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Minimum-Race-Time Energy Allocation Strategies
for the Hybrid-Electric Formula 1 Power Unit

Pol Duhr1, Daniele Buccheri1, Camillo Balerna1, Alberto Cerofolini2 and Christopher H. Onder1

Abstract—The hybrid-electric powertrain currently used in
Formula 1 race cars draws its energy from the car’s fuel tank and
battery. The usable battery size is limited, and refueling during a
race is forbidden by the regulations of the Formula 1 race series.
From a strategic point of view, lap-by-lap targets for the fuel and
battery consumption must be chosen and imposed on the energy
management controller of the car. This task is non-trivial due
to the influence of the on-board fuel mass on the achievable lap
time, as well as the cross-couplings between the electric and the
combustion part of the powertrain. A systematic approach is thus
required to compute the energy allocation strategy that minimizes
the total race time. In this paper, we devise an optimization
framework in the form of a non-linear program, yielding the
optimal battery and fuel consumption targets for each lap of the
race. The approach is based on maps that capture the achievable
lap time as a function of car mass and allocated battery and fuel
energy. These maps are generated beforehand with a model-based
single-lap optimization framework and fitted using artificial
neural network techniques. To showcase the approach, we present
three case studies: First, we compare the optimal strategy to a
heuristic method. The improvement of 2 s over the entire race
is substantial, given that the difference only lies in the energy
allocation, but not in the overall consumption. It underlines
the importance of optimizing the energy allocation. Second, we
leverage the framework to compute the optimal fuel load at the
beginning of the race. Finally, we apply the developed non-linear
program in a shrinking-horizon fashion. Our simulation results
show that the resulting model predictive controller correctly
reacts to disturbances that frequently occur during a race.

Index Terms—Energy management, Formula 1, hybrid electric,
artificial neural networks, non-linear programming.

I. INTRODUCTION

FORMULA 1 races take place on closed circuits and last
for a fixed number of laps, such that a total distance of

roughly 300 km is covered. After the starting lights go out, 20
drivers battle for position in order to finish first, piloting cars
from different manufacturers. To achieve this goal, not only
the driver must display supreme race craft. The manufacturer
must also perfectly set up the car’s chassis and aerodynamic
package, and maximize the potential of its powertrain, which
is our focus here. For engineering purposes, car performance
over a single lap is characterized by the lap time, whilst the
objective of winning the race is commonly translated into
minimizing the total time required to cover the race distance.
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Fig. 1. Schematic of the mechanical and electrical components of the hybrid
electric F1 power unit, showing the turbocharged internal combustion engine
and the two electric motor-generator units MGU-K and MGU-H. Beside the
fuel tank, energy can be drawn from or stored in the battery. Propulsive power
is transmitted to the rear wheels via the gearbox.

Formula 1 (F1) cars are hybrid-electric vehicles and feature
the Power Unit (PU) depicted in Fig. 1. The turbocharged
internal combustion engine (ICE) is compounded by two
electric motors: The motor-generator-unit-kinetic (MGU-K) is
connected to the engine’s crankshaft. Its purpose is kinetic
energy recuperation during braking, engine load-point shift-
ing [1] and providing additional power during acceleration.
The motor-generator-unit-heat (MGU-H) is coupled to the
turbocharger and is mostly used to recuperate excessive power
generated by the turbine, but can also be operated in motor
mode to speed up the turbocharger and reduce turbo lag. Power
transmission takes place via an eight-speed sequential gearbox
and a limited-slip differential. There are two on-board sources
of energy: the fuel tank for chemical energy, required to run
the engine, and the battery for electrical energy, subject to
charging and discharging by the two MGUs. To provide an in-
centive for an efficient design and operation of the powertrain,
the technical regulations [2] limit the available energy. The
instantaneous fuel mass flow must not exceed 100 kg/h. This
makes the peak propulsive power directly depend on the ICE
efficiency, since the MGU-K mechanical power is also limited
to a maximum of 120 kW. Moreover, the usable battery size is
limited to 4 MJ. The fuel is thus the main propellant (a full tank
has a chemical energy of about 4800 MJ), but the battery plays
an important tactical role as an energy buffer and has a crucial
impact on the overall performance. When the regulations for
this hybrid PU were first introduced in 2014, fuel consumption
for a race was limited to 100 kg [3]. From 2021 onward, the
fuel consumption limit was abolished, but re-fueling during
the race is still prohibited [4]. Practically, it is not possible to
operate the PU at full power whenever desired, otherwise the
driver will run out of fuel and battery energy before finishing
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the race. This is due to two reasons: First, the race teams
want to avoid being too conservative with the fuel load that
they carry at the start of the race, since any excess weight
penalizes lap time. Choosing the fuel load that ensures the best
trade-off between low weight and high energy availability for
the PU operation usually means that fuel consumption must be
monitored tightly during the race. Second, whilst the battery
can be recharged when depleted, this is either very costly
in terms of lap time [5], or requires fuel to be converted to
battery energy via the MGU-K during part load operation of
the PU. Given the strict limits on the energy consumption,
the regulations permit the use of a supervisory controller
that coordinates the power flows of the PU. Because of the
periodic nature of a race, this energy management system [6] is
generally optimized to achieve minimum lap time over a single
lap with a given energy budget [5]. In this paper, we focus on
the higher-level task of distributing the available energy over
the laps of the race, i.e., defining the single-lap energy budgets,
and we refer to this as the energy allocation strategy.

In practice, it is implemented via a mix of automatic control
and radio communication to the driver. Whilst automatic fuel
cut-off at the end of the straights is not permitted for safety
reasons, a visual signal on the dashboard display can be
provided to the driver, telling him when to lift the throttle
pedal to save fuel. In jargon, this technique is called ‘lift and
coast’. As for the battery consumption target, the driver can set
it at the start of each lap with a rotary switch on the steering
wheel. The power split between ICE and MGU-K and the
recuperation strategy of the MGU-H is then set automatically
by the energy management controller of the power unit.

The choice of the energy allocation strategy is a non-trivial
task for several reasons. First, the interactions between two
energy storages must be considered, which adds a level of
complexity compared to battery-electric or engine-only race
cars. Second, the fuel consumption over the course of the
race entails a substantial variation in vehicle mass, considering
that the car only weighs 752 kg. When it becomes lighter, the
reduced inertia enables higher cornering speeds and stronger
acceleration and deceleration. As a consequence, the lap times
tumble. On the other hand, for a given car mass and battery
energy allocation, the higher the fuel energy allocation that can
be used in a lap, the lower the achievable lap time. Indeed,
more fuel is beneficial for the PU operation: The ICE can
be operated at full power for longer periods of time, and
excess fuel can be used to charge the battery via load-point
shifting. This energy can serve to prolong the phases of electric
boosting with the MGU-K. It is thus not obvious whether
relatively more fuel should be consumed at the beginning of
the race to exploit this effect while also quickly decreasing the
mass of the car, or rather at the end, when the car is already
light. Third, an adaptation of the initial energy allocation
strategy might become necessary during the race, caused by
events such as pit stops: When the car enters the so-called
pit lane for a tire change, it must adhere to a strict speed
limit. This can be exploited to recharge the battery, and the
energy allocation for the subsequent laps must then be revised
to define new lap-by-lap consumption targets. Other examples
are safety car or full course yellow phases, during which the

cars have to drive at reduced speed [4], or battles for position,
which require additional electric boosting.

Against this background, the energy allocation problem
must be tackled with a systematic optimization approach. This
paper proposes a computationally efficient optimization frame-
work that serves to compute the energy allocation strategy
for minimum race time. Its relevance is not confined to F1,
given that also other race series have recently moved to hybrid-
electric powertrains, e.g., the new Le Mans Hypercars [7].

A. Literature Review

We categorize the relevant research into three different
areas. The first pertains to the minimum lap time problem,
reflecting the key performance indicator for race cars. One
aspect is computing the optimal path on the circuit based on
a transient vehicle model, which was first done with non-
linear programming (NLP) in [8], and later improved with
curvilinear coordinates [9] and numerical modifications [10].
A noteworthy extension concerns the optimal management of
tire degradation over a sequence of laps [11]. A second aspect
is the time-optimal energy management strategy, computed on
the assumption of a fixed driving path. For hybrid F1 cars, this
was done with second-order cone programming [5] and non-
convex NLP [12]. For electric race cars, [5] was modified and
extended to evaluate different transmission technologies [13].
Since the power of electric motors can be subject to thermal
constraints [14], [15], the optimal thermal management in a
racing context was considered in [16], [17]. Inspired by [18],
simplified vehicle dynamics models were included to study the
torque vectoring of electric race cars [19] and to model the
performance envelope of a F1 car in the g-g diagram [20].
Besides, several authors have jointly optimized the energy
management and the driving path for hybrid [21], [22] and
electric race cars [23], and quite recently, stochastic optimiza-
tion was proposed to account for the competitors’ impact on
the energy management [24]. All the cited publications that
deal with energy management optimize a single lap.

