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Optimal Thermal Management, Charging, and
Eco-driving of Battery Electric Vehicles

Ahad Hamednia, Nikolce Murgovski, Jonas Fredriksson, Jimmy Forsman, Mitra Pourabdollah, and Viktor Larsson

Abstract—This paper addresses optimal battery thermal man-
agement (BTM), charging, and eco-driving of a battery electric
vehicle (BEV) with the goal of improving its grid-to-meter energy
efficiency. Thus, an optimisation problem is formulated, aiming
at finding the optimal trade-off between trip time and charging
cost. The formulated problem is then transformed into a hybrid
dynamical system, where the dynamics in driving and charging
modes are modeled with different functions and with different
state and control vectors. Moreover, to improve computational
efficiency, we propose modelling the driving dynamics in a spatial
domain, where decisions are made along the traveled distance.
Charging dynamics are modeled in a temporal domain, where
decisions are made along a normalized charging time. The actual
charging time is modeled as a scalar variable that is optimized
simultaneously with the optimal state and control trajectories,
for both charging and driving modes. The performance of the
proposed algorithm is assessed over a road with a hilly terrain,
where two charging possibilities are considered along the driving
route. According to the results, trip time including driving and
charging times, is reduced by 44%, compared to a case without
battery active heating/cooling.

Index Terms—Eco-driving, battery thermal management,
charging, grid-to-meter energy efficiency, hybrid dynamical sys-
tem

I. INTRODUCTION

ELECTRIC vehicles (EVs) have recently emerged as a
leading technology to fulfill the increasingly stringent

legislation against greenhouse gas emissions, and to counteract
combustion engine vehicles’ associated drawbacks, such as
air pollution, climate change, high operating and maintenance
costs, and recent high oil price [1]. These issues as well as
recent advances in battery technology propel vehicle manu-
facturers towards electromobility, aiming at developing more
sustainable vehicles [2]. However, electromobility confronts
several issues hindering the widespread use of EVs. Among
them, the limited electric range of EVs is a majorn concern,
which emphasizes the significance of reducing total energy
consumption [3]. Also, lithium-ion (Li-ion) batteries, as a
commonly used choice in the market, are highly temperature
sensitive, i.e. Li-ions have reduced performance at subzero
and very high temperatures, i.e. 45 ◦C − 60 ◦C [4]. Thus,
developing a suitable battery thermal management (BTM) for
the electric powertrain is another hindrance to ponder on.

One promising way to reduce the EVs’ total energy con-
sumption is by improving grid-to-meter efficiency, referred
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to as the conversion of electrical energy drawn from the
electrical grid into kinetic and potential energies required for
the vehicle’s movement, and accompanied losses. To do so, a
suggested way in the literature is to follow the principles of
eco-driving, [5]. Eco-driving can be achieved by optimising
velocity profile of the vehicle given the road conditions and
traffic situation. In case of driving in a hilly terrain, the optimal
speed has a varying behaviour, where the vehicle typically
decelerates when climbing uphill, and accelerates when rolling
downhill. This reduces non-recuperable energy waste at the
braking pads, compared to driving with a constant speed [6].
To obtain an eco-driving velocity profile over complex road
topographies, model-based optimal control strategies are em-
ployed to optimally coordinate energy use, see e.g., [7]–[10].
Dynamic programming (DP) [11] is a widely used approach
in eco-driving applications [12]–[14] due to its capability of
solving mixed-integer, non-convex, and nonlinear optimisation
problems. However, the main drawback of DP is curse of
dimensionality, i.e. computational time increases exponentially
with the dimension of the optimal control problem (OCP).
For high-dimensional OCPs, it is possible to reduce com-
putational complexity by adjoining system state dynamics to
the cost function and neglecting the state constraints [15], as
suggested by Pontryagin’s Maximum Principle (PMP) [16],
[17]. In [18] PMP is used for solving an OCP describing the
driving mission with incorporated real-world considerations,
e.g. speed limits and safety. A PMP-DP method is devised
for optimal speed control and energy management of hybrid
electric vehicles (HEVs) [19]. Nonlinear programming (NLP)
is another approach employed to investigate the eco-driving
problem and trip time under various traffic situations [20].
In this context, multi-level or bi-level control architectures
are also proposed within a model predictive control (MPC)
framework in [21]–[24], aiming at improving computational
efficiency. Thus, different tasks, for e.g. gear optimisation or
disturbance rejection, are assigned to distinct layers according
to time constants, updating frequency, horizon length, and
sampling interval. Also, eco-driving can be used within the
MPC framework for heavy-duty platooning, as shown in [25].
Despite extensive contributions of eco-driving, this portion of
conducted research lacks the influence from a limited range
capability.

Another challenge impeding the deployment of EVs is the
development of a battery management system that satisfies
strict requirements on durability, performance, and safety. At
high battery temperatures, the battery performance is dete-
riorated due to overexposure to heat, i.e. excessive battery
temperatures can create sparks, flames, bulge and bubbles,
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and lead to battery corrosion and even explosion [26]. Also, at
sub-zero temperatures, the electro-chemical process is severely
slowed due to an increase in internal impedance of the battery
cell. This leads to a drastic loss of the cell’s available power
and energy [27]. Thus, it is essential to develop an adequate
BTM system, especially in places where temperature drops to
sub-zero values for a considerable period of time in a year [1].
Within the BTM system, several components, e.g. HVAC,
HVCH, and heat pump, are utilised for controlling the battery
pack’s temperature. As these components draw power from
the battery, it is pivotal to incorporate the BTM in optimising
the EV’s grid-to-meter energy efficiency. This leads to an
increased awareness on total demanded power of the vehicle
to achieve a more energy efficient drive [28], [29]. Thus,
various research efforts have been carried out on developing a
BTM by optimal control strategies. In [30] a DP algorithm is
applied for the BTM of an electrified vehicle parked outside at
low temperatures, and unplugged from the electrical grid. The
algorithm’s objective is to maximise the available energy in the
battery pack when the vehicle is about to restart, and minimise
the cell degradation stemming from low temperatures. Also,
PMP is used in [31] to find an optimal compromise between
battery life expectancy and energy cost. Furthermore, several
BTM strategies are developed within an MPC framework for
achieving energy savings due to optimal cooling/heating [4],
[32]–[35]. Moreover, the BTM is addressed in [28], [36],
where the vehicle speed profile is known a priori [36], or
future speed prediction is included into the energy efficiency
improvement OCP [28]. Although a vast portion of research
has been carried out on BTMs, to the best of our knowledge,
the optimal coordination of eco-driving and BTM for a BEV
driving in a cold environment has not been explored, especially
for long driving missions where optimal trade-off has to be
made between travel time, energy efficiency and charging cost.

