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SCMA-Enabled Multi-Cell Edge Computing
Networks: Design and Optimization

Pengtao Liu, Kang An, Jing Lei, Wei Liu, Yifu Sun, Gan Zheng, Fellow, IEEE and Symeon Chatzinotas, Fellow,
IEEE

Abstract—Multi-access edge computing (MEC) is regarded as
a promising approach for providing resource-constrained mobile
devices with computing resources through task offloading. Sparse
code multiple access (SCMA) is a code-domain non-orthogonal
multiple access (NOMA) scheme that can meet the demands of
multi-cell MEC networks for high data transmission rates and
massive connections. In this paper, we propose an optimization
framework for SCMA-enabled multi-cell MEC networks. The
joint resource allocation and computation offloading problem
is formulated to minimize the system cost, which is defined as
the weighted energy cost and latency. Due to the nonconvexity
of the proposed optimization problem induced by the coupled
optimization variables, we first propose an algorithm based on the
block coordinate descent (BCD) method to iteratively optimize
the transmit power and edge computing resources allocation by
deriving closed-form solutions, and further develop an improved
low-complexity simulated annealing (SA) algorithm to solve the
computation offloading and multi-cell SCMA codebook allocation
problem. To solve the problem of partial state observation and
timely decision-making in long-term optimization environment,
we put forward a multiagent deep deterministic policy gradient
(MADDPG) algorithm with centralized training and distributed
execution. Furthermore, we extend the framework to the partial
offloading case and propose an algorithm based on alternating
convex search for solving the task offloading ratio. Numerical
results show that the proposed multi-cell SCMA-MEC scheme
achieves lower energy consumption and system latency in com-
parison to the orthogonal frequency division multiple access
(OFDMA) and power-domain (PD) NOMA techniques.

Index Terms—Internet of Things, Sparse Code Multiple Access
(SCMA), Multi-Access Edge Computing (MEC), binary offload-
ing, partial offloading, resource management.

I. INTRODUCTION

Driven by the rapid development of the Internet of Things
(IoT), a large number of computation-intensive applications
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are emerging, such as virtual/augmented reality (VR/AR), self-
driving cars, and smart homes [1]. However, the limited com-
putation capability of IoT devices remains a barrier to com-
pleting latency-critical tasks. Against this shortcoming, multi-
access edge computing (MEC) can provide network-edge
computing resources in base stations for resource-constrained
users and offer lower latency and energy consumption for IoT
devices to perform computation-intensive tasks through task
offloading [2], [3]. The research on task offloading can be
divided into three aspects: task offloading decision, computa-
tion resources allocation, and mobility management [4]. Shu et
al. [5] proposed a fine-grained offloading strategy to minimize
the task completion time by considering dependencies between
subtasks and competition among multiple edge users. In [6],
dynamic voltage frequency scaling (DVFS) technology was
introduced into the optimization of local computation cost.
By optimizing the computational speed, transmit power, and
offloading ratio of IoT devices, energy consumption and delay
can be significantly reduced. The authors in [7] analyzed the
joint optimization of offloading decisions and radio allocation
in sliced multi-cell MEC networks. These two subproblems
were solved iteratively by an alternate optimization method.
The work in [8] considered MEC networks with multiple
servers, where a joint task offloading and resource allocation
algorithm was proposed to improve the devices’ offloading
benefits.

Non-orthogonal multiple access (NOMA) schemes allow
plenty of devices to share the same communication resources
at the same time, including time slots and frequency spectrum.
It brings many advantages, such as a large number of connec-
tions, higher spectral efficiency, and lower latency [9]. Sparse
code multiple access (SCMA) is a NOMA designed in the
code domain, which combines multi-dimensional modulation
technique with low density spread spectrum [10]. Compared
to power-domain (PD) NOMA schemes, SCMA offers the
benefits of coding gain and shaping gain, resulting in im-
proved throughput and bit-error-rate (BER) [11]. Simulations
demonstrated that SCMA-based systems can achieve higher
throughput than PD-NOMA at the cost of more complex
detections [12].

Recently, the application of NOMA into MEC for IoT
scenarios has been regarded as a promising approach to
provide efficient transmission and timely computation for
massive mobile devices [13]–[20]. Particularly, multiple de-
vices can simultaneously offload computation tasks to MEC
servers through NOMA, further increasing the flexibility and
efficiency in computation offloading. More specifically, it is
shown in [13] that NOMA plays an important role in reduc-
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ing the energy consumption and latency of task offloading.
The latency minimization problem of NOMA assisted MEC
was investigated in [14], where authors proposed an efficient
layered algorithm to find the optimal offloading strategy for
devices with the minimum task execution delay. The work
in [15] adopted a partial offloading scheme in the hybrid
NOMA enabled MEC network, which solved the problem
of minimizing energy consumption under delay restriction
through power allocation, time slot scheduling, and offloading
strategy. The authors in [16] proposed a NOMA scheme for
edge computing awareness and designed a heuristic device
clustering and resource allocation algorithm to minimize the
energy consumption of MEC users. In [17], the authors
exploited NOMA to maximize the energy efficiency in multi-
cell MEC networks through a joint radio and computation
resources allocation scheme. An SCMA-enabled MEC scheme
in IoT scenarios was designed in [18], where the authors em-
phasize the maximization of sum rate. In [19], a joint resource
allocation and task offloading optimization design in a single-
cell MEC network enabled by SCMA was proposed to achieve
the tradeoff between task latency and energy expenditure.

While most of the aforementioned studies have focused
on the single-cell MEC network scenarios, multi-cell SCMA-
based MEC systems have not yet been studied. There are sev-
eral key challenges that need to be considered and addressed.
First of all, in the case of multiple cells, multiple terminals can
access the BS randomly by sharing the same SCMA codebook
at the same time. Therefore, it is challenging to allocate SCMA
codebooks to reduce inter-cell interference between devices
and improve transmission rates. Secondly, considering the
joint optimization of task latency and energy efficiency, we
need to properly allocate local computing resources, transmit
power for task offloading, and edge computing resources.
Additionally, offloading too many tasks reduces the offloading
benefits due to interference and competition for limited com-
puting resources, and thus an intelligent offloading strategy is
necessary. Finally, for a terminal, it needs to decide not only
whether the computation task should be offloaded, but also
which SCMA codebook to occupy and which MEC server
to offload the task to. The coupling of SCMA codebook
allocation and offloading decisions makes the problem even
more challenging. Motivated by the above challenges, the
contributions of this paper are presented below.

1) We design an optimization framework for SCMA-enabled
multi-cell edge computing networks, where the problem of
inter-cell interference and SCMA codebook reuse are ana-
lyzed. Specifically, a system cost is first formulated to measure
the devices’ energy expenditure and task execution latency.
Under the constraints of the maximum latency of tasks, the
limited communication, and computation resources, an initial
problem of minimizing the system cost is formulated.

2) Since the formulated problem is non-convex due to the
coupled variables and intractable constraints, we solve it by
subdividing it into two manageable sub-problems, i.e., re-
source allocation and task offloading policy. As such, by using
the variable substitution method, the non-convex optimization
problem of resource allocation is transformed into a convex
one, and the closed-form solutions under fixed power and

frequency are found respectively. We further propose a joint
power and computing resource allocation algorithm based on
BCD to obtain the near-optimal power and frequency alloca-
tion. Furthermore, the task offloading and multi-cell SCMA
codebook allocation (TOCA) based on improved simulated
annealing (SA) is proposed with low complexity.

3) In a dynamic environment, where channel and task states
are constantly changing, it is difficult to obtain global infor-
mation. In this case, the proposed SA algorithm may not be
applicable. We propose a multiagent deep deterministic policy
gradient (MADDPG)-based TOCA algorithm with centralized
training and distributed execution to solve the problem of
partial state observation and timely decision making.

4) We show that the system cost minimization problem
addressed in this paper is a unified framework of energy
optimization and latency minimization, which can be achieved
by changing the weighted factor. In addition, we extend to
the partial offloading case and propose a resource allocation
algorithm and partial offloading policy based on alternating
convex search.

5) Numerical simulations illustrate that the proposed joint
optimization algorithm can minimize the system cost (i.e. the
weighted value of energy consumption and time delay), and
show that the proposed multi-cell SCMA-MEC framework has
significant advantages over OFDMA-MEC and PD-NOMA
enabled MEC.

The rest of the paper is organized as follows. Section II
designs the model of SCMA-enabled multi-cell edge comput-
ing networks and formulates the initial optimization problem.
Section III proposes the joint resource allocation and task
offloading scheme. Simulation results are presented in Section
IV, and conclusions are made in Section V.