The second research area consists of minimum-race-time
energy management strategies of complex powertrains. In [25],
the race is treated as a sequence of spatially discretized laps.
However, results are only shown for two laps and not for an
entire race, putting a question mark over the computational
tractability of such an approach. By contrast, [26] and [27]
propose a separation of the race optimization from the single-
lap optimization. The race was discretized lap-by-lap and the
dependency of lap time on the relevant variables of the consid-
ered electric powertrain was captured with maps represented
by means of an Artificial Neural Network (ANN), which is a
promising technique for control purposes [28] and curve fit-
ting [29]. The race strategy was then determined using Monte
Carlo tree search [26] or reinforcement learning [27]. Unfortu-
nately, these methods are devoid of any optimality guarantees,
and in one case, the resulting strategy was even shown to
be clearly sub-optimal. For the related problem of computing
maximum-distance strategies for electrical endurance racing,
the optimality issue was addressed by combining this bi-level
approach with mixed-integer optimization [30].
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The third stream of research deals with race strategy deci-
sions in terms of pit stops, tire changes and overtaking. The
importance of related simulation tools for motor sport teams
was underlined in [31] for F1 and in [32] for stock car racing.
Pit stop strategies for F1 were simulated using a discrete-
event approach and a sub-division of each lap into mini-
sectors [33], or based on a lap-by-lap discretization [34], also
including stochastic effects via Monte Carlo sampling [35].
The aforementioned works also consider the behavior of the
competitors. Moving towards decision-making, a data-driven
ANN was proposed to decide on the tire strategy [36]. Game-
theoretical approaches for planning overtake maneuvers were
explored for autonomous race cars [37] and sailing yachts [38].
Methods based on mathematical optimization are very scarce
in this field, with one notable example again stemming from
the field of sailing yacht racing [39].

B. Research Statement

Whilst a lot of effort was dedicated to the minimum-lap-
time energy management problem, the minimum-race-time
energy allocation problem has only been scarcely investigated
and has not yet been tackled with numerical optimization
algorithms for hybrid-electric race cars. A straightforward ap-
proach consists in modeling the race as a sequence of spatially
discretized laps and solving the problem all at once with
the methods developed for minimum-lap-time optimization.
However, as we will show, this is computationally demanding
and often hampered by numerical issues, due to the large
number of optimization variables involved. The optimization
framework presented in this paper addresses these issues. It
allows to determine the optimal fuel and battery consumption
targets for each lap of the race, and can provide a benchmark
solution for heuristic approaches and on-line control, allowing
to quantify the sub-optimality. It can also serve to identify the
optimal fuel load at the start of the race, that is, to decide
whether the fuel tank’s size should be fully exploited, or
whether it is advantageous to trade some fuel for a lighter
car. Furthermore, with such a tool the energy allocation can be
adapted during a race in the case of an unexpected disturbance,
such as a pit stop or an overtake maneuver.

C. Contributions

Our work comes with two main contributions: First, similar
to [26], [27], [30], we discretize the minimum-race-time prob-
lem on a lap-by-lap basis and separate it from the single-lap
energy management problem by means of lap time maps. The
required data is obtained by solving the minimum-lap-time
problem on the given circuit for different energy consumption
targets. The maps are then represented with ANNs, given their
good fitting capabilities. The resulting NLP yields the optimal
energy allocation for each lap and can be solved efficiently
with off-the-shelf solvers. In contrast to [26], [27], the solution
is guaranteed to be at least a local optimum. Compared to the
existing methods, which focus on battery-electric vehicles, our
model-based approach also takes into account that the car’s
mass decreases as fuel is consumed. This is a crucial effect
not only in F1 cars, but in every race car with a powertrain that

comprises an internal combustion engine. To the best of our
knowledge, so far the impact of the fuel consumption on race
time has only been included in simulation tools such as [34],
in the form of a fixed consumption per lap and an associated
lap time sensitivity. In this context, the novelty of our work
consists in systematically optimizing the fuel consumption
for each lap of the race by solving the minimum-race-time
problem, rather than treating it as a pre-defined parameter.
Second, we show that our minimum-race-time problem can
be easily leveraged for on-line applications, in the form of
a model predictive controller (MPC) [40] that updates the
energy allocation strategy during the race. As such, it can
complement the pit stop strategy simulation and optimization
tools already used by most race teams. To validate that the on-
line strategies are close-to-optimal, we benchmark the causal
MPC strategy against the non-causal optimal solution. MPC
has been successfully applied to the energy management of
hybrid vehicles, e.g., in [41]–[43]. However, in the context
of motor races, the use of MPC for a lap-by-lap update of
the energy allocation strategy has not yet been investigated in
literature, as far as we know. Specifically, [27] and [30] do not
treat the aspect of on-line updates at all, whilst [26] applies a
heuristic search algorithm without any optimality guarantees
and does not provide a comparison with the optimal solution.
Even though this paper focuses on the F1 PU, one of the
most technologically advanced hybrid race car powertrains,
the method is applicable to any motor sports competition with
races over a fixed number of laps and restricted energy usage.

D. Outline

The remainder of the text is structured as follows: In
Section II, we present the optimization framework. Next,
we discuss its components, namely the minimum-race-time
energy allocation problem in Section III, the minimum-lap-
time energy management problem in Section IV, and the
procedure to fit the lap time maps in Section V. Section VI
contains the race strategy optimization results and the case
studies. Finally, we conclude the paper in Section VII and
give an outlook on future research.

II. RACE OPTIMIZATION FRAMEWORK

The proposed optimization framework to compute the
minimum-race-time energy allocation strategy is schematically
depicted in Fig. 2. The race lasts for N laps of a given circuit,
and the fuel mass that is in the car’s tank at the start of the
race is denoted by mf. The goal is to compute the fuel energy
allocation ∆Ef and the battery energy allocation ∆Eb for each
lap i ∈ {1, . . . ,N}. We observe that the total race time is the
sum of all the lap times, and we will thus discretize the race
on a lap-by-lap basis. The crucial assumption of our approach
is that the achievable lap time Tlap in any lap can be described
by a lap time map M as a function of the fuel and battery
energy allocation for that lap, as well as the mass of the car m
and the battery energy content Eb,init at the start of the lap.

The choice of these parameters is instigated by the following
reasoning: The allocated fuel energy determines whether the
engine needs to be turned off already before the car arrives
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Fig. 2. Schematic representation of the proposed optimization framework.
The part shaded in gray is required to generate the lap time maps, which
form the basis of our race optimization approach.

at braking zones in order to save fuel, or whether it can
be operated at full power along each straight, whilst the
allocated battery energy strongly influences the amount of
electric boosting that the MGU-K can provide. The energy
management strategy in terms of power split, load point
shifting and recuperation is also influenced [5]. Hence, the
achievable lap time very strongly depends on ∆Ef and ∆Eb.
Additionally, the lap time varies with the car mass: A heavier
car has a larger inertia in corners, in braking zones and during
acceleration and is therefore slower whilst, on the other hand,
the normal force on the tires and thus the available tire grip
increase [44]. Finally, we have to consider the initial battery
energy content Eb,init at the start of the lap. This is due to
the finite size of the battery. Indeed, if the battery is almost
fully charged, the recuperation capabilities may be restricted
during some parts of the lap. This lack of recuperation leads
to a higher lap time, compared to a lap which is not affected
by the limits on the battery energy, i.e., a lap with the same
∆Eb but with a value of Eb,init that is further below the upper
bound. Evidence which supports this statement is provided
in Section IV-F. Similarly, if the battery is quasi empty, the
electric boosting capability is severely restricted by the lower
bound, which again has a detrimental effect on lap time.

To synthesize the lap time map, the achievable lap time must
be computed for different combinations of fuel and battery
energy allocation, car mass and initial battery energy. We
do this by solving the minimum-lap-time energy management
problem, based on a mathematical model of the car’s longi-
tudinal and lateral dynamics and its powertrain. This model
takes into account the aforementioned effects which have an
impact on the lap time. The generated data is then fitted using
ANN techniques, which yields a representation of the map that
can be integrated into the minimum-race-time optimization
problem.

