The designed model is the result of a trade-off between
computational complexity and accuracy in the description
of the relevant dynamics. The longitudinal dynamics of the
vehicle is modelled as

mv̇ = Fx,f + Fx,r − Faero −Rf −Rr −mg sinα, (2)

where
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Fig. 5. Examples of overtaking probabilities distributions.

• m is the total vehicle mass, accounting also for the fuel
and the driver;

• g is the gravity acceleration;
• α is the ground slope;
• v is the vehicle speed;
• h is the height with respect to the road at which the

vehicle centre of mass is located;
• Rf is the resistive rolling force at the front wheels;
• Rr is the resistive rolling force at the rear wheels;
• Faero is the aerodynamic resistive force;
• Fx,f is the thrust applied to ground by the electric motor

through the front tires;
• Fx,r is the thrust applied to ground by the combustion

engine through the rear tires;
• Fdown,f and Fdown,r are the aerodynamic downforces,

split between the front and rear tires, respectively;
• Fz,f and Fz,r are the front and rear vertical tire forces,

respectively;

• 2L is the distance between the front and rear axles.
A schematic representation of the involved quantities is de-
picted in Figure 6.

α

mg

Fig. 6. Schematic representation of the ego-vehicle (LMP1).

Being the torque curves of the electric motor and of the
combustion engine known, it is possible to write

Fcomb = Fcomb

(
Tcomb(rcomb), τcomb(qcomb)

)
, (3)

Fel = Fel

(
Tel(rel), τel

)
. (4)

With reference to (3) and (4), Fcomb represents the theo-
retically available thrust at the rear wheels provided by the
combustion engine, Tcomb is the engine torque, rcomb is the
engine speed in rpm, τcomb is the gear ratio and qcomb is
the gear selected by the driver. Similarly, Fel represents the
theoretical thrust provided by the electric motor at the front
wheels, having in this case just one transmission ratio τel
available.

The amount of thrust transferred from the motors to ground
depends on the maximum forces that can be generated by
the tires through friction. The absolute value of the maximum
tire forces |Fad,f | and |Fad,r| at the front and rear wheels,
respectively, are given by

|Fad,f | = µ|Fz,f |, (5a)

|Fad,r| = µ|Fz,r|, (5b)

being µ the tire-road friction coefficient. The vertical forces
can be calculated through moments equilibrium as

Fz,f =
−Faero · haero + Fdown,f · 2L

2L
+

+
−mv̇h−mgh sin(α) +mgL cos(α)

2L
,

(6a)

Fz,r =
Faero · haero + Fdown,r · 2L

2L
+

+
mv̇h+mgh sin(α) +mgL cos(α)

2L
,

(6b)

where

Fdown,· =
1

4
ρczSv

2, (7)

ρ is the air density, cz is the lift coefficient and S is the
reference surface. The aerodynamic force is given by

Faero =
1

2
ρcxSv

2, (8)
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where cx is the drag coefficient. Finally, the resistive rolling
forces are

R· = Cres · Fz,·, (9)

being Cres the rolling resistance coefficient.
The maximum longitudinal thrust that each tire can generate

through friction can be calculated by vector difference between
the maximum tire force and the lateral tire force experienced
during curves. The lateral tire forces Fy,f and Fy,r at the
front and rear tires, respectively, can be computed with fair
approximation considering a curve with a radius of curvature
r and constant vehicle speed v as

m
v2

2r
= Fy,·. (10)

Therefore, the absolute value of the maximum longitudinal
forces Ft,f and Ft,r exchangeable with ground by the front
and rear tires, respectively, are

|Ft,·| =
√
|Fad,·|2 − |Fy,·|2. (11)

The driving/braking torques commanded by the vehicle
powertrain depend on the usage mode. In the WEC events
under analysis, there are four different modes. The vehicle
central unit can decide whether to power the electric motor
and combustion engine at the same time (mode 1), power the
combustion engine only (mode 2), undergo sailing2 (mode
3) or actuate the brakes (mode 4). Different modes imply
different longitudinal tire forces, and thus different vehicle
accelerations. In modes 1 and 2, the absolute value of the
longitudinal tire forces can be computed as the minimum value
between the thrust that the motors are capable to provide and
the thrust that the tires are capable to transfer, that is

|Fx,f | = min(|Fel|, |Ft,f |), (12a)

|Fx,r| = min(|Fcomb|, |Ft,r|). (12b)

