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Abstract—In this work, we consider Reconfigurable Intelligent
Meta-surfaces (RIMs) to provide effective beam steering function-
ality, while enhancing the coverage of the fifth generation (5G)
users in a urban city mobility context. In particular, we enable
communications in the millimeter wave (mmWave) frequencies,
that can occur simultaneously with other 5G communications.
The main objective of this paper is to demonstrate the feasibility
and advantages of an integrated Computed Vision (CV) approach
for tuning the meta-atom states of a RIM structure working
at mmWave frequency band, without estimating the interferes’
radio channel. In particular, the CV system will feed a logic
unit running a Machine Learning (ML) algorithm to compute in
real-time the coding schemes, namely the sequence of binary
states associated to each unit-cell of the RIM, in order to
obtain the target reconfigurable radiation pattern. Specifically,
a Genetic Algorithm (GA) is introduced to derive the most
suitable radiation pattern for Beam Steering application, based
on the input of a CV infrastructure. Results show the feasibility
of such a kind of system, with an higher coverage achieved in
dense scenarios, by improving the robustness against the potential
blockages introduced by the mmWave technology. Moreover,
we demonstrate the system is robust against the inaccuracy
introduced by the CV and GA.

Index Terms—Reconfigurable Intelligent Meta-surfaces, Ma-
chine Learning, Computer Vision, mmWave, Beam Steering.

I. INTRODUCTION

IN recent years, mmWave technology has acquired an
increasing interest to be exploited in future wireless cellular

communications, such as in the sixth generation (6G) network
scenarios [1], [2], [3]. Due to the large bandwidth, very high
data rates in the order of gigabit per second (Gbps) are
expected to be achieved with much increased capacity, as
compared to other existing wireless communication systems.
Furthermore, since mmWave links present high directional-
ity feature, an efficient spatial and frequency reuse can be
obtained, with the possibility to exploit Line-of-Sight (LOS)
links that are very beneficial for interference control [4].

However, some important issues related to the specific
propagation features of mmWave signal need to be considered
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and addressed in order to exploit the enormous potentiality of
this technology. Among the main challenges with mmWave
we remind the significant path loss that the mmWave signals
experience [5], [6], the blockage due to obstacles, the atmo-
spheric attenuation, as well as harsh weather conditions such
as rain, absorption by water vapors, and oxygen, that degrade
the mmWave channel.

Recently, in order to address the main issues of mmWaves
technology, the concept of Reconfigurable Intelligent Meta-
Surface has been introduced in the research community [7],
[8]. RIMs are based on passive materials, aimed to overcome
the LOS blockage, to improve the communication link by ef-
fectively reconfiguring the propagation of the electromagnetic
signal. The wireless signal can be accordingly manipulated in
order to define a given reflecting direction, by adjusting the
phase shift and/or the amplitude of each element comprising
the RIM i.e., meta-atom [9]. RIM technology can then allow
the definition of the Smart Radio Environment (SRE) con-
cept [10], [11] i.e., the surrounding environment is enriched
with intelligent devices that control the wireless propagation
towards desired directions. This approach can be applied both
in indoor and outdoor scenarios, and is useful not only to focus
the wireless signal towards a final destination, but also to put
the propagation nulls towards unwanted/undesired directions,
mainly for safety applications.

The use of RIMs in the mmWave band has been adopted
in [12], where a RIM-assisted approach for efficient and
green resource allocation is presented. In [13], the authors
have proposed a solution for indoor mmWave communication,
even in presence of blockage, validating the results with
a test-bed. However, most works on the use of RIMs for
wireless communications mainly focus on the conventional
signal processing aspects. It has been demonstrated that the
joint use of Artificial Intelligence (AI) algorithms [14] with
RIM-based systems can provide enhanced performance, and
fully fits within the context of SRE [15].

Concerning the optimization of RIM-based systems, previ-
ous contributions in literature have regarded the feasibility to
achieve beamforming based on RIM exploitation, by proposing
optimization approaches such as in [16], where the authors
formulate a joint optimization problem for optimizing active
and passive beamforming. Their approach is based on an
ideal case study, with continuous phase shifts. The discrete
phase shift is considered in [17]. Another algorithm aiming to
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maximize the transmit beamforming is proposed in [18]. By
exploiting a jointly optimization of the precoding strategies
of the Base Station and the RIM parameters, the authors
demonstrate the minimization of the system sum mean squared
error (SMSE). All these contributions are based on active
channel control, which incurs in a very high overhead limiting
its efficiency and can hinder the real-time responsiveness of
certain applications as the one considered in this work.

Other approaches have been proposed to relax the associated
feedback overhead and are mostly based on statistical Channel
State Information (CSI) [19], [20], [21], but still rely on a
control channel to steer the RIM beams. The main rationale for
our work is to relax the control channel and the high overhead
associated to, by exploiting a pre-existing and well-deployed
infrastructure, namely the cameras that are nowadays mas-
sively deployed in the modern cities. Other works such as [22]
and [23] exploit the available cameras for object detection,
thus supporting drivers and impaired people. Nevertheless, to
the best of our knowledge, this is the first work addressing
mmWave beamforming based on RIM, jointly considering the
CV.

Among the AI-based approaches, a very interesting concept
that has started to capture the interest of scientific commu-
nity in a synergic way with the wireless networks and with
mmWave technology, is the Computer Vision (CV) technology.
CV permits to leverage visual data originated by different
vision sensors (i.e., cameras), and can be regarded as a key
enabler technology for Beyond-5G wireless networks [24].
An early contribution on this topic proposes the combination
of CV-based techniques with wireless networks, in particular
with millimeter-wave radar [25]. The authors demonstrate
how images can be leveraged for improving the distinction
between lane lines at a short distance. In [26] authors propose
the integration of CV with wireless sensors to perform a
high accurate indoor localization, through the use of Wi-Fi
signals emitted by the smartphones for fine users’ positioning.
An interesting perspective on the CV exploitation is also
presented in [24], where the authors introduce the concepts of
View to Communicate (V2C) and Communicate to View (C2V)
paradigms. In V2C, the visual data are used to enhance the
performance of an unknown wireless channel, by accounting
for blockages that can occur in a data transmission link. In
C2V, the opposite approach is considered.