This paper considers a BEV with a cold initial battery tem-
perature and where the ambient temperature is low throughout
the vehicle’s driving mission. We consider driving on a long
road with a hilly terrain, where the vehicle’s electric range
is not sufficient to reach the destination. This necessitates as-
suming multiple intermediate (and terminal) charging options
along the driving route. In addition to the battery temper-
ature, the maximum available cell power is also dependent
on SoC, i.e. as SoC increases, charging power capability
decreases and discharging power capability increases. Further-
more, constraints on state variables and control inputs as well
as governing dynamics describing the vehicle’s behaviour in
driving and charging modes, generally differ. If not formulated
with care, the optimal control problem for optimizing eco-
driving, charging, and BTM may suffer several computational
issues. These include: (1) the time instants that belong to
the charging and driving modes are not known prior to the
vehicle’s mission. Thus, there is no explicit clue about using
the state variables, control inputs, constraints, and governing
dynamics of each mode; (2) the vehicle longitudinal dynamics
is nonlinear with respect to trip time, as the aerodynamic
drag has quadratic dependency to the vehicle speed. Also, the
road slope can be an arbitrary nonlinear function of distance.
Furthermore, the speed limits can have abrupt changes for
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Fig. 1. Schematic diagram of the studied electric powertrain, which consists
of a battery, an EM, a transmission system, a thermal management system, and
an on board charger. The thermal management system includes HVCH and
HVAC, which are actively regulating the battery pack and cabin compartment
temperatures.

some segments of the road. Accordingly, the speed limits
may be non-smooth and non-differentiable functions of travel
distance.

To overcome above-mentioned computational drawbacks
and achieve optimal BTM, charging, and eco-driving, under
the low power availability of the battery cells at cold tem-
peratures, we propose an optimisation problem formulated as
a hybrid dynamical system. Within the problem formulation,
the dynamics in driving and charging modes are modeled
with different state and control vectors, and with different
functions. The driving dynamics are modeled in a spatial
domain, i.e. decisions are made along the traveled distance.
Also, charging dynamics are modeled in a temporal domain,
i.e. decisions are made along a normalized charging time. The
actual charging time is optimized together with the optimal
state and control trajectories, for both charging and driving
modes. Within the problem formulation, multiple intermediate
(and terminal) charging possibilities are included along the
route, to increase scalability and feasibility of the developed
algorithm in expressing more realistic driving situations.

The rest of the paper is organized as follows. Section II
addresses the overall vehicle model including longitudinal
dynamics and multi-domain powertrain structure. Section III
corresponds to the problem formulation in a temporal domain.
Section IV proposes the hybrid dynamical system with the
goal of alleviating computational drawbacks. In Section V
simulation results are presented. Finally, Section VI concludes
the paper and outlines the possible future research directions.

II. MODELLING

In this section, dynamics of a BEV is addressed. A multi-
domain configuration of an electric powertrain is described,
including powertrain components connecting via electrical,
thermal, and mechanical paths.

A. Vehicle as a Lumped Mass System
According to Newton’s law of motion, longitudinal dynam-

ics of the vehicle is described by

v̇(t) = at(t)− aair(v(t))− aα(s(t)), (1)
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Fig. 2. Equivalent circuit of the battery pack, where Uoc is open circuit
voltage, Rb is internal resistance, Ib is battery discharge current and Ut is
battery terminal voltage

where v is the vehicle’s speed, at is traction acceleration
at the wheel side of the vehicle, and aair and aα are the
accelerations associated with air drag and roll and gravitational
loads, respectively, as

aair(v(t)) =
ρacdAfv

2(t)

2m
, (2)

aα(s(t)) = g
(
sin
(
α(s(t))) + cr cos(α(s(t))

))
, (3)

where ρa is air density, cd is aerodynamic drag coefficient, Af
is the vehicle’s frontal area, m is the vehicle’s total lumped
mass, g is gravitational acceleration, cr is rolling resistance
coefficient, and α is road gradient.

The vehicle’s travelled distance, s, is given by integrating
the vehicle speed:

s(t) =

∫ t

0

v(x)dx ⇒ ṡ(t) = v(t), (4)

where t is trip time.

B. Multi-domain Powertrain Structure

Fig. 1 depicts the schematic diagram of the studied electric
powertrain. The powertrain consists of an electric machine
(EM) as an actuator, a transmission system and a battery for
energy supply or storage. Apart from the propulsion compo-
nents the powertrain also consists of a thermal management
system, and an on board charger (OBC). As it is demonstrated
in Fig. 1, the electric power flow through an electrical path is
bidirectional depending on operating mode of the EM. Thus,
the battery receives energy from the EM in generating mode,
or delivers energy to the EM in motoring mode. HVAC and
HVCH are the components used for the thermal management
of cabin compartment and battery pack, i.e. HVCH and HVAC
are mainly used for heating and cooling, respectively. The
OBC is a device that is employed for regulating the flow of
electricity from the electrical grid to the battery, monitoring
the charging rate and for protection purposes. Note that the
OBC is assumed to be ideal in this paper.