In mode 3, the total longitudinal force is equal to the force
deriving from the electric torque during sailing

|Fx,r|+ |Fx,f | = |Fsail|. (13)

Finally, during braking the total longitudinal force is

|Fx,r|+ |Fx,f | = min(|Fdec|, |Ft,f |+ |Ft,r|), (14)

where Fdec is the deceleration force generated by brakes.
Considering a spatial discretisation of 2 m, the speed profile

is reconstructed using the longitudinal model and compared
to a reference one. Given the vehicle velocity and the throt-
tle/brake commands at the current spatial discretisation point,
all of the quantities are evaluated through (2)-(14), so as to
obtain the vehicle acceleration v̇, and then the velocity at the
next discretisation point. The procedure is repeated iteratively
for each discretisation point.

Hereinafter, the speed profile computed for the Bahrain
circuit is compared with the real one that the reference car
experienced during the real race. The results are shown in Fig.
7. It is evident that the longitudinal vehicle model generates

2Sailing is the condition for which the combustion engine is automatically
powered off by the control unit to satisfy the technical constraint on the fuel
usage, even if the driver applies full throttle. In this powertrain usage mode,
the vehicle is decelerated by the aerodynamic forces and by the intervention
of the KERS, as explained later.
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Fig. 7. Comparison between the reference speed profile and the one computed
by means of the longitudinal vehicle model.
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Fig. 8. Comparison between the reference speed profile and the one computed
by means of the longitudinal vehicle model, after tuning the corrective
coefficients.

an overestimated speed profile with respect to the real one.
This is due to different effects that have not been taken into
account by the model. Therefore, three corrective coefficients
are introduced into the model and properly tuned to better fit
the real data. The corrective coefficients are:

• the engine coefficient, which scales the thrust provided
by the combustion engine;

• the adherence coefficient, which scales the friction coef-
ficient µ in low-speed curves;

• the downforce coefficient, which scales the lift coefficient
cz in high-speed curves.

After introducing the corrective coefficients into the model, the
two speed profiles result to be coherent, as shown in Figure
8.

V. TRAFFIC-FREE LAP STRATEGY OPTIMISATION

Having developed and validated the ego-vehicle model, it is
now possible to formulate and solve an optimisation problem
for the lap time minimisation, through the management of the
powertrain energy budget. We remark that, at this stage, we
aim to identify the best points of activation of the electric
motor in a lap, considering absence of traffic.
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Theoretically, the optimal strategy should be computed
online during the real race, in order to take into account the
actual traffic conditions. However, being this computation time
consuming, we offline compute a set of traffic-free energy
management strategies, and subsequently evaluate the best one
in simulated traffic conditions (see Sec. VII).

The optimisation problem was initially solved using a
MIQCP formulation. Although the method can provide opti-
mal solutions, it has many shortcomings. First of all, it is time
consuming, even for the resolution of a single optimisation
problem. Therefore, generating a set of offline strategies
would have been intractable. Moreover, numerical issues can
degrade the performance of the solver, e.g. the presence of
dense columns in the resulting matrices. The solver detects
and eliminates as many dense columns as possible before
optimising, but this may cause numerical instability. Finally,
the problem could be ill-conditioned, which may lead to
inconsistent results.

These issues may be attenuated by tuning the solver pa-
rameters, which is a difficult and time-consuming operation.
To cope with this, we propose an alternative method to solve
the optimisation problem, based on Genetic Algorithms (GA),
which provides suboptimal solutions whereas it does not suffer
from the aforementioned problems. The MIQCP approach is
presented just to provide a baseline for assessing the suitability
of the GA. Then, the optimisation is solved multiple times
with GA, varying the constraints on the electric motor usage,
to generate the set of candidate lap strategies.

The basic optimisation problem, written according to the
spatial discretisation, is given by

min
u(s)

tlap, (15a)

subject to (2)-(14), (15b)
Eel,used ≤ Emax

el,used, (15c)

p ≤ pmax, (15d)

Eel,rec ≥ Emin
el,rec, (15e)

where

• tlap is the lap time;
• u(s) is the optimisation variable, and represents the

powertrain usage mode at each spatial discretisation point
along the track through a one-hot encoding vector of four
elements;

• Eel,used is the consumed electrical energy in a lap;
• Emax

el,used is the maximum allowed electrical energy con-
sumption in a lap;

• p represents the kilograms of fuel consumption in a lap;
• pmax represents the maximum allowed kilograms of fuel

consumption in a lap;
• Eel,rec is the amount of recovered electrical energy in a

lap;
• Emin

el,rec is the minimum allowed amount of recovered
electrical energy in a lap.