II. SYSTEM MODEL

The model of multi-cell SCMA-enabled MEC networks is
shown in Fig. 1, where each base station (BS) is equipped with
a MEC server providing task offloading services. We denote
the set of IoT devices and BSs (MEC servers) in the network
as U = {1, 2, . . . , U} and N = {1, 2, . . . , N}, respectively.
Multiple IoT devices can simultaneously offload computing
tasks to MEC servers by SCMA. The system model consists
of three parts: computing task model, task offloading, and
MEC execution model. For easy reading, the key symbols are
summarized in TABLE I.

A. Computing Task Model

We assume that each IoT device u has one computation
task at a time, represented as Tu. The device can choose to
perform the computing task locally or offload it to a nearby
MEC server, i.e., binary offloading is adopted in the model
[8]. The task Tu can be represented by three-tuple parameters,
(du, cu, t

max
u ), where du (in bits) specifies the amount of data

for task description, cu (in cycles) represents the number of
CPU calculations for Tu, and tmax

u (in seconds) indicates the
required completion time of the task. The local computing
frequency of user u is defined as f l

u (in cycles/s). When the
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Fig. 1. A diagram of the system model, where multiple devices offload tasks to MEC servers via SCMA.

TABLE I
SUMMARY OF KEY SYMBOLS.

Symbols Descriptions
u Index of IoT devices
n Index of BSs (MEC servers)
c Index of SCMA codebooks
k Index of subcarriers
U Set of IoT devices
N Set of BSs (MEC servers)
C Set of SCMA codebooks
K Set of subcarriers
F l Local computation adjustment policy
F Edge computation resource allocation strategy
S Computation offloading strategy incorporating

multi-cell SCMA codebook allocation
P Power allocation policy of IoT devices
Tu Computing task of device u
du The amount of data for Tu description
cu The number of CPU calculations for Tu

tmax
u The required completion time of Tu

Sn
u,c Relationship indicator of device u, codebook c and server n
Sn
u Offloading decision of device u

pu Transmission power of device u
Un

off Set of devices offloading tasks to MEC server n
f l
u Local computing frequency of user u

fn
u Allocated edge computation resource for user u at server n
fn Computation frequency of the MEC server n
tlu Local computation time of user u
t

up
u Uplink transmission time of user u

texe
u Edge task execution time of user u
El

u Local energy consumption of user u
Ee

u Offloading energy consumption of user u
βt Devices’ preference to time
βe Devices’ preference to energy
L The number of associated pilots for each SCMA codebook
κ Energy factor of the effective switching capacitance.
Gl

u Local utility consumption of user u
Ge

u Edge utility consumption of user u
Gu Utility consumption of user u

computation task Tu is executed locally, the computation time
and energy consumption can be expressed as

tlu =
cu
f l
u

, (1)

El
u = κ(f l

u)
2cu, (2)

where κ denotes the energy factor, determined by the effective
switching capacitance. The local computing rate f l

u can be ad-
justed using DVFS technology [21] to optimize the execution
time and energy consumption of IoT devices and the local
computation policy is defined as F l = {f l

u, u ∈ U}.

B. Task Offloading through SCMA

The devices adopt SCMA as the multiple access scheme
to perform task offloading. At the SCMA transmitter, the
binary bit stream is directly mapped to multidimensional
codewords through SCMA coding. After physical resource
mapping, codewords of multiple users are overlapped non-
orthogonally in a sparse spreading way in the same time-
frequency resources. The receiver adopts message passing
algorithm (MPA) for joint multi-user detection and restores
the original bit stream. The number of SCMA codewords
can be much larger than the number of orthogonal resources,
which enables SCMA to serve more users than orthogonal
subcarriers. In the SCMA scheme, the modulation and spread
spectrum steps are combined into a codeword mapping of the
corresponding codebook, and the SCMA encoder can define
as

f : Blog2(M) → X ,x = f(b), (3)

where b is the input binary bit stream. B represents the set
of binary numbers. f indicates the mapping function between
the binary bit stream and the SCMA codeword. x is a K-
dimensional sparse codeword vector. X denotes the SCMA
codebook of the user. The number of codewords in each
codebook is M . X ∈ CK represents the complex set with
dimension K. We denote the set of codebooks for every SC-
MA layer and subcarriers in every single-cell SCMA system as
C = {1, 2, . . . , C} and K = {1, 2, . . . ,K}, respectively. The
connection between SCMA codebooks and subcarriers can be
expressed by the mapping matrix F = (F 1,F 2, · · · ,FC),
where F c = (a1,c, a2,c, · · · , aK,c) is the indicator vector for
the codebook c. Codewords in SCMA codebooks are mainly
composed of non-zero elements and zero elements, which
correspond to resource blocks. Let the number of non-zero



4

elements of the codeword be R. In fact, the user only transmits
different modulation signals of the same bit sequence on the
corresponding R resource blocks. An example of the indicator
matrix F with C = 6,K = 4, R = 2 is expressed as

F =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (4)

If ank,c = 1, it means that codebook c occupies the kth
subcarrier in BS n. pnu,c denotes the transmit power of device
u to BS n on codebook c and it is allocated to subcarrier
k in a given proportion δc,k, which satisfies

∑
∀k∈c δ

n
c,k = 1

[12]. Considering the characteristics of the multi-cell system,
it should be noted that the number of codebooks is usually less
than that of devices, which is different from the assumption
in the single-cell SCMA network [19], [22]. The mapping be-
tween codebooks and subcarriers ank,c and the subcarrier power
allocation proportion δnc,k can be solved by the bidirectional
matching principle and the water filling technique proposed in
our previous work [23].

We denote Sn
u,c as the offloading policy of users, which

also incorporates multi-cell SCMA codebook allocation. If
codebook c is allocated to mobile device u for offloading its
computing task to the server n, then Sn

u,c = 1, otherwise,
Sn
u,c = 0. Define Sn

u =
∑

c∈C S
n
u,c as the offloading decision

of device u. And then the set of devices offloading tasks to
MEC server n can be shown as Un

off = {u ∈ U | Sn
u = 1}. The

offloading set of IoT devices is denoted as Uoff =
∪

n∈N Un
off,

and the computation offloading strategy can be defined as S,
a three dimensional matrix with each element Sn

u,c.
In the SCMA uplink model, we consider that multiple users

in multi-cells may reuse the same codebook, and at most
one codebook per user. There are L associated pilots for
each codebook in a contention transmission unit (CTU) in
the adopted grant-free SCMA scheme [24]. As long as the
pilot sequences are different, the SCMA receiver can detect
the data stream carried by the same codebook [25]. The signal
to interference plus noise ratio (SINR) of user u on codebook
c in BS n can be represented as [12]

γn
u,c =

Sn
u,c

∑
k∈K δnc,kp

n
u,c

∣∣∣hn
u,k

∣∣∣2
Inu,c +

(
σn
u,c

)2 , (5)

where Inu,c =
∑

n′∈N/{n}
∑

u′∈U/{u}
∑

k∈K δn
′

c,kp
n′

u′,c

∣∣∣hn
u′,k

∣∣∣2
represents the inter-cell interference. hn

u,k and (σn
u,c)

2 are
defined as the channel gain and noise power between the user
u and BS n on the subcarrier k. From the SINR, the transmit
rate of device u in BS n is expressed as

Rn
u =

∑
c∈C

log2
(
1 + γn

u,c

)
. (6)

Let pu denote the transmission power of device u, then
pnu,c = puS

n
u,c. We define the device power allocation strategy

as P = {pu | u ∈ Uoff}. Therefore, the uplink transmission
time of user u when transferring the task description data du

to MEC server n can be calculated as

tup
u =

du
Rn

u

. (7)

The offloading energy consumption of device u can be ex-
pressed as

Ee
u = put

up
u . (8)

C. MEC Execution Model

MEC servers adopt parallel processing for multiple compu-
tation tasks. The computation frequency of the MEC server n
is denoted as fn (in cycles/s), and the computation resource
allocated to every associated user by the MEC server n is
quantified by fn

u . The computation resource allocation strategy
is defined as F = {fn

u , u ∈ U , n ∈ N}. Hence, the task
execution time of user u is calculated as

texe
u =

cu
fn
u

. (9)

D. Problem Formulation

We define the local utility consumption Gl
u as the weighted

sum of task delay and energy consumption,

Gl
u = βtt

l
u + βeE

l
u = βt

cu
f l
u

+ βeκ(f
l
u)

2cu, (10)

where βt ∈ [0, 1] and βe = 1− βt represent users’ preference
to time and energy. The total time when offloading computa-
tion tasks to MEC servers is calculated as

teu = tup
u + texe

u =
du
Rn

u

+
cu
fn
u

. (11)

In practical applications such as target recognition, the amount
of calculation results that need to be returned is three orders
of magnitude smaller than the original task data and the
downlink transmission latency is negligible. Then, the edge
utility consumption can be obtained as

