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Abstract

This correspondence investigates a reconfigurable intelligent surface (RIS)-assisted wireless communication sys-

tem with security threats. The RIS is deployed to enhance the secrecy outage probability (SOP) of the data sent to

a legitimate user. By deriving the distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user

and the eavesdropper, we formulate, in a closed-form expression, a tight bound for the SOP under the constraint of

discrete phase control at the RIS. The SOP is characterized as a function of the number of antenna elements, N ,

and the number of discrete phase choices, 2b. It is revealed that the performance loss in terms of SOP due to the

discrete phase control is ignorable for large N when b≥ 3. In addition, we explicitly quantify this SOP loss when

binary phase shifts with b=1 is utilized. It is identified that increasing the RIS antenna elements by 1.6 times can

achieve the same SOP with binary phase shifts as that by the RIS with ideally continuous phase shifts. Numerical

simulations are conducted to verify the accuracy of these theoretical observations.

Index Terms

Reconfigurable intelligent surface (RIS), physical layer security, secrecy outage probability, discrete phase

shifts.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a metasurface that consists of a large number of passive reflecting

elements with integrated low power electronics [1] [2]. A main feature of an RIS is that the amplitude and phase of

each reflecting element can be independently controlled through software, thereby realizing passive beamforming

(BF) for improving the signal quality at intended receivers. Due to these merits, RISs have been considered for

various wireless applications, e.g., in millimeter-wave (mmWave) [3] and Terahertz (THz) [4] communications, to

enhance spectral and energy efficiencies [5].
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Gif-sur-Yvette, France (e-mail: marco.di-renzo@universite-paris-saclay.fr).

http://arxiv.org/abs/2210.17084v1


2

In recent years, physical layer security (PLS) has gained considerable interest for securing wireless communica-

tions. As a complement to conventional cryptographic methods, PLS ensures secure communications by exploiting

the dynamics of propagation channels. Since RISs have the ability of adjusting the propagation channels, their

deployment empowers the design of PLS with an additional dimension by exploiting passive BF. In order to

maximize the theoretical secrecy, literature [6]–[8] investigated joint optimization of the active and passive BFs at

the transmitter and RIS, respectively. In [9], the average secrecy rate (SR) was characterized for an RIS-assisted

two-way communication system through a lower bound. More recently in [10], the SR was further analyzed for a

system where the RIS reflection is utilized as a multiplicative randomness against a wiretapper.

Besides the analysis of SR, secrecy outage probability (SOP) is another relevant performance measure to quantify

the performance of PLS, especially for systems undergoing slow-varying channels. The SOP is defined as the

probability that the instantaneous secrecy capacity falls below a target SR. The SOPs of RIS-aided communication

systems have been investigated in [11]–[13]. Both analytical and asymptotic analyses have been provided to reveal

the impacts of key system parameters on SOP. In particular, the work in [12] considered the SOP of an RIS-aided

unmanned aerial vehicle (UAV) relay system. In [13], the authors analyzed the SOP as well as the probability of

non-zero secrecy capacity of an RIS-aided device-to-device (D2D) communication system. However, most studies

on SOP analysis considered RIS with continuous phase shifts, which leads to unaffordable high complexity in

practice. Even though discrete phase shifts have been considered for RIS reflection optimizations, e.g., in [14] [15],

few studies have been conducted on theoretical performance analysis with discrete RIS phase shifts especially in

terms of SOP. Quantitative insight on RIS design has only been discovered for some non-security scenarios [16].

This is because discrete phase shifts make the performance expressions of the cascaded RIS channels much less

tractable. In particular for secure communications, it can be even challenging to directly derive the corresponding

cascaded channel distributions of both the legitimate user and eavesdropper.

In this work, we investigate the SOP of an RIS-assisted secure communication system and quantitatively character-

ize the impacts of discrete phase shifts in closed-form expressions. Concretely, we first derive the exact distributions

of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdropper. Then, we present a closed-

form expression for a tight upper bound of the SOP. Based on the obtained expressions, the asymptotic scaling law

of SOP is characterized in high-SNR regimes. In particular, the SOP decreases with the slope of e−0.8N for large

N and b≥ 3, where N is the number of RIS elements and b is the number of quantization bits. Compared with

the ideally continuous phase control, we further obtain that the performance loss in terms of SOP caused by using

binary phase shifts, i.e., b=1, can be compensated by deploying a larger RIS with size 1.6N .

