
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 1

Hardware-accelerated Data Decoding and
Reconstruction for Automotive LiDAR Sensors

Luís Cunha, Ricardo Roriz, Sandro Pinto, and Tiago Gomes

Abstract—The automotive industry is facing an unprecedented
technological transformation towards fully autonomous vehicles.
Optimists predict that, by 2030, cars will be sufficiently reliable,
affordable, and common to displace most current human driving
tasks. To cope with these trends, autonomous vehicles require
reliable perception systems to hear and see all the surroundings,
being light detection and ranging (LiDAR) sensors a key instru-
ment for recreating a 3D visualization of the world. However,
for a reliable operation, such systems require LiDAR sensors to
provide high-resolution 3D representations of the car’s vicinity,
which results in millions of data points to be processed in
real-time. With this article we propose the ALFA-Pi, a data
packet decoder and reconstruction system fully deployed on
an embedded reconfigurable hardware platform. By resorting
to field-programmable gate array (FPGA) technology, ALFA-
Pi is able to interface different LiDAR sensors at the same
time, while providing custom representation outputs to high-level
perception systems. By accelerating the LiDAR interface, the
proposed system outperforms current software-only approaches,
achieving lower latency in the data acquisition and data decoding
tasks while reaching high performance ratios.

Index Terms—Autonomous vehicles, LiDAR, FPGA, Data rep-
resentation, LiDAR point cloud.

I. INTRODUCTION

Nowadays, just over a decade after the first self-driving car

winning the DARPA Challenge [1], the interest in developing

fully autonomous vehicles is increasing at a very fast pace.

According to optimistic projections, autonomous vehicles will

be sufficiently reliable, affordable, and widely spread on our

public roads by 2030, replacing many current human driving

tasks [2]. Most vehicles today are still manually controlled,

and to make them fully autonomous, they still need to go

through different levels of driving automation, e.g., the six

levels of automation defined by the society of automotive

engineers (SAE) [3]. While with SAE-levels 0, 1, and 2, the

driver must actively monitor the driving activities, with levels

3, 4, and 5, the automated vehicle should be able to monitor

and navigate the environment autonomously. This requires re-

liable multi-sensor perception systems equipped with RADAR

devices, Cameras, and several LiDAR sensors [4]–[6].

A LiDAR sensor works by illuminating a target with

a laser pulse and capturing the reflected signal, being the

distance to the target obtained by calculating the round-trip

Manuscript received xxx; revised xxx. The Associate Editor coordinating
the review process was FistName SecondName. This work has been sup-
ported by FCT - Fundação para a Ciência e Tecnologia within the R&D
Units Project Scope UIDB/00319/2020, and GRANT 2021.06782.BD.

Luís Cunha, Ricardo Roriz, Sandro Pinto, and Tiago Gomes are with Centro
ALGORITMI / LASI, Universidade do Minho, PORTUGAL. Corresponding
author: Tiago Gomes (mr.gomes@dei.uminho.pt).

Digital Object Identifier xx.xx/TVT.xx.xx.

time of the travelled light. Since LiDAR sensors work with

active illumination, they allow round-the-clock observations,

providing accurate measurements up to hundreds of meters

even in different weather conditions. Although the adoption

of LiDAR sensors in the automotive sector being relatively

new, they are assumed as a key technology for the future

of autonomous driving due to their ability to recreate the

environment through a high-resolution 3D point cloud repre-

sentation in real-time [7,8]. Despite ongoing challenges, e.g.,

mutual interference [9,10], and adverse weather [11]–[13],

LiDAR sensors can assist perception systems in several tasks

such as in detecting obstacles, objects, and vehicles [14]–

[16]; pedestrians recognition and tracking [17,18]; ground

segmentation for road filtering [19]; among others [20].

For a reliable operation, perception systems require LiDAR

sensors to generate millions of data points. For instance, the

Velodyne VLS-128, one of the best sensors currently available

in the market regarding range and resolution, can provide

up to 9.6M points/second. Since a perception system may

simultaneously drive several LiDAR sensors within a single

vehicle [4,21,22], handling heterogeneous outputs can be quite

challenging. LiDAR manufacturers usually provide software

layers to interface and collect data from their sensors, enabling

an easy and agnostic integration with the processing system.

However, it is still required to deal in real-time with the huge

amount of data they generate. Some solutions propose to tackle

this issue by compressing data after being transferred to a

processing unit [23]–[25]. Despite presenting good results in

reducing the transmission throughput, the compression tasks

can still add significant processing overhead, which may

penalize real-time applications that rely on the LiDAR output.

Aiming at exploring hardware-accelerated approaches, this

work presents ALFA-Pi, a hardware data packet decoder that

can drive LiDAR sensors whose primary interface is an Ether-

net port. By decoding sensor’s data in hardware, ALFA-Pi can

efficiently handle the high throughput output of a LiDAR, even

in a multi-sensor configuration, without compromising the

performance requirements. Furthermore, the proposed system

also includes a data reconstruction module that processes and

formats the received data to a customizable representation,

supporting different sensor models and data outputs. The main

contributions of this article are summarized as follows: (1) a

hardware-accelerated data packet decoder to interface any Li-

DAR sensor with an Ethernet interface; (2) a coordinate system

representation converter module that processes the received

data, accelerating the calculation and conversion of different

coordinate systems; and (3) an extended benchmarking and

evaluation of the proposed solution.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 2

II. BACKGROUND: AUTOMOTIVE LIDAR SENSORS

Best-in-class automotive LiDAR sensors provide high res-

olution and clear-cut images of the vehicle’s vicinity in a

wide field of view (FoV) and at high frame rates. Since some

sensors also come with high range capabilities, they help in

enhancing the perception system of the car in the long-distance

obstacle detection and avoidance, even at higher speeds.

Nonetheless, high throughput sensors require high bandwidth

interfaces connected to the processing system, which must deal

with several hundreds of Mb/s and handle the decoding and

processing of received data in real-time.

A. Sensor interfaces

Regarding their application and operation environment, Li-

DAR sensors can adopt a variety of communication interfaces,

being the Controller Area Network (CAN) bus and Ethernet

the most used technologies. CAN is a field bus-level com-

munication standard for automotive that allows computing

systems and devices to exchange messages in real-time. It

features built-in error detection, great robustness, and extensive

flexibility. However, CAN only supports data rates up to 1

Mb/s [26], limiting its utilization to LiDAR sensors with

low resolution, small FoV areas, and short-range capabilities.

Moreover, and due to vehicles becoming increasingly smart

and connected, this traditional interface has to co-exist with

other technologies and communication standards that best suite

the large amount of distributed computation that require high

bandwidth and low latency communications, e.g., Ethernet.