Ge
u = βtt

e
u + βeE

e
u = βt

(
du
Rn

u

+
cu
fn
u

)
+ βe

pudu
Rn

u

. (12)

Hence, the utility consumption of device u is expressed as

Gu =
∑
n∈N

(1−
∑
c∈C

Sn
u,c)G

l
u +

∑
n∈N

∑
c∈C

Sn
u,cG

e
u. (13)

Under the constraints of the maximum latency of compu-
tation tasks, this paper considers local CPU rate adjustment,
MEC server computing resource distribution, power allocation,
multi-cell SCMA codebook allocation, and task offloading
strategy to minimize the latency and energy consumption for
IoT users. The above optimization problem can be expressed
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as:

min
S,Fl,P,F

∑
u∈U

∑
n∈N

∑
c∈C

Sn
u,c

[
βt

(
du
Rn

u

+
cu
fn
u

)
+ βe

pudu
Rn

u

]

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Sn
u,c

)[
βt

cu
f l
u

+ βeκ
(
f l
u

)2
cu

]
(14a)

s.t. Sn
u,c ∈ {0, 1}, ∀u ∈ U , c ∈ C, n ∈ N (14b)∑

n∈N

∑
c∈C

Sn
u,c 6 1,∀u ∈ U (14c)∑

u∈U

Sn
u,c 6 L,∀c ∈ C, ∀n ∈ N (14d)

∑
c∈C

Sn
u,ct

e
u +

(
1−

∑
c∈C

Sn
u,c

)
tlu 6 tmax

u , ∀u ∈ U

(14e)

0 6
∑
n∈N

∑
c∈C

Sn
u,cp

n
u,c 6 pmax

u , ∀u ∈ U (14f)

fn
u > 0, ∀u ∈ Uoff, n ∈ N (14g)∑
u∈Un

off

fn
u 6 fn, ∀n ∈ N (14h)

f l
u,min 6 f l

u 6 f l
u,max, ∀u ∈ U . (14i)

The constraints in the above problem can be explained as
follows. Constraint (14b) is the binary variable that represents
the task offloading decision and multi-cell SCMA codebook
allocation. Constraint (14c) indicates that each user can offload
its task to one edge server using one SCMA codebook.
Constraint (14d) implies that the same codebook can be reused
at most L times by multiple devices. Constraint (14e) shows
that the calculation time of local and edge execution cannot
exceed the task tolerance latency tmax

u . Constraint (14f) limits
the transmision power for each device u. Constraints (14g)
and (14h) ensure the computation frequency allocated to the
associated devices is positive and does not exceed the server’s
computation capacity fn. Constraint (14i) restricts the devices’
computation frequency.

III. JOINT TASK OFFLOADING AND RESOURCE
ALLOCATION SCHEME

The offloading decision S is coupled among the objective
function and multiple constraints, which makes the prob-
lem (14) belong to the mixed-integer nonlinear programming
(MINLP) and difficult to be solved. Hence, we can fix Sn

u,c

simplifies the problem (14) into two tractable subproblems,
i.e., resource allocation and task offloading policy.

A. Resource Allocation

1) Local Frequency Optimization: Firstly, the local CPU
computing frequency of IoT devices can be adjusted to
minimize the local utility consumption Gl

u. Considering the
constraints (14e) and (14i), the optimization problem can be

transformed into:

min
Fl

∑
u∈U

βt
cu
f l
u

+ βeκ
(
f l
u

)2
cu (15a)

s.t.
cu
f l
u

6 tmax
u , ∀u ∈ U (15b)

(14i).

Problem (15) is a standard convex optimization problem that
can be settled utilizing CVX tools or the method we proposed
in [19], which is omitted for brevity.

2) Joint Power and Edge Computing Resource Allocation:
In this subsection, we will investigate the transmit power
allocation for devices and computing resource allocation of
MEC servers. Considering Sn

u,c = 1 and the constraints
related to pu and fn

u , the optimization problem is expressed
as follows,

min
P,F

∑
u∈Uoff

βt

(
du
Rn

u

+
cu
fn
u

)
+ βe

pudu
Rn

u

(16a)

s.t.
du
Rn

u

+
cu
fn
u

6 tmax
u , ∀u ∈ Uoff (16b)

0 < pu 6 pmax
u , ∀u ∈ Uoff (16c)

(14g) (14h).

When Sn
u,c = 1, the transmit rate of device u can be simplified

as

Rn
u = log2

1 +
pu
∑

k∈K δnc,k

∣∣∣hn
u,k

∣∣∣2
Inu,c +

(
σn
u,c

)2
 . (17)

An achievable upper bound on Inu,c is defined as

Ĩnu,c ,
∑

n′∈N/{n}

∑
u′∈U/{u}

∑
k∈K

pmax
u′ δn

′

c,k

∣∣hn
u′,k

∣∣2 . (18)

Similar to [8], [26], we consider Ĩnu,c to be a good approx-
imation of Inu,c. Firstly, the offloading policy S can select
the appropriate relationship between users, SCMA codebooks,
and BSs, to reduce the inter-cell interference Inu,c. Therefore,
the interference with a small deviation has little impact on
the uplink transmit rate and the system cost. Secondly, pu′

is replaced by pmax
u′ for the approximation of interference

bound. They are usually in the same order of magnitude.
According to 3GPP specification [27], the maximum power
of IoT devices is below 23dBm, and thus the power deviation
does not cause a large bias. Detailed simulation results to
justify this simplification are shown in Fig. 11 in Section IV.

Let ζnu,c ,
∑

k∈K δnc,k|hn
u,k|2

Ĩn
u,c+(σn

u,c)
2 , and then Rn

u =

log2
(
1 + ζnu,cpu

)
. We can use the substitution method

and introduce a new variable ξnu , 1/Rn
u , then

pu =
(
21/ξ

n
u − 1

)
/ζnu,c. The optimization problem (16)
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can be rewritten as

min
ξ,F

∑
u∈Uoff

βt

(
duξ

n
u +

cu
fn
u

)
+ βeduξ

n
u

21/ξ
n
u − 1

ζnu,c
(19a)

s.t. duξ
n
u +

cu
fn
u

6 tmax
u , ∀u ∈ Uoff (19b)

ξnu > 1/ log2
(
1 + ζnu,cp

max
u

)
, ∀u ∈ Uoff (19c)

(14g) (14h).

Lemma 1. Problem (19) is a convex optimization problem.

Proof: See Appendix A.
Since the constraint (19b) is coupled between ξnu and fn

u , we
can use the BCD algorithm to iteratively solve the optimization
problem for each variable block of ξnu and fn

u while fixing the
remaining block to the last updated value. Based on the BCD
method, the problem (19) can be solved by addressing two
subproblems iteratively, i.e., power scheduling with given fn

u

and edge computing resource allocation with fixed ξnu .
The power scheduling problem given fn

u can be written as

min
ξ

∑
u∈Uoff

βtduξ
n
u + βeduξ

n
u

21/ξ
n
u − 1

ζnu,c
(20a)

s.t. ξnu 6 tmax
u − cu/f

n
u

du
, ∀u ∈ Uoff (20b)

(19c).

The root of equation βtdu+
βedu

ζn
u,c

[21/ξ
n
u (1− ln 2/ξnu )−1] = 0

is denoted as ξn,0u , which can be solved by the bisection
method. From the Appendix A, we know that the objective
function is convex and it decreases monotonically with the
increase of ξnu when ξnu < ξn,0u , otherwise it increases
monotonically. We define ξn,lu = 1/ log2

(
1 + ζnu,cp

max
u

)
and

ξn,hu = (tmax
u − cu/f

n
u ) /du. Hence, the optimal solution ξn

∗

u

for problem (20) is

ξn
∗

u =


ξn,lu , ξn,0u 6 ξn,lu

ξn,0u , ξn,lu 6 ξn,0u 6 ξn,hu .

ξn,hu , ξn,0u > ξn,hu

(21)

The near-optimal power scheduling can be obtained by p∗u =(
21/ξ

n∗
u − 1

)
/ζnu,c.

The edge computing resource allocation with fixed ξnu is
rephrased as

min
F

∑
u∈Uoff

βtcu/f
n
u (22a)

s.t. fn
u > cu

tmax
u − duξnu

(22b)

(14g) (14h).

It is obvious that problem (22) is convex and Slater’s condition
holds since the feasible region in problem (22) has a nonempty
interior. Therefore, the Karush-Kuhn-Tucker (KKT) conditions
are sufficient and necessary for optimality.

Lemma 2. The optimal edge computing resource allocation
solution fn∗

u can be written as

fn∗

u =


cu

tmax
u − duξnu

, u ∈ Un
off\U0

(fn −
∑

u∈Un
off\U0

fn∗

u )
√
cu∑

u∈U0

√
cu

, u ∈ U0,

(23)

where U0 is defined as the set of µu = 0.

