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Latency Fairness Optimization on Wireless Networks through
Deep Reinforcement Learning

M. López-Sánchez, A. Villena-Rodrı́guez, G. Gómez, F. J. Martı́n-Vega, and M. C. Aguayo-Torres

Abstract—In this paper we propose a novel deep reinforcement
learning framework to maximize user fairness in terms of
delay. To this end, we devise a new version of the modified
largest weighted delay first (M-LWDF) algorithm, which is called
β-M-LWDF, aiming to fulfill an appropriate balance between
user fairness and average delay. This balance is defined as a
feasible region on the cumulative distribution function (CDF)
of the user delay that allows to identify unfair states, feasible-
fair states and over-fair states. Simulation results reveal that our
proposed framework outperforms traditional resource allocation
techniques in terms of latency fairness and average delay.

Index Terms—Scheduling, latency, 5G, Reinforcement Learn-
ing, Deep Learning

I. INTRODUCTION

LOW latency has been one of the key features that next
wireless systems, such as 5G and beyond networks, are

designed to fulfill in a wide range of scenarios. Nevertheless,
this requisite is probably one of the most challenging from the
quality of service (QoS) provision point of view.

On the one hand, achieving small block error rates with
latencies of the order of few milliseconds requires the specific
design of the radio interface functions, specially the radio
scheduler. On the other hand, when the system is handling
a traffic load close to its capacity, the packet delay can greatly
increase leading to packet loss and an unacceptable latency.
These two aspects pose an interesting challenge to the design
of the scheduling algorithms that must minimize the average
delay while providing user fairness.

In this sense, the use of hybrid control systems based on
machine learning (ML) is considered as a promising approach
that enables intelligent and adaptive decision making to the
variant conditions of the network. In [2], the essential role
played by the radio scheduler in 5G is tackled. From a
more theoretical point of view, reinforcement learning (RL)
is presented in [3] as a promising solution that allows dealing
with the dynamic radio environment and learning mapping
functions over time. For instance, research advances described
in [4] and [5] analyze the user fairness in terms of throughput
for a modified proportional fair (PF) strategy, finding a balance
between the system spectral efficiency and the fairness among
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users. However, to the best of the author’s knowledge, user
fairness in terms of delay has not been addressed yet. This is a
critical issue in the emerging low latency services expected for
5G and beyond. Therefore, it is meaningful to investigate this
issue and propose smart resource allocation algorithms that
keep a balance between user fairness and system performance
in terms of delay.

In this paper, an intelligent controller is proposed to cus-
tomize a new version of the modified largest weighted delay
first (M-LWDF) scheduling strategy [6] at each Transmission
Time Interval (TTI). In particular, we propose a novel utility
function called β-M-LWDF that is able to adjust dynamically
the experienced delay by means of a parameter β that is
managed by the controller. It is important to remark that other
scheduling algorithms such as largest delay first (LDF) [6], PF
and M-LWDF can be viewed as special cases of our proposed
utility function for β → ∞, β = 0 and β = 1, respectively.
Besides, with our proposed ML scheme, the β parameter is
selected at each TTI to achieve an appropriate balance between
user fairness and system performance in terms of delay. Such
a balance is defined as a feasible-fair region on the cumulative
distribution function (CDF) of the normalized delay. This
allows us to identify unfair states, where the difference of
the delay between different users is excessive; over-fair states,
where the difference is small, but the average delay increases;
and feasible-fair states which reach an appropriate balance
between latency fairness and average delay. To cope with the
high complexity of this approach, the controller implements a
RL algorithm known as deep Q-learning (DQL) as introduced
in [10], which makes use of a neural network to estimate the
Q-Function that approximates the best decisions at each TTI.