The remainder of this paper is organized as follows. The system model is introduced in Section II. In Section III,

we derive the distribution of the received SNRs at the legitimate user and at the eavesdropper. In Section IV, we

provide a closed-form expression for an upper bound of the SOP, and we study it in notable asymptotic regimes.

Simulation results and conclusions are given in Section V and VI, respectively.
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Fig. 1. The system model of an RIS-assisted secure communication.

II. SYSTEM MODEL

We consider an RIS-assisted secure communication system consisting of a source (S), an RIS with N reflecting

elements, a legitimate user (D), and an eavesdropper (E), as illustrated in Fig. 1. The direct link between S and

D is assumed to be blocked by obstacles, such as buildings, which is likely to occur at high frequency bands. In

this scenario, the data transmission between S and D is ensured by the RIS. The eavesdropper is at a location

where it can overhear the information from both S and the RIS.1 Nodes S, D, and E are equipped with a single

antenna for transmission and reception and all links experience Rayleigh fading.2 The channel coefficients of the

S-RIS, RIS-D, RIS-E, and S-E links are respectively denoted by hi, gi, pi, and hSE ∼ CN (0, 1), where CN is

the complex Gaussian distribution. By applying channel estimation methods in [3], [4] and the references therein,

we assume that the channel coefficients of hi and gi are perfectly known to S. However, the channel gains of pi

and hSE are not available to S, as the eavesdropper is usually a passive device that does not emit signals.

By assuming quasi-static flat fading channels, the signal received at D is expressed as

rD =
√
P

[

η(dSRdRD)
−υ/2

N
∑

i=1

higie
jφi

]

x+ nD, (1)

where P denotes the transmit power at S, x is the transmit signal, η ∈ (0, 1] is the RIS amplitude reflection

coefficient with η = 1 corresponding to lossless reflection, {φi}Ni=1 represents the phase shift of the ith reflecting

element of the RIS, and nD ∼ CN (0, N0) is the additive white Gaussian noise (AWGN) with zero mean and

variance N0. Without loss of generality, the signal power is normalized, i.e., E[|x|2] = 1 where E [·] denotes the

expectation of a random variable (RV). In addition, dSR and dRD are the distances of the S-RIS and RIS-D links,

respectively, and υ is the path loss exponent.

From (1), the received SNR at D is calculated as

γD =
η2P

∣

∣

∣

∑N
i=1 higie

jφi

∣

∣

∣

2

N0dυSRd
υ
RD

. (2)

In the case of ideally continuous phase shifts, γD is maximized by setting the phases of the RIS elements equal to

φi=φopt
i ,−∠ (higi), where ∠ returns the phase of the complex number. This optimized phase compensates the

1The direct link between S and E exists when the eavesdropper is not blocked by obstacles [11] [13].

2The RIS-related links can be modeled as Rayleigh fading, also as [11] [13], when the RIS is not optimally deployed to ensure strong LoS

links.
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phase shift introduced by fading channels. Due to hardware limitations, however, the phase shifts {φi}Ni=1 of the

RIS elements are usually limited to a finite number of controllable discrete values. In particular, the set of discrete

phase shifts is denoted by A ,

{

0, 2π2b , ...,
(2b−1)2π

2b

}

, where b is the number of quantization bits. In this case,

usually, the phase shift of the ith RIS element, φsub
i ∈ A, is chosen as

φsub
i , argmin

φ∈A

{∣

∣φopt
i − φ

∣

∣

}

. (3)

Then, the received SNR in the presence of the discrete phase shifts is rewritten as

γD= γ̄SRD

∣

∣

∣

∣

∣

N
∑

i=1

higie
jφsub

i

∣

∣

∣

∣

∣

2

, (4)

where γ̄SRD ,
η2P

N0dυ
SRdυ

RD

denotes the average SNR.

