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Acquisition of Visible Satellites Based on Antenna

Arrays via Joint ℓ1,1-Norms Minimization

Qiang Li, Lei Huang, Senior Member, IEEE, Wei Liu, Senior Member, IEEE, Lifang Feng, Xinzhu Chen

Abstract—This work tackles the acquisition of visible satellites
based on an antenna array in the presence of impulsive noise.
First, the joint angle and number estimation of visible satellites
is formulated as a joint ℓ1,1-norms minimization problem by
exploiting the spatial sparsity of visible satellites. Then, in order
to obtain a closed-form solution, a generalized conjugate function
for complex-valued matrix variable is introduced and the joint
ℓ1,1-norms minimization is transformed into a Lagrangian dual
function maximization. Furthermore, the dual ascent framework
and subgradient technique are employed to obtain a suitable
iterative solution, where the convergence rate and steady-state
value can be flexibly adjusted. Numerical results are presented
to demonstrate the effectiveness of the proposed approach.

Index Terms—Antenna arrays, acquisition of visible satellites,
Lagrangian multiplier, dual ascent, impulsive noise, ℓ1,1-norm.

I. INTRODUCTION

A
CQUISITION of satellite signals is a three-dimensional

(3-D) search process including visible satellite, Doppler

frequency and pseudorandom noise (PRN) code phase [1].

Normally, the joint angle and number estimation (JANE)

of visible satellites should be performed first for the quick

selection of satellite geometrical dilution of precision (GDOP)

[2]. Moreover, the determination of visible satellites directly

affects the time consumption and success probability of the

search in the other two-dimensions.

For the traditional navigation receiver with a single an-

tenna, the determination of visible satellites requires some

prior information, such as satellite ephemeris or almanac,

general location of receiver. However, the information can only

be extracted after baseband signal processing is completed.

Especially for a satellite receiver working in the cold-start
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mode without assistance of satellite ephemeris or almanac, the

receiver has to perform a time-consuming blind 3-D search [2].

Antenna arrays can sense signal impinging angle and sup-

press interference, and therefore a satellite receiver with an-

tenna arrays has excellent potential to determine the JANE of

visible satellites in the presence of impulsive noise [3]. There

is an extensive literature about angle estimation using antenna

arrays at the stage of signal tracking, where the number of

satellite signals is normally assumed to be known [4]. To the

best of our knowledge, in the presence of impulsive noise, the

research on JANE of visible satellites via an antenna array at

the stage of acquisition has not yet received much attention.

Motivated by compressed sensing (CS) theory [5] and

spatial sparsity of visible satellites that only 6-12 satellites can

be observed normally [2], the acquisition of visible satellites is

considered from the viewpoint of row-sparse or low-rank ma-

trix recovery [6]. One popular method called low-rank matrix

approximation (LRMA) [7] is applied to recover a low-rank

matrix, where additive white Gaussian noise is assumed and

a soft-threshold function [8] needs to be carefully designed.

However, the singular value thresholding (SVT) technique in

the LRMA tends to underestimate nonzero singular values

[6], which makes it difficult to select a suitable soft-threshold

function. In addition, numerous methods have been developed

to solve the problem of sparse matrix recovery, such as or-

thogonal least squares [9], Hankel matrix completion [10] and

iterative reweighted rank minimization [11]. Generally, these

methods perform well in the case of Gaussian noise while

the performance may degrade significantly in the presence of

impulsive noise.

In order to tackle the issue, some optimization methods

using principal component analysis (PCA) technique [12] and

ℓ2,p-norm framework [13]–[15] have been proposed. Consid-

ering that some columns of a matrix are arbitrarily corrupted, a

robust PCA method that minimizes the nuclear norm and ℓ2,1-

norm loss function is developed to suppress outliers [12]. By

employing joint ℓ2,1-norms minimization on both loss function

and regularization, a robust and efficient method is proposed

for feature selection [14], where the loss function is robust

to outliers. More generally, using the row sparse structure,

a cost function for angle estimation with general ℓ2,p-norm

(0 < p ≤ 1) is proposed in [15], where the choice of p is

related to the statistical properties of noise.