II. SYSTEM MODEL

We consider the downlink (DL) of the 5G NR (New Radio)
system, which is based on Orthogonal Frequency Division
Multiple Access (OFDMA). The available bandwidth is di-
vided into equal resource blocks (RBs), where one RB consists
on 12 sub-carriers and it represents the minimum resource
unit that can be assigned in the frequency domain. The sub-
carrier spacing (SCS) can be expressed as ∆f = 2µ15 kHz,
where µ is the numerology and it ranges from 0 to 3 for
data channels. The time domain resources are divided in
slots, also named TTIs. It is considered adaptive modulation
and coding (AMC), and thus the transmission rate, i.e., the
modulation and coding scheme (MCS), is chosen to maximize
the throughput while guaranteeing a block error rate (BLER)
below a target value, BLERT = 10% [12]. The set of MCSs
are taken from 5G specs (Table 5.1.3.1-1 of 38.214 v16.7.0).
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Let B = {b1, b2, . . . , bN} be the set of RBs for a given
bandwidth, where N represents the total number of RBs.
Additionally, let U = {u1, u2, . . . , uM} be the set of users
to be scheduled. A constant bit rate (CBR) traffic model is
assumed for each user where a packet sizes of SCBR bytes
reach the buffer every TCBR seconds. It is assumed that the
packets are stored in a unbounded buffer and the packets
are segmented according to the transport block (TB) size
that is determined by the scheduler and the selected MCS.
The average signal-to-noise ratio (SNR) of each user, γ̄u, is
drawn randomly according to a Log-Normal distribution with
expected value µγ and standard deviation σγ . In addition,
the multi-path fading follows a realistic Tapped Delay Line
Channel (TDL-A) model where the channel complex samples,
Hu,k[n], are correlated in time and frequency domains. Thus,
the instantaneous SNR of user u at RB k and TTI n is
computed as γu,k[n] = γ̄u|Hu,k[n]|2.

A. Scheduling algorithms

The aim of the scheduler is to allocate each RB bi ∈ B
to a particular user ui ∈ U at each TTI in order to meet a
predefined QoS requirement. We have evaluated four different
scheduling policies:

1) The well known Proportional Fair (PF) uses the follow-
ing utility function at each TTI n, U [n], as decision
criterion to assign the user û to the RB k̂ on the time
instant n: {

û[n], k̂[n]
}

= arg max
u,k

{
ru,k[n]

ru[n]

}
, (1)

where ru,k[n] represents the potential rate for user u on
the RB k and TTI n, and ru[n] is a weighted moving
average of the data rate values reached in previous TTIs,
which is computed as [9]

ru [n] =

(
1− 1

TPF

)
ru [n− 1] +

1

TPF
ru [n− 1] , (2)

where ru[n − 1] represents the weighted average data
rate reached up to the TTI n− 1, ru[n− 1] is the data
rate reached in TTI n− 1, and TPF > 0 is the average
window size.

2) LDF algorithm [6] is adaptive to the delay, providing
the turn to the user that has been suffering the largest
delay in its queue, as follows:

û[n] = arg max
u
{Wu[n]} . (3)

where Wu[n] is the delay experienced in the queues,
which is computed as the sum of the delays of every
packet that is stored in the queue.

3) The algorithm M-LWDF considers the waiting time in
the queues, the instantaneous capacity of the channels
and a parameter related to the delay tolerance [7]:{

û[n], k̂[n]
}

= arg max
u,k
{gu[n] ·Wu[n] · ru,k[n]} , (4)

where gu[n] ∈ [0,∞) is a QoS factor with a value of
gu[n] = au/ru[n], with ru[n] as defined in (2) and au =
− log (δu) · Tu, being δu ∈ [0, 1] the desired probability
of fulfilling the delay requirement Tu [7].
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Fig. 1. Proposed RL framework

4) We propose a new version of the M-LWDF, called β-
M-LWDF, in which the impact of the delay term can
be adjusted by a parameter β that is selected by the
intelligent controller at each TTI:{

û[n], k̂[n]
}

= arg max
u,k

{
gu ·W β

u [n] · ru,k[n]
}
. (5)

Remark 1. The utility functions of PF, LDF and M-LWDF that
are given with (1), (3) and (4) are special cases of the proposed
β-M-LWDF with β = 0, β →∞ and β = 1, respectively.