Ethernet is a family of wired networking technologies

that has become widely used in on-board and networked

automotive systems, such as multimedia/infotainment, sensor

interfaces and actuators for ADAS, etc. [27]. A standard Eth-

ernet network can support data rates up to 10 Mb/s. However,

recent technologies have increased these transfer rates up to

100 Gb/s (100 Gigabit Ethernet). With such improvement,

these interfaces can be adopted by LiDAR sensors with high

bandwidth requirements. For interoperability purposes within

the vehicle’s network, LiDAR sensors output their data using

the User Datagram Protocol (UDP) or Transmission Control

Protocol (TCP), providing an HTTP-based interface for the

configuration and management operations. However, the data

packet format is still defined by manufacturers regarding the

sensor’s model and overall features.

B. LiDAR Output

The output of a LiDAR system is a collection of points,

i.e., a point cloud, that together describe the digital 3D repre-

sentation of the environment around the sensor. Each point in

the point cloud can hold accurate information about several

measured/calculated parameters such as point coordinates,

intensity, timestamps, etc. The coordinate systems used to

represent a point’s position in the point cloud are usually the

cartesian and the spherical systems. In the cartesian system,

a point is described by x, y, z coordinates, while with the

spherical a point within the 3D space is represented by the

radius r (distance), the elevation ω (vertical angle), and the

azimuth α (horizontal angle), as illustrated by Figure 1.

Z

X

Y

Y

Z

LiDAR Top View

LiDAR Side View

X

Z

Y

Fig. 1: Spherical coordinate system used by a LiDAR sensor.

Because the cartesian coordinate system is easy to manip-

ulate, it is commonly used in point cloud processing [28].

However, the spherical coordinate system is preferable over

the cartesian in LiDAR output data. This is mainly due to

the amount of information that can be reduced, i.e., with the

spherical coordinate system the value of the elevation angle

ω can be easily derived from the data packet according to

sensor’s design, thus reducing the point cloud data to transmit.

For instance, the Velodyne VLP-16 (16 vertically arranged

laser channels) transmits for each channel the distance r and

the azimuth α for all points. Since the channel is known, the

elevation angle is easily obtained. Moreover, and since current

LiDAR sensors can provide information of multiple returns for

the same emitted light, this data reduction approach creates a

significant impact on the sensor’s throughput.

When the processing system collects a point cloud, the

points can then be rendered as pixels to create accurate 3D

models of detected objects. Because the cartesian coordinates

are preferable for point cloud processing, sensor manufacturers

usually include in their sensor drivers the conversion from

spherical data to cartesian coordinates using Equations 1, 2,

and 3. For instance, Velodyne sensors come with a Robot

Operating System (ROS) package (velodyne_pointcloud) that

performs in software such point cloud reconstruction. How-

ever, and since just one point cloud frame can hold millions

of points, this can cause a significant processing overhead.

x = r × cosω × sinα (1)

y = r × cosω × cosα (2)

z = r × sinω (3)

Moreover, aside from sending the point’s coordinates,

current LiDAR sensors can also provide extra information

concerning target-related characteristics, such as the target’s

reflectivity and point intensity, which are important to easily

detect reflective objects such as traffic signs [29,30] and road

boundaries [31]. Using all these data for object detection

and avoidance in real-time, requires high bandwidth com-

munication networks and extra computational systems, which

usually demand for high hardware resources and performance

capabilities. Some solutions already propose hardware-based

approaches to accelerate the communication between different

distributed computation systems [32], whose technologies can

also be specifically applied to interface LiDAR sensors.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 3

III. RELATED WORK

Considering the utilization of hardware-based techniques

to interface and handle the high throughput and perfor-

mance requirements of modern perception systems, and de-

spite hardware-based data decoding approaches being widely

applied in other fields, to the best of our knowledge, there are

only a few implementations on LiDAR sensors. We believe this

is mainly due to automotive LiDAR technology being slightly

new and multi-sensor perception systems relying on LiDAR

sensors that demand for high bandwidth and low latency

communications are still emerging. But as this requirement

arises, handling the high LiDAR data throughput will soon

become a paramount. Table I summarizes the current LiDAR

packet decoding and data reconstruction approaches, somehow

related to our solution, that could be found in the literature.

TABLE I: Current LiDAR packet decoding and data recon-

struction approaches.

Contribution Sensor Operation Approach
Processing
time (ms)

Ning et al. [33] (2017) VLP-16
Decoding and
reconstruction Software 26.711

Yang et al. [34] (2017) VLP-16
Decoding and
reconstruction Software 3.855

Fan et al. [35] (2018) VLP-16
Decoding and
reconstruction Software -

Okunsky et al. [36] (2018) VLP-16
Decoding and
reconstruction Software -

Fan et al. [37] (2019) VLP-16
Decoding and
reconstruction SoC 0.912

Sun et al. [38] (2019) SICK LMS111 Packet reading FPGA -

Fan et al. [39] (2022) HDL-64
Decoding and
reconstruction Software 7.678

Regarding software-based approaches, Ning et al. proposed

in 2017 an object detection algorithm using a VLP-16 LiDAR

sensor, which includes a decoding strategy for retrieving their

three-dimensional coordinates to create a point cloud image

for horizontal and vertical clustering to obtain the edge of

the object [33]. Also, targeting a VLP-16 sensor, Yang et al.

explore a method to recreate 3D models of buildings by taking

advantage of the 16-angle structure from the Velodyne package

to create planes [34]. According to [39], the solutions proposed

by Ning et al. [33] and Yang et al. [34] can process one VLP-

16 frame in 26.711 ms and 3.855 ms, respectively. Later in

2018 Fan et al. proposed a system architecture to decode,

reconstruct and segment raw data from a VLP-16 LiDAR

sensor [35]. It supports both single- and dual-mode operation,

converting the spherical data to the cartesian coordinates

system to perform static object segmentation with a euclidean

clustering method. Next, it uses OpenGL for point cloud image

construction and visualization. Despite presenting good results

in terms of data decoding and object segmentation, further

experiments are required to assess the performance evaluation.

Okunsky et al. also devised an algorithm with all the necessary

steps to decode and reconstruct data from a Velodyne VLP-16

in dual-return mode to the cartesian coordinate system [36].

Although the software results were promising concerning data

correctness, further developments and testing with real-time

data are required. Finally, in 2022 Fan et al. designed and

implemented an algorithm to decode and reconstruct LiDAR

data from a HDL-64 sensor [39]. The system was tested

with several data packets from the sensor working at 10 Hz

in different environments. It can achieve good performance

metrics, taking on average around 7.678 ms to process one

HDL-64 point cloud frame.

In 2019, and following a hardware-based approach, Fan et

al. [37] proposed a system-on-chip (SoC) solution that targets

a Velodyne VLP-16 in dual-return mode. The SoC includes

a hardware-based parser for data decoding with a lookup-

table CORDIC module to convert points from spherical to

the cartesian coordinates system. The SoC follows the TSMC

0.18um technology, with a target clock speed operation of 100

MHz. This SoC was further improved to include an enhanced

CORDIC design that computes trigonometric functions in

seven rotations independently of the number of the input

digits. This new version, which uses the rotation input angle

to pre-select the desired iteration angle, replaces the previous

LUT-based method in a smaller chip area. Acording to [37],

the SoC offers good performance metrics in decoding and

reconstructing data from a VLP-16 sensor, requiring only

0.012 ms to decode a network packet and 0.912 ms to decode

a full frame at the chip’s maximum frequency of 100 MHz.