1) Electrical Domain: The battery is modelled using an
equivalent circuit shown in Fig. 2. The circuit includes a
voltage source Uoc and an internal resistance Rb, which are
mainly influenced by SoC and battery temperature, respec-
tively. The internal resistance is generally proportional to the
inverse of battery temperature [4]. Thus, by increasing the
battery temperature, the ions inside the battery cells gain
more energy, which leads to a reduction in the encountered
resistance against the ions’ displacement. Note that there

is a slight mismatch between the internal resistance while
charging and discharging, which is neglected in this work.
Open-circuit voltage is commonly a nonlinear monotonically
increasing function of SoC, which is usually derived via offline
experiments at different battery aging stages and ambient
temperatures. The change of SoC is given by

˙soc(t) = − Pb(t)

CbUoc(soc(t))
, (5)

where Pb is battery power including internal resistive losses,
and Cb is maximum capacity of the battery. Pb is positive
when discharging, and is negative while charging.

2) Thermal Domain: An energy balance is used to de-
scribe the battery pack’s dynamics. Following the fundamental
thermodynamic principle, a lumped-parameter thermal model
describing the dynamical variations of the battery pack’s
temperature is given by

Ṫb(t) =
1

cpmb

(
Qgen

pass(·) +Qact(P
b
hvch(t), P

b
hvac(t))

+Qexh(Tb(t), Tamb(t), v(t))
)
,

(6)

where cp is specific heat capacity of the battery pack, mb is
total battery mass, the symbol · is a compact notation for a
function of multiple variables, Qgen

pass is the rate of generated
heat by sources that passively affect the battery temperature,
Qact is the heat rate due to components that can actively adjust
the battery pack temperature, P b

hvch and P b
hvac are HVCH and

HVAC powers, respectively, and Qexh is the heat exchange rate
among the battery pack, ambient air and/or the chassis of the
vehicle.

The passive generated heat includes: 1) irreversible ohmic
Joule heat induced by the battery internal resistive losses; and
2) heat generated by electric drivetrain (ED) power losses, Qed.
For a given pair of vehicle speed and traction acceleration; the
passive generated heat rate can be written as

Qgen
pass(·) = Rb(Tb(t))

P 2
b (t)

U2
oc(soc(t))

+Qed(v(t), at(t)). (7)

Note that the heat losses can generally originate from two
types of conductive and convective heat transfers. In this
paper, the uneven conductive distribution of the battery pack
temperature associated with the diffusion is overlooked to
avoid increasing complexity of the thermal model. Thus, the
core and crust battery pack temperatures are assumed to be
identical.

The active heat rate

Qact(P
b
hvch(t), P

b
hvac(t)) = ηhvchP

b
hvch(t)− ηhvacP

b
hvac(t) (8)

corresponds to the power conversion of the HVCH and HVAC
systems, respectively, with the battery pack’s heating with
efficiency of ηhvch, and its cooling with efficiency of ηhvac.
Note that cooling of cabin compartment is out of scope in this
paper.

The convective heat exchange rate between the battery pack
and ambient air is modelled as

Qexh(Tb(t), t) = γ(v(t))(Tamb(t)− Tb(t)), (9)
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Fig. 3. Studied scenario; a BEV is driving in a hilly terrain, where the vehicle starts its mission from point A with a fully charged battery with sub-zero
ambient and initial battery temperatures. The indices 1, 2, and Nchg denote to the intermediate (an terminal) charging stations.

where Tamb is ambient temperature, and γ > 0 is a speed de-
pendent coefficient representing parasitic heat transfer between
the battery and the ambient air, i.e. if the battery temperature
is higher than the ambient temperature, heat is conveyed from
the battery to the ambient air.

3) Mechanical Domain: The EM when operated in motor-
ing mode, provides propulsive power, which is delivered via
the transmission system to the wheels through a mechanical
path, see Fig. 1. To do so, the EM torque and rotational
speed are translated by the transmission system to traction
acceleration and vehicle speed, respectively. Speed dependent
bounds on EM torque are translated as limits on traction
acceleration via

at(t) ∈ [amin(v(t)), amax(v(t))]. (10)

III. PROBLEM STATEMENT

Consider a BEV driving in a hilly terrain, as in Fig. 3. The
trip starts from point A with a cold initial battery temperature
and full SoC, where the ambient temperature is also low
during the vehicle’s trip. As the vehicle continues its drive,
the battery depletes and its temperature may increase due
to the passive and/or active heating sources. The vehicle’s
travelled distance is greater than its range and intermediate
(and terminal charging) possibilities have to be considered
along the driving route.

A. Bounds on Vehicle Speed, Battery Power and Grid Power

Using available information about the road and traffic situ-
ation, the vehicle speed limits are defined as

v(t) ∈

[vmin(s(t)), vmax(s(t))], t ∈ Tdrv

{0}, t ∈ T ichg

(11)

where 0 < vmin ≤ vmax, Tdrv and Tchg denote the
sets of driving and charging time instants, respectively,
i ∈ I = {1, 2, . . . , Nchg} is charger index, and Nchg is total
number of charging stations along the route.

The speed limits include legal and dynamic speed limits
that resemble realistic driving situations. New modern tech-
nologies, e.g. e-horizon systems, can provide the information

about legal and dynamic speed limits and the road slope [37].
The dynamic speed limits are enforced due to presence of
e.g. intersections, ramps, junctions and traffic lights. The
legal speed limits may have abrupt changes for different
segments of the driving road, where such variations can lead to
computational issues that are discussed later in this Section III
and Section IV. Note that the vehicle speed is equal to zero
when the vehicle stops at the charging station.

For a given pair of battery temperature and SoC, the battery
power limits corresponding to driving and charging modes for
i ∈ I are given by

Pb(t) ∈

[Pmin
b,chg(soc(t), Tb(t)), P

max
b,dchg(soc(t), Tb(t))], t ∈ Tdrv

[Pmin
b,chg(soc(t), Tb(t)), 0], t ∈ T ichg

(12)

where Pmax
b,dchg > 0 and Pmin

b,chg < 0 are the battery discharge
and charge power limits, respectively. It can be deduced from
(12) that the battery power during driving can also be negative
due to regenerative braking, referred to as a mechanism that
transforms the vehicle’s kinetic energy into electrical energy
to be stored in the battery. Note that the charging power limit
may differ in driving and charging modes. Here, we assume
that the same bound is applied, for simplicity, and without loss
of generality.