Proof: Derivations can be found in Appendix B.
The optimal allocation strategy of edge computing resources

can be obtained from (23). In each MEC server, the compu-
tation resources are evenly distributed with the square root of
the workload

√
cu. For those devices which can not satisfy

the delay demand, fn∗

u is set to cu/(t
max
u − duξ

n
u ). The rest

of computational frequency is equally allocated w.r.t
√
cu.

The above process is repeated until all the devices meet the
latency requirement, and then the optimal solution fn∗

u is
obtained. In the joint power and computing resource alloca-
tion algorithm based on BCD, the transmit power and edge
computing resource allocation vectors are updated iteratively,
as summarized in Algorithm 1. By performing Algorithm 1
at each base station, the near-optimal transmission power P∗

and edge resource allocation strategy F∗ could be obtained.

Algorithm 1: Joint Power and Computing Resource Allo-
cation Algorithm Based on Block Coordinate Descent

Input: βt, βe, pmax
u , fn, ζnu,c, Tu, Un

off
Output: Optimal transmit power P∗

n and edge computing
resource allocation strategy F∗

n at BS n.
1 Initialize: Set k = 0, convergence tolerance ϵ1, ϵ2 > 0,

use the bisection method to get ξn,0u and find initial
feasible solution (ξnu )

0 = ξn,0u .
2 repeat
3 Compute (fn

u )
k by (23) with given (ξnu )

k;
4 Compute (ξnu )

k+1 by (21) with given (fn
u )

k;
5 k = k + 1;
6 until

∥∥(fn
u )

k − (fn
u )

k−1
∥∥ ≤ ϵ1,

∥∥(ξnu )k − (ξnu )
k−1
∥∥ ≤ ϵ2;

7 Compute near-optimal transmit power

pku =
(
21/(ξ

n
u)k − 1

)
/ζnu,c.

8 Then, set pku and (fn
u )

k, ∀u ∈ Un
off as the near-optimal

transmit power P∗
n and edge computing resource

allocation strategy F∗
n at BS n.

B. Task Offloading and Multi-cell SCMA Codebook Allocation

With a fixed task offloading and multi-cell SCMA codebook
allocation decision Sn

u,c, we get the near-optimal solutions for
the power and computation resources allocation P∗, F∗, F l∗ .
Therefore, the optimization problem is formulated as

min
S

∑
u∈U

∑
n∈N

∑
c∈C

Sn
u,cG

e
u (P∗,F∗)

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Sn
u,c

)
Gl

u

(
F l∗
)

s.t. (14b) (14c) (14d) (14e).

(24)
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Using the exhaustive search method on all possible task of-
floading strategies and multi-cell SCMA codebook allocation
is a direct and brute approach for problem (24). However,
the total number of candidate solutions is 2U×N×C , and the
exponential complexity makes the exhaustive search method
impractical. Therefore, a low complexity algorithm based on
improved simulated annealing is proposed.

The simulated annealing algorithm is derived from the
process of crystal cooling. When the solid is heated and then
cooled, as the temperature decreases slowly, the atoms are
arranged into a certain shape, forming regular crystals with
high density and low energy, which corresponds to the global
near-optimal solution in the algorithm. The SA algorithm
consists of two parts: the metropolis criterion [28] and the
annealing process. Instead of using fully determined rules,
the metropolis criterion accepts new states with probabili-
ty. Specifically, the improved simulated annealing algorithm
would update new solutions from the solutions of the last
iteration in the following four ways:

(1) Change task offloading decision for device u.
(2) Randomly select another MEC server of the three closest

MEC servers and find an SCMA codebook that has been
allocated less than L devices.

(3) Select another SCMA codebook that has been allocated
less than L devices.

(4) Exchange the MEC server and SCMA codebook policy
with another device.

If the value of the new objective function (Gnew) is less
than the previous value (Gold), then the new solution (Snew) is
accepted. Otherwise, the algorithm accepts Snew as the new
solution with probability e−∆G/T . Finally, as the tempera-
ture decreases, the algorithm gradually converges to the an
approximate optimal solution. At each iteration, it needs to
perform Algorithm 1 with Snew in each base station, and
obtain the near-optimal transmission power P∗ and edge
resource allocation strategy F∗. The specific steps for task
offloading and multi-cell SCMA codebook allocation based
on SA (TOCA-SA) are described in Algorithm 2.

It should be noted that Algorithm 2 is applicable in the
centralized situation, i.e., with a central controller knowing
all the states in the environment. However, it is difficult to
obtain global information in a timely manner in the highly
dynamic environment of IoT devices. In practical application,
due to the variability of channel states and task generation,
it is often necessary to use the proposed algorithm to decide
task offloading and multi-cell SCMA codebook allocation for
every single state. In this case, Algorithm 2 is optimized for
each time slot, and thus brings high complexity. Therefore,
aiming at the above two shortcomings, we put forward a
distributed deep reinforcement learning (DRL) algorithm to
solve computation offloading policy and SCMA codebook
allocation. Through centralized training and distributed exe-
cution, it can effectively solve the problem of partial state
observation and timely decision-making. The proposed online
algorithm avoids solving the optimization problem for each
state, thus greatly reducing the complexity of determining
the offloading solutions and SCMA codebook selections for
different channel implementations and task generations.

Algorithm 2: Task Offloading and Multi-cell SCMA
Codebook Allocation Based on Simulated Annealing

Input: U , C, N , K, βt, pmax
u , fn, Tu, Gl∗

u , T , Minimum
temperature Tmin, Reduction factor α

Output: The task offloading and multi-cell SCMA
codebook allocation decision S∗

1 Initialize: Randomly generate an initial feasible solution
Sold and calculate Gold =

∑
u∈U Gu.

2 while T > Tmin do
3 Generate new solutions Snew from Sold in one of

several following ways based on the probability
rand ∈ (0, 1).

4 if rand < 0.2 then
5 Change task offloading decision for device u
6 else
7 if rand < 0.4 then
8 Randomly select another MEC server of the

three closest servers and find an SCMA
codebook that has been allocated less than L
devices.

9 else
10 if rand < 0.8 then
11 Select another SCMA codebook that has

been allocated less than L devices.
12 else
13 Exchange the MEC server and SCMA

codebook policy with another device.
14 end
15 end
16 end
17 Perform Algorithm 1 with Snew in each base station,

and obtain the near-optimal transmission power P∗

and edge resource allocation strategy F∗.
18 Calculate Gnew, and ∆G = Gnew −Gold.
19 if ∆G 6 0 then
20 Sold = Snew, Gold = Gnew

21 else
22 if e−∆G/T > rand(0, 1) then
23 Sold = Snew, Gold = Gnew

24 end
25 end
26 T = α ∗ T
27 end

In the proposed reinforcement learning framework, each
IoT device is defined as an agent that learns the computation
offloading strategy and SCMA codebook allocation through
interacting with the environment. On the basis of the original
optimization problem (24), the state space, action space and
reward function are designed as follows.

State space: Denote ou,t as the environment state observed
by IoT device u at time slot t. The observed state of
each device includes the distances from each BS du(t) =
{du,n(t), n ∈ N}, channel gains of subcarriers in SCMA
hu(t) = {hu,k(t), k ∈ K}, and the current task Tu(t),
Hence, the partial observed state of agent u is expressed as
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ou,t = {du(t),hu(t), Tu(t)} with size N +K + 3.
Action space:The action au,t of IoT device u includes

the decision of whether to carry out computation offloading
(su(t) ∈ {0, 1}), where to offload (bu(t) ∈ {1, ..., N}) and
the selection of an SCMA codebook (cu(t) ∈ {1, ..., C}). The
action is given as au,t = {su(t), bu(t), cu(t)} with size 3.
Note that Sn

u,c in problem (24) can be easily get by au,t.
Reward: ru,t is the reward after taking the action au,t at

time slot t and it is defined as the negative sum of task latency
and energy consumption, i.e., the negative of optimization
objective in problem (24), expressed as

ru,t =

{
−
[
βt(t

l
u + teu) + βe(E

l
u + Ee

u)
]
, teu + tlu 6 tmax

u

− p, otherwise.
(25)

When the IoT device can not meet the delay requirement of
its task, i.e., constraint (14e) is not satisfied, the agent gets
punishment p (a relatively large value).