Inspired by the joint ℓ2,1-norms framework and spatial

sparsity of visual satellites, the JANE of visible satellites in

the presence of impulsive noise is formulated as a joint ℓ1,1-

norms optimization, which has more robust ability to suppress

impulsive noise than that of the ℓ2,1-norm. To avoid using



time-consuming CVX optimization tool [16], the Lagrangian

dual function is devised by employing a generalized conjugate

function for complex-valued matrix. In addition, the dual

ascent framework and the subgradient technique are applied

to obtain an iterative closed-form solution.

Notations: In the paper, bold lowercase letter and bold

uppercase letter denote vector and matrix, respectively. R and

C are real-valued set and complex-valued set, respectively.

(·)T , (·)∗, (·)H , | · |, Tr(·) and ⊙ represent transpose, conju-

gate, conjugate transpose, absolute value, trace and Hadamard

product, respectively. xij represents the (i, j)-th entry of a

matrix X . f : Rm×n → R
p×q stands for that f is an R

p×q-

valued function on some subsets of Rm×n and the domain of

function f is denoted as domf . “sup” and “inf” represent the

supremum and infimum of a function, respectively. ∥X∥r,p is

the ℓr,p-norm [13], defined as

∥X∥r,p =







m
∑

i=1





n
∑

j=1

|xij |
r





p

r







1

p

, (1)

where ℓ1,1-norm is a special case of the ℓr,p-norm.

II. PROBLEM FORMULATION

Consider Q visible satellite signals impinging on a uniform

linear array (ULA) consisting of M antenna elements with

inter-element spacing d. After down conversion, sampling

and quantization [2], the satellite signals arriving at the m-

th antenna element can be expressed as

ym(t) =

Q
∑

q=1

xq(t)e
j2π(m−1)sin(θq)d/λ + nm(t), (2)

where t represents the sampling time, λ is the carrier wave-

length of the satellite signal, θq is the direction of arrival

(DOA) of the q-th signal, nm(t) denotes the noise at the m-th

element and xq(t) represents the q-th satellite signal, i.e.,

xq(t) =
√

2pqDq(t)Cq(t)e
j(2πfq

IF
t+φq

0
), (3)

where p is the signal power, D stands for the bit stream of

the navigation data with uncertain symbol ±1, C denotes the

spreading PRN code sequence, fIF is the signal intermediate

frequency (IF) and ϕ0 is the initial phase.

Normally, the number of visual satellites Q is unknown

before acquisition process is completed. However, according

to the prior information of satellite ephemeris or almanac,

the approximate angle region of visible satellites is known.

Therefore, by arranging the incident signals at antenna arrays

in a vector y(t) = [y1(t), · · · , yM (t)]T , the received signals

model (2) can be written in a more compact form

y(t) = Ax(t) + n(t), (4)

where x(t) ∈ C
L×1 is a sparse vector with only Q(Q < L)

satellite signals and A ∈ C
M×L denotes array manifold matrix

which is of the form

A = [a(θ1),a(θ2), · · · ,a(θL)] (5)

with a(θ) being the steering vector

a(θ) =
[

1, ej2π
d sin θ

λ , · · · , ej2π(M−1) d sin θ
λ

]T

, θ ∈ Θ, (6)

where Θ is the angle region of interest, which is uniformly

discretized into L angles in (5).

Then, assuming that the number of samples in temporal

domain is N , the matrix formulation of (4) can be written as

Y = AX +N , (7)

where Y = [y(1), · · · ,y(N)] ∈ C
M×N and X ∈ C

L×N

has row sparsity, where only Q rows have non-zero elements.

Obviously, the JANE of satellite signals can be completed if

the non-zero rows in X are estimated accurately.

III. PROPOSED ALGORITHM

A. Proposed Optimization Model and Analysis

In (7), if the noise follows Gaussian distribution, many state-

of-the-art algorithms can effectively tackle the JANE problem.