The separation from the single-lap problem renders the
race optimization computationally tractable. Moreover, the lap
time map has to be generated only once for the circuit under
consideration and can then be used for different tasks, as we
will show in Section VI. In the following, we will describe in
detail the three blocks that form this optimization framework.

III. MINIMUM RACE TIME PROBLEM

In this section, we formulate the optimal control problem
that yields the energy allocation strategy for minimum race
time. The objective is to minimize the time required to cover
the total race distance, which is the sum of the lap times:

min
N

∑
i=1

Tlap[i]. (1)

We assume that the lap time of lap i is described by the lap
time map Mi as a function of the control inputs ∆Ef and ∆Eb,
as well as the mass of the car m and the battery energy content
Eb at the start of the lap:

Tlap[i] = Mi(∆Ef[i],∆Eb[i],m[i],Eb[i]). (2)

The map Mi can be different depending on the lap number i.
This allows to model special scenarios such as pit stops for
tire changes or (virtual) safety car phases [4], by providing an
adapted map for the laps where they occur. We assume that it
is known a priori for which laps this is the case.

Next, we model the fuel and battery energy allocation on a
lap-by-lap basis. The consumed fuel energy Ef evolves as

Ef[i+1] = Ef[i]+∆Ef[i] (3)

and is monotonically increasing, since fuel cannot be recuper-
ated once consumed, leading to the constraint

∆Ef[i]≥ 0. (4)

The initial and terminal conditions are

Ef[1] = 0, (5)
Ef[N +1]≤ mf ·Hlhv, (6)

where mf is the fuel mass that is in the car’s fuel tank at the
start of the race, and Hlhv is the lower heating value of the
fuel. Hence, by (6), the entire fuel may be consumed by the
end of the race. Analogously, the battery energy at the start
of each lap evolves as

Eb[i+1] = Eb[i]+∆Eb[i]. (7)

The technical regulations [2] stipulate a usable battery size of
4MJ. We assume that the battery is fully charged at the start
of the race, i.e.,

Eb[1] = 4MJ, (8)

and that it can be completely depleted by the end of the race:

Eb[N +1]≥ 0MJ. (9)

In-between, the battery energy must stay within the bounds

Eb[i]≥ 0MJ, (10)
Eb[i]≤ 4MJ. (11)
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Naturally, the battery energy allocation ∆Eb can be positive or
negative, with positive values corresponding to charging and
negative values to discharging. Finally, the mass of the car
varies according to the consumed fuel mass, captured by the
following relationship:

m[i+1] = m[i]−∆Ef[i] ·
1

Hlhv
. (12)

The mass at the start of the race corresponds to the mass of
the car and driver mcar plus the fuel mass on-board, given by

m[1] = mcar +mf. (13)

The stated objective and constraints are linear, the only
exception being the non-linear and non-convex relationships
involved in the ANNs required to model constraint (2) (see
Section V). We choose feedforward ANNs with a nonlinear
activation function, because they yield very accurate fits at
a level of precision that would be difficult to achieve with
convex approximations for this particular application. This
is important, given that an imprecise lap time map leads to
artifacts in the solution of the problem. Hence, the minimum
race time problem boils down to the following NLP:

Problem 1. The optimal energy allocation strategy in terms
of fuel and battery target for each race lap is the solution of

min
∆Ef,∆Eb

N

∑
i=1

Tlap[i]

subject to the following constraints ∀i ∈ {1, . . . ,N}:

Lap time: (2),
Fuel: (3), (4), (5), (6),
Battery: (7), (8), (9), (10), (11),
Car mass: (12), (13).

Three aspects linked to race strategy that we do not optimize
in Problem 1 are the tire choice, the tire degradation [11] and
the scheduling of pit stops for tire changes. Optimizing these
decisions is beyond the scope of this paper, which focuses on
the energy allocation strategy.

IV. MINIMUM LAP TIME PROBLEM

In this section, we formulate an optimization problem for
the minimum-lap-time energy management. It will be used in
Section V to generate the data that forms the basis of the lap
time maps. We work on the model-based convex optimization
framework developed in [5], [20], but with several modifi-
cations and extensions, leading to an NLP. The optimization
approach is based on the assumption that the path around the
race circuit is known a priori and not subject to optimization.
The so-called ‘racing line’ was synthesized from velocity and
acceleration measurements of one representative lap [8].

Our model features a simple mathematical description of
the car’s performance envelope for the longitudinal and lateral
vehicle dynamics, and of the PU components. We will not
discuss the identification of the parameters and the model
validation in this paper. They were shown in [5] for the PU
and in [20] for the vehicle dynamics performance envelope.

We do not include a thermal model of the electric motors,
since thermal de-rating is generally not an issue with current-
generation F1 cars. The impact of the gearshifts is also
neglected, since optimizing the gearshift strategy would lead
to a mixed-integer optimization problem [12], [45], which is
computationally intractable for the application at hand. In the
following, we will summarize the modeling equations.

A. Lap time and longitudinal dynamics

Since the path on the race track is given, we formulate
the minimum lap time problem in space domain. The car is
assumed to be a point mass m traveling with velocity v along
the fixed path, parameterized by the independent path distance
variable s ∈ [0,S], where S denotes the length of the path for
a single lap. The objective of the control problem is then to
minimize the lap time T , which can be transformed from time
domain to space domain as follows:

min
∫ T

0
dt = min

∫ S

0

dt
ds

(s) ·ds = min
∫ S

0

1
v(s)

·ds. (14)

By Newton’s second law, the velocity evolves according to the
differential equation

d
ds

v(s) =
1

m · v(s)
·
(
Fp(s)−Fd(s)

)
, (15)

where Fp denotes the propulsive force and Fd the total drag
force acting on the car. Note that we assume the car mass m
to be constant over the course of a lap, neglecting the overall
decrease by ca. 1.5kg stemming from the fuel consumption.
The drag force consists of aerodynamic drag, gravitational
forces acting on the car, and rolling friction:

Fd(s) = Faero(s)+Fgrav(s)+Froll(s). (16)

The modeling of these forces in the context of the F1 car was
described, identified and validated in [5]. The aerodynamic
drag force includes a term that depends on the path curvature
γ(s) of the racing line and is given by

Faero(s) = (cd,0 + cd,1 · γ(s)) · v(s)2, (17)

where cd,0 and cd,1 are parameters that have to be identified
with measurement data. The hill force is

Fgrav(s) = m ·g · sin(θ(s)), (18)

with g = 9.81m/s2 denoting the gravitational constant and
θ(s) the slope. Finally, the rolling friction is given by

Froll(s) = croll ·m ·g · cos(θ(s)), (19)

with the parameter croll subject to identification. The propul-
sive force is related to the propulsive power Pp by

Fp(s) =
Pp(s)
v(s)

. (20)

Since we are optimizing a single lap embedded in a sequence
of laps, we include a velocity periodicity constraint [45],

v(0) = v(S). (21)
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Fig. 3. Schematic representation of the power flows in the F1 powertrain.
The arrows indicate the direction of positive power. Thick arrows illustrate
mechanical power, whilst thin arrows illustrate electrical power (with the
exception of the chemical fuel power).

B. Powertrain model

The power flows that have to be considered within the F1
power unit are depicted schematically in Fig. 3. The effective
propulsive power is the sum of the total PU power Pu delivered
to the rear wheels and the power Pf,fric

brk and Pr,fric
brk dissipated

in the front and rear friction brakes, respectively:

Pp(s) = cs ·Pu(s)−Pf,fric
brk (s)−Pr,fric

brk (s), (22)

where the coefficient cs < 1 models the wheel slip losses [5].
The friction brakes can only dissipate power, hence

Pf,fric
brk (s)≥ 0, Pr,fric

brk (s)≥ 0 (23)

must hold. The engine power Pe and the MGU-K power Pk
add up to the total PU power:

Pu(s) = Pe(s)+Pk(s). (24)

The key input on which the engine power depends is the
chemical fuel power Pf, related to the fuel mass flow ṁf by

Pf(s) = ṁf(s) ·Hlhv (25)

and limited by the regulations [2] to

Pf(s)≥ 0, (26)
Pf(s)≤ 100kg/h ·Hlhv. (27)

We describe the engine power using a Willans model [46] as

Pe(s) = ηe(rwg(s)) ·Pf(s)−Pe,0, (28)

where Pe,0 denotes the engine drag power, and where the
efficiency ηe depends on the waste-gate position rwg, which
influences the engine back-pressure. The MGU-H is assumed
to operate only in generator mode [5]. The power Ph that it
recuperates from the turbocharger compound is modeled by

Ph(s) = ηh(rwg(s)) ·Pf(s)≤ 0. (29)

The waste-gate operation has a large impact on the recu-
peration efficiency ηh and must therefore be considered for
the energy management strategy. The reasons for this are
explained in detail in [47].