The constraints (15c) and (15d) are set by the WEC
technical regulation. Referring to the Bahrain International
Circuit, the corresponding limits are Emax

el,used = 4924 kJ
lap and

pmax = 1.381 kg
lap . Instead, the constraint (15e) is necessary

to keep the state of charge of the battery greater than or equal
to a constant value at the end of each lap. Thus, the minimum
amount of recovered electrical energy must be equal to the
amount of consumed electrical energy, that is

Emin
el,rec = Eel,used. (16)

Since the electrical energy can be recovered through both the
Heat Energy Recovery System (HERS), Eel,rec−HERS , and
the Kinetic Energy Recovery System (KERS), Eel,rec−KERS ,
we can write

Eel,rec = Eel,rec−HERS + Eel,rec−KERS , (17)

where the amount recovered through the HERS is track
dependent and fixed for each lap.

In the next sections, the terms in (15) will be linked to the
longitudinal vehicle dynamics. Lap time optimisation based
on a MIQCP formulation is detailed in Sec. V-A, whereas the
GA approach is presented in Sec. V-B.

A. MIQCP solver

We decide to divide the track into N ∈ N subportions
with spatial discretisation ∆s = 5 m. The cost function
and constraints are then reformulated as functions of the
optimisation variables.

1) Cost function: We first link the vehicle acceleration to
the lap time, whose minimisation is the objective of (15). The
kinetic energy Ekin of the vehicle satisfies

mẍ(s) =
dEkin

ds
(s), (18)

where s refers to the generic curvilinear abscissa. Identifying
with k = 0, 1, ..., N the discretisation points along the curvi-
linear abscissa, i.e. for the generic variable φ it holds that
φ(k) := φ(k∆s), the above equation can be discretised using
the forward Euler method, obtaining

Ekin(k + 1) = Ekin(k) +m∆s ẍ(k), (19)

where
Ekin(k) :=

1

2
mv2(k). (20)

Computing the vehicle speed through the above equation
would involve a square root operator. In order to preserve lin-
earity, which is convenient for solving optimisation problems,
the method presented in [19] is employed. It is possible to
prove that a geometric mean inequality constraint written as

√
x1 · x2 ≥ x3 x1 · x2 ≥ 0, (21)

where xi ∈ R, can be reformulated as a second-order conic
constraint ∥∥∥∥ 2 · x3

x1 − x2

∥∥∥∥
2

≤ x1 + x2. (22)

Relaxing (20) as

Ekin(k) ≥ 1

2
mv2(k), (23)
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and taking the square root from both sides we obtain√
2Ekin(k)

m
≥ v(k). (24)

Hence, it is possible to reformulate the relaxed constraint as
the following convex quadratic constraint∥∥∥∥∥∥

2 · v(k + 1)

2Ekin(k + 1)

m
− 1

∥∥∥∥∥∥
2

≤ 2Ekin(k + 1)

m
+ 1, (25)

linking the speed and the kinetic energy. The inverse of speed
is usually defined as ‘lethargy’,

dt

ds
(k) =

1

v(k)
, (26)

that is the spatial derivative of time. Since (26) is a nonlinear
constraint, we relax it and transform into a convex quadratic
constraint ∥∥∥∥ 2

dt
ds (k)− v(k)

∥∥∥∥
2

≤ dt

ds
(k) + v(k). (27)

Finally, the lap time tlap can be expressed as

tlap = ∆s

N∑
i=0

dt

ds
(k). (28)

Therefore, the relationship between the control inputs v̇(k),
k = 0, ..., N − 1 and the objective tlap is fully described
by (19), (25) and (27), resorting to the intermediate variables
Ekin(k), v(k) and dt

ds (k).
2) Constraints: To make the constraints of (15) explicit, it

is necessary to calculate the consumed fuel and used/recovered
electrical energy in each portion of the track. The technical
regulation defines the maximum fuel consumption per second
at full thrust, that is pmax/s = 0.0223 kg

s . Given the combus-
tion engine torque Tcomb(k), the amount of consumed fuel
kilograms can be computed as

p(k) = pmax/s · Tcomb(k)