Based on the recent encouraging results obtained from the
integrated use of (i) CV algorithms, and (ii) RIM technology
for a wireless communication system [27], in this paper we
consider this joint combination to be applied in a wireless
network context. In respect of [27], in this work we detail
the modeling of the users and the RIMs, and we provide
a detailed analysis of the performance of the systems by
considering mmWave users. The main objective is to exploit
the information provided by the CV to compute optimal
radiation patterns for enhancing the communication between
users in mmWave links. The optimality is based on the radi-
ation pattern configuration, that based on the user’s position
maximize the received power. Specifically, we consider a V2C
approach based on the joint use of CV and RIM devices. To
the best of our knowledge, this is the first work presenting

a synergistic approach of the CV technology with the RIM
paradigm in a wireless context, aiming to improve the system
performance, as well as to reduce interference to the network
nodes. We propose a complete framework, namely BEST-RIM
–a mmWave Beam Steering Approach based on Computer
Vision-enhanced RIMs–, based on the integration of a CV
sub-system with a RIM-based one. The proposed framework
exploits the CV technology in order to enhance mmWave
cellular communications through RIM nodes. Videos collected
by cameras are processed and used to “understand” the traffic
nature of a given scenario. The CV sub-system acts as an
“observer” of the wireless scenario (e.g., mobile users walking
in an urban area), capturing and processing video frames
in real-time. The output of the CV-subsystem, expressed as
azimuth and zenith angles, as well as the distances between a
RIM node and a generic user, triggers the RIM-based sub-
system. All these data will feed a Processing Unit (PU)
running a GA for computing the coding schemes in a dynamic
way, namely the states associated with the single meta-atoms,
in order to generate a desired radiation pattern at the RIM.
The choice of the desired radiation pattern occurs with that
one maintaining the maximum coverage of a mobile user i.e.,
guaranteeing the connectivity link.

Previous literature on RIM has been mostly based on the
optimization problem of the meta-surface, relying on the
information of the channel state or considering statistical CSI.
To the best of our knowledge, there are no global RIM-
based architectures or a complete system, encompassing the
generation of the input, their treatment and the estimation of
the performance based on the whole chain. Differently, this
paper aims to propose a RIM-based framework for effec-
tive beamsteering functionality, supported by a CV-subsystem
feeding a GA with the information about interference in a
given scenario. Indeed, thanks to the BEST-RIM features, it is
not necessary to estimate the interferers’ radio channel, since
we obtain the information for the GA, directly from the CV
system.

The main contributions of this paper can be summarized as
follows:
• We exploit the concept of V2C by means of a CV-

based approach to monitor traffic load in a real network
scenario. The CV solution is introduced together with a
RIM-based sub-system, performing beam steering func-
tionality in the mmWave working frequency;

• We present the proposed BEST-RIM framework, and a
detailed description of main entities is provided;

• We design and evaluate a GA approach, fed by the output
from the CV sub-system, in order to compute the optimal
coding schemes of a full reconfigurable structure, namely
the sequence of states associated to the unit cells for
maximizing the receiver power;

• We explicitly account the interference generated by
mmWave users and we derive the coverage probability,
expressed as the probability that a certain receiver node is
reached by a RIM through the Complement Cumulative
Distributed Function;

• We evaluate the impact of the error for both the GA and
the CV sub-system, in terms of coverage probability.
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Fig. 1. BEST-RIM framework. The RIM device is trigged by CV data i.e.,
locations and Direction of Arrival (DoA) angles, derived by the CV-based
sub-system. The RIM device is able to derive the best configuration for
communication with the receiver target node, and to reduce the interference
affecting other data links.

The rest of the paper is organized as follows. In Section II,
we present the overall system model. In Section III, we
describe the GA, that is a specific ML algorithm implemented
in the PU. Section IV is dedicated to the CV approach. In
Section V, we provide the performance evaluation of each
module of the overall system, and based on these results,
we provide the evaluation of the overall system. Finally,
conclusions are drawn at the end of this paper, followed by a
final discussion.

II. SYSTEM MODEL

In this paper, we focus on beam steering applications on
mmWave communications in heterogeneous networks, and
we aim to characterize the interference generated by other
transmitters [28], [29]. We assume a hybrid system, with
cellular communications and communications between RIM-
coated objects, acting as both smart reflectors, and user
devices. Notice that nodes can transmit and receive, based
on the traditional cellular spectrum or by exploiting mmWave
spectrum.

Let us consider an outdoor scenario as depicted in Fig. 1,
comprised of a set U = {u1, u2, . . . , uU} with U ∈ Z+, of
mobile nodes (i.e., pedestrians) each of them equipped with a
personal device. We also assume the set R = {r1, r2, . . . , rR}
with R ∈ Z+, of RIM-coated devices, each of them deployed
in a fixed position and fully integrated in the network scenario
(e.g., a RIM can coat the top of a street lamp or a statue in the
middle of an urban place). Finally, the set C = {c1, c2, . . . , cC}
with C ∈ Z+ collects the camera nodes, installed in main city
routes. Each camera is assumed to be wired-connected to the
Mobile Edge Computing (MEC) node for transmitting visual
content to be further elaborated. All the details of the BEST-
RIM network framework are depicted in Fig. 1.

As observed, BEST-RIM framework is comprised of (i) a
CV-based sub-system and (ii) a RIM-based sub-system. The
CV-based sub-system is comprised of camera devices installed
in main city squares and routes. It aims to monitor a given area,

where pedestrians are moving. Each camera can store visual
content, which is directly processed by a video processor, able
to detect people shapes and then computes the distances from a
reference point. Specifically, we assume that the visual content
captured by the cameras is transmitted to a MEC node for
further processing. For deployment constraints and for scale
costs, the MEC device is assumed to be located in the Internet
Service Provider (ISP) network.

The logic flow behind the BEST-RIM framework is depicted
in Fig. 2, where we assume a source node (i.e., uTx ∈ U)
aiming to transmit to a receiver node (i.e., uRx ∈ U). The
communication links are from node uTx to a mmWave Base
Station (BS) (see arrow #1), and from the BS to a given
RIM deployed in the reference area (see arrow #2). The RIM
is able to redirect the received impinged signal toward the
receiver node uRx, accordingly trigged by the FPGA node.
The latter is able to control the RIM, which, thanks to the
GA, is able to find the best radiation pattern (i.e., final beam)
for communication with the receiver node (see arrow #3) and
reduce the interference on other neighboring transmissions. In
Fig. 2, the CV elaboration is used to derive the information
in terms of distances between the users and the RIM, and
the angles between a RIM and the receiver node uRx. The
CV-processed data are used as input for an intelligent logic
e.g., a unit integrating a learning approach. In this work, our
learning approach is based on a GA approach, able to compute
the best configuration of the single meta-atoms of the meta-
surface, in order to generate its optimal configuration in terms
of radiation pattern, to maximize the received power. For sake
of simplicity, we assume that all the nodes use the same
wireless technology for transmission and then the information
about the monitoring area are derived based on the distance
computed by applying a propagation model related to this
specific technology. Furthermore, the uRx target receiver is
known by the RIM device and the RIM radiation pattern
configuration will be computed in order to maximize the power
received by the receiver node, thus putting nulls to neighboring
interferents.