Regarding the electrical part of the PU, the power at the
battery terminal is given by

Pb(s) = Pk,dc(s)+Ph,dc(s)+Paux, (30)

where Pk,dc and Ph,dc are the electrical power flows to/from
the MGU-K and MGU-H, respectively, and Paux is a small

auxiliary power. A quadratic model parameterized by a coef-
ficient α is used to capture the losses of the MGUs, as well
as the relationship between Pb and the internal power Pi of the
battery:

Pk,dc(s) = αk ·Pk(s)2 +Pk(s), αk > 0, (31)

Ph,dc(s) = αh ·Ph(s)2 +Ph(s), αh > 0, (32)

Pi(s) = αb ·Pb(s)2 +Pb(s), αb > 0. (33)

Next, we describe the evolution of the fuel energy Ef
consumed over the course of the lap:

d
ds

Ef(s) =
Pf(s)
v(s)

. (34)

The division by the velocity stems from the fact that we are
formulating the differential equation in the space domain rather
than in time domain. The initial and terminal conditions on the
fuel energy are

Ef(0) = 0, (35)
Ef(S) = ∆Ef. (36)

The parameter ∆Ef is the fuel energy allocation for the lap, as
introduced in the minimum race time problem in Section III.

Finally, the battery energy content Eb evolves as

d
ds

Eb(s) =−Pi(s)
v(s)

. (37)

Introducing the parameter Eb,init, the initial and terminal con-
ditions for the battery are

Eb(0) = Eb,init, (38)
Eb(S) = Eb,init +∆Eb, (39)

where ∆Eb is the battery energy allocation for the lap. For
∆Eb > 0, the battery is charged, while for ∆Eb < 0, it is
discharged. Moreover, there are path constraints on the battery
energy, since the difference between the maximum and the
minimum state-of-energy of the battery must not exceed 4MJ
while the car is on track [2]:

Eb(s)≥ 0MJ, (40)
Eb(s)≤ 4MJ. (41)

In the F1 regulations [2], additional limitations on the
allowed boosting and recuperation with the MGU-K are spec-
ified. For the sake of brevity, these are not discussed here, but
nonetheless included in the optimization problem. Interested
readers are again referred to [5].

C. Performance envelope

The performance envelope describes the grip limits of the
car. It constrains the achievable longitudinal acceleration as a
function of the lateral acceleration, and thus has a direct impact
on the lap time. The path on the track, assumed to be known, is
characterized by its curvature γ(s). Hence, following a quasi-
steady-state modeling approach [8], the total lateral force Flat
produced by the four tires of the car results from the formula
for uniform circular movement:

Flat(s) = m · v(s)2 · γ(s). (42)
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Fig. 4. Schematic representation of the performance envelope model given
in (46), (47). As velocity increases, the half-axes that define the upper and
lower half-ellipses grow according to (48), (49), (50). This captures the effect
of the increasing normal force on the tires due to the aerodynamic downforce.

For the performance envelope, we follow the modeling ap-
proach that we previously developed in [20], and which is
akin to a tire friction circle, or to the attainable area in the
so-called g-g diagram [44]. Specifically, we constrain the total
force sustained by the four tires, i.e., the vector combination
of propulsive force Fp and lateral force Flat. We do so by
prescribing a bound consisting of two separate half-ellipses for
acceleration (Fp ≥ 0) and deceleration (Fp < 0), as depicted in
Fig. 4. Ultimately, this performance envelope formulation is
comparable to a quasi-steady-state approach: The longitudinal
dynamics are taken explicitly into account, as described in
Section IV-A, while the lateral dynamics are not modeled.
Whilst in [20], we constrained the combined propulsive and
lateral acceleration, here we re-write the model in terms of
forces. This allows us to capture the effect of different values
for the car mass in a simple manner, as outlined below.

First, we introduce two auxiliary variables that serve to
constrain acceleration and deceleration phases differently, as
described in [20]. Therefore, we split the propulsive force into
a positive and a negative component:

Fp(s) = F+
p (s)+F−

p (s), (43)

F+
p (s)≥ 0, (44)

F−
p (s)≤ 0. (45)

We then specify the following two elliptic constraints, which
limit F+

p and F−
p depending on Flat:

F+
p (s)2

F+
p,max(v)2 +

Flat(s)2

Flat,max(v)2 ≤ 1, (46)

F−
p (s)2

F−
p,max(v)2 +

Flat(s)2

Flat,max(v)2 ≤ 1. (47)

The variables F+
p,max, F−

p,max and Flat,max denote the half-axes
of the ellipses, as shown in Fig. 4, and thus the maximum
force that can be generated by all four tires in the longitudinal
and lateral direction. Regarding the two auxiliary variables,
it was shown in [20] that the optimal solution satisfies the
complementarity condition F+

p (s) · F−
p (s) = 0 whenever the

car is grip-limited, i.e., at the boundary of the upper or
lower half-ellipse. The achievable forces are not constant, but

increase with the velocity, due to the effect of the aerodynamic
downforce generated by the wings, underbody and diffusor
of an F1 car [44]. If we assume a simple friction law [48],
the maximum total tire force is directly proportional to the
normal force acting on the tires, which is the sum of the
aerodynamic downforce and the car’s weight. The downforce
is zero for v = 0 and can be modeled as a quadratic function
of velocity [44], whilst the car’s weight is assumed to be
constant during the lap, as previously explained. Combining
these considerations, we propose to approximate the velocity
dependency of the maximum lateral force as follows:

Flat,max(v) = c1 · v(s)2 + c2 · v(s)︸ ︷︷ ︸
aerodynamic

+ c3 ·
m

mnom︸ ︷︷ ︸
weight

, (48)

where c1,c2,c3 are fitting parameters subject to identification.
Our simplified approach does not include four individual tire
modeling equations, nor does it explicitly model the impact of
quantities such as slip angle, longitudinal slip ratio, camber,
load transfer, or load sensitivity of the tire friction coeffi-
cients [44]. However, following the method proposed in [20],
we directly identify the parameters in (48) with measured
acceleration data from a representative lap. Specifically, we use
Newton’s second law and relate force to acceleration to obtain
a fit for the maximum lateral force. This procedure implicitly
considers the aforementioned quantities and is sufficiently
accurate for the purposes of energy management optimization.
Multiplying c3 with m/mnom, where mnom is the nominal car mass
for which the parameters were identified, allows us to scale
the performance envelope depending on the specified mass m
without re-identifying the parameters. The scaling is physically
meaningful, since it only affects the weight-dependent compo-
nent of the maximum tire force. We will validate this simple
mass sensitivity model in Section V. Finally, the maximum
longitudinal forces are modeled identical to (48) by

F+
p,max(v) = d+

1 · v(s)2 +d+
2 · v(s)+d+

3 · m
mnom

, (49)

F−
p,max(v) = d−

1 · v(s)2 +d−
2 · v(s)+d−

3 · m
mnom

, (50)

where d+
1 ,d+

2 ,d+
3 ,d−

1 ,d−
2 ,d−

3 are again parameters subject to
identification.