Tmax
comb(k)

· dt
ds

(k) ·∆s. (29)

From the thrust provided by the electric motor and its effi-
ciency in traction ηel,traction, it is straightforward to compute
the used electrical energy usage as

Eel,used(k) =
Tel(k)

ηel,traction
·∆s. (30)

The electrical energy can be recovered through the KERS
both during sailing or in the braking phase. In the first case, the
KERS intervenes to partly recover the kinetic energy (Fsail ≤
0). In the second case, instead, the energy is recovered through
a braking force Fdec ≤ 0, lower in module than the maximum
value Fdec,max ≤ 0 that can be guaranteed by the brakes and
the adherence with ground. Hence, according to the situation,
the recovered electrical energy can be estimated using one of
the two expressions

Eel,rec−KERS(k) = |Fsail|(k) ·∆s · ηel,rec, (31a)

Eel,rec−KERS(k) = min(|Fdec|(k), |Fdec,max|) ·∆s · ηel,rec,
(31b)

where ηel,rec is the efficiency of the electric motor in recuper-
ation phase. The constraints of (15) can be finally reformulated
as

N∑
s=0

p(k) ≤ pmax (32a)

N∑
s=0

Eel,used(k) ≤ Emax
el,used (32b)

N∑
s=0

Eel,rec−KERS(k) ≥
N∑
s=0

Eel,used(k)− Eel,rec−HERS

(32c)
The optimisation problem was built using the toolbox

YALMIP [20]. The resulting Mixed Integer Quadratically
Constrained Program (MIQCP) was then solved with IBM®

ILOG® CPLEX® version 12.8.0. The optimised speed profile
is shown in Figure 9, as compared with the reference one.
There is significant coherence between the reference speed
profile and the one resulting from optimisation. Finally, the
points of activation of the electric motor are highlighted in
Figure 10, from which we can conclude that the solver decides
to use the electric motor in the first part of the straights,
achieving the highest possible speed in the shortest time. This
is coherent with the behaviour of professional human drivers.
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Fig. 9. Comparison between the reference speed profile and the optimal one,
obtained by solving the MIQCP.

B. Genetic-Algorithms-based solver

As previously mentioned, we now propose an alternative
resolution method for the optimisation problem based on
Genetic Algorithms. The circuit is divided into M = 8 regions,
each one from the beginning of a straight to the beginning
of the following one. Differently from the MIQCP approach,
whose optimisation variable embodies the powertrain usage
mode directly, we consider 2 optimisation variables for each
region, that is the electrical energy consumption Eel,used and
the fuel consumption p. The total number of optimisation
variables in a lap is therefore 2M = 16. We further assume
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Fig. 10. MIQCP-based optimal speed profile with detail of the electric motor
activation points.

that the energy budget of each region, encoded by the optimi-
sation variables, is actuated continuously from the beginning
of the region (straight) until it is completely consumed. This
assumption is supported by the fact that the optimal way to
apply energy is to use it in the first part of the acceleration
region, as known to the experts of the field. Finally, we
highlight that, given an instance of the optimisation variables
and the previous assumption, it is possible to uniquely identify
the corresponding powertrain usage mode, speed profile and
lap time.

With reference to the traditional nomenclature of GA, an
instance of the 2M optimisation variables constitutes the
genome of an individual of the population. We employ a
discretisation step of 1 kJ for the electrical energy consumption
and 1 g for the fuel consumption, and select the optimisation
variables ranges as [0, 2300] kJ

region and [0, 1381] g
region , respec-

tively. The discretisation speeds up mutations and crossovers to
reach the optimised solution, and constitutes a fair approxima-
tion being the step sizes three orders of magnitude lower than
the maximum value that the variables can take. The inequality
constraints (15c) and (15d) are then enforced through linear
inequalities on the optimisation variables. Finally, the fitness
function is the lap time generated by the genome.