The proposed online reinforcement learning framework is
based on MADDPG with centralized training and decentral-
ized execution. On the basis of actor-critic framework, each
IoT device u consists of an actor network and a critic network.
Both the actor network and the critic network contain two
networks with the same structure, i.e., evaluation network and
target network. The parameters of target network remain fixed
for several steps and then update according to the weights of
the evaluation network. The fixed target network reduces the
correlation between the target and the estimated value. Actor
network can make decisions based on partial environment
states observed by IoT devices. Critic network is centralized
and it can obtain global information (including global envi-
ronment states and all actions of agents), which gives the
corresponding Q value Q(x,a1, ...,aU ),x = [o1, ...,oU ]. It
should be noted that the centralized training stage is offline
and all the actions of agents can be acquired centrally at BS
for training. Therefore, the centralized training process can
solve the instability problem of multiagent environment to a
certain extent. In the decentralized execution phase, it only
propagates forward based on partial observations. Therefore,
the trained actor network can be deployed on IoT devices.

Centralized training: The network parameters of IoT de-
vices are defined as θ = [θ1, · · · , θU ] and deterministic
policies can be expressed as µ = [µθ1 , · · · , µθU ]. For ease of
writing, µu is short for µθu . In the centralized training process
of critic network, the update method is based on temporal
difference (TD) error and then the loss function can be written
as

L (θu) = Ex,a,r,x′

[
(Qµ

u (x, a1, · · · , aU )− y)
2
]
, (26)

where y = ru + γQµ′

u (x′, a′1, · · · , a′U ) |a′
u=µ′

u(ou)
and γ is

the discount factor. µ′ is the parameter of the corresponding
target network. The actor network update the parameters in
the direction of ∇θuJ and the gradient can be expressed as,

∇θuJ (µu)

= Ex,a∼D
[
∇θuµu(ou)∇auQ

µ
u(x, a1, · · · , aU )|au=µu(ou)

]
,

(27)

where D is the experience replay buffer, containing the series
of observation data (x, a1, · · · , aU , r1, · · · , rU ,x′). Experi-
ence replay method can be used to randomize data and
eliminate correlations in the observations.

Decentralized execution: In the decentralized execution
phase, the trained actor network is assigned to the IoT device
side to make online decisions. Action is performed based on
the observed state of the device,

au = µ (ou|θu) . (28)

Since each agent only relies on local observations to make
decisions, it does not need a complex communication network
to keep in touch with other agents. Therefore, it can be
well adapted to practical applications. The specific steps of
the training algorithm for joint task offloading and SCMA
codebook allocation (TOCA-MADDPG) are presented in Al-
gorithm 3, and the execution algorithm on the IoT device is
shown in Algorithm 4.

Different from MADDPG methods in other papers [29],
[30], the TOCA-MADDPG algorithm proposed in this paper
solves the problem that the reward cannot converge when there
are too many agents and the environment is unstable. Due
to the characteristics of the multi-cell SCMA-MEC networks
environment, the distances between IoT devices and base
stations play a dominant role in the channel gain, and when
the channel gain is larger, the IoT device has a stronger
willingness to perform computation offloading. As the cell
number further increases (N > 3), we limit the agent’s
second action bu(t), i.e., which base station or MEC server
to choose as the offloading destination, to the three nearest
base stations. By doing so, the state size of every agent is
10 and only 1 + 3 ∗ 6 = 19 actions can be selected. In this
case, the uncertainty of the environment and the convergence
complexity of the algorithm can be greatly reduced. Therefore,
the proposed TOCA-MADDPG algorithm can still converge
well in the case of multiple agents.

C. Analysis of Special Cases

The minimization problem of the weighted energy consump-
tion and latency is studied in problem (14). In this subsection,
we analyze two special cases of the above problem. The
analysis explains the generality and applicability of the studied
problem and proposed algorithms. When the weighting factor
βt is equal to 1, the latency minimization problem can be
formulated as follows,

min
S,Fl,P,F

∑
u∈U

∑
n∈N

∑
c∈C

Sn
u,c

(
du
Rn

u

+
cu
fn
u

)

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Sn
u,c

)
cu
f l
u

s.t. (14b) (14c) (14d) (14e) (14f) (14g) (14h) (14i).
(29)
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Algorithm 3: Centralized Training in TOCA-MADDPG
Algorithm
Input: The environment parameters: U , N , C, K, βt,

pmax
u , fn, Tu, Gl∗

u ; MADDPG training
parameters: E, TS , αactor, αcritic,D, γ, τ , minibatch
size I , noise decay rate αn.

Output: The trained weights θ of actor networks for
every agent.

1 Initialize: Randomly set the weights of actor network
and critic network for every agent. Empty the replay
buffer D. Initialize a Gaussian process with mean = 0
and var = 2.

2 for episode=1, 2, ..., E do
3 Reset the simulation parameters of SCMA-enabled

multi-cell edge computing networks.
4 IoT devices observes an initial state x = [o1, ...,oU ].
5 for time slot=1, 2, ..., TS do
6 for each IoT device u, select action

au = µu(ou) + nu, add random Gaussian noise
nu ∼ N(0, var) to ensure exploration.

7 var = var ∗ αn.
8 Execute actions a = [a1, · · · , aU ] for every agent,

observe the reward r = [r1, · · · , rU ] by (25) and
next state x−.

9 Store experience (x,a, r,x′) in D.
10 x = x′

11 for agent=1, 2, ..., U do
12 Randomly sample I transitions as a train

minibatch from D.
13 Update critic network by minimizing the loss

L (θu) in (26).
14 Update actor network using the policy

gradient in the direction of ∇θuJ (µu) in (27).
15 Update target networks by

θ′u = τθu + (1− τ)θ′u.
16 end
17 end
18 end

Algorithm 4: Decentralized Execution in TOCA-
MADDPG Algorithm
Input: Time slots TS . Current states du,hu, Tu. The

trained weights θ of actor networks for every
agent.

Output: The actions a of all IoT devices
1 for time slot=1, 2, ..., TS do
2 for agent=1, 2, ..., U do
3 Select action au = µu(ou) based on the

observation ou.
4 end
5 Environment states change to x′ based on the actions

a selected by agents.
6 Every agent gets reward r by (25) and observates

next state.
7 end

Similarly, when the parameter βe = 1, the energy minimiza-
tion problem can be rewritten as,

min
S,Fl,P

∑
u∈U

∑
n∈N

∑
c∈C

Sn
u,c

pudu
Rn

u

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Sn
u,c

)
κ
(
f l
u

)2
cu

s.t. (14b) (14c) (14d) (14e) (14f) (14i).

(30)

These two problems are special cases of the problem studied in
this paper. Obviously, the algorithms proposed can be directly
used to solve the problems of minimizing task execution delay
and energy consumption.

D. Extension to Partial Offloading

This subsection extends the proposed algorithms to partial
offloading. In this case, we assume that task Tu can be divided
into two arbitrarily sized blocks, one of which is executed
locally by the UE itself and the other (δu) can be offloaded to
the edge server.

When the number of CPU cycles processed locally is
(1−δu)cu, the execution time and energy consumption can be
expressed as tlu = (1−δu)cu/f

l
u and El

u = κ(f l
u)

2(1−δu)cu,
respectively. When computation offloading is performed, the
total time spent can be given as tcu = δudu/R

n
u+δucu/f

n
u , and

the energy consumption is expressed as Ec
u = δupudu/R

n
u .

Since parallel computing is performed simultaneously on
the device and the MEC server, the delay of the over-
all task should be the maximum value of the two, i.e.,
max

{
(1− δu)cu/f

l
u, δudu/R

n
u + δucu/f

n
u

}
. In addition, the

overall energy consumption can be expressed as κ(f l
u)

2(1 −
δu)cu + δupudu/R

n
u .

Therefore, similar to binary offloading, the tradeoff problem
between latency and energy consumption can be formulated
as

min
S,δ,Fl,P,F

∑
u∈U

βt max

{∑
n∈N

∑
c∈C

Sn
u,cδu

(
du
Rn

u

+
cu
fn
u

)
, (1− δu)

cu
f l
u

}

+
∑
u∈U

βe

[∑
n∈N

∑
c∈C

Sn
u,cδu

pudu
Rn

u

+ (1− δu)κ
(
f l
u

)2

cu

]
(31a)

s.t. δu ∈ [0, 1],∀u ∈ U (31b)

max
{
δut

e
u, (1− δu) t

l
u

}
6 tmax

u ,∀u ∈ U (31c)

(14b) (14c) (14d) (14f) (14g) (14h) (14i).

The constraint (31b) represents the offloading policy δu is
a continuous variable within [0, 1]. Constraint (31c) implies
that the task execution time cannot exceed the maximum
task execution latency tmax

u . Note that Sn
u,c in this section

only represents the relationship between IoT devices, BS, and
multi-cell SCMA codebook allocation. δu stands for offloading
policy.