D. Brake-by-wire

Modern F1 cars are equipped with a brake-by-wire system
that seamlessly balances the power of the friction brakes with
the MGU-K recuperation set by the PU control to enable the
driver to brake at the limit [2]. In order to achieve this, a brake
balance constraint between the front and rear axles must be
respected. The constant ktot

bb prescribes the ratio between the
total rear and front braking power as

ktot
bb =

−Pr,fric
brk (s)+Pk(s)+Pe(s)+Pe,0

−Pf,fric
brk (s)

. (51)

Indeed, the braking power on the front axle stems only from
the friction brakes, whereas for the rear axle the PU power
must also be taken into account, corrected by the engine
drag Pe,0. (The latter is a separate tuning parameter for the
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car’s handling behavior.) The minus sign is due to the fact
that the friction brake power is positive, whilst the MGU-
K recuperation power is negative. The brake balance ratio is
usually set to a value ≈ 1, but can be modified by the driver
within certain limits with a switch on the steering wheel, to
fine-tune the set-up of the car. We neglect this effect and
assume a constant ktot

bb . Since (51) must hold only when the
driver presses the brake pedal, i.e., when the friction brakes
are activated, we reformulate the constraint to

(Pe(s)+Pe,0)+Pk(s)−Pr,fric
brk (s) =−ktot

bb ·P
f,fric
brk (s)+ε(s), (52)

where we introduce the slack variable

ε(s)≥ 0 (53)

subject to the complementarity constraint(
Pf,fric

brk (s)+Pr,fric
brk (s)

)
· ε(s) = 0. (54)

With these provisions, positive PU power can be delivered
to the rear axle when the friction brakes power is zero,
without violating the brake balance constraint: Indeed, if
Pf,fric

brk = Pr,fric
brk = 0, then ε ≥ 0 by (53), (54) and thus (52)

yields Pe +Pe,0 +Pk = ε ≥ 0. The addition of the term Pe,0 in
(52) also makes it possible to choose Pe =−Pe,0 and Pk = 0,
corresponding to the ‘lift and coast’ operation where neither
throttle nor brake pedal are pressed and only the engine drag
is acting on the drivetrain. If the friction brakes are active,
i.e., Pf,fric

brk +Pr,fric
brk > 0, then ε = 0 by (54) and from (52) the

original brake balance constraint (51) is retrieved.
Additionally, there is a mechanical brake balance constraint

stemming from the hydraulic brake circuit, defined by the
constant kfric

bb and modeled as

Pf,fric
brk (s)≥ kfric

bb ·Pr,fric
brk (s). (55)

It is important to include the brake balance constraints, since
they limit the MGU-K recuperation power in certain phases of
the braking maneuver, but also the amount of fuel that can be
burned during braking. Turning on the engine while braking is
a technique that can be exploited if one wishes to consume an
excess of fuel in a given lap in order to render the car lighter.

E. Minimum lap time control problem
With these preparations, the minimum lap time problem for

a single lap can be formulated in the form of an NLP:

Problem 2. The optimal energy management strategy for a
single lap is the solution of

min
Pf,Pk,rwg,P

f,fric
brk ,Pr,fric

brk ,ε

∫ S

0

1
v(s)

·ds

subject to the following constraints ∀s ∈ [0,S]:

Longitudinal dynamics: (15)− (21),
Powertrain model: (22)− (24), (26)− (41)
Performance envelope: (42)− (50)
Brake-by-wire: (51)− (55).

Special scenarios like, e.g., pit stops can be modeled by
slightly modifying Problem 2. We give a brief description of
the modifications in Appendix A.

Fig. 5. Solution of Problem 2 for two different scenarios: ‘Light and plenty
of energy’ with {∆Ef = 78.1MJ,∆Eb =−1MJ,m = 760kg}, and ‘Heavy and
little energy’ with {∆Ef = 70MJ,∆Eb = 0MJ,m = 860kg}. The different
energy allocation causes drastic changes in the energy management strategy,
whilst the difference in vehicle mass results in different cornering speeds
and acceleration capabilities, as shown by the zoom-in excerpt. Corners and
braking zones are indicated by a gray background, straights by a white one.
The bottom subplot shows the accumulated lap time difference.

F. Single-lap solution

The results shown in this paper are all for the Bahrain
International Circuit. For reasons of confidentiality, some data
has been normalized in the plots. Problem 2 is discretized
with the Runge-Kutta-4 method and then implemented in
MATLAB as a multiple-shooting problem [49], [50] using the
symbolic framework CasADi [51] and solved with the interior-
point solver IPOPT [52]. With a spatial discretization step of
∆s = 5m, parsing and solving the problem takes around 15 s
on a standard consumer laptop with a 4 GHz processor.

As an example, in Fig. 5, we show the solution of Problem 2
for two different combinations of fuel/battery energy allocation
and car mass. All other parameters are identical. We can
appreciate the effect of constraint (21), which leads to velocity
trajectories that are periodic with respect to the start/finish
line. Two things become apparent: First, if a smaller quantity
of fuel is available, the engine must be turned off at the end
of the straights in order to save fuel. Second, if the battery
can be discharged, more electric boosting is available on the
straights and the MGU-K is operated at full power during
larger portions of the lap. Third, if the car is lighter, it gains
and sheds speed faster and can also sustain a higher velocity in
the corners, due to the fact that Flat,max in (48) is not directly
proportional to m. Clearly, the second scenario with a smaller
energy allocation and a heavier car yields a significantly higher
lap time - the difference is roughly 5 s (with a lap time of
roughly 101 s).

In Fig. 6, we show the solution for three laps with the same
battery charge target ∆Eb =+1MJ, but different initial battery
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Fig. 6. Solution of Problem 2 for three different values of initial battery
energy Eb,init. The energy management strategy for the 1 MJ and 2 MJ cases
is identical, whilst it differs for the 3 MJ case due to the battery path constraint
(41) becoming active, as the upper bound is hit. The bottom subplot shows
the accumulated lap time difference.

energy levels. For the cases of 1 MJ and 2 MJ, the energy
management strategy is literally identical, as the battery energy
trajectory is simply shifted1. Conversely, with a high initial
battery energy content of 3 MJ, the operating strategy of the
MGU-K has to be altered as the battery path constraint (41)
becomes active three times towards the end of the lap. Hence,
less electric boosting is available on the last straight, and lap
time increases by almost 0.15 s compared to the other two
cases. This is significant in the context of circuit racing in
general and F1 in particular, confirming that we must take
this effect into account. More information on this can be found
in [53], [54].

V. LAP TIME MAPS

Next we describe how to condense the aforementioned
trends into lap time maps as a function of the key parame-
ters fuel and battery energy allocation, car mass and initial
battery energy. By solving Problem 2 for different values of
{∆Ef,∆Eb,m,Eb,init}, the optimal lap time for combinations of
these features can be obtained. Our goal is to find a suitable
fit of this data in the form of a track-specific lap time map M ,
represented by feedforward ANNs:

Tlap = M (∆Ef,∆Eb,m,Eb,init) (56)

Since the five-dimensional space spanned by lap time as a
function of the four features cannot be represented graphically,
we show three- and two-dimensional plots of different trends
in this section. In total, we generate 17880 data points. The

1Note that none of the state dynamics in the optimal control problem depend
on Eb, hence the absolute level does not make any difference, as long as the
0 MJ and 4 MJ bounds on the battery energy are not hit.

Fig. 7. Map for nominal lap time Tlap,nom as a function of fuel and battery
energy allocation, represented for a fixed car mass m. The data is obtained
by solving Problem 2 without the battery path constraints (40), (41), i.e.,
assuming a battery of infinite size. The ANN fit corresponds to (58).

Fig. 8. Detailed view of nominal lap time as a function of fuel allocation,
for a fixed car mass m and battery energy allocation ∆Eb. The fit with two
ANNs N1 and N2 as proposed in (58) is shown. The view corresponds to a
cross-section of Fig. 7 in the ∆Ef/Tlap,nom plane at ∆Eb = 0MJ.

data is densely spaced for feature values which, from experi-
ence, are relevant in many practical race scenarios, and more
scarcely distributed in other regions. It covers the complete
possible range of features. This is important, since ANNs as
a regression tool perform well when interpolating, but rather
less so when extrapolating beyond the range of features on
which they were trained [55].

Starting from (56), we subdivide the lap time into two com-
ponents: the nominal lap time Tlap,nom, fitted to data obtained
by solving Problem 2 without the battery path constraints (40),
(41), and a correction term ∆Tlap,b that models the lap time
increase when the battery energy bounds are hit during a lap:

Tlap = Tlap,nom(∆Ef,∆Eb,m)+∆Tlap,b(Eb,init,∆Eb). (57)

When directly fitting the lap time to all four features at once,
we saw overfitting effects that heavily influenced the solution
of Problem 1. Moreover, the penalty incurred due to the battery
bounds is almost independent of ∆Ef and m. Hence we propose
the additive separation approach (57).
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Fig. 9. Nominal lap time as a function of the car mass m, for a fixed battery
and fuel energy allocation ∆Ef and ∆Eb.

An excerpt of the generated data for the nominal lap time
is displayed in Fig. 7, for a fixed car mass. Generally, the
more the battery can be discharged, and the more fuel can
be used, the lower the lap time. However, if an overly large
quantity of fuel has to be burned, this is not true anymore.
We visualize this phenomenon more explicitly in Fig. 8. For
fuel allocation values ∆Ef > 105%, the lap time increases
drastically. At this point, the energy management strategy in
terms of fuel deployment is already as aggressive as it can
be and the quantity of fuel that can be burned by keeping
the engine running during braking maneuvers is limited by
the brake balance constraints (see Section IV-D). However,
the fuel allocation has to be completely used up by the end
of the lap, due to the equality constraint (36). The optimal
solution thus compromises lap time in order to fulfill the fuel
constraint, e.g., by delaying the MGU-K power deployment
to achieve a lower velocity on the straights, meaning that
more time passes during which fuel can be burnt. In practice,
besides fully exploiting the brake balance to burn fuel, the
engine operation could be altered towards lower efficiency, for
example by ignition retardation. The complex mathematical
descriptions of the engine that are necessary to capture this
effect [12] are computationally intractable for the high-level
application at hand (optimizing a single lap takes several
hours). We therefore do not consider the effect of ignition
retardation here.