A reasonable initial population was provided to the GA to
hot start the optimisation and improve computational times.
The simplest way to obtain a hot-start genome in the popula-
tion is to compute the amount of electrical energy and fuel
consumed in each region of the circuit in a real lap. The
chosen reference lap was performed in absence of interactions
with competitors and with the lowest lap time possible, so
as to be close to the optimal solution. Another important
hyperparameter to be carefully selected is the population size,
which is critical for the convergence of the GA. Literature
provides some heuristic methods to select the dimension of
the population. Anyway, for the majority of the problems they
indicate that an increase in the population size statistically
reduces the error between the solution found by the GA
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Fig. 11. Speed profiles resulting from the GA-based optimisation. The green
lines represent the points of activation of the electric motor.

and the exact solution [21], at the expense of an increase
in the computational time. The most common rule of thumb
establishes that the dimension of the population needs to be at
least equal to the size of the genome. Converting the variables
from decimal to binary, as typical for GA, we obtain

(2300)10 = (100011111100)2 → 12 bit,
(1381)10 = (10101100101)2 → 11 bit,

(33)

from which the initial population needs to have at least
23M = 184 individuals. After analysis of the results, we
finally changed the population size to 2000 individuals to
obtain stable and repeatable solutions.

Differently from the previous method based on the MIQCP
formulation, which generates a single optimal solution in
absence of competitors, we employ the GA to create a set
of optimal energy strategies, whose efficacy will be then
evaluated in realistic traffic conditions. The evaluation is per-
formed in the next section. The set of strategies is obtained by
launching the GA many times, each with different constraints
on the electrical energy usage. The underlying reasoning for
heuristically imposing extra constraints is the following. Since
the strategies will be evaluated in complex traffic scenarios,
activating the electric motor where overtaking is easier to be
performed, e.g. a straight, can be beneficial to reduce the time
loss related to the maneuver and the lap time. Table II shows
the constraints applied in each strategy and the corresponding
optimal lap time. It can be noticed that the applied constraints
have an action range of at least 100 meters. This is done
to respect the sensitivity/capability of the driver to manually
intervene on the power-off/on button of the electric motor.
Some exemplary optimal strategies are shown in Figure 11.
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TABLE II
STRATEGIES AND THEIR ELECTRICAL ENERGY CONSTRAINTS GENERATED BY THE GENETIC ALGORITHM

Strategies # Lap time (s) Electrical Energy constraints

1 104.028 No constraints
2 104.092 No KERS first 100 meters 8th straight
3 104.152 No KERS first 100 meters 2nd straight
4 104.273 No KERS first 110 meters 4th straight
5 104.290 No KERS first 100 meters 1st straight
6 104.310 No KERS first 200 meters 8th straight
7 104.373 No KERS first 100 meters 7th straight
8 104.396 No KERS first 300 meters 8th straight
9 104.402 No KERS first 100 meters 7th and 8th straights

10 104.415 No KERS first 100 meters 1st and 7th straights
11 104.417 No KERS first 200 meters 7th straight
12 104.566 No KERS first 100 meters 1st and 8th straights
13 104.603 No KERS first 200 meters 1st straight
14 104.674 No KERS first 70 meters 5th straight
15 104.733 No KERS first 140 meters 5th straight

VI. MULTI-AGENT SIMULATIONS OF THE COMPETITORS’
BEHAVIOUR

The approach presented in Sec. V generated a set of offline
strategies for the lap time minimisation in absence of com-
petitors. To evaluate them in realistic race conditions, where
competitors are present along the track and mutually interact
with each other, it is necessary to simulate their behaviour. In
this section, we explain how to build multi-agent Monte Carlo
simulations of the competitors’ behaviour from the statistics
computed in Sec. III.

The forecasts have to consider a time horizon that is long
enough to allow the ego-car to complete the lap. For this
reason, we decide to perform two-laps-long forecasts starting
from the initial condition. The positions of the competitors
in absence of mutual interactions are forecast by means
of the free sector times probabilistic distributions, derived
from Sec. III. With reference to Figure 3, we remark that
the associated probability distributions are not Gaussian. To
cope with this, we perform random sampling, with enough
extractions to guarantee that the probabilistic distributions of
the competitors’ behaviour can be reliably approximated. The
forecast position along the track of an exemplary competitor
for different simulations is shown in Figure 12.