Proof. It is clear that β-M-LWDF reduces to M-LWDF algo-
rithm when β = 1. For β = 0, β-M-LWDF reduces to PF as
long as the parameter au is equal for all users (as considered
in this work). The proof for the case of LDF when β →∞ is
given in Appendix A.

Remark 2. As it is shown in [6], LDF provides the highest
fairness in terms of delay while sacrificing system performance
(i.e., average delay), whereas M-LWDF achieves a higher
system performance at the expense of fairness. This is due
to the fact that LDF only accounts for the user delay whereas
M-LWDF also accounts for the instantaneous rate. In view of
remark 1, this involves that increasing β increases the fairness
while decreasing β reduces the fairness in terms of delay.

III. PROPOSED RL FRAMEWORK

A. RL Framework Description

Our proposed RL framework is shown in Fig. 1. At TTI
n, the channel block generates the multi-path fading samples.
Then the instantaneous SNR, γu,k[n], is computed. This SNR
is used by the AMC block to select the MCS that maximizes
the potential rate, ru,k[n], while keeping a BLER below
BLERT . On the other hand, packets are generated by the
traffic source and stored in the buffer queue. This block
performs segmentation of the stored packets according to the
TB size determined by the scheduler and it computes the queue
delay of each user Wu[n]. Afterwards, the scheduler updates
its β[n] parameter according to the actions made by the agent
and it allocates resources based on the proposed β-M-LWDF
utility function. Once the scheduler has performed the resource
allocation, the QoS block estimates the empirical CDF of the
normalized user delay, which is used to compute the reward
and state variables. Those variables are used by the agent to
make the next action in the following TTI. This action involves
determining the step ∆β[n] ∈ [−1,+1] to increase or decrease
the beta parameter as β[n] = β[n− 1] + ∆β[n].
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B. Latency Fairness Criteria

The Next Generation Mobile Networks (NGMN) Alliance
defines an impartiality requirement in terms of throughput.
This criteria is defined so that a system is seen as fair if at
least the (100− x)% of active users reach at least x% of the
normalized user data rate [8].

In this work we propose a RL framework intended to fulfill a
predefined user fairness criteria in terms of latency. However,
up to date there is no standardized fairness requirement in
terms of delay. For that reason, in this paper we propose an
impartiality requirement with the following 3 desired features:
i) half of the users have a delay smaller than the average; ii)
there are no users with a delay 50% higher than the average;
and iii) there are no users with a delay 50% smaller than the
average. These 3 desired features lead to a CDF requirement
as an straight line that passes through the points (0.5, 0) and
(1.5, 1) as follows

y = fR(w) =


1 w > 1.5

w − 0.5 0.5 ≤ w ≤ 1.5

0 w < 0.5

(6)

where w = f−1R (y) = y + 0.5 stands for the inverse CDF
requirement. It can be noticed that such a CDF requirement
can be also read as c% of the users to be below the (50−c)%
of the normalized user delay, W̃u[n], which is defined as

W̃u[n] =
Wu[n]

1
M

∑M
u′=1Wu′ [n]

(7)

As it can be noticed, W̃u[n] = 1 involves that the delay
of the user at TTI n is equal to the average user delay. In a
perfectly fair system all the users would have the same delay,
and thus, all of them would have a unitary normalized delay.

Nevertheless, as it is discussed in [6], [11] there is a trade-
off between fairness and system performance. This involves
that increasing the delay fairness is at the expense of increas-
ing the average delay. For that reason, our proposed CDF
requirement aims at identifying those cases where the fairness
severely degrades the average delay, and those cases where the
difference of delay between users is excessive. The former case
is labeled as over-fair (OF) and the latter is labeled as unfair
(UF). Those cases that do not fall on the two aforementioned
cases are labeled feasible-fair (FF). The goal of the agent is
to maximize the number of TTIs where the system is in FF
state since this case leads to an appropriate balance between
fairness and average delay.