The eavesdropper receives signals from the direct link from S and the reflected link from the RIS. Then, the

received signal at E is written as

rE=
√
P

[

η(dSRdRE)
−υ/2

N
∑

i=1

hipie
jφsub

i +d
−υ/2
SE hSE

]

x+ nE , (5)

where dRE and dSE denote the distances of the RIS-E and S-E links, respectively, and nE ∼ CN (0, N0) is the

AWGN at E. Then, the received SNR at E is

γE=

∣

∣

∣

∣

∣

√
γ̄SRE

N
∑

i=1

hipie
jφsub

i +
√
γ̄SEhSE

∣

∣

∣

∣

∣

2

, (6)

where γ̄SRE ,
η2P

N0dυ
SR

dυ
RE

and γ̄SE ,
η2P

N0dυ
SE

represent the average SNRs of the S-RIS-E and S-E links, respectively.

III. DISTRIBUTIONS OF THE RECEIVED SNRS

In order to analyze the SOP of the system, we need to first characterize the distributions of γD and γE .

A. Distribution of γD

Let us denote the quantization error of phase shifts by Θi,φsub
i −φopt

i , which is uniformly distributed [14] [15]

[17], i.e., Θi∼U
(

−2−bπ, 2−bπ
)

. Then, γD in (4) is rewritten as

γD
(a)
= γ̄SRD

∣

∣

∣

∣

∣

N
∑

i=1

higie
j(Θi+φopt

i )

∣

∣

∣

∣

∣

2

(b)
= γ̄SRD

∣

∣

∣

∣

∣

N
∑

i=1

|hi| |gi| ejΘi

∣

∣

∣

∣

∣

2

(c)
= γ̄SRD

(

X2+Y 2
) (d)
= γD1+γD2 , (7)

where (a) follows by the identity φsub
i =Θi + φopt

i , (b) is obtained by using φopt
i =−∠ (higi), (c) follows by the

definitions X,
∑N

i=1 |hi| |gi| cosΘi and Y ,
∑N

i=1 |hi| |gi| sinΘi, and (d) is obtained by defining γD1 , γ̄SRDX
2

and γD2 , γ̄SRDY 2. Before deriving the distribution of γD, we introduce the following lemma.

Lemma 1: If N is large, γD1 and γD2 are statistically independent. Also, the cumulative distribution function

(CDF) of γD1 and the probability density function (PDF) of γD2 are, respectively,

FγD1
(x) = 1− 1

2
erfc

(

α+
√
x

β

)

− 1

2
erfc

(√
x−α

β

)

, (8)
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fγD2
(y) =

λµyµ−1

Γ (µ)
e−λy, (9)

where α = m1
√
γ̄SRD, β =

√
2σ1

√
γ̄SRD, m1 =

Nπ
4 sinc

(

2−b
)

, σ2
1 = N

2 [1 + sinc(21−b)] − Nπ2

16 sinc2
(

2−b
)

, λ =

1
2σ2

2 γ̄SRD
, µ= 1

2 , σ2
2=

N
2 [1− sinc(21−b)], where sinc(x), sinπx

πx and Γ (·) is the Gamma function [18, Eq. (8.310)].

Proof: The proof of the independence of γD1 and γD2 for large values of N is provided in Appendix A.

Specifically, by applying the central limit theorem (CLT) [19], X and Y converge in distribution to Gaussian RVs

for large N . Since |hi| and |gi| are independently distributed Rayleigh RVs with mean
√
π/2 and variance (4−π)/4,

we obtain E [X ] = m1, Var[X ] = σ2
1 , E [Y ] = 0, and Var[Y ] = σ2

2 . It follows

X
d−→ N (m1, σ

2
1), Y

d−→ N (0, σ2
2), (10)

where
d−→ denotes the convergence in distribution by virtue of the CLT. γD1 is a non-central χ2 RV and γD2 is

a central χ2 RV with one degree of freedom, where χ2 denotes the Chi-square distribution. Then, by using [20,