Normalised absolute values of the battery discharge and
charge power limits versus battery temperature and SoC are
illustrated in Fig. 4(a) and Fig. 4(b), respectively. As shown in
Fig. 4(a), the battery discharge power limit is proportional to
the battery temperature and SoC level. Also, the charge power
limit is proportional to the battery temperature and inverse
of SoC level, according to Fig. 4(b). For the studied battery,
the desirable SoC range for the discharge and charge power
limits are about 25% − 100% and 0% − 60%, respectively.
Also, the battery temperature window for attaining high power
availability is about 25 ◦C − 45 ◦C, when both charging and
discharging. Thus, for a cold battery it is generally favourable
to perform battery preconditioning, referred to as heating up
a cold battery prior to charging in order to charge the battery
with a high power, thereby reducing the charging time.
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Fig. 4. Normalised absolute value of battery charge and discharge power limit for a given combination of battery temperature and SoC.

The power P igrid provided by the ith charger is limited by

P igrid(t) ∈

{0}, t ∈ Tdrv,

[0, P i,max
grid ], t ∈ T ichg

(13)

where P i,max
grid is rated power of the ith charger. It is here

assumed that grid charging power is not supplied to the vehicle
during the driving mode, although the method presented later
can directly be applied to the vehicles driving on an electric
road, e.g. when charging lanes are installed on the road [38].

B. Objective Function

In order to achieve an optimal compromise between trip
time and charging cost, an optimisation problem is formulated
with the performance function J , as

J(·) =
Nchg∑
i=1

(∫
t∈T i

chg

cieP
i
grid(t)dt+ ciT max

(
0, tichg − T i

))
+

∫
t∈T

ct,tripdt,

(14)

where the charging cost can be expressed as energy and/or
time, depending on the pricing plan of each charging station.
Thus, J includes:
• Electrical energy supplied to the vehicle by chargers, as

Nchg∑
i=1

∫
t∈T i

chg

cieP
i
grid(t)dt, (15)

where ce is currency per-kilowatt-hour charging electrical
energy cost.

• The time based cost for occupying the charging spot, as

Nchg∑
i=1

ciT max
(
0, tichg − T i

)
, (16)

where cT is currency per-minute cost due to occupying
the charger for longer time than T ≥ 0, and tchg is a
scalar variable representing charging time.

• A penalty on total trip time, as∫
t∈T

ct,tripdt, (17)

where ct,trip is the penalty factor and T =⋃
i∈I T ichg

⋃
Tdrv. Note that the trip time includes

the charging time; thus, charging time may need to be
paid twice, due to a longer trip and/or occupying the
charger.

C. Optimisation Problem with Respect to Trip Time

For i ∈ I, the optimisation problem can now be sum-
marised, as

min
P b

hvch,P
b
hvac,Pb,P i

grid,at,tichg

J(·) (18a)

subject to: (11)-(13) and

Ṫb(t) =
1

cpmb

(
Qgen

pass(·) +Qact(P
b
hvch(t), P

b
hvac(t))

+Qexh(Tb(t), Tamb(t), v(t))
)
, t ∈ T

(18b)

˙soc(t) = − Pb(t)

CbUoc(soc(t))
, t ∈ T (18c)

ṡ(t) = v(t), t ∈ Tdrv (18d)
v̇(t) = at(t)− aair(v(t))− aα(s(t)), t ∈ Tdrv (18e)

P igrid(t) + Pb(t) = R(Tb(t))
P 2

b (t)

U2
oc(soc(t))

+ Pprop(v(t), at(t))

+ P b
hvch(t) + P b

hvac(t) + P c
hvch(t) + Paux(t), t ∈ T

(18f)

s(t) = sichg, t ∈ T ichg (18g)

Tb(t) ∈ [Tmin
b (t), Tmax

b (t)], t ∈ T (18h)
soc(t) ∈ [socmin(t), socmax(t)], t ∈ T (18i)

P b
hvch(t) ∈ [0, Pmax

hvch − P c
hvch(t)], t ∈ T (18j)

P b
hvac(t) ∈ [0, Pmax

hvac ], t ∈ T (18k)
at(t) ∈ [amin(v(t)), amax(v(t))], t ∈ Tdrv (18l)

tichg ∈ [0, tmax
chg ] (18m)

Tb(0) = Tb0, soc(0) = soc0, s(0) = s0, v(0) = v0 (18n)
Tb(tf) ≥ Tbf, soc(tf) ≥ socf, s(tf) = sf (18o)
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Fig. 5. Schematic illustration of a hybrid dynamical system; driving mode,
charging mode and transition between these two modes. During the driving
mode decisions are taken in terms of s, and in charging mode the decisions
are planned with respect to τ i, i ∈ I.

where Tb0 and Tbf are initial and final battery temperatures,
respectively, soc0 and socf are initial and final SoC values,
respectively, s0 and sf are initial and final travel distances,
respectively, v0 is initial vehicle speed, Pprop is propulsion
power including the internal losses of the powertrain for a
given pair of vehicle speed and traction acceleration, Paux is
given auxiliary load demand, Tmin

b and Tmax
b are the bounds

on battery temperature, socmin and socmax are SoC limits,
Pmax

hvch and Pmax
hvac are the maximum deliverable HVCH and

HVAC power values, respectively, schg is the charging position
that is known prior to starting the vehicle’s driving mission,
tmax

chg is the maximum allowed charging time, and P c
hvch is

the HVCH power demand for heating the cabin compartment.
Note that the P c

hvch is assumed to be a function of the known
ambient temperature.

The full problem (18), including the formulations of both
driving and charging modes with respect to t is difficult to
solve due to the following reasons:
• The sets including charging mode and driving mode time

instants, Tchg and Tdrv, respectively, are unknown prior
to the optimisation. Thus, imposing the right dynam-
ics/values/bounds in (18) may require introducing integer
variables, which would make the problem intractable.