However, their performance may degrade significantly in the

presence impulsive noise. We know that a joint ℓ2,1-norms

minimization framework on both loss function and regulariza-

tion is efficient and robust for feature selection in the presence

of outliers [14], which motivates us to study the JANE problem

using the framework of joint ℓ1,1-norms minimization. To be

specific, the optimization model is formulated as

min
X

{

f(X) = ∥Y −AX∥1,1 + γ ∥X∥1,1

}

, (8)

where ∥Y −AX∥1,1 is used to effectively suppress the effect

of impulsive noise and ∥X∥1,1 can approximate the concave

∥X∥1,0 to enforce a row sparse solution. Furthermore, by

varying the regularization factor γ, we can sweep out the

optimal trade-off value between ∥Y −AX∥1,1 and ∥X∥1,1.

Actually, for the optimization (8), the proposed joint ℓ1,1-

norms model has more robust ability to suppress outliers than

that of the joint ℓ2,1-norms model [14], which will be verified

in the simulation section later.

B. Discussion and Analysis on Solving Method

The objective function (8) is convex [14] and the CVX

optimization tool [16] can be employed to solve the problem,

which is called “CVX-ℓ1,1-norm” herein. However, the interior

point technique [16] is used in the CVX optimization, which

cannot get a closed-form solution and it is also unfriendly to

computational complexity.

Furthermore, the subgradient technique [17], [18] can easily

be thought of to solve this optimization problem (8). In partic-

ular, according to the Lemmas 1-2, the conjugate subgradient

of f(X) in (8) with respect to X∗ can be formulated as

∇X∗f(X)=
∂f(X)

∂X∗
=
1

2
AH [H⊙ (AX−Y )]+

γ

2
R⊙X, (9)

where H and R are given in detail in the Lemmas 1-2.

Note that each update of the variable X by the subgradient

technique does not guarantee that the cost function f(X)
is monotonically decreasing. In addition, it is not easy to

determine the update step size [17].



Lemma 1: For a complex-valued matrix X ∈ C
L×N ,

taking the conjugate subgradient of ∥X∥1,1 with respect to

X∗, leads to

∂∥X∥1,1
∂X∗

=
∂
∑L

i=1

∑N
j=1

(

x∗

i,jxi,j

)
1

2

∂X∗
=

1

2
R⊙X, (10)

where the element xi,j is assumed to be non-zero valued here

and R ∈ R
L×N is a real-valued matrix with the (i, j)-th

element being ri,j = 1/|xi,j |.
Lemma 2: A complex-valued matrix W ∈ C

M×N has

the form W = AX with A ∈ C
M×L and X ∈ C

L×N .

According to the definition of ℓ1,1-norm in (1), we have

∥W ∥1,1=

M
∑

i=1

N
∑

j=1

√

wi,jw∗

i,j=

M
∑

i=1

N
∑

j=1

√

√

√

√wi,j

(

L
∑

l=1

a∗i,lx
∗

l,j

)

. (11)

Taking the subgradient of ∥W ∥1,1 with respect to X∗, the

result can be written as

∂∥W ∥1,1
∂X∗

=
1

2
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. (12)

Furthermore, define H ∈ R
M×N as a real-valued matrix

with the (i, j)-th element being hi,j = 1/|wi,j |. A simplified

expression of (12) is given by

∂∥W ∥1,1
∂X∗

=
1

2
AH (H ⊙W ) =

1

2
AH [H ⊙ (AX)]. (13)

In the following sections, we try to solve the optimization

(8) and get an iterative closed-form solution by devising a cost

function of the Lagrangian dual optimization and applying the

dual ascent technique [17].

C. Proposed Dual Lagrangian Model

As an unconstrained optimization problem, the optimization

problem (8) can be further reformulated as

min
X,E

∥E∥1,1 + ∥X∥1,1 s.t. Y −AX = γE, (14)

where E = (Y −AX) /γ. Furthermore, after simple rear-

rangement, it is easy to get

min
X,E

∥

∥

∥

∥

[

X

E

]∥

∥

∥

∥

1,1

s.t.
[

A, γI
]

[

X

E

]

= Y, (15)

where I ∈ R
M×M is an identity matrix.

For notational simplicity, denote Z = [XT , ET ]T ∈
C

P×N , P = L + M and B = [A, γI] ∈ C
M×P . Con-

sequently, a concise optimization problem with constraint is

formulated as

min
Z

f(Z) s.t. BZ = Y , (16)

where f(Z) = ∥Z∥1,1.