More specifically, the User Equipment (UE) of the uTx
forwards data to the eNB (i.e., the BS in the figure). The
eNB/BS transmits the information to the RIM, that will
also receive information by the CV. The Unit Logic (UL),
integrating the ML approach (i.e., the GA in this case), will
elaborate the data received both by the CV and the transmitter
for the target receiver (i.e., uRx) and the correct sequence
code of the RIM, will be coded through the FPGA, in order
to generate the corresponding target radiation pattern.

Following the scenario in Fig. 2, we assume the RIM
devices are randomly distributed according to a Poisson
Point Process (PPP) distribution ΦRIM with a certain density
λRIM [30]. Also the set of users U are randomly and indepen-
dently distributed, following a PPP distribution characterized
as:

ΦU = {(L,D, P, ψ,C)}, (1)

where {L} is the set of the locations of the users distributed as
an unmarked PPP with associated intensity λ, {D} is the set of
the distances between the j-th RIM node and the i-th user i.e.,
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Fig. 2. Schematic of BEST-RIM approach. The RIM object is trigged by CV
data (i.e., estimated locations and angles) derived by the CV-based sub-system.
The RIM device is able to derive the best configuration for communication
with the receiver target node, and to reduce the interference affecting other
data links.

D = {d11, d12, . . . , dji, . . . , dRU}. The set of the distances
{D} follows a Rayleigh distribution with a Probability Density
Function (PDF), defined as

fD(x) = 2πdjix exp(−djiπx2), (2)

with dji [m] representing the distance between the j-th RIM
node and the i-th receiver node. Based on this assumption, it
follows that a generic mmWave receiver is randomly located
close to a RIM following a Gaussian distribution [31].

In Eq. (1), {P} is the set of the transmitting pow-
ers from the j-th RIM to the i-th users i.e., P =
{P11, P12, . . . , Pji, . . . , PRU}, and {ψ} is the set of the ori-
ented angles between the j-th RIM node and the i-th user to
the x-axis, assumed as equiprobably distributed. Finally, {C}
is the set of i.i.d random variables following a Bernoulli distri-
bution, and represents the type of communication adopted by
the i-th user, namely traditional communication (i.e., Ci = 0)
and mmWave (i.e., Ci = 1). Specifically, we assume that
the i-th node selects the mmWave communication mode (i.e.,
Ci = 1), when the distance dji < χ, with χ [m] as a threshold
of the distance between the j-th RIM and the i-th receiver.

Based on these assumptions, we consider the set
{Φ(mmW )}, constituted by the pairs of the RIMs connected
to the receiver nodes, communicating in mmWave, is PPP
distributed with the following expression for the intensity:

λ(mmW ) = λPr(Ci = 1)Pr(dji < χ) =

= λPr(Ci = 1)(1− e−djiπχ
2

).
(3)

A. The Interference Model

Let us consider the mmWave LOS link between the j-th
RIM transmitting to the i-th receiver node. Following the usual
modeling of channels considered in the literature [32], the
received signal can be written by considering two components,
the “desired” signal and the interference as follows:

Yi =
√
Pjid

−α
ij gTx,jgRx,ihjiVi+

+
∑

L`∈[ΦU−Li]

√
Pj‖ L` − Li ‖−αgTx,`gRx,ih`iVj+

+ Z,
(4)

where Li and L` are the positions of the i-th receiver and
the `-th interferent, with ` 6= i, and j ∈ Z+, respectively; dij
denotes the distance between nodes i and j, and Pji is the
transmitting power from the j-th RIM towards the i-th user. It
is worth to outline that the j-th RIM is constituted by quasi-
passive components, and it does not amplify the impinging
signal originated by the BS, since it is used as a smart reflector.
The threshold value χ is also established on the basis of the
distance between the j-th RIM and the i-th receiver node,
by considering these specific characteristics of the RIMs. In
Eq. (4), Pj denotes the transmitting power of the j-th node,
the parameter α is the path loss coefficient, gTx,j and gRx,i
are the antenna gains of the j-th RIM and the i-th receiver
node, respectively; hji represents the channel fading between
the i-th receiver and the j-th RIM reflecting the signal, while
h`i is the channel fading of the `-th interfering node on
the i-th receiver node. Finally, Vi is the unit-variance signal
at the i-th receiver node, and Z denotes the additive white
Gaussian noise. Notice that, according to recent results in [33],
we consider the channel propagation modeled according to a
Rayleigh fading, and so we can approximate hji ∼ exp(1),
and h`i ∼ exp(1), and also fading is independent over space.

The radiation pattern is derived by the total reflected electric
field, which is computed through the Huygens formula, shown
in Eq. (5). The x-, y- and z- components of the electric field
are derived from its spherical expression E(θ, φ) and will be
used for estimating the transmitting power Pji in Eq. (4) i.e.,

E(θ, φ) =

M∑
m=1

N∑
n=1

Amne
jαmnfmn (θmn, φmn) Γmne

jΦmn

fmn(θ, φ)ejk0ζmn(θ,φ),
(5)

where M and N are the number of meta-atoms in the two
dimensions, Amn and αmn are the amplitude and phase of
the incident wave on the (mn)-th meta-atom, θmn and φmn
are the elevation and azimuth angles of the source relative to
the (mn)-th meta-atom, respectively. Furthermore, Γmn and
Φmn are the amplitude and the phase reflection coefficients,
respectively, and fmn represents the scattering pattern of the
(mn)-th meta-atom that comprises the RIM. We assume that
fmn(θ, φ) = cos θ, [34]. Finally, ζmn(θ, φ) is a relative phase
shift and k0 equal to 2π/λ, with λ [m] the wavelength of the
transmitted signal.

B. The SINR Characterization

In order to characterize the performance of the hybrid
communication system, based on both “traditional” (e.g., at
frequencies lower than 6 GHz) and mmWave communication,
we need to derive the interference at the i-th receiver node.
Based on the previous assumption, the interference for a node
is only based on the mmWave communication links from other
nodes.

Let us assume Li = (xi, yi) as the location of the i-th
receiver, and the total interference I can be derived as:

I =
∑

Lj∈Φ(mmW ),j 6=i

hjiPjgTx,j(θ(j, i), φ(j, i))gRx,i(θ(i, j), φ(i, j))L−αij ,

(6)
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where we consider the interference of a user by accounting
for its specific position through the gains gTx,j(θ(j, i), φ(j, i))
and gRx,i(θ(i, j), φ(i, j)). By applying the Slivnyak’s The-
orem [35], [36], the Signal-to-Interference plus Noise Ratio
(SINR) can be derived as:

SINR(mmW ) =
Pi

I + PN,i
, (7)

where Pi [W] is the power at the i-th receiver, PN,i [W] is
the noise power at the i-th receiver, which can be expressed as
PN,i = N0Bw, with N0 [W/Hz] as the noise spectral density
and Bw [Hz] is the signal bandwidth.