When fixing Sn
u,c, the optimization problem is transformed
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as

min
δ,Fl,P,F

∑
u∈U

βt max

{
δu

(
du
Rn

u

+
cu
fn
u

)
, (1− δu)

cu
f l
u

}
+
∑
u∈U

βe

[
δu

pudu
Rn

u

+ (1− δu)κ
(
f l
u

)2
cu

]
(32a)

s.t. 0 6 pnu,c 6 pmax
u , ∀u ∈ U (32b)

(14g) (14h) (14i) (31b) (31c).

Using the same idea in subsection III-A, let ξnu = 1/Rn
u ,

the optimization problem (32) can be rewritten as

min
δ,Fl,ξ,F

∑
u∈U

βt max

{
δu

(
duξ

n
u +

cu
fn
u

)
, (1− δu)

cu
f l
u

}

+
∑
u∈U

βe

[
δuduξ

n
u

(
21/ξ

n
u −1

)
ζnu,c

+ (1− δu)κ
(
f l
u

)2
cu

]
(33a)

s.t. δu

(
duξ

n
u +

cu
fn
u

)
6 tmax

u ,∀u ∈ U (33b)

(1− δu)cu/f
l
u 6 tmax

u , ∀u ∈ U (33c)

ξnu > 1/ log2
(
1 + ζnu,cp

max
u

)
, ∀u ∈ U (33d)

(14g) (14h) (14i) (31b).

Even if the transformed problem (33) is still non-convex,
it is noted that when δ is fixed, the problem is a standard
convex optimization problem, because the objective function
is the maximum of two convex functions [31]. The interior-
point method and CVX tools can be used to solve it. When
F l, ξ,F are fixed, that problem can be transformed to a
linear programming problem w.r.t δ, which is easy to be
settled. Then, the near-optimal solutions can be solved by
an alternating convex search algorithm, shown in Algorith-
m 5. When δ,F l,P,F are solved, the improved simulated
annealing algorithm proposed in Algorithm 2 can be used
to solve S. For the dynamic environment, the computation
offloading decision su(t) ∈ {0, 1} only needs to be changed
into su(t) ∈ [0, 1] in the action space, and then Algorithm 3
can solve the partial offloading case.

E. Computational Complexity Analysis

The computational complexity of the proposed algorithms
is discussed in this subsection. Firstly, the complexity of
Algorithm 1 is dominated by lines 1, 3 and 4. Define the
set of users offloading to BS n as Un

off = |Un
off|. The first line

adopts the bisection search method for solving ξn,0u , and the
complexity is on the order of O (log2(U

n
off)). The complexity

of Line 3 and Line 4 by calculating ξnu , f
n
u using (21) and

(23) is O (2Un
off) and O (Un

off), respectively. The number of
iterations of Algorithm 1 is expressed as J1, and then the
complexity of Algorithm 1 is O (log2(U

n
off) + J1 (3U

n
off)).

In view of the complexity of Algorithm 2, it is
decided by new policy Snew generation and perform-
ing Algorithm 1 with Snew. The complexity of gen-
erating Snew for lines 3 − 16 is on the order of
O (UCN). Line 17 runs Algorithm 1 in each base sta-
tion, the complexity is O

(∑N
n=1 (log2(U

n
off) + J1 (3U

n
off))

)
.

Algorithm 5: Resource Allocation Algorithm and Partial
Offloading Policy Based on Alternate Convex Search

Input: βt, βe, Tu, pmax
u , fn, ζnu,c, f l

u,min, f l
u,max,

convergence tolerance ϵ.
Output: Optimal resource allocation F l∗ ,P∗,F∗ and

partial task offloading strategy δ∗.
1 Initialize: Set iterxation index k = 1 and the initial value

of δ1 equals 0.5.
2 repeat
3 Substitute δk into the problem (33) to obtain(

(f l)k+1, (ξnu )
k+1, (fn

u )
k+1
)

by solving the convex
optimization problem using the interior point method.

4 Update δk+1 based on
(
(f l)k+1, (ξnu )

k+1, (fn
u )

k+1
)

by solving the linear programming problem.
5 k = k + 1;
6 G(k − 1) = Gu

(
δk−1
u , (f l)k−1, (ξnu )

k−1, (fn
u )

k−1
)
;

7 G(k) = Gu

(
δku, (f

l)k, (ξnu )
k, (fn

u )
k
)
;

8 until ∥G(k)−G(k − 1)∥ ≤ ϵ;
9 Compute near-optimal transmit power

p∗u =
(
21/(ξ

n
u)k − 1

)
/ζnu,c.

The number of iterations is calculated as logα(Tmin/T ).
Therefore, the complexity of Algorithm 2 is denoted
as O

(
logα(Tmin/T )UCN

∑N
n=1 (log2(U

n
off) + J1 (3U

n
off))

)
.

If the exhaustive method for task offloading and SC-
MA codebook allocation is used, the complexity is
O
(
2UCN

∑N
n=1 (log2(U

n
off) + J1 (3U

n
off))

)
. Therefore, com-

pared with the exhaustive method, the proposed algorithm
greatly reduces the computational complexity and more de-
tailed iterations results are shown in Section IV.

The complexity of Algorithm 3 lies in the training of
actor network and critic network for each agent, from label
12 − 15. For actor network, the complexity of one training
is O (|ou,t|η + η|au,t|) [32], where η is the hidden layer size
of the network, |ou,t| = N +K + 3 denotes the observation
size and |au,t| = 3 shows the action size. The complexity
of training for critic network is O (U(|ou,t|+ |au,t|)η + η).
Therefore, the computational complexity of Algorithm 3 is
calculated and simplified as O (ETSU(|ou,t|+ |au,t|)η). The
computational complexity of Algorithm 4 depends on step
3, and the complexity of obtaining action by a IoT device
is O (|ou,t|η + η|au,t|). Therefore, the overall complexity of
Algorithm 4 is expressed as O (TSU (|ou,t|η + η|au,t|)).

The complexity of Algorithm 5 is dominated by interior
point method and linear programming method using CVX
tools in the third and fourth lines, respectively. Its com-
putational complexity is related to the corresponding op-
timization constraints and decision variables. The original
convex problem in line 3 has 4U + UN + N linear matrix
inequality (LMI) constraints of size 1 and 2U + UN de-
cision variables. Therefore, the computational complexity in
line 3 is O

(√
4U + UN +N(2U + UN)3

)
. There are 3U

LMI constraints of size 1 and U decision variables of the
original convex problem in line 4. The complexity in line 4
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is O
(√

3UU3
)

. Define the number of iterations in algorithm
3 as J3. Then the complexity of Algorithm 5 is expressed as
O
(
J3(

√
4U + UN +N(2U + UN)3 +

√
3UU3)

)
.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, representative simulation results are shown
to evaluate the performance of the multi-cell SCMA-enabled
MEC design. Specifically, N BSs and U users are randomly
distributed in an area, and the adjacent BSs are set 100m
apart from each other. The number of SCMA codebooks is
set as C = 6. For each codebook, the number of associated
pilot sequences is L = 2 [25]. The channels between the
users and BSs are generated by a distance dependent path
loss, modeled as PL(dB) = 140.7 + 36.7log10(d)[km] [8]
with 8dB log-normal multipath shadowing. The maximum
transmit power of users pmax

u is 23dBm. We set the system
bandwidth B as 20MHz and the number of subcarriers as
4. Every BS is equipped with a 20GHz MEC server. The
task description data du and the workload cu are randomly
distributed in [300, 1200]KB and [0.2, 1]Gcycles, respective-
ly [33]. The maximum latency tmax

u is between 0.5s and
2s. The terminal device can adjust its computation rate as
0.2GHz∼1GHz and κ = 5 × 10−27 [34]. The termination
temperature and cooling speed of the TOCA-SA algorithm are
set as Tmin = 0.0001 and α = 0.98. In the TOCA-MADDPG
algorithm, the actor and critic network are implemented by
five fully connected layers, including one input layer, three
hidden layers (256, 128 and 64 neurons), and one output layer.
The training parameters of the proposed TOCA-MADDPG
algorithm are set as follows: train episodes E = 1000, time
slots TS = 100, minibath size I = 64, experience replay buffer
size |D| = 3000, learning rate of actor network αactor = 0.001
and critic network αcritic = 0.002, reward discount γ = 0.9,
soft update τ = 0.01, noise var = 2 and noise decay rate
αn = 0.99. The simulation results were obtained on a laptop
equipped with R9-5900HX, RTX3080 and 32GB RAM.

0 100 200 300 400 500

Number of Iterations

0

50

100

150

S
ys

te
m

 C
os

t

225 319 380
404

416

16.00
23.80

35.29
43.36

55.95

2 Cells
3 Cells
4 Cells
5 Cells
6 Cells

Fig. 2. Trend of the system cost versus the number of iterations and cells.