After that, the Lagrangian multiplier method is used to

transform the above problem into an unconstrained minimiza-

tion problem with the cost function

L(Z,Λ) = f(Z) + Tr
[

Λ(BZ − Y )H
]

, (17)

where Λ ∈ C
M×N is the Lagrangian multiplier matrix.

Definition 1: In [17], let f : Rn → R and then the conjugate

function f∗ : Rn → R is defined as

f∗(y) = sup
x∈domf

[

yTx− f(x)
]

, (18)

where x and y are real-valued vectors.

On the basis of the above statement, this work generalizes

the definition of conjugate function to complex-valued matrix

variable. Specifically, let f : Cm×n → C and the generalized

conjugate function f∗ : Cm×n → C can be expressed as

f∗(U) = sup
X∈domf

[

Tr(UXH)− f(X)
]

, (19)

where U and X are complex-valued matrices.

Then, according to the Definition 1, the dual objective

function of the optimization (16) can be expressed as

g(Λ)= inf
Z

{

f(Z) + Tr
[

Λ(BZ − Y )H
]}

=− Tr(ΛY H)− sup
Z

{

Tr
(

−ΛZHBH
)

− f(Z)
}

=−Tr(ΛY H)− sup
Z

{

Tr
[

(−BH
Λ)ZH

]

−f(Z)
}

= −Tr(ΛY H)− f∗(−BH
Λ)

(20)

Therefore, with the help of the conjugate function and

Lagrangian multiplier technique, the optimization (16) is trans-

formed into a dual maximization problem, i.e.,

max
Λ

−f∗(−BH
Λ)− Tr(ΛY H). (21)

Furthermore, the objective function f(Z) is convex and the

constraint is affine function in (16). Therefore, according to

the Slater theorem [17], the strong duality condition holds,

which indicates that the optimal value of objective function in

(16) is the same as that in (21). Therefore, assume that the

optimal solution to (21) is Λ̃ and then the optimal solution to

(16) can be calculated by

Z̃ = argmin
Z

L(Z, Λ̃). (22)

D. Dual Ascent Method Using Subgradient Technique

Normally, dual ascent method is used to get a suitable

solution to (22), where the iterative gradient ascent technique

is involved. Specifically, the dual ascent method consists of

the following two key steps

Zk+1 = argmin
Z

L(Z,Λk), (23)

Λk+1 = Λk + µ∇Λ∗L(Zk+1,Λk), (24)

where k denotes the k-th iteration, the update process (23) is

the minimization of the original variable Z and the update

process of the dual variable Λ is described in (24), with µ
being the step size. ∇Λ∗L(Z,Λ) is the conjugate gradient of



the function L(Z,Λ) with respect to the conjugate of dual

variable Λ.

Furthermore, in order to obtain the iterative solution to (23)

and (24) in closed form, Lemma 3 should be introduced.

Lemma 3: The trace of matrix has the operation rules [18]

as follows.

Tr(ABC) = Tr(CAB) (25)

∂

∂X∗
Tr(AXH) = A. (26)

According to the Lemmas 1 and 3 and taking the conjugate

subgradient of the function L(Z) in (17) with respect to Z∗,

it is easy to get

∇Z∗L(Z,Λ) =
∂L(Z,Λ)

∂Z∗
=

1

2
G⊙Z +BH

Λ, (27)

where G ∈ R
P×N is a real-valued matrix with the i, j-th

element being gi,j = 1/|zi,j |.
Therefore, Zk+1 in (23) can be updated by

Zk+1 = Zk −
η

k + 1
∇Z∗L(Zk,Λk). (28)

where η/(k + 1) denotes the step size, which should satisfy

the divergent-series rule [17] due to the subgradient operation

in (27).

Similarly, taking the conjugate gradient of the function

L(Z) with respect to Λ
∗, we have

∇Λ∗L(Z,Λ) =
∂L(Z,Λ)

∂Λ∗
= BZ − Y . (29)

As mentioned above, to solve (23) and (24), the initial

values of Z and Λ should be assumed and an iterative frame-

work needs to be applied. After the iteration is completed, the

estimation of matrix X̂ can be easily extracted from Z.