At this point, we introduce the interactions between the
competitors. To do so, a multi-agent-based model has been
developed, resorting to the Influence/Reaction principle [22]–
[24]. Each competitor is considered as a rational agent that
tries to minimise its lap time. If a competitor gets closer
to the preceding one, it perceives its influence and has to
react, performing overtaking or following. When an overtaking
may be performed, the category of the involved vehicles is
evaluated and, taking into account the section along the circuit
where the overtaking may occur, the overtaking probability is
computed from the statistics derived in Sec. III. A random
number in the range [0, 1] is extracted and compared to the
overtaking probability. If it is lower, then overtaking succeeds,
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Fig. 12. Simulated distribution of forecast positions of an exemplary com-
petitor in absence of mutual interactions.

otherwise the car keeps on following the preceding car for the
entire length of the section. The procedure is then repeated at
the successive section.

Repeating these steps for all possible overtakings involving
the competitors along the circuit generates a Monte Carlo nu-
merical simulation. Two examples of Monte Carlo simulation
are reported in Figure 13.

To reliably forecast the behaviour of the competitors, it is
necessary to generate a significant number of Monte Carlo
numerical simulations. This means performing a large amount
of random samplings of free sector times and overtaking
probabilities. These computations may however be time con-
suming. Indeed, they have to be performed in real time at the
beginning of each lap, as they depend on the actual positions
of the competitors along the circuit. A solution to this issue can
be addressed through parallel computing, since the simulations
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0 10 20 30 40 50 60 70 80 90 100 110

Time [s]

0

1000

2000

3000

4000

5000

P
os

iti
on

 a
lo

ng
 th

e 
tr

ac
k 

[m
]

(b) Example 2.

Fig. 13. Monte Carlo numerical simulations of the competitors’ motion along
the track. The colours of the lines represent different categories: red for LMP1,
blue for LMP2, green for LMGTE Pro and finally black for LMGTE Am.
The circles, instead, have the following meaning: the blue one represents the
position along the circuit where two vehicles get close enough to activate
the Influence/Reaction principle, whereas the black one defines the position
where the overtaking occurs.

are completely independent from each other. The statistical
analysis of the outputs and evaluation of the optimal strategy
in presence of realistic traffic conditions is described in the
next section.

VII. STOCHASTIC LAP STRATEGY OPTIMISATION IN
TRAFFIC CONDITIONS

Optimal strategies for the powertrain energy budget in
absence of traffic have been presented in Sec. V. On the
contrary, the Monte Carlo approach defined in VI allows
to forecast the positions of the competitors, accounting for
their mutual interactions. We now propose a novel way to
combine the two features and build a stochastic optimal solver,
aiming to identify the strategy that statistically guarantees the
minimum lap time in presence of traffic.

Stochastic Dynamic Programming (SDP), which is the
method we employ in this work, is an optimisation-based

method for making sequential decisions under uncertainty. In
our framework, uncertainty is associated to the occurrence of
overtakings. Being SDP a discrete decision-making process
and considering n stages t = 0, . . . , n − 1, the following
ingredients are defined at each timestep t:

• an initial state st ∈ St, where St is the set of feasible
states at stage t;

• a decision variable xt ∈ Xt, where Xt is the set of
feasible actions that can be chosen at stage t;

• an immediate cost or reward function rt(st, xt), repre-
senting the incurred cost or the gained reward at stage t
if an action xt is chosen at the state st;

• a state transition function gt(st, xt), defining the state
change from st towards st+1;

• a discount factor α ∈ [0, 1];
• a conditional probability Pr(st+1|st, xt), representing

the probability to move into state st+1 given the current
state st and the chosen action xt.

The optimal control problem can be iteratively described
through the value function ft at the generic stage t as

ft(st) = min
xt∈Xt(st)

(
rt(st, xt) + α

∑
st+1

Pr(st+1|st, xt)ft+1(st+1)

)
,

(34)
which represents the expected optimal cost that can be attained
from the state st if the optimal action xt is chosen.

According to (34), the optimal strategy is the one that
minimises the value function at the initial stage of the problem,
and can be computed resorting to policy iteration. However,
we have already selected fifteen strategies a priori in Sec. V,
through the energy budget optimisation problem. Thus, we do
not perform policy iteration, but policy evaluation: the value
function deriving from each of the pre-computed strategies is
evaluated. Finally, the best strategy is identified as the one that
minimises the value function at the first stage.