An FPGA-based approach was also proposed by Sun et al.

in 2019 [38]. The system resorts to the W5500 chip, a hard-

wired TCP/IP embedded Ethernet controller used to accelerate

the reading of LiDAR data that supports various transport

layer protocols along with the 10BaseT/100BaseTX Ethernet

standards. The solution was tested with a SICK LMS111

sensor and the communication with the FPGA is done via

a serial peripheral interface (SPI) bus. Despite resorting to

FPGA, data decoding and reconstruction is not supported in

hardware. Although the solution could potentially interface

other sensors, it only shows the advantage of not relying

entirely on software to handle the TCP/IP network stack of

an Ethernet interface when connecting a LiDAR sensor.

IV. HARDWARE-ACCELERATED LIDAR INTERFACE

(ALFA-PI)

Motivated by the aforementioned challenges, this work pro-

poses a hardware-accelerated data packet decoding and recon-

struction system (ALFA-Pi) for automotive LiDAR sensors.

This task can be quite challenging since some vehicles already

include multi-sensor systems with more than one LiDAR

device, which requires different sensor data interfaces and

sensor-specific packet decoding for point cloud reconstruction.

A. System Architecture

Figure 2 depicts the ALFA-Pi architecture, which following

a hardware-software co-design approach, enables the high-

speed reading, decoding, and reconstruction of LiDAR data.

ALFA-Pi is built upon the ZCU104 Evaluation Kit, which

features a Zynq UltraScale+ MPSoC, enabling the rapid design

of embedded applications with support to video codecs and

standard peripherals and interfaces. The MPSoC combines

two distinct systems, the processing system (PS) and the

programmable logic (PL), which includes a quad-core Arm

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 4

So
ftw

ar
e

H
ar

dw
ar

e

ALFA-Pi

Ethernet
Interface System

Sensor Packet
Decoder

AXI

Stream
Coordinate

Systems Converter

ARM Cortex-A53

Embedded Linux

Ethernet

LiDAR

CN0506
 FMCZ

RGMII

ROS Environment

AXI

Stream

 AXI-Stream AXI-Lite AXI-Lite

Other ROS Nodes

Programmable Logic

ALFA-Pi Driver OEM Driver

Processing System

Fig. 2: ALFA-Pi system architecture.

Cortex-A53 application processor, a dual-core Cortex-R5 real-

time processor, a Mali-400 MP2 graphics processing unit,

4KP60 capable H.264/H.265 video codecs, configurable field-

programmable gate array (FPGA) technology, and 2 GB

of DDR4 memory. To interface different LiDAR sensors,

the ALFA-Pi includes the EVAL-CN0506-FMCZ expansion

board. This board is a dual-channel, low latency, low power

Ethernet PHY card that supports 10 Mbps, 100 Mbps, and

1000 Mbps speeds for industrial Ethernet applications. The

EVAL-CN0506-FMCZ board directly connects to the PL,

enabling the deployment in FPGA of hardware peripherals to

collect and process LiDAR data.

Regarding the PL system, it features three main hardware

blocks: (1) the Ethernet Interface System; the (2) Sensor
Packet Decoder; and (3) the Coordinate Systems Converter
(CSC), used to accelerate the conversion between different

coordinate systems. Combined, these blocks are responsible

for the reading, decoding, and reconstruction of LiDAR data,

and together they form the ALFA-Pi hardware system. All

modules are connected through the advanced extensible inter-

face (AXI)-4 bus, which is also used for high-performance

memory accesses, high-speed point cloud data streaming,

and the control/configuration operations. From these hardware

blocks, both the CSC and the Ethernet Interface System are

only deployed once, not requiring further modifications when

the support for a new sensor is added. However, adding support

for a new sensor requires modifications to the Sensor Packet
Decoder, regarding the data decoding and reconstruction to

the ALFA-Pi format.

On the PS side, the ALFA-Pi features a ROS environment
on top of an embedded Linux distribution, allowing for real-

time configuration and control of the hardware functionalities

through the developed ALFA-Pi ROS Package (ALFA-Pi

driver). Therefore, high-level applications can easily access

data through standard ROS interfaces, as commonly provided

by manufacturers and sensors.

B. Ethernet Interface System

The Ethernet Interface System allows collecting data di-

rectly from the Ethernet EVAL-CN0506-FMCZ board inter-

face, accelerating the reading task without the need of the

operating system (OS) intervention, and making it directly

available to the Sensor Packet Decoder block. This system

resorts to several Xilinx intellectual property (IP) Cores,

e.g., ADIN1300 to implement the physical (PHY) layer, and

the AXI 1G/2.5G Ethernet Subsystem for the media access

controller (MAC) layer. The MAC layer controls the data-link

layer of the open systems interconnection (OSI) model, thus,

it can be easily intercepted in hardware to capture IEEE 802.3-

compliant data frames. The remaining upper layers, e.g., inter-

net protocol version 4 (IPv4) and transport layers (e.g., UDP),

are still controlled by the network stack manager provided by

the embedded Linux OS. Although these could be deployed

also in hardware, they would not improve the packet decoding

and reconstruction process. After performing all MAC-related

operations, e.g., flow control, and data frame integrity, received

data is sent to the Sensor Packet Decoder through an AXI4-

Stream interface for the filtering and decoding tasks, according

to the sensor(s) connected.

C. Sensor Packet Decoder

CSC

Velodyne Driver

Hokuyo Driver

Other Sensor Drivers

Driver's Controller

D
EM

U
X

Sensor Packet Decoder

MAC

Filter

TCP

Filter

UDP

Filter

Sensor Model

Packet Filter
selector

M
U

X

selector

Spheric
Converter

Cartesian
Converter

application defined

Fig. 3: Sensor Packet Decoder block diagram.

The Sensor Packet Decoder, depicted in Figure 3, is respon-

sible for the high-speed processing and decoding of received

data. It is composed of two main blocks: (1) a packet filter

for filtering the received data frame; and (2) sensor-specific

interface blocks that implement all functionalities as provided

by respective original equipment manufacturer (OEM) sensor

drivers. The packet filter supports different filtering features of

several protocols, e.g., MAC and IPv4 addresses, and TCP and

UDP headers/ports. Also, it can verify the type and settings

(e.g., single- or dual-mode return) of each LiDAR sensor

connected and configured in the ALFA-Pi interface. When a

received packet belongs to a supported sensor currently active

in the system, the Packet Filter module forwards it to the

corresponding sensor’s driver controller. Otherwise, the packet

is discarded. All registers and configuration parameters of this

module can be set in run-time from the ALFA-Pi driver.

Each sensor interface module is a sensor-specific hardware

block that performs in hardware the same functionalities

supported by the software drivers provided by manufacturers,

thus adding a new sensor, requires the deployment of sensor-

defined features with fine-tuning configurations on subsequent

sub-modules. Nonetheless, these blocks do not need further

changes once a sensor model/family is added. Since ALFA-

Pi can support different sensors connected and working at the

same time, the Sensor Packet Decoder features a multiplexing

system that combines all sensors data into a single point cloud

stream following the ALFA-Pi’s point cloud representation.