E. Summary of the Proposed Method

To sum up, the optimization (16) is transformed into the

Lagrangian dual maximization problem and then the dual

ascent technique using iterative framework is employed to

find the solution. Note that the JANE of satellite signals is

completed if the non-zero rows in the matrix X̂ are estimated

accurately. For convenience of expression, the above method

is called “Lagrangian dual ascent ℓ1,1-norm (LDA-ℓ1,1-norm)”

algorithm here, which is summarized in the Algorithm 1.

Algorithm 1: LDA-ℓ1,1-norm Algorithm

Input: M,N,L,Q,K,A,Y , γ, η, µ
Step 1. Initialize Z0 ∈ C

P×N ← a random matrix,

Λ0 ∈ R
M×N ← an all-one matrix.

for k = 1, 2, · · · ,K do

Step 2. Determin Gk by gi,j = 1/|zi,j |.
Step 3. Calculate Zk+1 by (27) and (28).

Step 4. Update Λk+1 by (24) and (29).

end for

Output: ZK , X̂ .
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Fig. 1. Angle trajectories of the visible satellites.

F. Complexity Analysis

In this work, the time-consuming calculations are in (24),

(27), (28) and (29). Specifically, the analysis is as follows.

1) The complexity of (24) and (29) is O(PMN + MN),
which can be further simplified as O(PMN).

2) Furthermore, the complexity of (27) and (28) is

O(PMN + PN), which can be further simplified as

O(PMN).
3) In addition, considering the number of iterations K, the

total complexity of the proposed algorithm is O(KPMN),
which is determined by the number of iterations K, the

parameter L, the number of antennas M and the number of

samples N .

IV. SIMULATION RESULTS

In the simulation, a vehicle is located at Shenzhen Univer-

sity (latitude/longitude: 22.53◦N/113.94◦E) and the almanac

of GPS satellites on 25th June, 2022 is collected [19]. The

software-defined GPS receiver [20] is modified by adding an

antenna array module, where the satellites whose elevation

angles greater than 10◦ are considered as visible ones and

the simulation time is 45 minutes. During the simulation, the

azimuth and elevation angles of visible satellites are shown in

Fig. 1, where the red pentagrams denote initial azimuth and

elevation angles. In the following tests, the 12th, 17th, 19th

and 24th satellites are selected. Their initial elevation angles

are approximately 30◦, 28◦, 52◦ and 40◦, respectively.

Then , a ULA consisting of M = 50 antennas is used and

the elevation region of interest Θ in (6) is assumed to be

Θ = [25◦, 55◦], which is uniformly discretized with a step

size of 1◦, i.e., L = 31 in (5). In addition, a two-component

Gaussian mixture model (GMM) is used to generate impulsive

noise [21], where the proportion component of outliers is

10% and the variances of the two terms are 1 and 50,

respectively. The signal-to-noise ratios (SNRs) of satellite
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signals are fixed at 20dB and the snapshot number is 100.

Furthermore, initialize Z0 ∈ C
P×N with a random matrix

and Λ0 ∈ R
M×N with an all-one matrix. Example 1: First,

we study how the regularization factor γ, step parameter η and

step size µ, affect the mean square error (MSE) performance

[21] of the estimated matrix X̂ for the proposed method,

respectively. In general, the MSE curves versus the tunable

parameters, i.e., γ, η and µ are depicted in Fig. 2, where it is

obvious that the MSE can be regarded as convex function with

respect to these tunable parameters. Therefore, a set of tunable

parameters can be found to minimize the MSE. Specifically,

the MSE gets the minimum value, about 1.4 × 10−3, in the

case of γ = 5, η = 0.1 and µ = 0.01. Therefore, these

parameter values are selected in the following tests unless

specified otherwise. Furthermore, according to the theory of

satellite signal acquisition [2], we assume that the navigation

receiver can work normally, if the MSE of the recovered

satellite signal matrix X̂ is less than or equal to 5 × 10−3.

As a result, the approximate applicable ranges of the tunable

parameters γ, η and µ are [0.7, 14.5], [0.06, 0.7] and [0.0015,

0.066], respectively.