The dependency of the nominal lap time on car mass is
shown in Fig. 9, for a fixed energy allocation. The trend is
almost linear. The averaged mass sensitivity values inferred
from the data are given in Table I for the Bahrain circuit
and, in addition, for the Spa-Francorchamps circuit, which is
by far the longest in the F1 calendar. As one would have
expected intuitively, the sensitivity is higher for the longer
circuit. Moreover, the obtained value for Bahrain is similar to
the ones mentioned in literature for F1 cars (0.040 s/kg in [33],
0.033 s/kg in [34], and 0.030 s/kg in [56]). For the intended
purpose, this validates the model described in Section IV.

TABLE I
SENSITIVITY OF LAP TIME W.R.T. CAR MASS

Circuit Length Sensitivity

Bahrain 5412 m 0.0351 s/kg
Spa-Francorchamps 7004 m 0.0528 s/kg

Fig. 10. Lap time as a function of Eb,init, for a fixed car mass m and battery and
fuel energy allocation. The plot shows the data obtained by solving Problem 2
with the battery path constraints (40), (41). The fit consists of the nominal
lap time augmented by the affine correction described in (59), (60).

We fit the nominal lap time using two ANNs N1 and N2
in the following manner:

Tlap,nom = max{N1(∆Ef,∆Eb,m),N2(∆Ef,∆Eb,m)}. (58)

Each ANN consists of 1 layer with 20 neurons and uses the
tanh activation function, making it a continuous and differ-
entiable function. The structure of the ANNs is as described
in [12]. We use the Deep Learning Toolbox of MATLAB to
train and implement the ANNs. The data points are randomly
partitioned, with 75 % of the points used for training and
25 % for validation. The resulting fit can be appreciated in
Figures 7, 8 and 9. Indeed, the two ANNs serve to fit the two
‘branches’ of the lap time trend, as is shown in Fig. 8: N1
is used for the decreasing trend, where more fuel equals to a
reduction in lap time, whilst N2 fits the region where lap time
increases because burning all the fuel requires measures that
are detrimental to lap time. We propose the split approach (58)
for the following reason: When experimenting with a single
ANN to fit Tlap,nom, we observed very small ‘ripples’ in the
flat part of the lap time map (values of ∆Ef between 95 % and
105 % in Fig. 8). The solution of Problem 1 then exploited
these local lap time minima, which were caused by the fit
and did not reflect the data trends. Fitting two separate ANNs
resolved this issue.

An excerpt of the data obtained by solving Problem 2
including the battery path constraints is shown in Fig. 10.
As can be seen in the top left and bottom right subplots, if
the initial battery energy content Eb,init is close to the upper
or lower limit, the lap time deviates substantially from the
nominal lap time with the same battery energy allocation
∆Eb,1. In the top right subplot, the range of feasible values
for Eb,init only spans up to 2 MJ. For higher Eb,init, the battery
energy at the end of the lap would exceed the maximum value
of 4 MJ, given that the charge target for these data points is
∆Eb,2 = 2MJ. Analogously, regarding the data points in the
bottom left subplot, the lowest feasible value is Eb,init = 2MJ,
given that the battery must be discharged by ∆Eb,3 =−2MJ.
In this scenario and on this particular racetrack, the battery
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only becomes empty at the very end of the lap, such that no
lap time deterioration is incurred.

We observed that fitting these trends with a regressor
resulted in an underestimation of the lap time increase for
some of the data points. The solution of Problem 1 then lay too
close to the battery bounds in some laps, as the optimizer was
‘unaware’ of the lap time penalty that its strategy would incur.
Further analysis revealed that the data points affected by the
battery energy limits form clusters that can be separated from
the points with nominal lap time. We therefore propose to use
a classifier to capture the impact of the battery energy limits.
For the sake of brevity, we only give a short summary of the
procedure: We describe the effect of the lower and the upper
battery energy limit with two correction terms ∆Tlap,b,lower and
∆Tlap,b,upper, which are an affine function of Eb,init:

∆Tlap,b,lower = κlower ·Eb,init +ζlower(∆Eb), (59)
∆Tlap,b,upper = κupper ·Eb,init +ζupper(∆Eb). (60)

Whilst κlower, κupper are constants, the offset terms ζlower, ζupper
depend on ∆Eb. For reasons of computational tractability, we
neglect the small influence of the fuel energy allocation and
the car mass on the lap time correction term. The parameters
κx and ζx, with x ∈ {lower,upper}, describe a linear Support
Vector Machine (SVM) [57] that separates the data points
in the Eb,init/∆Tlap,b,x plane into two categories: Those that
are affected by the battery energy path constraints, and those
that are not, i.e., whose lap time is equal to Tlap,nom. The
SVMs are derived from a maximum margin formulation and
are trained using the hinge loss function [58]. By applying
different weights to the data points in the loss function, we
can fine-tune the behavior, as will be explained below. The
dependency of ζx on ∆Eb is again fitted with two ANNs:

ζx = Nx(∆Eb) for x ∈ {lower,upper}. (61)

Finally, we combine (59) and (60) to formulate the correction
term accounting for the battery path constraints as

∆Tlap,b = max{0,∆Tlap,b,lower(Eb,init,∆Eb),

∆Tlap,b,upper(Eb,init,∆Eb)}.
(62)

Its effect on the lap time map can be seen in Fig. 10. In
the SVM loss function, we weighted the data points affected
by the battery energy limits more than those unaffected. The
identified parameters for (59), (60) thus result in a very con-
servative correction term, overestimating the lap time increase.
In Problem 1, it provides an incentive to operate the battery at
a reasonable distance from its energy bounds. During a race,
such a behavior is desirable from a robustness point of view.
Regarding the bottom left subplot, we note that the correction
term only applies in the infeasible region. It will thus not
impact the solution of Problem 1, since these combinations
{Eb,init,∆Eb,3} are inadmissible by virtue of the constraints
(10), (11).

In terms of fitting quality, for the nominal lap time com-
ponent the root mean square error with respect to the data
obtained by solving Problem 2 is 0.063 s, or 0.06 % (with
respect to the mean lap time in the data). For the complete lap
time map including the data points affected by the battery path

constraints, the root mean square error is 0.272 s, or 0.28 %.
The higher deviation is due to the conservative correction term
∆Tlap,b. Overall, the precision of the fitted lap time map M is
satisfying. Most importantly, it captures the trends correctly,
making it suitable for use in Problem 1.

Regarding the implementation of (2) in the NLP framework
of Problem 1, we relax the non-smooth expressions to inequal-
ity constraints, i.e., for (58), we implement

Tlap,nom ≥ N1(∆Ef,∆Eb,m),

Tlap,nom ≥ N2(∆Ef,∆Eb,m),
(63)

and we proceed similarly for (62) by implementing

∆Tlap,b ≥ 0,
∆Tlap,b ≥ ∆Tlap,b,lower(Eb,init,∆Eb),

∆Tlap,b ≥ ∆Tlap,b,upper(Eb,init,∆Eb).

(64)

Combining (57) with (63) and (64) is identical to writing

Tlap ≥ M (∆Ef,∆Eb,m,Eb,init). (65)

Since the objective (1) is to minimize the sum of lap times,
(65) will hold with equality in the optimal solution.

VI. RESULTS

In this section, we discuss the results obtained by solving
Problem 1 with the maps generated in Section V. First, we
validate the approach of separating the minimum-race-time
problem from the single-lap energy management problem,
followed by a critical discussion of the computational time.
Second, we compare the optimal energy allocation solution to
a simple heuristic strategy. Third, we show how the optimiza-
tion framework can be used to determine the optimal fuel load
to be put into the car at the start of a race. Fourth, we leverage
Problem 1 for online control during a race by implementing
it as an MPC.