III. THE GENETIC ALGORITHM

In this section, we focus on the specific problem of as-
signing a certain configuration to each meta-atom, in order
to allow the meta-surface to perform beam-steering. With the
purpose to provide a detailed explication of the problem we
aim to solve, let us consider Fig. 3 (a) that is representing
a meta-surface constituted by the periodical repetition of the
same meta-atoms, whose state can be changed by applying
a different voltage value [37]. A corresponding radiation
pattern is obtained, based on the specific sequence codes,
i.e., sequence of 0 and 1, applied to the meta-surface. The
obtained radiation pattern can be estimated by adopting the
well-known Huygens equation, as expressed in Eq. (5). Then,
we need to tackle the opposite problem, represented in Fig. 3
(b). Given a certain radiation pattern (that in this specific work,
we infer through the CV support), we need to associate the
correct state to each meta-atom, to obtain it. Unfortunately,
we cannot apply any formula for that, since the problem is
non-linear and there can exist different combinations of meta-
atoms states generating the target radiation pattern. It follows
that the corresponding problem to be solved can be formulated
as follows. Given a certain radiation pattern, represented by the
direction of the main beam through the angles characterizing
the main beam and its upper mask, we need to assign the
correct states to the meta-atoms of our meta-surface, in order
to generate the closer radiation pattern configuration.

In order to reconfigure each single meta-atom of the meta-
surface presented in the previous section, we have imple-
mented a GA, whose pseudocode is shown in Algorithm 1.
This algorithm has been chosen because, thanks to its char-
acteristics, it is suitable to find the configuration of the
metasurface that generates the desired radiation pattern (or
the closest one). It can evaluate each configuration and, if the
upper masks are different, the algorithm generates new con-
figurations through the operations of crossover and mutation.

The specific population is constituted by the set of potential
configurations with which specific radiation patterns of the
RIM are associated. Each configuration is an individual to
whom the radiation pattern and upper mask are associated.
The upper mask is derived from the 2D radiation pattern (in
the plane xy) and it is a matrix comprised of zeros and a
single 1 in the position of the main beam. The gene is the
state of a single meta-atom. We define an elite as the set of
the configurations with different upper mask and so with a
different radiation pattern.

The searching phase is based on the verification of the
presence of the specific configuration in the elite. After this
phase, if no matching is found, the procedure is applied to the
population and, if no matching is found, the cross-over and
mutation operations are applied.

In the last stage of the algorithm, the most suitable elements
are selected and if their characteristics in terms of upper mask
are not responding to the desired ones, the reproduction step
is repeated until the fitness function is satisfied or a certain
number of generations are met.

The GA capacity of exploring the search space is a desired
characteristic for such a type of applications as considered in
this work. Different new solutions can be explored through the
cross-over and mutation operations, while keeping the search
limited through the correct definition of the fitness function,
where specific features of the radiation patterns are defined.

Algorithm 1 Genetic Algorithm (GA)
Require: f = operating frequency, m,n = metasurface
size, cross = crossover factor, mut = mutation
factor, tg = N◦ iterations, wanted Ezz = normalized
wanted radiation pattern, code 0 code 1 = S11
Amplitude at f for the chosen meta atom, d =
distance among two meta atoms for each elite
individual

Select chromosomes for elite
Compare uppermask − wantedmask
if uppermask == wantedmask then

Save − radiation pattern & uppermask
end if
while no optimal configuration − elite do

Compare uppermask with wantedmask
if uppermask == wantedmask then

Save − radiationpattern & uppermask
else

Do crossover, Do mutation
Compute radiationpattern, Check sidelobelevel

end if
end while
if sidelobelevel > max threshold then

Skip
else

Extract uppermask , Save in offspring, Save in
elite

Compare uppermask − firstbest−offspring −
wanted mask
end if
if uppermask == wantedmask then

Save radiationpattern & uppermask
end if
if individual − not − in − population then

Add individual − in − population
end if
if individual − not− in− the− elite then

Add individual − in − elite
end if
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(a) (b)
Fig. 3. We consider a metasurface, constituted by the periodic repetition of meta-atoms, and we can change the radiation pattern by attributing different
states (i.e., 0 and 1) to each meta-atom. (a) A certain radiation pattern is obtained starting form a sequence coding of the meta-atoms, that can be computed
by applying the Huygens equation. (b) If we consider a certain target radiation pattern, we cannot apply an equation to compute it, since the problem is
non-linear, and we need to rely on adaptive optimization schemes (e.g., GA) to compute the better radiation pattern configuration.

The GA receives as input the desired upper mask and the
algorithm starts the searching phase for the corresponding
upper mask and the correspondent radiation pattern. The fitness
function has been defined in such a way to find the individual,
i.e. the configuration that is sufficiently “similar” to the desired
radiation pattern. In particular, the main beams should have the
same directions in terms of azimuth and elevation angles, and
the level of side-lobes has to be lower than a certain threshold.

In particular, the different phases associated to GA are as
follows:

• STEP 1: Parameter initialization, fitness function evalu-
ation. In this phase, the specific scattered field and cor-
responding radiation pattern are calculated for different
angles, based on the specific fitness function;

• STEP 2: Initialization of the population;
• STEP 3: Selection of the elite from the population, based

on the best configuration of the population;
• STEP 4: If no optimal configuration is identified, re-

iterate until a maximum number of iterations is reached;
• STEP 5: Generate offspring with crossover and mutation;
• STEP 6: Compare sidelobe level of the offspring’ radia-

tion pattern, compare offspring’ upper mask and save the
new configuration in the elite.

In order to evaluate how much the direction of the main
beam is distant from the desired one, we consider the param-
eter δ, which is evaluated as the distance between the exact
central location of the main beam in the radiation pattern given
in input and the one in the radiation pattern corresponding
to the coding matrix in output. To have a more precise
evaluation of the distance, the position of the two beams has
been computed in spherical coordinates, and we express the
difference of azimuth (δφ) and elevation (δθ) angles as follows:

δθ = |θp − θe|, δφ = |φp − φe|, (8)

where the subscript p means the predicted angle, while e the
expected angle. If both δθ and δφ are lower than a fixed
accuracy value, then the phase configuration that generates
that radiation pattern corresponds to the searched one. So, the
fitness function is represented by the following equations:

δθ ≤ εθ, δφ ≤ εφ, (9)

TABLE I
SIMULATION RESULTS

µ σ MoE95 min95 max95 MoE99 min99 max99
tconv 0.872 0.183 0.047 0.82 0.92 0.061 0.81 0.93

where εθ and εφ are small values in degrees chosen according
to the accuracy required by the system. In this work, we
assumed εθ = 5◦ and εφ = 10◦.
The time of convergence of the algorithm has been taken into
account in Table II. Its mean value is lower than 1 second,
so this demonstrates that the algorithm can be adopted in
dynamic and real-time scenarios. The convergence time has
been evaluated after the training phase (that may take more
than 300 s), during which a certain number of configurations
to represent the different radiation patterns categories are
found. GA complexity is O(g(nm+ nm+ n)) with g as the
number of generations, n the population size and m the size
of the individuals. Therefore, the complexity is on the order
of O(gnm).