• The vehicle longitudinal dynamics (1) is nonlinear with
respect to t, as the aerodynamic drag is quadratically
dependent to vehicle speed in (2), the road gradient can
be any arbitrary nonlinear function of t in (3), and the
speed limits (11) may also be non-smooth functions of
s, i.e. the speed limits can generally change abruptly for
different segments of the driving road. This may require
additional integer variables, or smoothing techniques.

The aforementioned issues can severely increase computa-
tional complexity. Thus, we propose several reformulation
steps in Section IV that transform the problem (18) into a
hybrid dynamical system that can be solved in a minute or
less on a standard computer.

IV. HYBRID DYNAMICAL SYSTEM FORMULATION

In this section, the highlighted issues in Section III are
resolved by exact reformulations of driving and charging

modes:
• Driving mode: During driving mode, s is chosen as

an independent variable instead of t, i.e. decisions are
made with respect to s, as depicted in Fig. 5. Such
transformation is valid throughout the driving mode, as
the vehicle does not stop or change its direction of
movement, i.e. v > 0. Accordingly, for a certain road
topography, the function aα becomes a fixed trajectory
covering the entire route. Also, the speed limits directly
turn into position dependent limits; thus, the sudden legal
speed limit change is no longer an issue. Furthermore, to
remove the nonlinearity in (2), kinetic energy of unit mass
E with respect to s is selected instead of v, as

E(s) =
v2(s)

2
. (19)

Thus, the aerodynamic drag (2) becomes a linear function
of unit mass kinetic energy. Note that the decision making
in the spatial coordinate is promising, since the charging
positions are given. Subsequently, driving and charging
distance instances are known prior to optimisation.

• Charging mode: Despite fixed position of the vehicle at
the charging station, battery temperature and SoC will
change during charging. Thus, the battery temperature
and SoC dynamics cannot be described with respect to s
for the charging mode. Instead, the decisions are planned
with respect to a variable τ i ∈ [0, 1], defined, as

τ i =
t

tichg
, t ∈ T ichg, i ∈ I. (20)

Following this selection of independent variables, problem
(18) is transformed into a hybrid dynamical system, see
Fig. 5. Note that state variables, control inputs and governing
dynamics describing each mode may differ with those from
the other mode’s, which will be explained later in this Section.
By repeating the combination of driving and charging modes,
it is possible to investigate multiple charging scenarios along
the vehicle’s trip. Hereafter, the variables with subscripts
or superscripts ‘drv’ or ‘chg’, are the previously introduced
variables that now belong specifically to the driving mode or
charging mode, respectively.

A. Driving Mode: Dynamics and Performance Function

Governing dynamics during driving mode include the ve-
hicle’s longitudinal dynamics, and the dynamical variations
of battery temperature and SoC. To group the state variables
and control inputs belonging to driving mode, it is possible to
introduce state and control vectors, respectively xdrv and udrv,
with respect to s, as

xdrv(s) =

 E(s)
socdrv(s)
T drv

b (s)

 , udrv(s) =

P
b,drv
hvch (s)

P b,drv
hvac (s)

at(s)

 .
Accordingly, the relation between the time and space deriva-
tives is given as

dxdrv(t)

dt
= v(s)

dxdrv(s)

ds
, t ∈ Tdrv, s ∈ Sdrv, (21)
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where Sdrv is a set including driving distance instances.
Following (21), the longitudinal dynamics (1) is now de-

scribed in the space coordinate s, as

dE(s)

ds
= at(s)− caE(s)− aα(s), (22)

where dE
ds = v dv

ds represents longitudinal acceleration in s
domain, and the coefficient ca = ρacdAf/m contains the air
drag related factors.

Using the relations (19) and (21), the dynamical change of
battery SoC with respect to s is given by

dsocdrv(s)

ds
= − P drv

b (s)

CbUoc(socdrv(s))
√

2E(s)
. (23)

Similarly, the position dependent dynamical change of the
battery pack temperature is given by

dT drv
b (s)

ds
=

1

cpmb
√
2E(s)

(
Qgen

pass(·) +Qact(P
b,drv
hvch (s), P

b,drv
hvac (s))

+Qexh(T
drv
b (s), Tamb(s), v(s))

)
.

(24)

The power balance equation (18f) can also be summarized
throughout the driving mode, as

P drv
b (s) = R(T drv

b (s))

(
P drv

b (s)
)2

U2
oc(socdrv(s))

+ P drv
prop(v(s), at(s))

+ P b,drv
hvch (s) + P b,drv

hvac (s) + P c
hvch(s) + P drv

aux(s).
(25)

The governing dynamics during driving mode can be sum-
marized as

dxdrv(s)

ds
= fdrv(xdrv(s), udrv(s), s),

where fdrv is a vector function including nonlinear scalar
functions illustrating each state variable’s dynamical change,
according to (22)-(24). We also define a vector xts

drv, as

xts
drv(s) =

[
socdrv(s)
T drv

b (s)

]
,

which will be used later for describing the transition between
the modes.

The performance function during driving mode includes the
penalty on trip time, as

Jdrv(·) =
∫
s∈Sdrv

ct,trip√
2E(s)

ds, (26)

which is directly obtained from the trip time to travel distance
transformation, i.e.

∫
ct,tripdt =

∫
ct,trip/

√
2E(s) ds. The set

Sdrv includes the driving distance instances.