Regardless the sensor data that is being decoded, the output

of this module to the CSC follows the ALFA-Pi Data Format

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 5

(further explained in Section IV-D), which by default contains

data points in the spherical representation. For demonstration

purposes, this article only focuses on the support for Velodyne

and Hokuyo LiDAR sensors, further evaluated in Section V.

Velodyne Sensors Support
Since Velodyne sensors adopt a generic packet structure

in their point cloud output, the ALFA-Pi platform already

supports a wide range of Velodyne LiDAR products. As

depicted in Figure 4, without considering the UDP header (42

bytes), the data block structure is composed of 12 data blocks

(1200 bytes), a timestamp field (4 bytes), and sensor-related

info (2 bytes) that contain the sensor’s model and current

operation mode. Each data block N contains 32 data fields

to store the point’s information (distance and reflectivity) of

each available laser channel for the azimuth N angle. The flag

0xFF(XX) identifies the firing sequence within the data block.

For instance, if a sensor with 16 or 32 laser channels is being

used, e.g., the VLP-16 or HDL-32E sensors, one data block

can hold information of one or two firing sequences. By its

turn, if the HDL-64E sensor is connected, two data blocks are

required to store the 64 channels of the firing sequence, being

the first and second data blocks identified by the flags 0xFFEE

and 0xFFDD, respectively. Additionally, when the sensor is

being used in dual return mode, twice as many packets are

returned since more data blocks are needed for sending the

different returns from the same laser firing, e.g., for the HDL-

32E the data block N and the data block N+1 would contain

the information for points in the same azimuth N.

Data Block 0
0xFFXX

Data Point 0
Data Point 1

Data Point 30
Data Point 31

Data Block 11
0xFFXX

Data Point 0
Data Point 1

Data Point 30
Data Point 31

Timestamp

Sensor Info

1206 bytes

Azimuth Azimuth

Fig. 4: Velodyne packet format.

The Velodyne Sensor Interface block can detect the sensor

model and its operation mode directly from the received

packet. Thus, it can decode data from different Velodyne

sensors simultaneously connected to the ALFA-Pi. However,

this is only possible after a full packet is received. Internally,

this hardware module features a message controller and a data

decoder system. The message controller takes advantage of the

packet format to extract and place the distance and intensity

values into different memory blocks. By its turn, the data

decoder system is responsible for decoding the packet data

and organizing it into the ALFA-Pi data format.

Hokuyo Sensors Support
To show the modularity and heterogeneous features of the

ALFA-Pi, the platform also provides support to sensors with

different frame formats. For instance, Hokuyo’s 2D sensors use

the SCIP2.0 protocol, which is currently adopted by different

sensors with distinct operation modes. This protocol, whose

frame format is depicted in Figure 5, is based on a command-

response principle, where the host processing system sends a

command/request and the sensor responds with the requested

data. The sensor data is structured in blocks of 64 bytes,

containing the data points stored with character encoding and

a check code (CC) character, which can be used for block error

detection purposes. Because each data point only contains

the distance and/or the intensity information, the azimuth

values can be inferred from the data point’s position inside

the message array.

1 2 3 4 n n+1 n+m

Command RD

Status CC RD

May vary with command

Parameters ; String

RD

Data RD

Optional

Fig. 5: Hokuyo packet format.

Unlike the frame format used in Velodyne sensors, where

data packets are independent of each other, the Hokuyo’s

format requires several TCP packets to be received until an

entire message can be successfully decoded. For this reason,

the Hokuyo’s Sensor Interface block features several data

buffers to store multiple TCP packets from a single sensor until

a complete scan message is received. Storing all packets for

a specific sensor within the same hardware-based data buffer

can lead to higher memory utilization, however, it enables an

easier control and a faster decoding operation. The Hokuyo

hardware interface also contains a message controller, which is

responsible for controlling all data buffers and routing received

packets regarding the corresponding sensor’s ID. When a

full sensor’s message is received, the decoding modules are

triggered and the decoding operation starts to fetch data from

the correspondent data buffers. The output of this module is a

data frame that follows the ALFA-Pi’s data format.

D. ALFA-Pi Data Format
One of the biggest advantages of ALFA-Pi’s is the support

for distinct sensors that can be used in different automotive

LiDAR applications. For instance, Velodyne sensors are 3D

sensors commonly used in long-range driving assistance tasks

while the Hokuyo 2D sensors can be used in short-range jobs

such as parking and blind spot assistance. Nonetheless, the

Sensor Packet Decoder module is still able to interface both

sensors at the same time, providing a custom data format that

contains all sensor’s data regardless of their original output.

Such abstraction layer eases the integration of the ALFA-Pi

framework with other sensors, while seamlessly connecting

high-level applications that integrate the perception system of

the car. The proposed format is able to hold information for

both 2D and 3D sensors, and support sensors with multiple

return capabilities.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 6

By default, ALFA-Pi data format includes the spherical co-

ordinates system, as provided by most of the sensors available

in the market, generating the output depicted in Figure 6. The

data structure starts with the Flags field, which indicates when

a new packet frame starts, followed by the Sensor ID field (6

bits) that identifies the sensor in the system. The next fields

contain the Azimuth (16-bit) and the Vertical Angle (16-bit),

followed by the D0 and D1 dual return support (when present),

both requiring 20 bits each. The two distance values D0 and

D1, contain the point’s distance obtained by the sensor (in

millimeters) for each return. Finally, the Extra 0 and Extra 1
fields, 8 bits each, can hold extra information for other sensor-

specific features, e.g., reflectivity and packet time stamps.

D0

Sensor ID

FL
AG

S

Azimuth V. Angle

V. Angle

D1

D1

Extra 0 Extra 1

0 21 7 8 23 24 3115 16

Fig. 6: ALFA-Pi spherical system representation (96 bit).

E. Coordinate Systems Converter (CSC) module

Sensor ID

FL
AG

S

X0 Y0

Y0

0 21 7 8 23 24 3115 16

Z0 X1

X1 Y1 Z1

Z1 Extra 0 Extra 1

Fig. 7: ALFA-Pi cartesian system representation (120 bit).

The CSC module is responsible for handling the represen-

tation of the received sensor data, supporting the conversion

between two coordinate systems. Customized on-the-fly, it can

convert spherical coordinates to the cartesian system, and vice-

versa. These conversions are usually performed by sensor’s

drivers, which are traditionally supported by ROS-based soft-

ware packages. Since trigonometric calculations (Equations 1,

2, and 3) require time consuming processing, ALFA-Pi deploys

them in hardware. However, calculating the sine and cosine
values with a hardware architecture that does not provide

specialized calculation units comes at some hardware costs.