To apply this technique, we first test each of the fifteen
optimal energy strategies in each of the Monte Carlo numerical
simulations. Figure 14 reports an example of this procedure.
The parameters of this technique have been defined in the
following way. The variable s, representing the state of
the system, consists in the negative number of the possible
overtakings to be performed in the reference lap. Indeed, the
positions of the reference car and of the competitors are known
from respectively the optimisation problem and the Monte
Carlo numerical simulations. Thus, for each combination of
optimal strategies and numerical simulations it is possible to
compute the number of possible overtakings that the reference
car can perform in the lap. For instance, with reference to
Figure 14, three overtakings can occur. This implies that the
state of the system is initialised to s1 = −3. When an
overtaking occurs, the state is augmented by 1. The decision
variable xt consists in the usage of the powertrain energy
budget, either coming from the combustion engine and from
the electric motor. The variable Pr refers to the probability of
changing the state from st to st+1, once a specific decision
variable xt is chosen. Since we have defined the state as the
number of possible overtakings to be performed in a lap, this
probability is exactly the overtaking probability that we have
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Fig. 14. Testing the energy budget strategy in a Monte Carlo numerical
simulation. The thick red line represents the spatial profile of the reference
car, whereas the other lines represent the competitors.

drawn from the analysis of previous years events as a function
of the category of the involved vehicles and of the section
where the overtaking may occur.

The variable rt is defined as a cost. When the reference car
approaches a competitor, according to the categories and the
section where the vehicles are, there is a specific overtaking
probability. If overtaking is not performed, the ego-vehicle
needs to slow down, which involves a time loss. The latter
can be computed as the difference between the time instant
at which the reference car has reached the end of the section
behind the preceding car and the instant of time at which
the reference car would have reached the end of the section
without traffic. Moreover, if the reference car is obliged to
stay behind the preceding car in a section, it has to reduce
its speed. Once it is able to overtake the slower vehicle in a
successive section, it needs time before reaching its reference
optimal speed profile again. This time loss is also added to
the cost.

The parameter α is a factor that discounts future costs,
which is typically employed in infinite-time problems. Since
we deal with a finite-time problem, the parameter is set equal
to 1.

The n stages of SDP coincide with the 37 sections defined
for the computation of the overtaking probabilities in Sec. III.
In each section the algorithm evaluates whether the reference
car may perform an overtaking. If a competitor is close
enough, there is a specific probability of performing the
overtaking. If overtaking succeeds, the state is augmented by
one and there is no associated time loss. On the contrary, the
reference car is obliged to follow the preceding vehicle, the
state does not change, and a time loss is introduced in the
cost function It is convenient to graphically represent all of
the probabilistic events rising from overtakings in a lap. In
this regard, we adopt a suitable and common representation
called Decision Tree. To build Decision Trees, the possible
occurrence of an overtaking is evaluated in each section from
the beginning to the end of the track (forward pass [25]).
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(a) Probability Decision Tree. The number above the state represents the
probability of occurrence of a particular event.
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(b) Cost Decision Tree. The number above the state represents the cost
of a particular event, i.e. its associated time loss expressed in seconds.

Fig. 15. Example of Probability and Cost Decision Trees. The negative
value over each circle represents the state of the system, i.e. the number
of overtakings still to be performed in the lap. A red circle with state equal to
1 indicates that all possible overtakings have already been performed for that
probabilistic event. The left column of numbers identifies the decision stages
where overtakings may occur, whereas the right column specifies the section
along the track.

Then, a backward pass computes the value function at the
initial stage of the problem, i.e. f0. It consists in multiplying
the probability of an event with the associated cost values,
and summing them up stage by stage from the end to the
beginning, according to (34). A portion of the Decision Trees
for the optimal strategy is reported in Figure 15.

The value functions at time zero f0 of each strategy are
reported in Table III. The fifth strategy results to be the
optimal one, having the lowest time loss. Despite this strategy
is approximately 0.3 s slower than the first one in absence of
traffic conditions, i.e. the reference car, it is statistically faster
of approximately 0.5 s considering traffic conditions. More-
over, the fifth strategy has a high statistical significance, since
it resulted to be the optimal strategy in approximately 70%
of the Monte Carlo numerical simulations. Further graphical
interpretations are provided in Figures 16 and 17 to support
our approach. They both show that the optimal strategy tends
to save electric power and release it to perform overtakings
only in portions of the track where they produce lower time
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TABLE III
VALUE FUNCTION AT THE INITIAL STAGE FROM STOCHASTIC DYNAMIC

PROGRAMMING

Strategy # f0
(s)

1 2.131
2 1.987
3 1.792
4 1.884
5 1.662
6 2.092
7 2.176
8 2.338
9 2.359
10 2.421
11 2.428
12 2.619
13 2.211
14 2.886
15 2.534

losses.