Eq. (2.3-35)] and [21, Eq. (27)], FγD1
(·) is derived. The PDF fγD2

(·) is obtained from [20, Eq. (2.3-28)]. The

proof completes. �

By applying Lemma 1 and (7), the CDF of γD equals

FγD
(z) =

∫∫

D

fγD1 ,γD2
(x, y) dxdy

(d)
=

∫ z

0

fγD2
(y)FγD1

(z − y) dy

(e)
=

∫ z

0

λµyµ−1

Γ (µ)
e−λy ×

[

1− 1

2
erfc

(√
z−y+α

β

)

−1

2
erfc

(√
z−y−α

β

)]

dy, (11)

where D , {(x, y) : x+ y ≤ z, x > 0, y > 0}, (d) utilizes the independence of γD1 and γD2 in Lemma 1, and

(e) is obtained by using (8) and (9).

B. Distribution of γE

Let us first consider the distribution of Z,
√
γ̄SRE

∑N
i=1 hipie

jφsub
i +

√
γ̄SEhSE . Then, γE in (6) can be calculated

according to the relationship of γE = |Z|2. The distribution of Z is provided in the following lemma.

Lemma 2: For large N , Z
d−→ CN (0, Nγ̄SRE + γ̄SE), and the real and imaginary parts of Z are independent RVs

with equal variance.

Proof: See Appendix B. �

As disclosed in Lemma 2, γE has an exponential distribution with mean Nγ̄SRE + γ̄SE . Therefore, the PDF of

γE is

fγE
(x) = ǫe−ǫx, x ≥ 0 (12)

where ǫ = 1/(Nγ̄SRE + γ̄SE).
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IV. THEORETICAL ANALYSIS OF THE SOP

A. SOP Analysis

The SOP is an essential performance metric to quantify the performance of PLS, which is defined as the probability

that the instantaneous secrecy capacity falls below a target positive SR Cth. From [11]–[13] [22], the SOP is

calculated as

SOP = Pr (ln (1 + γD)− ln (1 + γE) < Cth)

=

∫ ∞

0

FγD
((1 + x)ϕ− 1)fγE

(x) dx, (13)

where ϕ , eCth . It is still difficult to compute (13) because the CDF of γD in (11) involves an intractable integral.

Thus, instead of seeking for a closed-form expression for the SOP, we derive an upper bound as follows

SOP <

∫ ∞

0

FγD1
((1 + x)ϕ− 1)fγE

(x) dx = SOP. (14)

Remark 1: Note that SOP in (14) is tight when N is large, because γD1≫γD2 holds with high probability,

whose proof is provided in Appendix C.

Lemma 3: The upper bound in (14) can be expressed as

SOP = 1− 1

2
(I1 + I2) , (15)

where I1 and I2 are respectively defined as follows

I1 = erfc

(√
ϕ−1+α

β

)

− 2
√
A

β
e
AB2+

(ϕ−1)ǫ
ϕ

−α2

β2

×
[

1−erf

(

B
√
A+

√
ϕ−1

2
√
A

)]

, (16)

I2 = erfc

(√
ϕ−1−α

β

)

− 2
√
A

β
e
AB2+(ϕ−1)ǫ

ϕ
−α2

β2

×
[

1−erf

(

−B
√
A+

√
ϕ−1

2
√
A

)]

, (17)

where A = β2ϕ
4(β2ǫ+ϕ) and B = 2α

β2 .

Proof: See Appendix D. �

B. Asymptotic SOP Analysis

We consider application scenarios characterized by a low transmission rate but high security requirements, such

as for the Internet of Things [23]. The target SR Cth can be so small that ϕ → 1. In this case, we obtain

SOP
(f)→
√

1

2σ2
1 γ̄SRDǫ+1

e
− m2

1γ̄SRDǫ

2σ2
1
γ̄SRDǫ+1

(g)→
√

1

2σ2
1 γ̄SRDǫ

e
− m2

1
2σ2

1

=

√

1

k
[

1+sinc (2x)− π2

8 sinc2 (x)
]e

− 1
16[1+sinc(2x)]

π2sinc2(x)
−2

N

, (18)
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where (f) is obtained from (15) by setting ϕ → 1, and (g) holds true in the high-SNR regime when γ̄SRD ≫
{γ̄SRE, γ̄SE} and by using the following inequalities

2σ2
1 γ̄SRDǫ =

1+sinc (2x)− π2

8 sinc2 (x)

γ̄SRE+γ̄SE/N
γ̄SRD

≥ γ̄SRD
2 (γ̄SRE+γ̄SE)

≫ 1, (19)

where x , 2−b and the inequality in (19) follows by 1 + sinc (2x)− π2

8 sinc2 (x) ≥ 1
2 for x ∈

(

0, 12
]

. The last

equality in (18) is obtained by defining k, γ̄SRD/
(

γ̄SRE + 1
N γ̄SE

)

.