The convergence performance of the proposed task of-
floading and multi-cell SCMA codebook allocation based on
an improved simulated annealing algorithm is illustrated in
Fig. 2. We consider that each BS can serve an average of
6 devices, and when the cell number increases from 2 to 6,

the number of devices grows from 12 to 36. In all cases,
the utility value experiences a period of fluctuation due to
label 13 in Algorithm 2, then decreases, and finally converges
with the increase of iterations. It can be seen from the figure
that the convergence can be achieved within 500 iterations
in all cells. When the number of cells grows from 2 to 6,
the number of iterations reaching equilibrium goes from 225
to 416. Compared with the exhaustive search method, which
requires 212×2×6 ∼ 236×6×6 iterations [8], the complexity of
proposed algorithm is significantly reduced.

The training process of the TOCA-MADDPG algorithm is
shown in Fig. 3, in which the proposed algorithm is compared
with the multi-agent deep Q-learning networks (MADQN)
method [35]. In Fig. 3(a), MADQN is applied to SCMA-
MEC networks. Each IoT device is regarded as an agent,
and the Q value is estimated through DNN networks. In
MADQN, the reward is not only related to the action of a
single agent but also depends on that of other agents. The joint
action of multiple IoT devices affects the environment, which
moves to the next state and receives corresponding rewards for
each agent. When the number of cells is relatively small, the
MADQN algorithm can gradually converge to a stable value
through experience replay and interactive training with the
environment. However, when the cell number gets larger, such
as 6, the environment becomes unstable due to more devices
taking action, resulting in the failure of reward convergence.
Fig. 3(b) shows the obtained reward of the proposed TOCA-
MADDPG algorithm during the training. As can be seen
from the figure, the reward can converge to a relatively stable
value in all the cases of cell numbers. Note that the reward
is particularly low during the exploratory stage of TOCA-
MADDPG. This is because a large number of IoT devices
choose action 0, i.e, local computing, resulting in penalty
p in (14) for task failure. Through continuous training with
the environment, the final reward is greatly increased. At
this time, the trained computation offloading and codebook
allocation strategy is effective, and the trained actor network
can be directly deployed in IoT devices. Fig. 3(c) illustrates
the difference in convergence values between MADQN and
the proposed TOCA-MADDPG. It can be seen from the figure
that the convergent rewards of the two algorithms are basically
the same, while the reward of TOCA-MADDPG is relatively
higher and more stable when the number of cells increases,
indicating that the proposed algorithm shows more advantages.

Fig. 4 shows the effect of the proposed TOCA-MADDPG
algorithm limiting the involving base stations on the reward
convergence performance when N > 3. As can be seen from
the figure, with the initial increase in the training episodes,
the reward of the proposed algorithm and the traditional
MADDPG algorithm grows through continuous training. The
reason for the increase in rewards is that the agents learn to
offload tasks to the MEC server, which reduces the probability
of task failure. However, in the further training process, it
can be found that there is a gap between the two algorithms.
Compared with the MADDPG algorithm which does not limit
the states and actions of the agents, the proposed TOCA-
MADDPG algorithm can enhance the training speed, achieve
convergence and get a higher reward. And when the number
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Fig. 3. Comparison of convergence when using different DRL method.
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Fig. 4. The effect of state and action restrictions on convergence performance
when the number of cells is large (N > 3).

of cells increases, the advantage becomes more obvious. In the
case of four cells, there is a reward gap (2.34) between the two
algorithms. When the number of cells is 5 and 6, the rewards
are difficult to converge and constantly fluctuate. Compared
with the average reward of MADDPG algorithm, the reward of
the proposed TOCA-MADDPG algorithm increases by 37.7%
(3.47) and 43.5% (4.02), respectively. Therefore, the proposed
algorithm in this paper is more advantageous and can effec-
tively train under the condition of an unstable environment.

To demonstrate the superiority of the proposed SCMA-
MEC scheme, we introduce two reference schemes, which
are the same as the proposed scheme except that the of-
floading process adopts OFDMA [33] and PD-NOMA [12]
techniques, respectively. Fig. 5 shows the energy consumption
and latency comparison between the proposed SCMA-MEC
scheme and the multi-cell edge computing networks enabled
by PD-NOMA and OFDMA. In PD-NOMA, each subcarrier
can be assigned to at most two users simultaneously. It can be
seen that the overall execution delay and energy consumption
increase with the number of cells in all schemes. Compared
with OFDMA and PD-NOMA, the energy cost and delay of
the multi-cell SCMA-MEC network are significantly reduced,
and the gap increases with the number of cells. In the case of
two cells, the average energy consumption of SCMA is 0.064J,
which is reduced by 0.072J and 0.215J in comparison to
PD-NOMA and OFDMA. The average latency equals 0.478s,
reduced by 0.229s and 0.347s, respectively. When the cell
number is six, the average energy expenditure of SCMA is

0.267J, which is 36.6% and 47.0% lower than that of PD-
NOMA and OFDMA, and the time delay comes to 0.589s,
with a relative reduction of 22.4% and 34.6%.

(a) Latency (b) Offloading efficiency

Fig. 6. Impact of multi-cell SCMA codebook allocation on the (a) average
latency and (b) offloading efficiency, compared to random SCMA codebooks.

Fig. 6 depicts the impact of multi-cell SCMA codebook
allocation on average system latency and offloading efficiency.
The random SCMA codebook allocation uses a fixed user
order algorithm [22]. We can see that the proposed algorithm
has an advantage in reducing the latency compared with
the random SCMA codebook allocation. In two cells, the
average delay of the two schemes is 0.476s and 0.679s,
respectively, and the reduction is 0.203s. In the case of six
cells, the average system latency of the proposed algorithm
is 0.585s, which is 0.114s lower than that of random SCMA
codebook allocation. It can be deduced from the data that the
proposed algorithm can reduce the latency by about 16.3%.
Offloading efficiency is defined as the ratio of the number
of offloaded devices to the total number of devices. Due to
the inter-cell interference of multiple cells, the transmit rate
decreases with the growth of cell numbers, and as a result
the devices are less willing to offload tasks. Therefore, the
offloading efficiency drops from 99.8% to 79.7%. Since the
random codebook allocation ignores the interference between
different cells and only considers the competition of multiple
devices for computing resources, the offloading efficiency de-
creases slightly. Therefore, compared with random codebook
allocation, our algorithm can achieve more channel-adapted
offloading efficiency and lower system latency.

The comparison of full offloading, local computing, and
near-optimal offloading is shown in Fig. 7. Overall, in terms
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Fig. 5. Comparison of average (a) utility consumption, (b) energy, and (c) latency while varying the number of cells using different access schemes.

(a) System Cost (b) Energy (c) Latency

Fig. 7. Comparison of average (a) utilityz, (b) energy consumption, and (c) latency when considering full offloading, local computing and near-optimal
offloading.

of average utility consumption and latency, the near-optimal
offloading is smaller than that of full offloading and local
computing. With a small number of cells (i.e., 2, 3, 4), the
average utility consumption of near-optimal offloading is sim-
ilar to that of full offloading, suggesting that edge computing
plays an important role when interference between devices is
relatively low. As the number of cells gradually increases, the
performance of the proposed scheme improves more signifi-
cantly. With a cell count of 6, the average utility consumption
of near-optimal offloading is 0.401, which is 0.641 (61.5%)
and 0.241 (37.5%) lower than that of local computing and
full offloading, respectively, demonstrating the advantages of
the proposed task offloading algorithm. In terms of energy
consumption, the near-optimal offloading is similar to full
offloading and much smaller than that of local computing.
As the number of cells increases, the energy consumption and
latency of local computing remain almost constant. This is
due to the fact that devices’ computing is independent of the
cell count. When considering full offloading, the interference
between devices increases as the number of cells increases,
resulting in longer average latency. At a cell count of 2,
the average local computing delay is 1.02s, full offloading
latency and near-optimal offloading delay are close to each
other, which are 0.465s and 0.452s respectively. In this case,

almost all of the near-optimal offloading options are to be fully
offloaded to MEC servers for computation. When the number
of cells is 6, the full offloading delay rises to 1.118s due to
interference, which exceeds the local calculation delay. The
near-optimal offload decision reduces the latency to 0.552s,
which is 45.9% and 50.6% lower than the local and full offload
approaches respectively.
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Fig. 8. Comparison of average latency versus different offloading schemes.

Fig.8 compares the differences between four computing
schemes (binary offloading, partial offloading, full offloading,
local computing) with the minimum latency as the optimiza-
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tion objective. It can be seen that the partial offloading case
outperforms the other three schemes in general. When the cell
number equals 2, the near-optimal delay of binary offloading is
0.433s, which is close to full offloading. The average latency
of partial offloading is 0.331s, which is 0.102s (23.6%) lower
than that of binary offloading. This is because the partial
offloading scheme can upload a portion of the task, which
can utilize the computing power of both local devices and
MEC servers to reduce task execution latency. It is also noted
that the advantage of partial offloading over binary offloading
decreases as the number of cells increases, with a difference
of 0.073s for a cell count of 6. This is due to the fact that
interference between devices reduces the percentage of devices
offloaded, resulting in a lower advantage of partial offloading.