There are two well-known techniques that can be adopted to

perform such calculations, such as the CORDIC algorithm

or a strategy based on look-up tables. Despite being more

resource-consuming, the CSC module deploys the look-up

tables approach, which allows for better performance results.

The ALFA-Pi’s look-up table implementation resorts to

a block RAM (BRAM) memory and uses a table/array of

already computed sine and cosine values, turning the run-

time computation into a simple indexing operation. This allows

for a significant processing time reduction since retrieving the

value from memory is faster than its recurring computation.

The look-up tables were populated with the sine and cosine
values, calculated with the C math library with a resolution

of 0.01º for angles between 0º and 90º, and store five decimal

digits for each calculated value. When high-level applications

require the point cloud in the cartesian representation, the

output of the Sensor Packet Decoder is intercepted by the

CSC module, which converts the spherical coordinates data to

the format depicted by Figure 7. This frame format is similar

to the spherical system representation, however it contains

the x, y, z coordinates instead of the azimuth and elevation

angles, and requires a packet size of 120 bits instead of 96

bits. Regardless of the frame format, the point cloud data are

written by a hardware direct memory access (DMA) module

into the DDR4 memory available in the ZCU 104 platform.

V. EVALUATION

The evaluation of the ALFA-Pi aims at comparing a

software-based LiDAR setup (native ROS driver; software-

based Ethernet port; Linux network stack; and no acceleration

support) with the proposed hardware-based solution (hardware

Ethernet port; tweaked network stack/interface; ALFA-Pi hard-

ware modules). It also includes a performance comparison

with state-of-the-art solutions, the FPGA resources required to

deploy the ALFA-Pi, and the power consumption of the ALFA-

Pi hardware modules. All software runs on top of an embed-

ded Linux (4.19.0-xilinx-v2019.2) with a ROS environment

(Ros1 melodic distribution). The hardware platform combines

the ZCU104 Evaluation Kit and the EVAL-CN0506-FMCZ

Ethernet board, with the CPU running at a clock speed of 1.2

GHz and the FPGA fabric running at 100 MHz.

A. Network Interface

TABLE II: Network performance results from iPerf.

Test Native Ethernet Hardware
Ethernet

ALFA-Pi

T
C

P Bandwidth (Mbits/s) 941.243 941.904 941.302

Retries 0 0 0

U
D

P Bandwidth (Mbits/s) 955.937 955.929 955.971

Packet Loss (%) 0.002 0.001 0.002

Jitter (ms) 0.018 0.018 0.018

For testing the impact of adding the hardware Ethernet

port, we ran the iPerf3 tool on top of the embedded Linux.

We used the iPerf client-server functionality for both UDP

and TCP data streams, testing their most relevant metrics

in three possible configurations: (1) native Ethernet port of

the ZCU104 Evaluation Kit; (2) hardware Ethernet interface

from the EVAL-CN0506-FMC card; and (3) hardware Ethernet

interface EVAL-CN0506-FMC with ALFA-Pi accelerators.

In all configurations the network stack is managed by the

Linux network manager. The embedded platform was directly

connected to a desktop Linux host with a 1 Gbit/s enabled

Ethernet interface. Table II summarizes the gathered results.

With the TCP, the maximum bandwidth rate is around 941

Mbits/s in all three configurations, while for the UDP test the

maximum bandwidth is nearly 955 Mbits/s, also in all setups.

The TCP number of retries is always zero, and in the UDP tests

the lost packet ratio is as low as 0.002%. The measured jitter is

always 0.018 milliseconds (ms). From the obtained results we

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 7

can conclude that adding the hardware-based network interface

and the ALFA-Pi accelerators does not improve nor affect the

normal behaviour of the network communication.

B. Performance Evaluation

For this evaluation we started to benchmark a native

software-based solution with the hardware platform (without

ALFA-Pi) connected to a Velodyne and a Hokuyo sensor

(Table III, column Native ROS driver). Next, we repeat the

same evaluation steps with the ALFA-Pi hardware modules,

including the CSC for fast point cloud reconstruction (column

ALFA-Pi driver). The performance gains between the software

and hardware version are included in column Gain1. For a fair

comparison, in each sensor evaluation we have used the same

point cloud data (i.e., raw Ethernet packets previously captured

from sensors) on both native and ALFA-Pi solutions.

One big advantage of the ALFA-Pi is the ability to provide

the received and processed point cloud frames directly to

other hardware accelerators. This way, instead of using the

software stack to collect data and perform software-based data

processing, other accelerators can benefit from the hardware

capabilities of ALFA-Pi by directly collecting data from the

CSC module. These results are present in column ALFA-
Pi hw) and the respective performance gains between the

software-only and the full hardware approach can be found

in column Gain2.

TABLE III: Comparison of the native implementation vs.

ALFA-Pi ROS driver and ALFA-Pi hardware.

Sensor
Point

Cloud Size

Native ROS
driver (ms)

ALFA-Pi
driver (ms)

Gain1
ALFA-Pi
hw (ms)

Gain2

UST-10LX
(Distance)

1081 2.642 0.044 60.73x 0.032 81.55x

UST-10LX
(Distance+Intensity)

1081 2.647 0.076 34.87x 0.064 40.86x

VLP-16 29184 8.643 0.929 9.3x 0.613 14.16x

HDL-32 69504 21.586 2.212 9.76x 1.464 14.78x

HDL-64 133632 40.380 4.254 9.5x 2.821 14.32x

VLS-128 240384 72.113 7.651 9.42x 5.064 14.2x

Discussion: Native ROS driver vs. ALFA-Pi
After the point cloud data being received by the Ethernet

interface, the native ROS sensor’s driver reads it from the

Linux network stack layer, reconstructs in software the point

cloud with the cartesian coordinate system, and makes it

available to other applications on a new ROS topic. By its turn,

the ALFA-Pi hardware blocks read the sensor data directly

from the Ethernet interface, performs the packet decoding

according to the sensor’s model, and performs the point cloud

data reconstruction with the CSC hardware block. Finally, the

ALFA-Pi’s software driver in the PS reads data directly from

the DDR4 memory.

Regarding the Hokuyo sensor, with its native ROS driver,

it is necessary around 2.642 ms to process one point cloud

of 1081 points/frame when the sensor outputs only the point’s

coordinates, and 2.647 ms when the intensity values are added

to the packet. For the Velodyne sensors, the ROS driver take

around 8.64 ms for the VLP-16 (29184 points/frame), 21.58

ms for the HDL-32 (69504 points/frame), 40.38 ms for the

HDL-64 (133632 points/frame), and 72.11 ms for the VLS-

128 (240384 points/frame). Despite the big difference between

the Hokuyo and the VLP-16 on the point cloud sizes, the

processing time is only 3.27x higher for the VLP-16. This can

be explained by the packet decoding scheme used by Hokuyo,

which requires several data packets to be received and stored

in memory until a point cloud frame could be decoded.