By direct inspection of (18), we evince that SOP decreases if γ̄SRD increases, which means that enhancing the

average SNR at the legitimate user always improves the secrecy performance even for a limited number of discrete

phase shift status. In particular, we have SOP → 0 when γ̄SRD → ∞ while keeping N , b, γ̄SRE , and γ̄SE fixed.

Besides, inspired by [24], we have the following remark to show the impact of the RIS location on SOP.

Remark 2: The SOP improves when {dSR, dRD} decreases and dRE increases. For large N , it is further found

that the asymptotic SOP hardly changes with a moderate variation of dSR. This behavior is also explained from

the fact that reducing the distance from the source to RIS increases the received SNRs for both the legitimate user

and the eavesdropper. Therefore, in the case that the location of the eavesdropper is unknown, we should prioritize

deploying the RIS closer to the legitimate user than to the source.

Proof: From (18), we see that the location of the RIS is only reflected in the parameter k =
d−υ
RD

d−υ
RE+ 1

N

(

dSE
dSR

)

−υ ,

and the asymptotic SOP in (18) decreases as k grows. �

Moreover, the high-SNR expression in (18) is also useful for understanding the asymptotic secrecy performance

given the number of control bits of discrete phase shifts. Some relevant case studies are reported as follows.

Case 1: Under the assumption of continuous-valued phase shifts, i.e., b = +∞, the SOP in (18) reduces to

SOP

∣

∣

∣

∣

b=+∞
→
√

8

k (16− π2)
e
− π2

32−2π2 N
. (20)

Case 2: Under the assumption of 1-bit binary phase shifts, i.e., b = 1, the SOP in (18) reduces to

SOP

∣

∣

∣

∣

b=1

→
√

2

k
e−

N
2 . (21)

Case 3: Under the assumption of b≥ 3, we prove in Appendix E that the quantization noise, which is due to

the use of discrete phase shifts, is one order-of-magnitude smaller than the SOP of the continuous phase shifts

disclosed in Case 1.

Remark 3: According to Case 1 and Case 2, the SOP tends to SOP |b=+∞→
√

8γ̄SRE/ [(16− π2) γ̄SRD]e−0.8N

and SOP |b=1 →
√

2γ̄SRE/γ̄SRDe
−0.5N for sufficiently large N . We see that the SOP loss due to the 1-bit

quantization, compared to the ideal continuous-valued phase shifts, can be asymptotically compensated by increasing

the number of RIS elements by about 1.6 times.

Proof: Let N1 and N2 denote the numbers of RIS elements corresponding to b = +∞ and b = 1, respectively.

By solving SOP |b=1 ≤ SOP |b=+∞, it follows that N2 ≥ π2

16−π2N1− ln 4
16−π2 ≈ 1.6N1. This completes the proof.

�
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Fig. 2. SOP versus γ̄SRD for different values of b.
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 Eq.(21), N = 30

N = 48, b = 1

N = 30 Eq.(20),

Fig. 3. SOP versus γ̄SRD for different values of N .

V. NUMERICAL RESULTS

In this section, Monte-Carlo simulations are illustrated to validate our analysis. The tested parameters are set to

γ̄SE=−5 dB and γ̄SRE=0 dB.

Fig. 2 shows the impact of b on the SOP when N = 30 and Cth = 0.05. We observe that the analytical results

in (15) match well with the numerical curves. Monte-Carlo simulations are illustrated for values of the SOP no

smaller than 10−3 due to the limited number of channel realizations simulated. As stated in Case 3, the gap between

b = 3 and b = +∞ in Fig. 2 does appear negligible for high SNRs.