Fig. 16. Analysis of time losses due to overtakings in a full lap. The black-
orange-red colours of the sections represent increasing time losses due to
overtakings. The blue circle marks the position where the first overtaking is
probable to occur, according to the forecast of the competitors positions and
to the default energy budget strategy, i.e. the first strategy. The red circle
expresses the same concept for the fifth energy strategy, i.e. the optimal
one. Since this strategy forces the solver not to use the electric motor in the
first straight, the ego-car is expected to perform the first overtaking further
along the track. This highlights that the proposed approach is suitable to shift
overtakings to positions where they cause lower time losses.

The analysis can be extended to a sequence of laps, i.e. a
stint of the race. Considering the fifth stint of the Bahrain 2017
event, we launch a Monte Carlo numerical simulation starting
with the initial positions of the competitors, and identify
the best among the fifteen pre-computed strategies through
SDP. The positions of the ego-car during the real race are
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Fig. 17. Speed profiles resulting from the first and fifth strategy. The optimal
strategy reaches a lower top speed in the first straight, due to a lower usage
of the electrical energy. The saved energy is then spread into the last two
straights, where it is easier to perform overtakings and reach higher speed.

then replaced by the space profile deriving from the optimal
strategy. Then, SDP is employed a second time to evaluate
the statistical time loss due to overtakings that would have
been generated through the optimal strategy. Figure 18 shows
that our method can lead to a time gain of 6.44 s compared
to the original strategy used during the race. Running the
procedure multiple times, we obtained an upper bound equal
to 6.44 + 1.44 s and a lower bound of 6.44 − 1.83 s, with
confidence interval 90%. Figure 19 represents the temporal
gain lap by lap, with associated confidence interval. It is
evident that the application of the proposed method can have
a significant impact on the result of an event, since the time
difference between the winner and the competitors is usually
of a few seconds.

VIII. CONCLUSIONS

In this work, we have presented an efficient procedure to
generate optimal lap strategies for LMP1 hybrid electric vehi-
cles in WEC events. Particularly, the framework computes the
optimal energy budget utilisation that statistically minimises
the ego-vehicle lap time in presence of competitors, while
complying with the technical regulations.

Our approach relies on multiple contributions. First, we
have shown how to extract meaningful statistics regarding the
competitors’ motion along the track, using the limited amount
of publicly available data from previous races. The statistics
model the sector times and overtaking probability distributions
of each vehicle type. They are used to develop realistic Monte
Carlo simulations of the agents motion and interactions in a
lap. Second, we have computed a set of candidate traffic-
free solutions to the ego-vehicle lap strategy optimisation
problem using Genetic Algorithms, presenting them as a more
computationally efficient alternative to the classical MIQCP
formulation. Finally, the traffic-aware optimal solution is sta-
tistically identified among the candidate traffic-free policies
using Stochastic Dynamic Programming. Relying on several



14

0 20 40 60 80 100
Time [s]

0

1000

2000

3000

4000

5000

6000
P

os
iti

on
s 

al
on

g 
th

e 
tr

ac
k 

[m
]

Fig. 18. Result from the application of Stochastic Dynamic Programming
to an entire stint of the race. The red thick line represents the space profile
deriving from the suggested strategy at the final lap of the stint, whereas the
red thick dotted line represents the positions occupied by the reference car
during the last lap of the stint in the real race. The other lines represent the
competitors’ motion. Adopting our approach to an entire stint of 26 laps, a
time gain of 6.44 s would have been achieved.
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Fig. 19. Lap-by-lap temporal gain generated by our approach.

Monte Carlo simulations of the competitors’ motion, Stochas-
tic Dynamic Programming is used to evaluate the best strategy
among the candidate ones.

To validate our approach, we have applied it to a stint of
a real race. The results show that our approach leads to an
average time gain of 6.44 s, compared to the strategy that was
actuated during the real race. The time gain is particularly
significant, since the time difference between the winner and
the leading vehicles is usually of a few seconds in WEC events.

Finally, we highlight that our strategy can be easily extended
to other types of racing events. In fact, it only relies on an ego-
vehicle longitudinal model and on the sector times data of the
vehicles from previous races, which are commonly available.
The extension to different types of events is left to future
works.
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