When resorting to the ALFA-Pi hardware packet decoder

and the CSC module, the proposed system can achieve a

performance gain (column Gain1) up to nearly 60x for the

Hokuyo sensor when its output is only the point’s coordinates

(horizontal angle and distance), and 34x when the intensity

values are added. This improvement is around 9.3x for the

VLP-16, 9.76x for the HDL-32, 9.5x for the HDL-64, and

9.42x for the VLS-128. The performance gains of the Hokuyo

sensor are mainly related to the optimizations performed in the

packet decoder block in terms of point cloud reconstruction,

memory utilization, and hardware resources. Thus, a reduced

point cloud size will always decode faster. However, adding

the intensity values to the Hokuyo’s point cloud reduces the

performance gain almost by the half, which is explained by the

point cloud size requiring nearly twice the packets to include

such data. For the Velodyne sensors, since they use the same

packet format, the performance gains are almost identical,

being the frame processing time only related to the point cloud

size, rather than the packet decoding process.

When directly connecting the output of ALFA-Pi to other

hardware accelerators, the performance gains in processing a

full point cloud frame are further increased (column Gain2).

For the Velodyne sensors these gains are around 14x, while for

the Hokuyo the performance gain can be improved to 40.86x

when including the Itensity values and 81.55x when only

operating in the Distance mode. In general, the performance

gains obtained in the ALFA-Pi hardware-only evaluation can

be explained by the reduction in the memory access time and

the overhead induced by the upper software layers.

ALFA-Pi vs. state-of-the-art solutions
The comparison between the ALFA-Pi driver and current

state-of-the-art solutions can be found in Table IV, which only

includes contributions that provide the information about the

processing time required to handle one point cloud frame.

Regarding the VLP-16, ALFA-Pi can achieve a frame pro-

cessing time of 0.929 ms, outperforming the contributions

TABLE IV: Comparison with state-of-the-art solutions.

Contribution Sensor
Point

Cloud Size

Processing
time (ms)

Approach

Ning et al. [33] (2017) VLP-16 29184 26.711 Software

Yang et al. [34] (2017) VLP-16 29184 3.855 Software

Fan et al. [37] (2019) VLP-16 29184 0.912 SoC

Fan et al. [39] (2022) HDL-64 133632 7.678 Software

ALFA-Pi (2022)

UST-10LX
(Distance) 1081 0.044 FPGA

UST-10LX
(Distance+Intensity) 1081 0.076 FPGA

VLP-16 29184 0.929 FPGA

HDL-32 69504 2.212 FPGA

HDL-64 133632 4.254 FPGA

VLS-128 240384 7.651 FPGA

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 8

from Ning et al. [33], 26.711 ms, and Yang et al. [34], 3.855

ms. In Fan et al. [37], the processing time for the VLP-16

is 0.912 ms, obtained in a hardware-only configuration, i.e.,

no software drivers. Thus, for a fair comparison with this

SoC-based implementation, we must also use the hardware-

only ALFA-Pi, which corresponds to 0.613 ms. Nonetheless,

ALFA-Pi driver can still achieve a processing time of 0.929

ms, which is only 1.87% worse than the SoC. For the HDL-

64, the contribution from Fan et al. [39] processes one point

cloud frame in 7.678 ms, while the ALFA-Pi requires only

4.254 ms.

C. Hardware Resources

All features of the ALFA-Pi come at the cost of FPGA

hardware resources, which may vary with the number of

sensors connected to the system. Table V summarizes all

the required FPGA blocks (from the available in the Zynq

UltraScale+ MPSoC) in terms of look-up tables (LUTs), look-

up table random access memories (LUTRAMs), Flip-Flops

(FFs), and BRAMs, for the deployment of the Velodyne
Interface and Hokuyo Interface blocks, the Packet Filter
module, the CSC block, and the Hardware Ethernet interface.

Each module was evaluated independently, wherefore different

configurations and customizations of an ALFA-Pi setup will

achieve different resources consumption. We also estimate the

number of sensors (1 to 16) that could be simultaneously

interfaced by ALFA-Pi in a multi-sensor configuration.

TABLE V: Hardware resources utilization.

Sensors
LUTs

(230400)
LUTRAMs
(101760)

FFs
(460800)

BRAMs
(312)

Hardware
Ethernet

- 4683 (2.03%) 556 (0.546%) 9213 (2%) 5.5 (1.76%)

Packet
Filter

1 107 (0.046%) 0 (0%) 262 (0.057%) 0 (0%)

2 218 (0.095%) 0 (0%) 334 (0.072%) 0 (0%)

4 264 (0.12%) 0 (0%) 427 (0.093%) 0 (0%)

8 358 (0.16%) 0 (0%) 612 (0.13%) 0 (0%)

16 567 (0.25%)) 0 (0%) 981 (0.21%) 0 (0%)

Velodyne
Interface

1 419 (0.18%) 16 (0.016%) 360 (0.078%) 4 (0.64%)

16 419 (0.18%) 16 (0.016%) 360 (0.078%) 4 (0.64%)

Hokuyo
Interface

1 196 (0.085%) 16 (0.016%) 421 (0.091%) 2 (0.64%)

2 316 (0.14%) 16 (0.016%) 514 (0.11%) 5 (1.6%)

4 490 (0.21%) 16 (0.016%) 700 (0.15%) 10 (3.2%)

8 865 (0.38%) 16 (0.016%) 1072 (0.23%) 20 (6.41%)

16 1586 (0.68%) 16 (0.016%) 1816 (0.39%) 40 (12.82%)

CSC - 1350 (0.58%) 0 (0%) 57 (0.012%) 17 (5.45%)

The Ethernet Interface System was deployed straight out

of the box and does not feature any customization param-

eters. Each independent Ethernet port requires 4683 LUTs,

556 LUTRAMs, 9213 FFs, and 5.5 BRAMs. Regarding the

Sensor Packet Decoder block, which includes the Packet
Filter and at least one sensor interface, it can present different

configurations regarding the number of sensors connected to

the system, e.g., for 4 Velodyne sensors, the Packet Filter must

include 4 filtering blocks. Connecting 16 sensors to the system

keeps the resource requirements as low as 567 LUTs, 981 FFs,

and zero LUTRAMs and BRAMs units. These resources are

not affected by the model/type of the sensor connected.

The Velodyne Sensor Interface provides great scalability

features due to its generic packet format implementation.

Therefore, deploying 1 or 16 sensors provides the same

resources utilization, i.e., 419 LUTs, 16 LUTRAMs, 360

FFs, and 4 BRAM modules, since each received packet

does not require any storage steps for packet decoding. The

Hokuyo Sensor Interface highly depends on the number of

sensors connected to ALFA-Pi. This is mainly due to the

storage resources required in the packet reconstruction process.

Therefore, the most critical resource is the required number

of BRAMs (the scarcest resource) used to accommodate the

received Hokuyo packets, which exponentially increases when

the number of connected sensors also increases. Connecting

16 Hokuyo sensors would require 1586 LUTs, 16 LUTRAMs

(this value never changes), 1816 FFs, and 40 BRAMs.

The CSC module is responsible to perform the fast conver-

sion between the two coordinate systems used in ALFA-Pi.