For all the following comparisons, the lap times Tlap as-
sociated with the energy allocation strategies are not simply
taken from the lap time maps, but are rather computed in
post-processing by evaluating Problem 2 for each lap i of the
race with the obtained {∆Ef[i],∆Eb[i],m[i],Eb,init[i]}. This is
important, since a comparison of lap times and total race times
calculated from the lap time maps might be falsified by the im-
precision of the fits, leading to wrong conclusions. Conversely,
evaluating the optimal lap times using Problem 2 enables a fair
comparison of different energy allocation strategies.

To compare two different strategies x and y, we define for
each lap i the difference in total car mass

∆m[i] = my[i]−mx[i], (66)

(reflecting how the different fuel energy allocation affects the
car mass), the difference in lap time

∆Tlap[i] = Tlap,y[i]−Tlap,x[i], (67)

and the accumulated difference in total race time

∆Trace[i] =
i−1

∑
j=1

Tlap,y[ j]−Tlap,x[ j]. (68)
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Fig. 11. Validation of the minimum-race-time approach formulated in
Problem 1 by comparing it with the benchmark solution obtained by solving
Problem 2 not only for a single lap, but for an entire race distance. In the three
bottom plots, the differences are defined as ∆ := Benchmark−Problem1.

The presented results are for the Bahrain International Cir-
cuit, where a F1 race covers N = 57 laps and typically lasts for
Trace ≈ 1.5hours. Problem 1 is implemented in MATLAB using
CasADi and solved with IPOPT. For the sake of simplicity, we
neglect the effect of the race start in our case studies and use
the standard lap time map with the periodicity constraint (21)
also in lap 1. A standing start could be considered with a
specific lap time map for that scenario.

A. Validation of the optimization approach

Before discussing the strategies obtained by solving Prob-
lem 1, we must verify that the lap-by-lap discretization and
the reliance on lap time maps that are subject to some fitting
imprecision do not affect the optimality of the solution. A
straightforward alternative way of computing a benchmark
solution consists in solving Problem 2 not only for a single
lap, but over an entire race distance, with the path variable
s ∈ [0,Srace] and Srace = N · S. Due to the precise modeling
equations and the finely resolved spatial discretization, this
approach is much more precise, but at the expense of computa-
tional tractability. Indeed, for ∆s = 5m the solver did not even
converge. To reduce the number of optimization variables, the
step size had to be increased to 10 m, and the brake balance
constraints presented in Section IV-D had to be removed. For
one carefully chosen scenario, we then managed to obtain a
sensible benchmark solution.

The comparison with the solution of Problem 1 is shown in
Fig. 11. The two strategies in terms of fuel and battery energy
allocation are almost identical, and the resulting difference
in car mass is negligible. It can be seen that the solution of
Problem 1 settles at a lower battery energy between lap 5
and 40. This is due to the conservative correction term ∆Tlap,b
in the lap time maps, which penalizes an operation close to
the battery bounds. In the benchmark problem, the impact

of the battery energy bounds is captured exactly, which is
exploited in the solution. Despite this effect, the differences in
lap time are small (mostly less than 10 ms) and the advantage
of the benchmark solution regarding the total race time is
only 36 ms. Hence, the lap-by-lap discretization and the maps
that form the basis of our minimum-race-time problem do not
incur any noteworthy sub-optimality, thereby validating the
proposed approach.

B. Discussion of the computational time

The computational time for solving Problem 1 was roughly
1 s on a standard consumer laptop with a 4 GHz processor,
whilst computing the benchmark solution took more than one
hour. Moreover, solving the problem with the benchmark ap-
proach is numerically unstable, generally fails and only works
with simplifications for very specific scenarios. However,
Problem 1 also comes with a drawback. Whilst the training of
the ANNs for the lap time maps takes less than 2 minutes, the
generation of the data points is computationally expensive.
Solving multiple instances of Problem 2 can be done using
parallel computing, but it still took roughly 20 hours on 4
processor cores to generate the 17880 data points required.
Thus, our approach shifts the computational bottleneck from
solving the minimum-race-time problem to creating the lap
time maps. We deem this advantageous for two reasons:
First, the method is much more robust and reliable than
the benchmark approach discussed in the previous section.
Second, once the lap time maps are generated (which can be
done off-line before a race weekend), Problem 1 can be solved
with great ease to investigate different race scenarios, conduct
case studies, such as in Section VI-D, and even for online
control during a race, as in Section VI-E. The benchmark
approach of Section VI-A is intractable for such applications.

C. Optimal solution vs. heuristic strategy

Next, we compare the solution of Problem 1 to a heuristic
strategy, in order to understand the potential in terms of
race time and to analyze some characteristic features of the
optimal strategy. For the sake of simplicity and to facilitate
the interpretation of the results, we do not consider pit stops
in this case study. The heuristic strategy is a simple approach
that one might choose if no optimization tools whatsoever are
at disposal: Both the available fuel and the battery energy are
distributed equally over the entire race, i.e.,

∆Ef[i] =
mf ·Hlhv

N
∀ i,

∆Eb[i] =
4MJ

N
∀ i.

(69)

This means that the allocated energy is the same in each lap.
The comparison is shown in Fig. 12. Regarding the fuel

allocation, it is optimal to use relatively more fuel at the
beginning of the race and relatively less fuel towards the end.
This means that it is advantageous to render the car lighter
at an earlier stage of the race. The allocated fuel energy of
∆Ef ≈ 105% in the first five laps corresponds to the maximum
amount of fuel that can be consumed without incurring a lap
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Fig. 12. Comparison between the optimal energy allocation strategy obtained
as a solution to Problem 1 and a heuristic strategy. The latter consists in
allocating the same battery and fuel energy to every lap of the race. In the
three bottom plots, the differences are defined as ∆ := Heuristic−Problem1.

time increase, as shown in Fig. 7 and Fig. 8. As one could
expect intuitively, it is not optimal to penalize lap time in
order to waste fuel. The optimal battery allocation strategy
also strongly differs from the heuristic: The battery is quickly
depleted to an energy content of roughly 3 MJ in lap 5. At
this level, the operation is not affected by the battery energy
bounds anymore. From there on, the optimal strategy consists
in a charge-sustaining operation until lap 36, and afterwards,
it is slowly discharged. The discharge strategy is such that not
even the last lap is affected by the battery energy bounds, and
thus not compromises lap time. At the beginning of the race,
a lot of lap time is lost with the heuristic strategy because
the battery energy bounds constrain the power unit operation.
After lap 23, lap times are still higher, even though the fuel
and battery energy allocated in these laps is larger than in
the optimal solution. This occurs because the car is lighter
with the optimal fuel allocation strategy, as is evidenced by
the difference in car mass, which is more than 1 kg at this
stage of the race. Only towards the end of the race does the
heuristic strategy gain some time, but it does not make up
for the losses incurred previously. The advantage in terms of
total race time of the optimal strategy accumulates to over
2 s, or 35 ms per lap on average. Considering that the overall
energy consumption is identical and that the PU operation
within each lap is optimal in both scenarios, the difference
stems solely from a different allocation of the energy over the
race. Therefore, the improvement is significant.

D. Determining the optimal fuel load

One important parameter which race strategy engineers have
to define before the start of the race is the amount of fuel that
is put into the car. There is a trade-off at play: Filling the
tank with less fuel renders the car lighter and thus faster, but
PU operation might be compromised and the driver might be

Fig. 13. Total race time computed by solving Problem 1 as a function of the
fuel load at the start of the race. The trade-off between mass of the car and
restrictions on PU operation is clearly visible. For reasons of confidentiality,
mf and Trace have been normalized, with 100 % denoting the optimal values.

forced to save fuel by lifting the throttle pedal at the end of
the straights (‘lift-and-coast’). Vice-versa, filling the tank with
more fuel results in a heavier and thus slower car, but no
fuel saving is required. The proposed optimization framework
can be used to determine the optimal fuel load and thereby
assist the decision process. To this end, Problem 1 is solved
for a sweep of different fuel load values mf. This is done
easily, given that the procedure is computationally tractable.
Fig. 13 shows the optimal race time as a function of mf. The
trade-off described above is well visible. For this particular
car and circuit, deviating from the optimal fuel load by ±5%
increases total race time by circa 0.05 %, which is in the order
of several seconds and thus substantial. Conversely, the trade-
off behavior closely around the optimum value is very flat,
meaning that a slight mismatch in fuel load does not entail a
large performance loss.