B. Charging Mode: Dynamics and Performance Function

Governing dynamics during charging mode corresponds to
the dynamical changes of battery temperature and SoC. The

state variables and control inputs of charging mode for i ∈ I
are stacked, respectively, in vectors xichg and uichg, as

xichg(τ
i) =

[
soci,chg(τ i)

T i,chg
b (τ i)

]
, uichg(τ

i) =


P i,b,chg

hvch (τ i)

P i,b,chg
hvac (τ i)

P igrid(τ
i)

 , i ∈ I.
Also, the charging time associated with each charging station
is considered as a scalar variable, which is optimized simulta-
neously with the optimal state and control trajectories of both
driving and charging modes. According to (20), the relation
between the time derivative and the derivative with respect to
τ i ∈ [0, 1], i ∈ I, is

dxichg(t)

dt
=

1

tichg

dxichg(τ
i)

dτ i
, t ∈ T ichg, s(t) = sichg. (27)

Following (27), the dynamical variation of battery SoC with
respect to τ i for i ∈ I is given by

dsoci,chg(τ i)

dτ i
= −

tichgP
i,chg
b (τ i)

CbUoc(soci,chg(τ i))
. (28)

Similarly, the τ i dependent dynamical change of the battery
pack temperature for i ∈ I is given by

dT i,chg
b (τ i)

dτ i
=

tichg

cpmb

(
Qgen

pass(·) +Qact(P
i,b,chg
hvch (τ i), P i,b,chg

hvac (τ i))

+Qexh(T
i,chg
b (τ i), Tamb(τ

i))
)
.

(29)

For i ∈ I, the power balance equation (18f) during the
charging modes is

P igrid(τ
i) + P i,chg

b (τ i) = R(T i,chg
b (τ i))

(
P i,chg

b (τ i)
)2

U2
oc(soci,chg(τ i))

+ P i,b,chg
hvch (τ i) + P i,b,chg

hvac (τ i) + P i,chg
aux (τ i).

(30)

Note that propulsion power is equal to zero during charging in
(30). Also, the power demand for heating the cabin compart-
ment during charging is assumed to be zero in (30), which is
reasonable for the case when the driver/passengers stay outside
the vehicle during charging.

The governing dynamics during charging mode for i ∈ I
can be summarized as

dxichg(τ
i)

dτ i
= fchg(xichg(τ

i), uichg(τ
i), tichg, τ

i),

where fchg is a vector function including nonlinear scalar
functions describing each state variable’s dynamical variation,
according to (28) and (29).

The performance function associated with charging mode
for i ∈ I, is the compromise among charging energy cost,
charging time and charger occupying time cost, as

Jchg(·) =
Nchg∑
i=1

(
tichg

∫ 1

0

(
ct,trip + cieP

i
grid(τ

i)
)
dτ i

+ ciT max
(
0, tichg − T i

))
.

(31)
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C. Hybrid Dynamical System Formulation

The hybrid dynamical system’s formulation for i ∈ I, can
now be summarized as

min
udrv(s),uichg(τ

i),tichg

Jdrv(·) + Jchg(·) (32a)

for τ i ∈ [0, 1] subject to:
dxdrv(s)

ds
= fdrv(xdrv(s), udrv(s), s), s ∈ Sdrv (32b)

dxichg(τ
i)

dτ i
= fchg(xichg(τ

i), uichg(τ
i), τ i), s ∈ sichg (32c)

gdrv(xdrv(s), udrv(s), s) ≤ 0, s ∈ Sdrv (32d)

gchg(xichg(τ
i), uichg(τ

i), τ i) ≤ 0, s ∈ sichg (32e)

xdrv(s) ∈ Xdrv(s), udrv(s) ∈ Udrv(s), s ∈ Sdrv (32f)

xichg(τ
i) ∈ X ichg(τ

i), uichg(τ
i) ∈ U ichg(τ

i), s ∈ sichg (32g)

xichg(0) = xts
drv(s

i
chg) (32h)

xts
drv(s

i+

chg) = xichg(1) (32i)

xdrv(s0) ∈ Xdrv0, xdrv(sf) ∈ Xdrvf (32j)

where tichg is treated as a design parameter, si
+

chg is an instance
where the vehicle is leaving the charging station, gdrv and
gchg denote the system general constraints, respectively during
driving and charging modes, including the bounds on battery
power and traction acceleration, as

gdrv(·) =


Pmin

b,chg(socdrv(s), T drv
b (s))− P drv

b (s),

P drv
b (s)− Pmax

b,dchg(socdrv(s), T drv
b (s)),

amin(E(s))− at(s),

at(s)− amax(E(s))

 (33a)

gchg(·) =
{
Pmin

b,chg(soci,chg(τ i)), T i,chg
b (τ i))− P i,chg

b (τ i).
}

(33b)

Also, Xdrv and Xchg denote the feasible sets of state variables,
and Udrv and Uchg represent the feasible sets of control inputs
for each mode. Furthermore, Xdrv0 and Xdrvf denote allowed
initial states at s0, and target states at sf, respectively. The
constraints (32h) and (32i) denote the transition between the
modes. Thus, the battery temperature and SoC at the arrival of
charging station must be equal to the corresponding variables
when charging begins. Similarly, the battery temperature and
SoC when charging is just finished must be equal to the
corresponding variables when the vehicle resumes its drive.

V. RESULTS

In this section, simulation results are provided for the
scenario illustrated in Fig. 3. Within the simulations, we
evaluate the performance of the proposed algorithm to achieve
optimal thermal management, eco-driving, and charging of a
BEV in the presence of existing constraints. The simulation
setup is given in Section V-A.

A. Simulation Setup

The simulations are performed for a BEV over a 440 km
long road with a hilly terrain. The BEV starts its mission

TABLE I
VEHICLE AND SIMULATION PARAMETERS

Gravitational acceleration g = 9.81m/s2

Air density ρa = 1.29 kg/m3

Vehicle frontal area Af = 1.36m2

Rolling resistance coefficient cr = 0.013

Total vehicle mass m = 2200 kg

Aerodynamic drag coefficient cd = 0.6

Maximum battery capacity Cp = 200Ah

Product of specific heat capacity and total vehicle mass cpmb = 375 kJ/(K)