Since it uses LUTs to immediately find the corresponding

x, y, z values of a point inside multiple tables stored in

BRAMs, it requires 1350 LUTs and 17 BRAMs, being the

LUTRAMs, and FFs as low as 0 and 57, respectively.

D. ALFA-Pi Power Consumption

To assess the power consumption of the supported hard-

ware interfaces running simultaneously with different sensor

configurations, we used the Power Analysis tools from the

Vivado Design Suite. The tool was run in vectorless mode

with the default settings, the platform constrains for the Zynq

UltraScale+ MPSoC present in the ZCU104 Evaluation Kit,

different sensor configurations (support for 1 and 16 sensors),

and with power optimizations disabled.

Table VI summarizes the dynamic power consumption,

which is determined by the switching activity of clocks and

datapaths and the static power consumption, which represents

the minimum power consumption required to operate the

hardware blocks. Additionally, and since the frame processing

time is known, we can calculate the required energy to process

a point cloud frame for the supported sensors.

TABLE VI: ALFA-PI power consumption.

Sensors
Dynamic

Power (W)
Static

Power (W)
Total (W) Sensor

Model

Energy per
frame (mJ)

Velodyne
Interface

1
16

0.226
0.229

0.594
0.594

0.820
0.823

VLP-16 0.765

HDL-32 1.819

HDL-64 3.498

VLS-128 6.296

Hokuyo
Interface

1
16

0.224
0.259

0.595
0.595

0.820
0.854

UST-10LX
(D)

0.037

UST-10LX
(D+I)

0.065

Considering the total power, the Velodyne Interface dissi-

pates 0.820 W for a configuration with 1 sensor, and 0.823 W

when handling 16 sensors. This small change is related to the

hardware required to support 1 or 16 sensors, which due to the

Velodyne’s generic packet format, allows for a good hardware

re-utilization. Processing one VLP-16 frame consumes 0.765

mJ while for the HDL-32 the dissipated energy is 1.819 mJ.

The HDL-64 and the VLS-128 dissipate, respectively, 3.498

mJ and 6.296 mJ. These values are directly dependent on the

point cloud’s frame size, which requires more processing time

when more point cloud data is genereted by the sensor.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 9

Regarding the Hokuyo Interface, interfacing 1 sensor dis-

sipates also 0.820 W, while supporting 16 sensors consumes

around 0.854 W. These differences are directly justified by the

increased hardware resources, e.g., buffers for accommodating

the received frames, that need to be added to the module when

more sensors are being used. It consumes around 0.037 mJ

to process one frame in the basic sensor’s configuration, and

0.065 mJ when the intensity values are also included.

VI. CONCLUSION

Triggered by the automotive sector, the LiDAR market is

growing at a breathtaking pace. Current perception systems

based on multi-sensor approaches can provide more accurate

readings of the surroundings, but require more processing

capabilities to handle the high volume of data produced

by several sensors working at the same time. This article

proposes a hardware-based solution for packet decoding and

data reconstruction for automotive LiDAR sensors. Contrarily

to other state-of-the-art solutions, it can support different

sensors connected via an Ethernet interface, achieving good

performance gains when compared with software-only state-

of-the-art contributions. Despite only presenting results for

Hokuyo and Velodyne, we are currently working on adding

more sensors from different manufacturers to provide support

for a multitude of configurations and sensor scenarios.

REFERENCES

[1] S. Thrun et al., “Stanley: The robot that won the DARPA Grand
Challenge.” J. Field Robot., vol. 23, pp. 661–692, 2006.

[2] T. Litman, Autonomous vehicle implementation predictions. Victoria
Transport Policy Institute Victoria, Canada, 2021.

[3] Society of Automotive Engineers (SAE), “Taxonomy and definitions for
terms related to driving automation systems for on-road motor vehicles
(Surface Vehicle Recommended Practice: Superseding J3016 Jun 2018).”
SAE International, Apr. 2021.

[4] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the Urban Challenge,” Journal of Field Robotics, vol. 25, no. 8, pp.
425–466, 2008.

[5] E. Marti, M. A. de Miguel, F. Garcia, and J. Perez, “A Review of Sensor
Technologies for Perception in Automated Driving,” IEEE Intelligent
Transportation Systems Magazine, vol. 11, no. 4, pp. 94–108, 2019.

[6] B. Shahian Jahromi, T. Tulabandhula, and S. Cetin, “Real-Time Hybrid
Multi-Sensor Fusion Framework for Perception in Autonomous Vehi-
cles,” Sensors, vol. 19, no. 20, 2019.

[7] Y. Li and J. Ibanez-Guzman, “Lidar for Autonomous Driving: The
Principles, Challenges, and Trends for Automotive Lidar and Perception
Systems,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 50–61, 2020.

[8] R. Roriz, J. Cabral, and T. Gomes, “Automotive LiDAR Technology: A
Survey,” IEEE Trans. on Intell. Transp. Syst, pp. 1–16, 2021.

[9] G. Kim, J. Eom, and Y. Park, “An Experiment of Mutual Interference
between Automotive LIDAR Scanners,” in 2015 12th International Conf.
on Inf. Technol. - New Generations, 2015, pp. 680–685.

[10] I.-P. Hwang, S.-J. Yun, and C.-H. Lee, “Mutual interferences in
frequency-modulated continuous-wave (FMCW) LiDARs,” Optik, vol.
220, p. 165109, 2020.

[11] A. M. Wallace, A. Halimi, and G. S. Buller, “Full Waveform LiDAR
for Adverse Weather Conditions,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 7, pp. 7064–7077, 2020.

[12] N. Charron, S. Phillips, and S. L. Waslander, “De-noising of Lidar Point
Clouds Corrupted by Snowfall,” in 2018 15th Conference on Computer
and Robot Vision (CRV), 2018, pp. 254–261.

[13] R. Roriz, A. Campos, S. Pinto, and T. Gomes, “DIOR: A Hardware-
Assisted Weather Denoising Solution for LiDAR Point Clouds,” IEEE
Sensors Journal, vol. 22, no. 2, pp. 1621–1628, 2022.

[14] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and
A. Mouzakitis, “A Survey on 3D Object Detection Methods for Au-
tonomous Driving Applications,” IEEE Trans. on Intell. Transp. Syst,
vol. 20, no. 10, pp. 3782–3795, 2019.

[15] S. Shi, X. Wang, and H. Li, “PointRCNN: 3D Object Proposal Gen-
eration and Detection From Point Cloud,” 2019 IEEE/CVF Conf. on
Comput. Vision and Pattern Recognition (CVPR), pp. 770–779, 2019.

[16] J. Wu, H. Xu, Y. Tian, R. Pi, and R. Yue, “Vehicle Detection under
Adverse Weather from Roadside LiDAR Data,” Sensors, vol. 20, no. 12,
2020.

[17] H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian
recognition and tracking using 3D LiDAR for autonomous vehicle,”
Robotics and Autonomous Systems, vol. 88, pp. 71–78, 2017.