The empirical CDF of the normalized delay at TTI n is
expressed below

F̂W̃ [n](w) =
1

M

M∑
u=1

1

(
W̃u[n] ≤ w

)
(8)

where W̃ [n] represents a randomly chosen normalized user
delay at TTI n. 1 (E) stands for the indicator function,
which is 1 if the event E is true and 0 otherwise. Let us
represent the sorted vector of normalized delays as W↑[n] =(
W ↑1 [n], ..,W ↑M [n]

)
, where W ↑j [n] is the j-th delay in ascend-

ing order. Then, if we evaluate the empirical CDF from (8) on
W↑[n] we get M equally spaced samples between 0 and 1 as
follows Y[n] = (Y1[n], .., YM [n]) = F̂W̃ [n]

(
W↑[n]) where

Yj [n] = j
M = F̂W̃ [n]

(
W ↑j [n]

)
. Therefore, we can obtain a

required normalized delay, w(R)
j , for each of the sorted users

as w(R)
j = f−1R

(
j
M

)
= j

M + 0.5 with j ∈ [1,M ] ⊂ N. A
given sorted user j is said to fulfill the delay requirement if
∆Wj [n] = W ↑j [n]−w(R)

j ≤ ξ, where ξ is a confidence factor.

Algorithm 1 Selection of fairness cases

Input: W̃[n] =
(
W̃1[n], .., W̃M [n]

)
Output: C[n], fairness case

1: Sort the vector of normalized delays, W̃[n], to get W↑[n]

2: if
[∑dλMe

j=1 1

(
W ↑j > w

(R)
j + ξ

)]
> 1 then

3: C[n] = OF

4: else if
[∑M−dψMe

j=dλMe+1 1

(
W ↑j > w

(R)
j + ξ

)]
> 1 then

5: C[n] = UF
6: else
7: C[n] = FF
8: end if

Algorithm 1 is used to identify in which of the three cases
C[n] ∈ {OF,UF,FF} is the system working at a given TTI,
n. It can be observed from line 2 that the system is labeled
as OF if any of the dλMe best users (i.e., users with smallest
delay) have a normalized delay greater than the required delay
plus the confidence factor. The parameter λ ∈ [0, 1] represents
the percentage of best users. An OF situation means that the
best users have a delay closer to the average delay, which
increases the fairness. However, this happens at the expense
of a significant reduction on the average delay.

From line 4 of algorithm 1 it is observed that the system
is labeled as UF if any of the worst users do not fulfill the
delay requirement. The agent aims at avoiding this case in
order to reduce the normalized delay of the worst users. As
it can be seen, the dψMe users with the greatest delays are
not considered because they are treated as outliers, where
ψ ∈ [0, 1]. This means that those users have such a poor
channel condition that do not represent the conditions of the
vast majority of users and thus, they are not considered. If all
the users (excluding the outliers) fulfill the delay requirement
(including the factor ξ), then the system is in FF case.

Fig. 2 illustrates an example of the OF and UF cases by
means of their estimated CDF of the normalized delay. As it
is seen with algorithm 1, the criteria to select the fairness case
involves checking if any of the best or worst users do not fulfill
the delay requirement. Nevertheless, this criteria is equivalent
to check if the empirical CDF at some TTI n falls within the
OF, UF or FF regions respectively. Those regions are shown in
Fig. 2 with blue, red and green colors. For instance, as it can be
observed, the sorted user u = 36, which makes the empirical
CDF to reach 0.6, has a normalized delay of W ↑u = 1.466,
which is greater than the related CDF requirement plus the
confidence factor, i.e., w(R) + ξ = 1.1 + 0.1. Since this user,
and others that belong to the worst users set, do not fulfill the
delay requirement, the system is labeled as UF in that case.

C. States and Actions

Let S be the state space and let s[n] ∈ S be the instanta-
neous state at TTI n. The state s[n] can be seen as a union of
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Fig. 2. Empirical CDF of the normalized delay for UF (red) and OF (blue)
cases after defining 40% of the users as best users (i.e., λ = 0.4) and 10%
of the users as outliers (ξ = 0.1) for a cell with M = 60 users.

two sub-states s[n] = (sc[n], su[n]), the controllable (sc[n])
and uncontrollable (su[n]) sub-states. The controllable sub-
state is comprised of sc[n] =

(
β[n− 1], d(inf)[n], d(sup)[n]

)

where d(inf)[n] and d(sup)[n] represent the distance of the
normalized delay to the requirement for the best and worst
users sets as described in algorithm 2.