Route length 480 km

Distance sampling interval 2 km

Number of charging along the route Nchg = 2

Electrical energy cost while charging ce = 5SEK/kWh

Charger rated power Pmax
grid = 150 kW

Auxiliary load Paux = 0.5 kW

HVCH power for heating cabin P c
hvch = 1.5 kW

HVCH power to heat rate efficiency ηhvch = 87%

HVAC power to heat rate efficiency ηhvac = 87%

Initial battery temperature Tb0 = −10 ◦C

Ambient temperature Tamb = −10 ◦C

Initial battery state of charge soc0 = 80%

Terminal battery state of charge socf = 80%

Minimum speed limit vmin = 65 km/h

Maximum speed limit vmax = 110 km/h

with 80% SoC and cold battery, where ambient temperature
is also low during the vehicle’s entire mission, i.e. Tb0(s0) =
Tamb(s) = −10 ◦C, s ∈ [s0, sf]. Followed by the constant
ambient temperature, the HVCH power demand for heating
the cabin compartment during the vehicle’s driving mode is
also a fixed value. As the driving distance is greater than the
vehicle’s electric range, one intermediate charging station is
visited at s = 240 km, and a terminal charging station is also
considered at the end of the route. The terminal battery SoC
is set to be the same percentage as the initial SoC, i.e. 80%.
Also, the rated grid power provided by the chargers as well
as the rated battery charging power are 150 kW. Note that
the time based cost for occupying the charging spot is not
considered in the studied scenario, i.e. cT = 0. The vehicle
and simulation parameters are provided in Table I.

The NLP (32) is discretized using the Runge-Kutta 4th

order method [39], with a distance sampling interval of 2 km.
Subsequently, the discretized problem is solved in Matlab with
the solver IPOPT, using the open source nonlinear optimisation
tool CasADi [40]. The optimisation was run on a laptop PC
with 6600K CPU at 2.81GHz and 16GB RAM, where the
solving time is less than a minute.

B. Energy Efficiency Vs. Time

To investigate the trade-off between total charging energy
cost versus trip time, the Pareto frontier is derived, as shown in
Fig. 6, where the total charging cost includes the electrical en-
ergy cost during the intermediate and terminal charging modes.
Also, the trip time covers the driving and charging times.
The driving time variations can be characterised as changing
the vehicle’s average speed. The demonstrated Pareto frontier
provides a wide range of choices for various types of car users
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Fig. 6. Pareto frontier describing the trade-off between total charging energy
cost versus trip time.

TABLE II
CHARGING COST VS. TRIP TIME

Case Trip Time (Total Chg. Time) [min] Chg. Cost [SEK]
Case 1 294 (37) 453
Case 2 323 (66) 444

to customise their trip. In Fig. 6, point A denotes the vehicle’s
most energy efficient trip, where ct,trip = 0. The trip time
can be increased further by letting ct,trip be negative, where
this leads to an increase in the energy cost. Thus, there is a
low average speed vavg threshold, here about vavg ≈ 70 km/h,
below which the increased time of accumulating powertrain
losses prevails the benefit of reduced air drag. Point B in Fig. 6
corresponds to a more time efficient trip, i.e. vavg ≈ 100 km/h,
compared to the case in point A.

In the rest of the paper we will only consider the vehicle’s
operation in point B. In this point, Case 1, i.e. with active
heating/cooling, is compared to Case 2, i.e. without active
heating/cooling, to evaluate the impact of battery precondi-
tioning on the charging time and energy cost. Battery precon-
ditioning is characterized as bringing the battery temperature
to (or closer to) its desired range, where discharging/charging
power availability is increased considerably.

C. Case 1: Time Efficient Trip with Active Heating/Cooling

Here, the results are categorized into the optimal trajectories
versus travelled distance, and versus charging time during the
intermediate and terminal charging events. Total charging cost
and trip time are given in Table II.

1) Optimal Trajectories Vs. Travelled Distance: Optimal
vehicle speed profile together with the speed limits and road
topography are depicted in Fig. 7(a), where the zero speed val-
ues at travel distances s = 240 km and s = 440 km resemble
the vehicle stops at the charging stations. The battery depletes
gradually as the vehicle continues its drive, where at the arrival
of the charging stations at s = 240 km and s = 440 km,
the SoC levels are about 20% and 15%, respectively as
demonstrated in Fig. 7(b). The battery temperature increases
primarily due to only the passive heat generation resources,
i.e. Joule heat and ED losses, from s = 0km to s = 205 km,
according to Fig. 7(c). Later, the HVCH, jointly with the
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(a) Road topography together with vehicle speed profile and speed limits.
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(c) Battery temperature trajectory together with its upper bound and
ambient temperature.
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(d) Trajectories of HVCH and HVAC power for battery heating.

0 40 80 120 160 200 240 280 320 360 400

Distance [km]

0

0.5

1

N
o

rm
a

lis
e

d
 p

o
w

e
r

|P
b,drv

min
|

P
b

drv

P
prop

(e) Trajectories of battery power and propulsion power together with
battery discharge power limit.

Fig. 7. Case 1; optimal trajectories Vs. travelled distance. The step changes
in battery temperature and SoC at s = 240 km and s = 440 km in (a) and
(b), denote the increase in the corresponding variables during charging mode.

passive heat resources, further raise the battery temperature
(from s = 205 km to s = 240 km, and from s = 435 km
to s = 440 km). Such battery temperature increase by the
HVCH demonstrates the battery preconditioning. As shown
in Fig. 4(b), the charging battery power availability is high
for low SoC and high battery temperature region. This leads
to a reduced charging time, but higher charging cost instead.
Note that the decreasing battery temperature from s = 240 km
to s = 435 km is due to an increased heat transfer to the
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ambient air, as the temperature difference between the battery
pack and ambient air is large for this distance segment. In
the intermediate and terminal charging stations, the battery
is charged to 63% and 80% SoC levels, respectively. The
propulsion power, battery discharge power and its limit are
shown in Fig. 7(e). The battery discharge power limit has a
step increase at s = 240 km, due to the steep rise in SoC and
battery temperature due to charging.

2) Intermediate Charging: During the intermediate charg-
ing, in addition to the SoC level increase, the battery temper-
ature also rises steadily, as shown in Fig. 8(a) and Fig. 8(b).
SoC level throughout the intermediate charging is always in
a range with high charging power availability. Also, HVCH
stays on for about 2.5min from the beginning of charging,
in order to further raise the battery temperature above 20 ◦C.
This allows charging with high power and for a short time
period, which is about 15min here. Fig. 8(d) illustrates a 3D
plot including grid power as well as the absolute values of
battery charging power and its limit versus SoC and battery
temperature values. The difference between the grid power and
battery power is due to the Joule heat losses and the HVCH
power demand for heating the battery pack.