[18] X. Peng and J. Shan, “Detection and Tracking of Pedestrians Using
Doppler LiDAR,” Remote Sensing, vol. 13, no. 15, 2021.

[19] W. Huang, H. Liang, L. Lin, Z. Wang, S. Wang, B. Yu, and R. Niu, “A
Fast Point Cloud Ground Segmentation Approach Based on Coarse-To-
Fine Markov Random Field,” IEEE Trans. on Intell. Transp. Syst., pp.
1–14, 2021.

[20] R. Karlsson, D. R. Wong, K. Kawabata, S. Thompson, and N. Sakai,
“Probabilistic Rainfall Estimation from Automotive Lidar,” 2021.

[21] M. Sualeh and G.-W. Kim, “Dynamic Multi-LiDAR Based Multiple
Object Detection and Tracking,” Sensors, vol. 19, no. 6, 2019.

[22] A. S. Mohammed, A. Amamou, F. K. Ayevide, S. Kelouwani, K. Ag-
bossou, and N. Zioui, “The Perception System of Intelligent Ground
Vehicles in All Weather Conditions: A Systematic Literature Review,”
Sensors, vol. 20, no. 22, 2020.

[23] I. Maksymova, C. Steger, and N. Druml, “Review of LiDAR Sensor
Data Acquisition and Compression for Automotive Applications,” Pro-
ceedings 2018, vol. 2, p. 852, 12 2018.

[24] P. Caillet and Y. Dupuis, “Efficient LiDAR data compression for
embedded V2I or V2V data handling,” ArXiv, vol. abs/1904.05649, pp.
1–6, 2019.

[25] M. M. Abdelwahab, W. S. El-Deeb, and A. A. A. Youssif, “LIDAR Data
Compression Challenges and Difficulties,” in 2019 5th International
Conf. on Frontiers of Signal Processing (ICFSP), 2019, pp. 111–116.

[26] International Organization for Standardization, “Road vehicles —
Controller area network (CAN) — Part 1 : Data link layer and
physical signalling,” 2015. [Online]. Available: https://www.iso.org/
standard/63648.html

[27] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent Ad-
vances and Trends in On-Board Embedded and Networked Automotive
Systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 1038–1051, 2019.

[28] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in 2011 IEEE Int. Conf. on Robotics and Automation, 2011, pp. 1–4.

[29] S. Weng, J. Li, Y. Chen, and C. Wang, “Road traffic sign detection and
classification from mobile LiDAR point clouds,” 2nd ISPRS Int. Conf.
on Computer Vision in Remote Sensing (CVRS 2015), vol. 9901, no.
Cvrs 2015, p. 99010A, 2016.

[30] S. Gargoum, K. El-Basyouny, J. Sabbagh, and K. Froese, “Automated
Highway Sign Extraction Using Lidar Data,” Transportation Research
Record, vol. 2643, pp. 1–8, 2017.

[31] B. Yang, Z. Wei, Q. Li, and J. Li, “Automated extraction of street-scene
objects from mobile lidar point clouds,” International Journal of Remote
Sensing, vol. 33, no. 18, pp. 5839–5861, 2012.

[32] S. Shreejith, P. Mundhenk, A. Ettner, S. A. Fahmy, S. Steinhorst,
M. Lukasiewycz, and S. Chakraborty, “VEGa: A High Performance
Vehicular Ethernet Gateway on Hybrid FPGA,” IEEE Transactions on
Computers, vol. 66, no. 10, pp. 1790–1803, 2017.

[33] H.-I. Ning and Y.-C. Fan, “LiDAR information for objects classified
technology in static environment,” in 2017 IEEE International Confer-
ence on Consumer Electronics - Taiwan (ICCE-TW), 2017, pp. 125–126.

[34] S.-C. Yang and Y.-C. Fan, “3d building scene reconstruction based on 3d
lidar point cloud,” in 2017 IEEE International Conference on Consumer
Electronics - Taiwan (ICCE-TW), 2017, pp. 127–128.

[35] Y.-C. Fan, L.-J. Zheng, and Y.-C. Liu, “3D Environment Measurement
and Reconstruction Based on LiDAR,” in 2018 IEEE Int. Instrumenta-
tion and Measurement Technology Conference (I2MTC), 2018, pp. 1–4.

[36] M. V. Okunsky and N. V. Nesterova, “Velodyne LIDAR method for
sensor data decoding,” IOP Conference Series: Materials Science and
Engineering, vol. 516, p. 012018, apr 2019.

[37] Y.-C. Fan, Y.-C. Liu, and C.-A. Chu, “Efficient CORDIC Iteration De-
sign of LiDAR Sensors’ Point-Cloud Map Reconstruction Technology,”
Sensors, vol. 19, no. 24, 2019.

[38] T. Sun, Y. Liu, and Y. Wang, “Design and implementation of a high-
speed lidar data reading system based on FPGA,” 2019 IEEE Int. Conf.
on Real-Time Computing and Robotics, RCAR 2019, pp. 322–327, 2019.

[39] Y.-C. Fan and S.-B. Wang, “Three-Dimensional LiDAR Decoder Design
for Autonomous Vehicles in Smart Cities,” Inf., vol. 13, no. 1, 2022.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL., NO., 2022 10

Luís Cunha has received his master’s degree in
Industrial Electronics and Computers Engineering
from the University of Minho, Braga, Portugal.
Currently, he is an active research fellow at the
Embedded Systems Research Group within the AL-
GORITMI Research Center. His interests include
hardware acceleration systems, embedded systems
design, and automotive technology. Contact him at
a82307@alunos.uminho.pt.

Ricardo Roriz has received his master’s degree in
Industrial Electronics and Computers Engineering
from the University of Minho, Portugal. Currently,
he is pursuing a Ph.D. degree in sensors and in-
strumentation systems for automotive applications.
He is an active research fellow at the Embedded
Systems Research Group within the ALGORITMI
Research Center. His research interests include em-
bedded systems design and ADAS, with special
focus on FPGA hardware acceleration. Contact him
at id8677@alunos.uminho.pt.

Dr. Sandro Pinto is an Associate Research Profes-
sor at the University of Minho, Portugal. He holds
a Ph.D. in Electronics and Computer Engineering.
Sandro has a deep academic background and several
years of industry collaboration focusing on operating
systems, virtualization, and security for embedded,
CPS, and IoT systems. He has published 70+ scien-
tific papers in top-tier conferences/journals and is a
skilled presenter with speaking experience in several
academic and industrial conferences. Contact him at
sandro.pinto@dei.uminho.pt.

Dr. Tiago Gomes has received the master’s degree
in telecommunications engineering and Ph.D. de-
gree in electronics and computers engineering from
the University of Minho, Braga, Portugal. He is a
Research Scientist and Invited Professor with the
University of Minho. His current research interests
include embedded hardware acceleration for au-
tonomous perception systems based on LiDAR sen-
sors, and hardware/software co-design for resource
constrained Internet of Things devices. Contact him
at mr.gomes@dei.uminho.pt.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3223231

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:09:25 UTC from IEEE Xplore. Restrictions apply.