In Fig. 3, we consider a larger Cth = 0.2 to verify the effectiveness of the asymptotic analysis. We plot the SOP

for N = 30 by setting b = 1 and b = +∞. As expected, the asymptotic expressions in (20) and (21) are quite tight

in the high-SNR regime. Then, we plot the SOP for b = 1 by setting N = 48 (i.e., which is equal to 1.6× 30) and

N = 60 (2× 30). We see that the setup N = 48 with b = 1 provides, in the high-SNR regime, the same SOP as
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the setup N = 30 with b = +∞, which validates the obtained guideline in Remark 3.

VI. CONCLUSION

This paper studied the SOP of an RIS-assisted communication system with discrete phase shifts. The main

contribution is to unveil the achievable scaling law of SOP with respect to N and b. Specifically, the increased

number of RIS elements was quantified to compensate the performance loss caused by binary phase shifts.

APPENDIX A

PROOF OF THE INDEPENDENCE OF γD1 AND γD2

By taking into account that the distribution of Θi is symmetric around its mean value, which is equal to zero,

we have E [XY ] = 0 [25]. Then, the covariance of X and Y is

Cov [X,Y ] = E [XY ]− E [X ]E [Y ] = E [XY ] = 0, (22)

which indicates that X and Y are uncorrelated RVs.

For large values of N ,
∑N

i=1 |hi| |gi| ejΘi is approximately a complex Gaussian RV by virtue of the CLT, and its

real part X and imaginary part Y are jointly Gaussian RVs. Since two uncorrelated Gaussian RVs are independent

as well, it follows that γD1 and γD2 are independent.

APPENDIX B

PROOF OF LEMMA 2

First, we note that hi and φsub
i are dependent RVs since φsub

i and φopt
i = −∠ (higi) are correlated RVs. Since

φsub
i = Θi + φopt

i , the RV Z can be rewritten as

Z=
√
γ̄SRE

N
∑

i=1

|hi| |pi| ej(∠pi−∠gi+Θi)+
√
γ̄SEhSE , (23)

where ∠pi and ∠gi are uniformly distributed in [0, 2π). The RV Θi depends on the phase error at the RIS, and

∠pi and ∠gi depend on the positions of the eavesdropper and the legitimate user, respectively. Since the RV pi =

|pi| ej∠pi is independent of the three RVs |hi|, ∠gi, and Θi and has zero mean, we obtain E
[

|hi| |pi| ej(∠pi−∠gi+Θi)
]

=

0, and Var
[

|hi| |pi| ej(∠pi−∠gi+Θi)
]

= 1. For large values of N ,
∑N

i=1 |hi| |pi| ej(∠pi−∠gi+Θi) d−→ CN (0, N) by

virtue of the CLT, and then Z
d−→ CN (0, Nγ̄SRE + γ̄SE).

Since pi is a circularly-symmetric Gaussian RV, we have Pr(ej∠pi )=Pr(ej∠piej(−∠gi+Θi)). Thus, |pi| ej(∠pi−∠gi+Θi)

is a zero-mean circularly-symmetric complex Gaussian RV as well. This implies that the real and imaginary parts

of Z are uncorrelated and hence independent since they are Gaussian distributed. Also, they have zero means and

the same variance.
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APPENDIX C

PROOF OF REMARK 1

Since the RV γD2/γD1 is nonnegative, we obtain

Pr

(

γD2

γD1

<0.1

)

(h)

≥ 1−
E

[

γD2

γD1

]

0.1

(i)
= 1− E [γD2 ]

0.1E [γD1 ]
, (24)

where (h) is obtained by applying the Markov inequality [19], and (i) comes from the fact that γD1 and γD2 are

independent.