E. Online application in the form of an MPC

In our final case study, we show how the presented opti-
mization framework can be leveraged to update the energy
allocation strategy online during a race. This is necessary in
the case of events such as pit stops or overtake maneuvers.
During a pit stop, the driver goes through the pit lane, where
he must adhere to a speed limit. Since the pit lane runs parallel
to the start-finish straight, this affects the energy management
and the achievable lap time in the lap before the pit stop
(‘in-lap’) and in the one after the pit stop (‘out-lap’). Thus,
special lap time maps Min-lap and Mout-lap have to be used
for the concerned laps in the energy allocation optimization.
Details on the modeling of the pit stop scenario are given in
Appendix A. Another disturbance that can realistically occur
during a race is an overtake maneuver. In order to pass an
opponent, the driver chooses a higher fuel and battery energy
allocation than planned and thereby achieves a higher velocity
on the straights, increasing his chances to overtake. If, for
instance, the battery is completely depleted afterwards, the
energy allocation strategy must be adapted for the remainder
of the race.

We slightly modify Problem 1, such that in lap k, it can be
solved over the remaining race laps i ∈ {k, . . . ,N}, starting
from the measured battery and fuel energy Ef,measured and
Eb,measured, and based on the available information regarding
the applicable lap time maps. This yields:
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Fig. 14. Online case study for a race with two pit stops (between laps 10-11
and laps 35-36, marked by the dashed line), followed by a battle for position
in laps 45-46 (shaded in gray), during which the driver chooses to use more
fuel and deplete the battery almost completely. The simulation results with the
shrinking-horizon MPC controller are compared to the non-causal solution,
which is obtained by solving Problem 1 with perfect knowledge of the pit stops
and overtake maneuver. For the two bottom plots, ∆ := Non-causal−MPC.

Problem 3. Assuming that at the start of lap k, the total
fuel energy consumption Ef,measured and the battery energy
level Eb,measured are measured, the optimal energy allocation
strategy for the remainder of the race is the solution of

min
∆Ef,∆Eb

N

∑
i=k

Tlap[i]

subject to the following constraints ∀i ∈ {k, . . . ,N}:

Lap time: (2), Mi = Min/out-lap for i ∈ {in/out-lap}
Fuel: Ef[k] = Ef,measured, (3), (4), (6),
Battery: Eb[k] = Eb,measured, (7), (9), (10), (11),

Car mass: m[k] = mcar +mf −
Ef,measured

Hlhv
, (12), (13).

Solving Problem 3 in each lap k ∈ {1, . . . ,N} of the race
and applying the energy allocations ∆Ef[k] and ∆Eb[k] obtained
for the first lap of the control horizon leads to a so-called
shrinking-horizon MPC [59], [60].

Fig. 14 shows the simulation results with the proposed
causal MPC implementation and compares them to the op-
timal, non-causal strategy obtained by solving Problem 1. The
total energy consumption is the same in both cases. Our case
study features two pit stops occurring between laps 10-11
and laps 35-36, respectively, as well as a disturbance in the
form of an overtake maneuver in laps 45-46. The non-causal
solution is obtained with perfect a priori knowledge of the
laps affected by the pit stops and the overtake maneuver. The
MPC, on the other hand, is informed of the pit stops only
at the start of the respective in-lap and is unaware of the
overtake maneuver, during which its outputs for ∆Ef and ∆Eb

are overwritten. It only ‘detects’ the overtake a posteriori via
the measurements Ef,measured, Eb,measured when standard MPC
operation is resumed at the start of lap 47, and it reacts by
recharging the battery during that lap.

It is apparent that the causal and the non-causal strategy are
very similar. The difference in total race time only amounts
to about 0.1s in favor of the non-causal solution. We observe
that the laps affected by the pit stops require a very particular
energy allocation: The fuel consumption in the in-lap is
markedly lower than normal, as the car slows down at the end
of the lap and drives through the pit lane at the prescribed
speed limit. By contrast, in the out-lap, more fuel has to be
consumed, because the car has to accelerate towards the first
corner from a very low velocity after exiting the pit lane.
The battery is substantially recharged while traversing the pit
lane at constant speed, via load-point shifting of the engine.
This is visible both in the in-lap and in the out-lap, since
the pit lane passage affects both laps. The small differences
between the MPC and the non-causal strategy stem from the
fact that the non-causal strategy can ‘prepare’ for the pit stops.
This is best explained by looking at the battery energy Eb in
laps 30-35: Given the knowledge that a pit stop will occur,
it is optimal to deplete the battery somewhat, since it can be
recharged in the pit lane. The MPC cannot plan this, since it
does not know that a pit stop is coming. Instead, it prescribes
a charge-sustaining trajectory, which would be optimal in a
race without pit stops (compare Fig. 12). During the overtake
maneuver, a similar effect is noticed. The causal MPC has
started to gradually discharge the battery, whereas the non-
causal strategy, knowing that an overtake with strong battery
depletion will occur, keeps the battery energy at a higher level.
The MPC strategy therefore recharges the battery by 0.5 MJ
after the overtake, which brings the battery energy back to the
optimal level for the remaining laps, but causes a lap time loss
of 0.15 s compared to the non-causal strategy in lap 47.

Overall, the sub-optimality incurred by reacting to such
events in a causal manner is very small, highlighting that the
proposed race optimization works well in an MPC context
and reacts adequately to disturbances. The results also indicate
that it is important to implement an energy allocation strategy
that captures the general trends observed in Fig. 12. An
optimization-based re-planning can be carried out in the case
of unforeseen events, e.g., with the proposed MPC, without
markedly penalizing the total race time.

VII. CONCLUSION

In this paper, we have presented an optimization framework
that solves the minimum-race-time problem for the hybrid-
electric F1 race car based on a lap-by-lap discretization,
by separating it from the single-lap optimization problem
through the use of lap time maps. We benchmarked the
obtained solution with the strategy directly computed based
on the detailed model, without relying on lap time maps.
This highlighted the precision of our ANN-based map fitting
approach, as well as the computational efficiency of the lap-
by-lap optimization framework. A comparison to a heuristic
strategy underlined the importance of carefully choosing the
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energy allocation during a race: Just by optimizing the amount
of fuel and battery energy used in each lap, the total race time
could be improved by 2 s. Whilst this gain was found for a
simplified race scenario without any pit stops or competitor
interaction, the comparison clearly highlighted the trade-offs
at play and demonstrated the potential of the approach. Two
different case studies displayed possible applications of the
proposed framework. First, it can be used to determine the
optimal fuel load at the start of the race. We found that
closely around the optimal value, the sensitivity of total race
time towards the fuel load is small. However, slightly larger
deviations of ±5% from the optimal fuel load increase total
race time by several seconds, underlining the importance
of optimizing this strategic parameter. Second, due to its
computational tractability, the framework can be used as an
MPC with only minor modifications. Our results showed that
it reacts in a close-to-optimal fashion to common disturbances
that can occur during a race.

Further research could focus on integrating a suitable tire
degradation model in the optimization framework. Given that
the tire degradation also depends on the vehicle mass, this
might yield interesting cross-couplings and amplify the impact
of the fuel allocation. Moreover, the MPC formulation could
be extended towards stochastic models for, e.g., the probability
of competitor interaction or a pit stop event. Lastly, it could
be of interest for racing teams to combine the framework with
pit stop and tire strategy simulation and optimization tools.
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APPENDIX

A. Modeling of pit stops

By making a pit stop during a race, a driver can get new
tires fitted [4]. The driver enters the pit lane, which normally
runs parallel to the main straight of the track, and stops in front
of her/his team’s garage. The crew members then change all
four tires in roughly 2.5 s and the driver departs again. A pit
stop therefore consists of the so-called ‘in-lap’, towards the
end of which the car enters the pit lane, and the ‘out-lap’,
whose first part is not driven on the main straight, but still
in the pit lane, until regaining the race track. In the pit lane,
the driver must respect a speed limit vmax,pit, usually 80 km/h.
For the proof-of-concept of our approach, and due to a lack
of data, we do not model the different path taken to enter the
pit garage, and we also neglect the fact that the car comes to a
halt and remains briefly stationary. We only take into account
the speed limit by imposing it as an additional constraint to
Problem 2 on the part of the main straight that runs parallel
to the pit lane:

In-lap: v(s)≤ vmax,pit ∀s ∈ [spit,entry,S]. (70)
Out-lap: v(s)≤ vmax,pit ∀s ∈ [0,spit,exit]. (71)

With the corresponding additional constraint, Problem 2 can
be solved for the in- or out-lap case, allowing to create specific

lap time maps Min-lap and Mout-lap for the pit stop scenario
by applying the method outlined in Section V. These can then
be used in the race optimization given by Problem 1 or in the
MPC approach described in Problem 3 for the laps where a
pit stop is scheduled.
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