Algorithm 2 Selection of state values
Input: ∆W[n] = (∆W1[n], ..,∆WM [n])
Output: d(inf)[n], d(sup)[n]

1: if C[n] = OF then
2: d(inf)[n] = max

(
∆W{1:dλMe}[n]

)
3: d(sup)[n] = min

(
∆W{dλMe+1:M}[n]

)
4: else if C[n] = UF then
5: d(inf)[n] = min

(
∆W{1:dλMe}[n]

)
6: d(sup)[n] = max

(
∆W{dλMe+1:M}[n]

)
7: else
8: d(inf)[n] = min

(
∆W{1:dλMe}[n]

)
9: d(sup)[n] = max

(
∆W{dλMe+1:M}[n]

)
10: end if

For the OF case d(inf) is the maximum of the distances of
the best users while d(sup) is the minimum of the distances of
the worst users. The reasoning of this assignment is to give
more importance to the distances of worst users, since that set
is the one that do not fulfill the requirement in the OF case.
Similarly, in the UF case, the assignment using the max()
function is for the worst users, which are the users that do not
fulfill the requirement in such a case.

The sub-state su[n] is comprised of su[n] =(
Ê
[
W̃[n]

]
, Ŝ
[
W̃[n]

]
, Ê
[
IMCS[n]

]
, Ŝ
[
IMCS[n]

])
, where

Ê [•] and Ŝ [•] stands for the empirical mean and
standard deviation respectively. W̃[n] represents
the vector of normalized delays of all users and
IMCS[n] =

(
IMCS,1[n], .., IMCS,M [n]

)
is the vector of

the MCS indexes reported by all users.
We have considered a discrete action space A ={

0,±10−4,±10−3,±10−2,±5 · 10−2,±10−1
}

. At each time
step n, the action taken by the agent will select the step size
∆β[n] ∈ A that maximizes the expected cumulative reward.

TABLE I
NETWORK PARAMETERS SETTING

Parameter Value Parameter Value
N 100 RBs Carrier frequency (GHz) 5
User speed (Km/h) 5 Delay Spread (µs) 100
TTI (ms) 1 Number of users 60
SCBR (bytes) 850 TCBR (ms) 6
µγ (dB) 15 σγ (dB) 3
BLERT 0.1 PF window size (TPF ) 100
δu 0.05 Tu (ms) 100

D. Reward Function

The proposed reward function encourages the agent to stay
in the FF case by taking into account two aspects: (a) the
fairness state; and (b) the action taken by the agent. The value
of the reward function is defined in (9), (10) and (11):

r[n+ 1] =


rUF[n+ 1] if C[n] = UF

1 if C[n] = FF

rOF[n+ 1] if C[n] = OF

(9)

rUF[n+ 1] =

{
∆β[n] if ∆β[n] > 0

−1 if ∆β[n] ≤ 0
(10)

rOF[n+ 1] =

{
−∆β[n] if ∆β[n] < 0

−1 if ∆β[n] ≥ 0
(11)

The reasoning of (9) is to encourage the agent to stay in FF
state with a maximal positive reward (i.e., 1). If the fairness
case is UF, the agent should increase the β parameter to
augment the fairness as per remark 2. Thus, according to (10),
the reward is positive if ∆β[n] is positive, which means that
the action made in previous instant was adequate; otherwise
the rewards in negative to penalize the action of decreasing β
that was made through a negative ∆β[n]. Analogously, for OF
case the agent is encouraged to decrease the fairness through
the reward function as given with (11).

IV. NUMERICAL RESULTS AND DISCUSSIONS

To simulate the environment we have assumed a single cell
scenario with M = 60 active users. A detailed list of the
network parameters is shown in Table I.