Furthermore,
E[γD2 ]
E[γD1 ]

is calculated as

E [γD2 ]

E [γD1 ]
=

σ2
2

m2
1+σ2

1

=
8[1− sinc(2x)]

(N−1)π2sinc2 (x)+8[1+sinc(2x)]
, (25)

where x = 2−b ∈ (0, 12 ] and it is easy to check that
E[γD2 ]
E[γD1 ]

is increasing as x grows by calculating its first order

derivative. It follows

E [γD2 ]

E [γD1 ]
≤ E [γD2 ]

E [γD1 ]

∣

∣

∣

∣

x= 1
2

=
2

N + 1
. (26)

Therefore, (24) is further expressed as

Pr

(

γD2

γD1

<0.1

)

≥ 1− E [γD2 ]

0.1E [γD1 ]
= 1− 20

N + 1
. (27)

When N is large, we finally obtain Pr
(

γD2

γD1
<0.1

)

→1, which means that γD1 ≫γD2 holds with high probability.

APPENDIX D

PROOF OF LEMMA 3

By inserting (8) and (12) in (14), the upper bound of the SOP can be rewritten as

SOP =

∫ ∞

0

[

1− 1

2
erfc

(

α+
√

(1 + x)ϕ− 1

β

)

− 1

2
erfc

(

√

(1 + x)ϕ− 1− α

β

)]

ǫe−ǫxdx

=1− 1

2

(

∫ ∞

0

erfc

(

α+
√

(1 + x)ϕ− 1

β

)

ǫe−ǫxdx

+

∫ ∞

0

erfc

(

√

(1 + x)ϕ− 1− α

β

)

ǫe−ǫxdx

)

=1− 1

2
(I1 + I2) . (28)
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The integral I1 is calculated by using the integration by parts method. We have

I1 =

∫ ∞

0

erfc

(

√

(1 + x)ϕ− 1 + α

β

)

ǫe−ǫxdx

= −erfc

(

√

(1 + x)ϕ− 1 + α

β

)

e−ǫx

∣

∣

∣

∣

∣

∞

x=0

+

∫ ∞

0

e−ǫxd

(

erfc

(

√

(1 + x)ϕ− 1 + α

β

))

= erfc

(√
ϕ−1+α

β

)

− 1√
πβ

J1, (29)

where J1 is expressed as

J1 =

∫ ∞

0

ϕe−ǫx e
−
(√

(1+x)ϕ−1+α
)2

/β2

√

(1 + x)ϕ− 1
dx

= 2e
(ϕ−1)ǫ

ϕ
−α2

β2

∫ ∞

√
ϕ−1

e
−
(

1
β2 + ǫ

ϕ

)

t2− 2α
β2 t

dt

= 2e
(ϕ−1)ǫ

ϕ
−α2

β2
√
πAeAB2

[

1−erf

(

B
√
A+

√
ϕ− 1

2
√
A

)]

, (30)

t =
√

(1 + x)ϕ− 1, and the last equality is obtained by using [18, Eq. (3.322)], where A = β2ϕ
4(β2ǫ+ϕ) and B = 2α

β2 .

Further, by substituting (30) into (29), I1 is obtained as shown in (16). Analogously, I2 is calculated by replacing

α in (16) with −α, which yields the desired result in (17).

APPENDIX E

PROOF OF CASE 3

We apply the Taylor expansion to the SOP in (18). More precisely, around x = 0 and for small values of

x = 2−b < 1, we have
√

1

k
[

1+sinc (2x)− π2

8 sinc2 (x)
] = c1 + c2x

2 +O
(

x4
)

, (31)

e
− 1

16[1+sinc(2x)]

π2sinc(x)
−2

N

= e−c3N +O
(

x4
)

, (32)

where c1 =
√

8
k(16−π2) , c2 = π2

6 c1, and c3 = π2

32−2π2 .

By substituting (31) and (32) in (18), the SOP is further rewritten as

SOP →
(

c1 + c2x
2 +O

(

x4
)) (

e−c3N +O
(

x4
))

= c1e
−c3N + c2e

−c3Nx2 +O
(

x4
)

. (33)

Since the first term in (33) is the SOP for b=+∞ as given in Case 1, the performance loss due to finite values

of b is dominated by the second term in (33), i.e., c2e
−c3Nx2. If we restrict that the performance loss is one

order of magnitude smaller than Case 1 for b =+∞, it gives
(

c2e
−c3Nx2

)

/
(

c1e
−c3N

)

< 1/10, which implies

x <
√

3/ (5π2) and equivalently b ≥ 3.
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