3) Terminal Charging: The battery SoC and temperature
during terminal charging at s = 440 km, have similar be-
haviours as they had during the intermediate charging. In the
beginning of charging, initial battery SoC and temperature,
respectively, are about 15% and 17 ◦C. HVCH stays on for
about a minute from the beginning of charging, and the battery
temperature rises up to about 20 ◦C accordingly. Fig. 9(d)
shows a 3D plot including grid power together with the
absolute values of battery charging power and its limit for
a given combination of SoC and battery temperature. As
expected, the charging power availability drops for high SoC
values. The charging time is about 22min.

D. Case 2: Time Efficient Trip without Active Heating/Cooling

Similar to Section V-C, the simulation results are summa-
rized into the distance based and time based trajectories. Here,
HVCH and HVAC are let to be zero throughout the vehicle’s
entire trip.

1) Optimal Trajectories Vs. Travelled Distance: Optimal
vehicle speed profile as well as the speed limits and road
topography are depicted in Fig. 10(a). The battery depletion
profile, shown in Fig. 10(b), follows a similar trend as the
one in Case 1, since in both cases in addition to the identical
simulation parameters and the driving behaviour are similar,
i.e. vavg ≈ 100 km/h. The SoC levels at the arrival of the
charging stations at s = 240 km and s = 440 km, are
respectively about 17% and 15%, as depicted in Fig. 10(b).
The battery temperature increase is simply due to Joule heat
and ED losses, according to Fig. 10(c), where at the arrival of
the intermediate and terminal charging stations, the battery
temperature is 0 ◦C and 5 ◦C, respectively. These battery
temperature values are lower compared to Case 1, as no active
heating is applied in Case 2. In the intermediate and terminal
charging stations, the battery is charged to about 60% and
80% SoC levels, respectively. The propulsion power together
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(c) Trajectories of HVCH and HVAC power for battery heating.
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Fig. 8. Case 1; optimal trajectories associated with the vehicle’s intermediate
charging mode at s = 240 km.

with the battery discharge power and its limit are shown in
Fig. 10(d), where the limit is generally lower compared to
the one in Case 1, due to the battery’s operation in the lower
temperature region.

2) Intermediate and Terminal Charging: During both inter-
mediate and terminal charging periods, the battery temperature
and SoC increase monotonically, as demonstrated in Fig. 11(a)
and Fig. 11(b), and Fig. 12(a) and Fig. 12(b), respectively.
Also, the grid power together with the absolute values of
battery charging power and its limit versus battery temperature
and SoC, are shown in Fig. 11(c) and Fig. 12(c), respectively
for the intermediate and terminal charging modes. The charg-
ing power availability for Case 2 is lower compared to Case
1, which leads to a higher charging time. According to the
results reported in Table II, total charging time for Case 2
is 66min, which is increased by 44% compared to the Case
1 with optimal battery preconditioning. Instead, the charging



11

0 2 4 6 8 10 12 14 16 18 20 22

Charging time [min]

20

40

60

80

100
S

o
C

 [
%

]
soc2,chg

soclim

(a) Battery state of charge trajectory together with its bounds.
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Fig. 9. Case 1; optimal trajectories associated with the vehicle’s terminal
charging mode at s = 440 km.

cost is simply reduced by 2%.

VI. CONCLUSION AND FUTURE WORK

In this paper, optimal BTM, charging, and eco-driving prob-
lems are jointly solved for a BEV. To do so, an optimisation
problem is formulated, in which the objective includes trip
time and charging cost. Later, the problem is reformulated
as a hybrid dynamical system, in which the dynamics in
each mode, i.e. driving or charging, is modeled with distinct
functions, state variables, and control inputs. Furthermore, to
reduce computational complexity, the driving dynamics are
modeled in a spatial domain, i.e. the decisions are made along
the traveled distance. Also, charging dynamics are modeled
in a temporal domain, i.e. the decisions are made along the
normalized charging time. The actual charging time is treated
as a scalar variable, which is optimized simultaneously with
the optimal state and control trajectories of both modes. The
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(a) Road topography together with vehicle speed profile and speed limits.
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(b) Battery state of charge trajectory together with its bounds.
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(c) Battery temperature trajectory together with its upper bound and
ambient temperature.
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Fig. 10. Case 2; optimal trajectories Vs. travelled distance in Case 2. The step
changes in battery temperature and SoC at s = 240 km and s = 440 km in
(a) and (b), denote the increase in the corresponding variables during charging
mode.

performance of the proposed algorithm is evaluated for a vehi-
cle driving on a route, along which two charging possibilities
are considered. To study the trade-off between trip time and
charging energy cost, the Pareto frontier is derived for different
driving scenarios of the vehicles. Such profile is helpful for
various car users and vehicle manufacturers to tailor any kind
of a trip. According to the results, trip time is reduced by 44%,
in case the optimal battery preconditioning is applied to the
vehicle. Low charging time, high charging power availability,
and the preservation of the vehicle’s potential range are the
knock-on effects of the battery preconditioning.

The proposed algorithm for eco-driving and BTM of BEVs
can also be extended in several ways, such as:

1) A heat pump can be incorporated in the BTM system
to include heating/cooling the battery. In case of the
battery cooling, the excess heat from the battery can
be transferred to the cabin compartment and/or ambient
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Fig. 11. Case 2; optimal trajectories associated with the vehicle’s intermediate
charging mode at s = 240 km.

air. Also, heat pumps are able to transfer the heat from
ambient air to the cabin.

2) It is possible to optimise the charging location to further
reduce the trip time.

3) An online-implementable algorithm can be developed
based on the current algorithm that is capable of reacting
to potential disturbances, considering model-plant mis-
matches, and anticipating future events.
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