When different steering directions are required based on the
external conditions, the genetic algorithm searches for the new
matrix of the coding schemes, namely the reflective phases of
the unit-cells starting from the elite and continuing with the
population and the cross-over and mutation if no available
configuration is found.

If the side-lobe level is lower than the maximum, the upper
mask of the radiation pattern of the offspring is generated
and compared to the upper mask of the required radiation
pattern. In the meanwhile, the best offspring is saved in the
next generation of the elite. If the fitness function is satisfied
by one of the offspring, the optimal configuration is found;
otherwise, the last-discussed procedure is repeated with the
updated version of the elite. If the maximum number of
iterations is reached and no optimum configuration is found,
the best phase configuration is chosen among the ones in the
population and the ones lastly-generated through the cross-
over and mutation.
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IV. THE COMPUTER VISION APPROACH

In order to provide data to the RIMs, we consider a CV
sub-system able to compute the distances between the receiver
nodes and the RIMs deployed in a given area. Of course, the
CV is able to detect people moving inside the monitoring area,
and then estimate the distance from a reference point (i.e., the
RIMs).

The CV approach relies on FairMOT, which is a real-time
Multi-Object Tracking (MOT) approach [38] that combines
object identification and Re-ID in a single network, thus
obtaining an high computation efficiency. The object detection
pipeline presented in FairMOT is based on the CenterNet
architecture, which is an anchor free keypoint estimation ap-
proach. As opposed to multi-stage object detection networks,
CenterNet is a single-stage end-to-end differentiable model
which achieves a good speed-accuracy trade-off, enabling
near real-time inference times. In CenterNet, every object is
modeled as a point (e.g., the center of mass) and by regression
all the other properties, such as bounding box sizes, are
derived.

The feature extraction backbone is Deep Layer Aggregation-
34 (DLA-34), that is an enhanced version of the ResNet-34
residual neural network. These features are used as an input
for both detection and Re-ID branches. If the input image has
Himg ×Wimg size, then the object detection branch produces
a heatmap of size C × H ×W , where C is the number of
channels (i.e., 3 for RGB), H = Himg/4 and W = Wimg/4.

Applying a SoftMax operation over the entire heatmap, all
the peaks are detected and used as object centers. Moreover,
the bounding boxes width and height are obtained by regres-
sion. The Re-ID branch aims to generate specific features that
can distinguish objects. In order to do this, a 2D convolutional
layer with 128 kernels is applied on top of the previously
extracted features, in order to generate a Re-ID feature vector
Ex,y ∈ R128 where (x, y) is the location of the object center.
Finally, the last step is to keep the link between the detected
bounding boxes and the Re-ID features. In order to achieve
this, a Kalman Filter is used to predict the object locations
in the subsequent frames. The distance between the predicted
and detected bounding box locations, and the cosine distance
computed on the Re-ID feature vector pairs are then fused in
order to establish a if there is a match or not.

Once the network has been trained, the video stream from
the cameras is fed as an input and a list of detections including
the associated tracking ID and the respective bounding box
coordinates is provided as an output. Of course, the bounding
box sizes and locations are defined in respect to the 2D
image plane (i.e., camera canvas), thus cannot be used directly
for the distance calculations. An effective way to relate the
transformations between the two planes is to calculate an
homography matrix [39], which is the technique we used. For
each scenario, a minimum of four key points have been chosen
and referenced measuring the exact distance between them in
the world and camera plane. More points are recommended
in order to take into account any distortions introduced by
the camera lens. Assuming that the calibration is precisely
performed, the distance in meters between pairs of nodes or

Fig. 4. Example of Odessa video frame processed by the CV, for identification
of people within the monitoring area. RIMs are static nodes, that estimate the
distance from people (blue links). Reference points are indicated as pink dots
on the ground.

between RIM and nodes can be effectively calculated.
In Fig. 4, it is reported how the CV video process performed

in a real environment. We consider a real video in Duc de
Richelieu Monument in Odessa, Ukraine, recorded by a local
webcam 1. The CV sub-system is able to detect and track
several users and estimate the distances between them and the
RIMs. Notice that in Fig. 4, RIMs are supposed to be inserted
in some elements present in the place e.g., the statue, the street
lights, etc., whose positions are a priori known.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the overall
framework, based on the RIM integration tuned by the means
of the GA, receiving the input from a CV sub-system. In order
to evaluate the behavior of the global system, we rely on the
results of the performance of the individual components. In
practice, we need to evaluate separately the performance of
the GA algorithm and the CV sub-system, in Subsection V-A
and V-B, respectively. Then, the error provided by the CV
sub-system is taken as input to the RIM sub-system. This
allows evaluating the performance of the overall system in
Subsection V-C. The overall methodology adopted, as well as
the main performance metrics considered in this paper, are
described in Subsection V-D.

A. Genetic Algorithm performance

In order to evaluate the performance of the GA, we have
considered two specific RIM structures with size (i) (10λ ×
10λ) and (ii) (5λ×5λ) and with four possible states, in order
to improve the tunability of the transmitting beams.

The main parameter we are interested to, is the Target
Deviation (i.e., T D), namely the difference between the target
position and the actual position, and expressed in degree.
This will be evaluated for different inputs originated by the
CV sub-system. It is worth to highlight that in this work we
have evaluated the target deviation for the azimuth angle. In
particular, T D has been computed as the distance between
the exact central location of the main beam in the radiation
pattern given in input and the one in the radiation pattern
corresponding to the coding matrix in output, based on the

1Available at the link: https://www.webcamtaxi.com/en/ukraine/
odessa/duc-de-richelieu-monument.html.
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representation of the beams in spherical coordinates. We have
run the simulation for 25 iterations and have considered the
average µT D, the standard deviation σT D with the margin of
errors (MoE) at 95% and 99%, with minimum and maximum
values. The results are shown in Table II. Of course, the results
encompass the cases where a corresponding radiation pattern
configuration cannot be found, since exact configurations
for each possible input cannot be exactly computed. This
situation is worst for the smaller configuration (5λ× 5λ) and
consequently the average error is higher.