(a) Energy consumption
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Fig. 9. Relationship between average (a) energy consumption and (b) latency
with user time preference (βt).

Fig. 9 shows the average energy consumption and time
cost when changing the user’s preference to time (βt), and
it is important to note that the user’s preference to energy βe

equals 1 − βt. In addition, it is worth noting that when βt is
equal to 0, the solution corresponds to the energy minimization
problem, while βt = 1, the algorithms proposed could find the
near-optimal solution for the latency minimization problem.
That is, this paper achieves a unified framework of energy
minimization and delay minimization. It can be seen from
the figure that as βt increases, the average delay is reduced
at the cost of gradually increasing the energy consumed by
devices. Furthermore, as the number of cells in the system
grows, the average energy consumption and latency of the
devices increases. When the optimization objective is energy
minimization, the average energy consumption of the device is
0.06J in the case of three cells, and 0.167J when cells count up
to 6, at an increase of 0.107J. When minimizing the latency,
the average delay of the task is 0.441s when the cell number
is 3, and 0.547s when the cell number equals 6, increasing
by 24%. This illustrates that the device interference between
multi-cells and the competition for limited resources will lead
to the reduction of computation offloading benefits, resulting
in an increase in energy consumption and latency.

A comparison of the average utility consumption of local
computing and full offloading against the variation of task pa-
rameters is shown in Fig. 10. It can be seen from the graph that
the system cost, i.e., the weighted value of energy consumption
and latency increases with the growth of the required CPU
computing cycles cu. In addition, local computing increases
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Fig. 10. Comparison of average utility consumption while varying different
task parameters using different schemes.

by a larger proportion than full offloading, due to the fact that
the delay and energy consumption of local computing are both
related to cu and the limited local computing capacity leads to
a significant increase in latency and energy consumption when
cu increases. The local computing does not involve the data
du uploaded by the task, so the local utility is independent of
du. The utility value of full offloading increases as du grows.
This is because the larger task input data leads to an increase
in task transmit time. Specifically, when cu = 0.2Gcycles
and du = 1100kB, the average utility of local computing
is 0.347, which owns a 53.3% gain, compared with that of
full offloading (0.745). In this case, the devices prefer local
computing. When cu equals 0.8Gcycles and du equals 300kB,
the average utility of full offloading equals 0.506, a 70.8%
reduction compared with local computing. Therefore, it is
more advantageous to assign tasks with small task description
data and large computation to the MEC server.

To test and verify the effect of the inter-cell interference
simplification as in (18), Fig. 11 compares the interference,
transmit rate, and system cost using the approximated inter-
ference (Ĩnu,c) vesus exact interference (Inu,c) under different
maximum transmit power (15dBm, 20dBm, 23dBm, 25dBm,
30dBm) and the number of cells. It can be seen from Fig. 11(a)
that the approximated interference is larger than the exact
interference, and the gap between the two becomes smaller as
the maximum transmit power of devices decreases. As the cell
number grows, the inter-cell interference increases. However,
the interference increases slower when the cell number is
bigger, which can be explained by the smaller interference
increment caused by the larger distance between devices. Fig.
11(b) describes the relationship between the transmit rate and
different interferences. When the maximum transmit power is
smaller, the gap of transmit rate between the approximated
interference and the exact interference is smaller. With the
growth of cell number, the transmit rate of SCMA decreas-
es due to the increase of inter-cell interference. From Fig.
11(c), it can be seen that the system cost obtained by using
approximate interference is almost the same as that obtained
by exact interference, especially when the maximum transmit
power is less than 23dBm. According to 3GPP specification
[27], the maximum power of IoT devices is 23dBm, At this
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(a) Interference (b) Transmit rate (c) System cost

Fig. 11. Comparison of interference, transmit rate, and system cost with approximated and exact interference under different maximum transmit power.

time, the differences between interference, transmit rate and
system cost are less than 3.9% using the inter-cell interference
approximation. Therefore, we can argue that the interference
bound simplification is tight and the proposed algorithm is
feasible in practical applications.

V. CONCLUSIONS

In this paper, we investigated the joint resource alloca-
tion and task offloading for multi-cell SCMA-MEC systems.
Aiming to minimize the system latency and devices’ energy
consumption, we proposed an iterative optimization scheme
based on BCD for the transmit power of users and computing
resources allocation of MEC servers, as well as an algorithm
based on the improved simulated annealing for task offloading
decision and multi-cell SCMA codebook allocation. For a
dynamic environment, we propose a novel TOCA-MADDPG
algorithm. Then we explained two special cases of the prob-
lem studied in this paper, namely latency minimization and
energy optimization. Finally, the framework was extended to
the partial offloading case, and an algorithm for solving the
partial offloading ratio based on alternating convex search was
proposed. Numerical results showed that the multi-cell SCMA-
MEC scheme achieves lower energy consumption and system
delay in comparison to the OFDMA and PD-NOMA tech-
niques. Compared to the random codebook assignment, the
multi-cell SCMA codebook allocation algorithm can achieve
improved channel-adapted offloading efficiency and reduce the
system latency by approximately 16.3%.

APPENDIX

A. The Proof of Lemma 1

Proof: Let Ge
u(ξ

n
u , f

n
u ) denote the objective function of

problem (19). The derivatives and second-order derivatives of
Ge

u with respect to (w.r.t) ξnu and fn
u can be calculated as

∂Ge
u

∂ξnu
= βtdu +

βedu
ζnu,c

[
2

1
ξnu

(
1− ln 2

ξnu

)
− 1

]
(34)

∂Ge
u

∂fn
u

=
−βtcu

(fn
u )

2 (35)

∂2Ge
u

∂ (ξnu )
2 =

βedu2
1
ξnu (ln 2)

2

ζnu,c (ξ
n
u )

3 (36)

∂2Ge
u

∂ (f l
u)

2 =
2βtcu

(fn
u )

3 (37)

∂2Ge
u

∂f l
uξ

n
u

=
∂2Ge

u

∂ξnuf
l
u

= 0 (38)

The values βt, βe, du, ζnu,c and the variable f l
u and ξnu are all

positive. It is easy to deduce the Hessian matrix of Ge
u is a

diagonal matrix with positive elements, i.e. positive-definite.
Hence, the objective function is convex w.r.t ξnu and fn

u .
Additionally, the constraints (19b), (19c), (14g) and (14h) are
all affine functions. Therefore, the problem (19) is proved to
be a convex optimization problem.

B. The Derivation of Resource Allocation in (23)

Proof: The Lagrangian of the problem (22) is calculated
as

L (fn
u , λ, µu) =

∑
u∈Uoff

βtcu/f
n
u + λ

( ∑
u∈Uoff

fn
u − fn

)

+
∑
u∈Uoff

µu

(
cu

tmax
u − duξnu

− fn
u

)
,

(39)

where λ and µu are non-negative Lagrange multipliers. The
optimal fn∗

u , λ∗ and µ∗
u should satisfy the following KKT

equations,

∂L
∂fn

u

= − βtcu

(fn∗
u )

2 + λ∗ − µ∗
u = 0, (40)

fn∗

u > cu
tmax
u − duξnu

, (41)∑
u∈Un

off

fn∗

u 6 fn, (42)

λ∗ > 0, (43)

λ∗

( ∑
u∈Uoff

fn∗

u − fn

)
= 0, (44)

µ∗
u > 0, ∀u ∈ Uoff, (45)

µ∗
u

(
cu

tmax
u − duξnu

− fn∗

u

)
= 0, ∀u ∈ Uoff. (46)



16

From (40), we can get

fn∗

u =

√
βtcu

λ∗ − µ∗
u

,∀u ∈ Un
off. (47)

It is obvious that if λ∗ = 0, the above formula (47) does
not hold. Therefore, from (42), (43), and(44), the following
equation can be derived:∑

u∈Uoff

fn∗

u − fn = 0. (48)

According to (40), (45), and (47), f∗
u can be calculated w.r.t

µ∗
u

fn∗

u =


cu

tmax
u − duξnu

µ∗
u > 0√

βtcu/λ∗ µ∗
u = 0.

(49)

Define the set of µu = 0 is U0. Let’s substitute formula (49)
into (48), the resource allocation solution fn∗

u can be deduced
as

fn∗

u =


cu

tmax
u − duξnu

, u ∈ Un
off\U0

(fn −
∑

u∈Un
off\U0

fn∗

u )
√
cu∑

u∈U0

√
cu

, u ∈ U0

(50)
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