Example 2: After that, in order to analyze the convergence

process of MSE with respect to the step parameters η and µ,

the MSE curves versus the number of iterations are depicted

in Fig. 3 and Fig. 4, respectively. In general, as the number

of iterations increases, all the MSE curves can gradually

decrease, which can prove that the MSE of proposed algorithm

can converge. In addition, it is obvious that the parameters, η
and µ, determine the convergence rate and steady-state values

of these MSE curves. This is because µ and η directly affect

the update rate and accuracy in (24) and (28), respectively.

Furthermore, for an iterative technique, with the increase of

step size, the convergence rate can be accelerated while the

0 100 200 300 400 500 600 700 800 900
10

−3

10
−2

10
−1

10
0

10
1

Number of iterations

M
S

E

η=0.05

η=0.1

η=0.2

η=0.3

η=0.5

η=0.6

Fig. 3. MSE versus number of iterations, γ = 5, µ = 0.01.
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Fig. 4. MSE versus number of iterations, γ = 5, η = 0.3.

accuracy of convergence steady state may become worse. That

is why the convergence rate of the cases, η = 0.5, 0.6, is

obviously faster than that of other tested cases, while the

convergence steady-state values of η = 0.5, 0.6, are slightly

higher than those in other tested cases in Fig. 3. Moreover,

according to our test, if the parameter η is further increased,

the convergence rate will not be significantly improved, how-

ever, the steady-state value will gradually increase, which is

consistent with the conclusion in Fig. 2 (b). Similarly, in Fig.

4, the MSE curve has the best convergence steady-state value

in the case of µ = 0.01 and the steady state will get worse if

we keep increasing µ.

Example 3: Then, we compare the MSE performance of

the proposed LDA-ℓ1,1 method with some existing algorithms,
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namely, CVX-ℓ2,1, CVX-ℓ1,1, LRMA-SVT [7], EFRS [14]

and direct gradient (DG)-ℓ2,1 [22]. The MSE performance

versus the number of iterations is shown in Fig. 5. It is

obvious that the MSE curves of the CVX-ℓ2,1, CVX-ℓ1,1,

and LRMA-SVT methods do not change as the number of

iterations increases, because the CVX tool [16] is directly

used to calculate their optimal solutions. Furthermore, the

CVX-ℓ1,1 method has lower convergence steady-state value

than that of the CVX-ℓ2,1 method, because ℓ1,1-norm has

more excellent ability in suppressing impulsive noise than

that of ℓ2,1-norm. On the other hand, with the number of

iterations increases, the MSE curves of the EFRS and LDA-

ℓ1,1 methods decrease significantly while that of the DG-ℓ2,1
converges slowly. Interestingly, the steady-state value of the

EFRS algorithm is exactly close to the solution of the LRMA-

SVT method, and the steady state of the LDA-ℓ1,1 algorithm

just approximates the solution of the CVX-ℓ1,1 method.

In addition, compared with the CVX-ℓ2,1, CVX-ℓ1,1, and

LRMA-SVT methods, the EFRS and LDA-ℓ1,1 algorithms

have iterative closed-form solutions, and the time consump-

tion is much less than that of the CVX-based techniques.

Furthermore, the EFRS method has the fastest convergence

rate, while its MSE curve converges approximately to a higher

steady-state value compared with the LDA-ℓ1,1 algorithm. It

implies that the EFRS method may only suppress part of

impulsive noise while the LDA-ℓ1,1 algorithm has excellent

ability in terms of impulsive noise suppression. Furthermore,

for the LDA-ℓ1,1 method, the parameters γ, η and µ can be

flexibly adjusted to satisfy the trade-off requirement between

the convergence rate and steady state.

V. CONCLUTION

Considering the impulsive noise present environment and

the spatial sparsity of satellite signals, the JANE of visible

satellites was formulated as a joint ℓ1,1-norms optimization

problem. In order to avoid using CVX tool and reduce the

computational complexity, a dual Lagrangian multiplier algo-

rithm with dual ascent framework was devised where a gener-

alized conjugate function for complex-valued matrix variable

was applied. Moreover, a subgradient iteration framework was

employed to find a closed-form solution. Numerical results

have confirmed the effectiveness of the proposed methods.
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