B. CV performance

In order to evaluate the performance of the CV sub-system,
we considered two aspects i.e., (i) the CV capabilities in
detecting people collected from a real video, and (ii) the
estimation error of the distances among people and between
people and RIMs. Then, we study the behavior of the joint
CV-RIM based system model and its impact in terms of
interference reduction.

Object detection networks are commonly evaluated using
metrics such as accuracy, precision, recall or F-measure. In
this paper we focused on the recall R [40], because it suited
better for this kind of application. The reason is given by the
fact that we considered more important to not missing people
than obtaining few false positives. The recall metric is defined
as:

R =
Tp

Tp + Fn
, (10)

where Tp corresponds to the number of true positives (i.e.,
a person which has been successfully recognized), and Fn is
the total number of false negatives (i.e., people not detected
by the system and thus resulting in missing boxes). Our test-
bench consisted in a 2 minutes length video clip recorded by a
public webcam installed near the Duc de Richelieu Monument
in Odessa, Ukraine. The video has a resolution of 1080p (i.e.
1920×1080) with a frame rate equal to 25 fps. We sampled an
image every 2 s (i.e. every 50 frames), thus obtaining a total
of 60 input frames. For each frame we manually defined the
bounding boxes of all the people present in the scene and used
as a basis for comparing the output of the neural network. We
obtained a R = 94.2%, allowing us to adopt this technique as
a support for the RIM feeding.

Finally, another critical factor for this system is the precision
in computing the distances between the detected nodes. In
order to minimize the error, the scene has to be carefully
calibrated. As mentioned in Section IV, the calibration consists
in picking a minimum of four reference points, and measure
the distances between them. Assuming a percentage error
equal to ∆ in the reference point measurements, we calculated
the subsequent error obtained in the CV sub-system distance
estimation, over a grid of real points. The Probability Density
Function (PDF) of the error (i.e., εd [m]) shown in Fig. 5 has
been plotted using two different values of ∆ (i.e. 1% and 3%).
The average error obtained is equal to 11 cm with a standard
deviation of 5 cm for ∆ = 1%. In the unlikely case of a
measurement error of ∆ = 3%, we obtained an average error
equal to 34 cm with a standard deviation of 15 cm.
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Fig. 5. Probability Density Function of the error in the distance computa-
tion, [27].

Based on the user’s mobility, the CV approach can introduce
an error due to the processing time between the image detec-
tion and the user’s detection, and then an error of the position
estimation. During this interval time, the target user will move
a certain distance, based on its velocity and the processing
frequency. In Fig. 6, we have reported the errors values,
in terms of angles, related to the 90% of cases (the 90-th
percentile), due to the processing time. These errors are based
on CV processing time and depend on the processing capacity
of the system (i.e., frame rate [fps]). We have considered two
maximal reference values for the mobility equal to 3 km/h and
6 km/h, as indicated in the 3GPP standard for the typical user’s
mobility. We assume that users move at a speed uniformly
distributed between 0 km/h and the maximal reference value
i.e., 3 km/h or 6 km/h. In particular, it is shown that the error
can be reduced either if the processing capability of the system
is increased (e.g., by introducing Edge Cloud Computing based
systems) or by improving the estimation of the reference initial
distance, namely by reducing the ∆ due to the homography
error. It is worth to notice that this error has to be inside the
main lobe width, in order to keep the connectivity of the user,
that is around 5◦ for the (10λ× 10λ) and 10◦ in the case of
(5λ× 5λ).

Still in Fig. 6, we have reported the error based on the
estimation of a Radar as reported in [41] and [42]. As we can
see, the average error is higher than the 10° required by the
system for the 5λ RIM, resulting in an excessive misalignment
that does allow to correctly cover the final user considered as
target receiver. It is also worth to highlight that the estimation
of the angles based on the Radar system does require an ad hoc
expensive equipment, that is not the case for the CV, where
we aim to exploit the already deployed camera in a Smart City
context, resulting in a more affordable and convenient system.

C. Performance System

In order to present the performance of BEST-RIM frame-
work, we need first to introduce the following RIM parameters
that will be useful to derive the behavior of our framework:
Directivity, D(θ, φ): it characterizes the amount of energy
concentrated in a specific beam direction in respect of an
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TABLE II
SIMULATION RESULTS OF THE TARGET DEVIATION FOR THE AZIMUTH ANGLE δθ IN CASE OF DIFFERENT RIM SIZES.

RIM size µT D σT D MoE95 min95 max95 MoE99 min99 max99
(10λ× 10λ) 2.95 1.51 0.595 2.245 3.435 0.785 2.06 3.625
(5λ× 5λ) 7.515 11.865 4.65 3.255 12.55 6.125 1.78 14.03
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Fig. 6. The 90-th percentile of the angle error vs CV processing time (in
terms of frame per second) for 3 km/h and 6 km/h and two homography
misalignments ∆ = 1% and ∆ = 3%.

isotropic scattering considered as reference, and is calculated
as:

D(θ, φ) =
4πP(θ, φ)∫ 2π

0

∫ π
0
P(θ, φ) sin θdθdφ

, (11)

where P(θ, φ) ∝ |E(θ, φ)2| is the total power scattered, based
on the equation (5) and represents the intensity of the radia-
tion scattered towards a certain direction. The denominator
accounts for the total scattered power. If the RIM is fully
reflective, the maximum directivity is bounded by 4πA/λ2,
where A [m] is the aperture area of the RIM, related to the
RIM’s size [43]. The directivity will be accounted for the
computation of the maximum achievable distance of a receiver.
Target Deviation, T D: it accounts for the difference between
the “desired radiation pattern expressed through the angles
(θr, φr) and the real one obtained (θa, φa). The target devia-
tion T D is measured in degree and is computed as:

T D =

√
(θr − θa)

2
+ (φr − φa)

2
= T DGA +T DCV , (12)

where T DGA is the target deviation due to the inaccuracy of
the GA and T DCV is the error committed by the CV approach.
Notice that these two sources of errors are independent to each
other, and in the worst case, the CV estimation error of the
user position will be added to the GA error.
Gain, G: it represents the ratio between the signal intensity
G and that one obtained with the radiated power using an
isotropic antenna Giso(θ, φ) in a certain direction (θ, φ), i.e.,

G(θ, φ) =
G

Giso(θ, φ)
, (13)

where Giso(θ, φ) = 1 for θ ∈ [0, 2π] and φ ∈ [−π, π]. Notice
that the directivity D(θ, φ) is proportional to the gain G(θ, φ)
as follows:

D(θ, φ) = κ · G(θ, φ), (14)

with κ as a proportional constant. If the directivity value is
larger than a certain threshold value, the correspondent zone is
considered covered by the RIM. Based on the results presented
in [43], the directions near to the specular reflection perform
better, while the directions approaching the RIM plane present
worst performance. In this work, we consider that for a RIM,
the maximum directivity is limited to 4πA/λ2, and we derive
the gain function by normalizing the directivity in respect to
the maximum achievable directivity.
Side Lobe Level: this parameter accounts for the presence of
other reflected beams in respect of the main beam. It is mainly
due to the finite aperture of the RIM. From a mathematical
point of view, we can define it as the ratio of the directivity
of the beam closest to the main beam, in respect of the main
beam directivity. Of course, low values are desirable for this
parameter. We include a maximum value as threshold in the
fitness function of the GA, in order to select the phase profiles
generating the radiation patterns with low target Side Lobe
Level.
Half Power Beam Width: This parameter is measured in
degrees and is computed as the square root of the angle at
−3 dB of the main lobe. The lower is its value, the better
is the tracking accuracy. Anyway, a small value of the Half
Power Beam Width, implies a fine tuning technique to be
implemented in order to ensure a correct coverage of the
mobile user.

In order to evaluate the performance of the overall system,
we introduce the Coverage Probability (CP), as the probability
that a certain receiver node is reached by a RIM in the
mmWave range. In particular, the coverage will be integrate
the target deviation, namely the distance between the distance
between the target point and the actual point. The target
deviation is due to three main factors, the phase inaccuracies,
the inaccuracy of the genetic algorithm and the error due to
the Computer Vision approach. The first type of inaccuracy is
included in the genetic algorithm.

D. Methodology and Results

In this section, we describe the adopted approach for char-
acterizing the RIM and deriving the coverage by integrating
the target deviation factor. In this work, we consider a single
meta-atom characterized with Floquet boundary conditions
simulated in CST 2. In practice, these boundary conditions
correspond to a meta-surface characterized with an infinite
number of meta-atoms. The actual RIM is then constituted by
a finite number of meta-atoms, where we can apply the global
phase and amplitude reflected states, by considering the local
quantities.

2www.cst.com
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We consider a periodic structure and we can use this
estimation relying on the slow varying modulation of the RIM
as demonstrated in [44]. In order to evaluate the reconfigurable
radiation pattern we consider an hybrid approach, partially
based on full-wave simulation and an analytic approach, whose
derivation is mainly based on the Huygens’ principle and the
results demonstrated in [43]. The GA has been evaluated with
different metasurface sizes, i.e., (10λ×10λ) and (5λ×5λ). The
last two configurations will be considered for the evaluation
of the global system.
Complementary Cumulative Distributed Function - CCDF:
an important metric for characterizing mmWave performance
system is the CP related to the SINR, that characterizes the
probability that a certain receiver is “reached” by a RIM.
In general, the random variable representing the SINR link
is a complex variable encompassing several factors, such as
the distances from the interfering transmitter, the channel
features accounting for the fading, the beam patterns randomly
distributed of the interferers, etc. The CCDF of the SINR
for the link from the j-th RIM to the i-th receiver describes
the portion of the users achieving a certain threshold x (i.e.,
SINRji ≥ x), averaged over the space and the time. In
practice, we compute the probability that the SINR is larger
or equal to a certain threshold x, i.e.

Pr(SINRji ≥ x) = Pr

(
Pi

I + PN,i
≥ x

)
, (15)

where the noise power level at the i-th receiver, equivalent for
all the users is expressed as in Eq. (7), and Pi [W] is:

Pi = hjiG(β, γ)G(θ, φ)Pjd
−α
ji , (16)

where G(β, γ) represents the attenuation due to the directivity
of the beam with the departure angles (β, γ), while (θ, φ)
represents the arrival angles. These attenuations will be derived
based on the specific characteristics of the RIM, hji ∼ exp(1),
since we are considering Rayleigh channel, Pj [W] is the
emitting power of the j-th RIM, which is calculated based
on the specific characteristics of the RIM, by considering that
the meta-atom is designed for minimizing the power loss of
the impinging signal, and d−αji [m] is the distance between
the j-th RIM and the i-th receiver, with two different values
of path-loss for characterizing the outdoor path-loss, namely
α = 2.5 and α = 3.5.

Based on the independence of the interference signals and
the noise, we can re-write Eq. (15) as:

Pr(SINRji ≥ x) = ∆(I(x))∆(PN,i(x)), (17)

where ∆(·) represents the Laplacian operator. Finally, since
all the parameters are independently distributed, Eq. (17)
becomes:

Pr(SINRji ≥ x) = exp
[
−PN,i(x)− ξx2/α

]
, (18)

where, based on the assumption that the angles between a
RIM and a receiver are equiprobable and by considering the

probability generating functional of PPP [31], the amount ξ
can be defined as:

ξ =

E2[G(θ, φ)2/α]Ci

[
λ

dji
−
(
λ

dji
+ λπT 2

H

)
e−djiπT

2
H

]
sinc(2/α)

,

(19)
where E(·) represents the mean value, Ci = 0 for traditional
communication link, and Ci = 1 in case of mmWave. Also,
in Eq. (19), TH [m] is the threshold for communication mode
selection, and sinc(·) is the well-known function defined as:

sinc(x) =

{
sin(x)
x if x 6= 0,

1 otherwise.
(20)

Power Loss due to Target Deviation: Target deviation causes
an additional propagation power loss corresponding to a beam
misalignment. Let us denote this additional power loss as
∆Lmis and express it in terms of the angle misalignment. No-
tice that in this work, we only focus on azimuth misalignment
∆φ 3, expressed as:

∆φ = φ− argmin
φ

[L(φ, d,Wφ)], (21)

where Wφ is the beamwidth of the radiation pattern reflected
by the j-th RIM, and L(φ, dji,Wφ) represents the path loss
for the link from the j-th RIM to the i-th receiver. In Eq. (21),
∆φ is the difference between the desired angles and the actual
ones, whose value is related with the beamwidth. The power
loss increases as ∆φ increases, and saturates for a large value.
Even though the directivity is higher for smaller beamwidths,
the precision of beam steering needs to be very high for
small values of beamwidths. For small values of beamwidth,
a slight misalignment can have a large power loss. Moreover,
the power loss is inversely proportional to the beamwidth. In
particular, the misalignment additional loss can be expressed
as:

∆Lmis ∝

{
δ|∆φ|( 1

Wφ
− 1

360◦ ), for Wφ ≤Wlim,

1 otherwise.
(22)

The factor δ is set equal to 3.75 as assumed in [45].
The parameter Wlim represents a maximum value of the
beamwidth, beyond that the power loss is negligible; in this
work we have assumed Wlim = 239.69◦. This target deviation
or misalignment implies a reduced power received to the
receiver. If the beamwidth is sufficiently large, the additional
path loss is not affecting the received power.