The agent implements a DQL with a neural network com-
prised of L layers, being N` the number of nodes configured
for each layer where ` ∈ [1, L]. It should be noted that
the number of nodes in both the input and output layers
is fixed, corresponding to the dimensions of the state and
action spaces respectively. Based on [4], the configuration
{L = 3, N2 = 60} is selected to find a balance between
flexibility and complexity of our learning system. The agent
is trained with a Decayed ε-greedy policy. During the training
stage the agent was trained during 2 · 105 steps (i.e. TTIs).

Fig. 3 shows the CDF of the normalized user delay for
different scheduling policies. It can be observed that PF
provides the most unfair results as its utility function does not
consider the delay. On the contrary, LDF gives strict priority
to the delay, thus showing a clear over-fair behaviour, since
the best users tend to have delays close to the average delay
(i.e., unit normalized delay). M-LWDF provides intermediate
results although it still presents an unfair behaviour, since the
worst users tend to have high normalized delays in statistical
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Fig. 3. Comparison between the CDF of the normalized user delay of different
resource allocation algorithms. The β-M-LWDF considers λ = 20% of the
users as best users and ψ = 10% of outliers.

TABLE II
AVERAGE DELAY RESULTS OF DIFFERENT RESOURCE ALLOCATION

ALGORITHMS

Algorithm Average delay (ms) Max. average delay (ms)
LDF 163.2 4192.7
M-LWDF 37.3 134.0
β-M-LWDF 53.6 95.0
PF 1228.3 3964.5

terms. Finally, our proposed algorithm, β-M-LWDF, is able to
fulfill the delay requirement for most of the users.

In table II it is shown the average delay, which is averaged
in time and user domains, and the maximum average delay on
time domain. It is observed that LDF leads to the highest delay
fairness, but also to the highest average delay. This is due to
the over-fair behaviour of such algorithm. It is observed that
M-LWDF achieves the smallest average delay. Nevertheless,
the average delay of the worst user is clearly greater than with
our β-M-LWDF algorithm.

Fig. 4 shows the CDF of normalized delay with β-M-
LWDF algorithm for different outliers percentages, ψ. It can be
observed that lower ψ values increase the delay fairness since
the CDF tend to be more centered at the unit normalized delay
(w = 1). Nevertheless, reducing ψ also tends to increase the
average delay as shown with table III. Such a table represents
the percentage of time that the system is on each of the fairness
cases. It can be observed that the proposed algorithm achieves
a high percentage of time on the desired FF case.

V. CONCLUSIONS

We have proposed a novel framework based on deep RL to
provide an adequate latency fairness. Our proposal includes
a new scheduling policy, named as β-M-LWDF, which is
able to adjust instantaneously the allocation criteria based on
the experienced delay of the users at each TTI. Simulation
results show that our proposal ourperforms other well known
scheduling solutions like PF, LDF or M-LWDF in terms of
latency fairness and average delay.

APPENDIX A
When β →∞, (5) can be expressed as follows

arg max
u,k

{
lim
β→∞

log(gu) + β log (Wu[n]) + log (ru,k[n])

}
, (12)
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Normalized user delay: w

C
D
F
:
F
W̃
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)

ψ = 10%

ψ = 15%

ψ = 20%

w(R)

w(R) + ξ

Fig. 4. CDF of the normalized delay with β-M-LWDF for different outliers
percentages, ψ = {10%, 15%, 20%}.

TABLE III
PERCENTAGE OF TIME IN DIFFERENT FAIRNESS CASES

ψ Av. delay (ms) FF time (%) UF time (%) OF time (%)
10% 53.60 90.47 6.60 2.93
15% 47.03 86.68 12.91 0.41
20% 39.76 87, 17 12.83 0.0

where it has be used the fact that any strictly monotonic
function does not change the result of the arg max operator.
Finally, the proof is completed after applying the following
two facts: (i) the limit when β →∞ only depends on the term
multiplied by β, and (ii) any positive scalar that multiplies a
function does not change the result of the arg max operator.
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