In Fig. 7, we show the SINR CCDF versus the SINR,
ranging from −20 to 15 dB, in case of different RIM con-
figurations, with (N = M = 10λ) meta-atoms, and three
different network densities and a path loss coefficient α = 2.5
and α = 3.5 in Fig. 7 (a), (b), (c) and (d), (e), (f ), respectively.
For each scenario, the SINR CCDF has been computed for
four different cases i.e., (i) using only T DGA, (ii) using
both T DGA and T DCV , (iii) considering no estimation error
coming from the GA and the CV approaches, and (iv) no RIM
deployed in the network. Simulation parameters considered

3Similar equations apply for the elevation misalignment.
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Fig. 7. CP CCDF for a (10λ × 10λ) RIM with path loss exponent α = 2.5, for (a) sparse, (b) medium density and (c) dense networks, with path loss
exponent α = 3.5, for (d) sparse, (e) medium density and (f ) dense networks.
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Fig. 8. CP CCDF for a (5λ×5λ) RIM with path loss exponent α = 2.5, for (a) sparse, (b) medium density and (c) dense networks, with path loss exponent
α = 3.5, for (d) sparse, (e) medium density and (f ) dense networks.

in this work are reported in Table III. It is worth to notice
that the specific value considered for T DCV , is related to
a specific scenario, where a user is assumed to move at a
maximum speed of 3 km/h, the processing frequency of the
video is 5 fps, and the homography error corresponding to

∆ = 3% is assumed. As explained in the previous section, in
order to apply the control capability of the overall architecture
based on RIM, presented in this work, we need to keep the
average target deviation smaller than the half beam width
of the generated radiation pattern, otherwise, as for the case
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of the considered baseline, the user cannot be considered
correctly covered. We can notice, that for sparse networks the
improvement introduced by the communication at mmWave
and the beam steering is small, but more evident in a free
space condition (i.e., α = 2.5). This is mostly due to high
distance between the different mmWave transmitters. Indeed,
also for the case of omnidirectional antennas, the CP is quite
high. In the free-space case, for sparse networks, the possibility
to direct the beams allows a better coverage related with low
signal losses in the propagation channel. The target deviation
due to both the errors based on the CV approach and the GA
algorithm has a low impact in all the scenarios considered.
A higher dimension of the RIM would allow to obtain a
better resolution in terms of beams, but the correspondent
beamwidths will be smaller with a reduced tolerance in respect
of the target deviation.

More in details, in Fig. 7 (a-c) and (d-f ) we can observe
as the environment impacts on the performance of the system.
Indeed, in the case of α = 2.5 (i.e., propagation conditions
close to free space), the amount of interference of each user
on the other users is higher, due to the higher distance of the
propagation signal. This is more visible for the case of “No
RIM”, namely in absence of directional beams (red curves).
On the other side, in Fig. 7 (a-c) and (d-f ), the RIM-based
solution is slightly affected by the environment. Interestingly,
we can observe as the distance between the “No Error”
approach, that represents our ideal solution (black curves), is
very similar in the three user densities and for α = 2.5 and
α = 3.5. In these cases, we can also note that curves with GA
and CV errors (i.e., blue and green curves) are quite close to
the ideal case, thus the error inducted on the GA and CV can
be considered independent of the channel state conditions and
the user density.

The impact of directionality is more evident with the in-
creasing of the user density, as we can observe in Fig. 7 (b) and
(e), and by comparing them to Fig. 7 (c) and (f ), respectively.
By considering Fig. 7 (b) and (c), we can observe as the
directional approaches are slightly impacted by the increasing
of user density. This result is confirmed by the comparison of
Fig. 7 (d), (e) and (f ), where the user density impact is a bit
lower, but still there exists a degradation of performance at
higher densities.

In Fig. 8, we show the performance of the RIM-based struc-
ture, with smaller meta-surface, implying a reduced number
of potential configurations and a reduced directional capabil-
ity, since the number of potential configurations is smaller.
Anyway, it is interesting the comparison of the results with
the same parameter configurations, for the two different RIM
sizes. Indeed, the behavior for smaller densities (see Fig. 7
(a)/(d) and Fig. 8(a)/(d) respectively, and Fig. 7(b)/(e) and
Fig. 8(b)/(e) respectively) shows the size of the RIM has a very
low impact. Only when the user density is very high (see Fig. 7
(c)/(f ) and Fig. 8 (c)/(f )), the higher directional capability
plays a more important role. These results are very important
to designing effective RIM-based structures and minimizing
the cost. Indeed, higher sizes can provide better directionality,
but the number of components for RIM (e.g., the pin diodes)
explodes, with an important impact on the cost. A provision

TABLE III
SIMULATION PARAMETERS

Band frequency, f 28 GHz
Path Loss exponent, α 2.5, 3.5

TH 150 m

RIM size (10λ× 10λ)
(5λ× 5λ)

SNR 10 dB
PN,i 10−1 dB
T DCV 6◦

T DGA for (10λ× 10λ) 3◦

T DGA for (5λ× 5λ) 7.5◦

Beamwidth for (10λ× 10λ) 10◦

Beamwidth for (5λ× 5λ) 20◦

Communication Selection, C 1
max(D) for (10λ× 10λ) 25 dB
max(D) for (5λ× 5λ) 20 dB

User density [m−2]
sparse network 2

(π5002)

medium network 50
(π5002)

dense network 100
(π5002)

of traffic load in terms of users can help to decide the most
suitable RIM size.

VI. CONCLUSION AND DISCUSSION

In this work we have proposed the BEST-RIM framework,
considering a RIM whose working frequency is 28 GHz.
The coding schemes of the RIM structure are dynamically
computed by means of a PU running a GA whose performance
in terms of accuracy and average error have been assessed with
different RIM configurations. The GA is fed with the inputs
deriving from a CV approach that has been evaluated in an
outdoor pedestrian environment. The whole communication
system has been evaluated by considering the CP derived
on the SINR basis. Results show that for a (10λ × 10λ)
RIM, the integration of the beam steering capability allows
to improve the performance in terms of coverage in respect of
an omnidirectional isotropic ideal antenna, above all for dense
scenarios.

Results obtained in this work show the high potentiality of
mmWave 5G communication relying on RIM configurations.
Anyway, this analysis allowed to understand that such a kind
of framework is a complex system, where each layer has
to be carefully implemented since it impacts on the other
components of the system. In a mobile scenario as we have
considered in this work, the beam misalignment can be also
generated by the delay of the PU and the delay associated
with the FPGA that need to translate the values voltages
for making them corresponding to the desired reconfigured
radiation pattern. All these factors need to be included in
the evaluation of the system, in order to better assess the
performance of such a kind of systems.
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