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Resource Allocation for Cell-free Massive

MIMO-enabled URLLC Downlink Systems
Qihao Peng, Hong Ren, Cunhua Pan, Nan Liu, and Maged Elkashlan

Abstract

Ultra-reliable and low-latency communication (URLLC) is a pivotal technique for enabling the wireless control

over industrial Internet-of-Things (IIoT) devices. By deploying distributed access points (APs), cell-free massive

multiple-input and multiple-output (CF mMIMO) has great potential to provide URLLC services for IIoT devices. In

this paper, we investigate CF mMIMO-enabled URLLC in a smart factory. Lower bounds (LBs) of downlink ergodic

data rate under finite channel blocklength (FCBL) with imperfect channel state information (CSI) are derived for

maximum-ratio transmission (MRT), full-pilot zero-forcing (FZF), and local zero-forcing (LZF) precoding schemes.

Meanwhile, the weighted sum rate is maximized by jointly optimizing the pilot power and transmission power based

on the derived LBs. Specifically, we first provide the globally optimal solution of the pilot power, and then introduce

some approximations to transform the original problems into a series of subproblems, which can be expressed in a

geometric programming (GP) form that can be readily solved. Finally, an iterative algorithm is proposed to optimize

the power allocation based on various precoding schemes. Simulation results demonstrate that the proposed algorithm

is superior to the existing algorithms, and that the quality of URLLC services will benefit by deploying more APs,

except for the FZF precoding scheme.

Index Terms

Cell-free massive MIMO, URLLC, Industrial Internet-of-Things (IIoT).

I. INTRODUCTION

Ultra-Reliable Low-Latency Communication (URLLC) is one of the crucial techniques in the next generation

industrial systems, which can support the mission-critical communication for industrial Internet-of-Things (IIOT)

devices such as autonomous vehicles and robots [1], [2]. For industrial applications, the control command data

packet size is generally small with the stringent requirements of low latency (1 ms) and low block error rate below

10−6 [3]. Since the blocklength no longer tends to be infinite, the impact of the decoding error probability (DEP)

should be considered. To investigate the coding rate in the short packet regime, the authors of [4] derived the
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approximated achievable data rate under finite channel blocklength (FCBL), which was expressed in a complex

function of the channel blocklength and DEP [5]. However, the achievable data rate expression is neither convex nor

concave with respect to channel blocklength and signal-to-noise ratio (SNR) [6], which is challenging for resource

allocation.

Recently, there are some contributions on resource allocation based on short packet transmission [7]–[9]. By

deploying an unmanned aerial vehicle (UAV) as a relay, the short packet can be delivered to an obstructed device by

optimizing UAV’s location and channel blocklength [7]. The joint optimization on power allocation and blocklength

was studied in [8]. The overall DEP was minimized by optimizing the power allocation in non-orthogonal multiple

access (NOMA) systems [9]. However, all the above studies [7]–[9] only considered a simple scenario with point-to-

point link, while a smart industry needs to provide URLLC services for a large number of devices [10]. To support

multiple devices, the orthogonal frequency division multiple access (OFDMA) technique was adopted in [11], and

the authors therein aimed to minimize the total bandwidth by optimizing the subchannel allocation. However, the

frequency resource in IIoT applications is limited [12] and the OFDMA technique is not effective for supporting

an excessive number of devices.

Owing to a large number of available spatial degrees of freedom, massive multiple-input and multiple-output

(mMIMO) can simultaneously support multiple devices by using the same time-frequency resources [13], [14],

and thus the mMIMO-enabled URLLC has attracted extensive research attention [15]–[19]. The pilot length was

optimized to minimize the DEP in [15], and the authors also analyzed the relationship between the latency and the

DEP in mMIMO systems. Then, Zeng et al. extended the results in [15] to mMIMO systems with shadow fading,

demonstrating that mMIMO can provide URLLC services for multiple devices even suffering from severe shadow

fading [16]. The optimal secure performance was obtained by optimizing the channel blocklength and transmission

bits per packet in [17]. The pilot power and payload power was jointly optimized to maximize the weighted sum rate

of multiple devices in a single cell [18]. The authors of [19] considered a more general scenario of multiple cells

with imperfect channel state information (CSI) and pilot contamination, and showed that the pilot contamination had

a significant impact on the reliability of URLLC services. Although it has been shown that mMIMO can provide

URLLC services for multiple devices, it may be unable to provide guaranteed URLLC services to all devices in

the cell due to blockage issue and severe inter-cell interference. Therefore, a novel network architecture should be

developed to support URLLC services.

By geographically deploying distributed APs, cell-free mMIMO (CF mMIMO) can provide uniform services for

all devices [20]–[22]. The performance improvements of CF MIMO systems over the centralized mMIMO systems

have been shown when using maximum ratio transmission (MRT) precoding scheme [23] and zero forcing (ZF)

precoding scheme [24], respectively. Considering that the previous precoding schemes may no longer be applicable

for CF mMIMO, the authors of [25] proposed four precoding schemes, namely, full-pilot zero-forcing (FZF), local

partial zero-forcing precoding, local protective partial zero-forcing, and local regularized zero-forcing. The energy

efficiency of CF mMIMO was analyzed in [26]. The aforementioned works in [20]–[25] assumed that the APs

can acquire the CSI of all devices, which is theoretically possible but impractical. To address this issues, a user-

centric approach was proposed to reduce the implementation complexity [27]. The coverage probability with various
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densities of APs was analyzed in [28]. To tackle the blockage issue, the performance of the reconfigurable intelligent

surface-aided CF mMIMO system was analyzed in [29]. However, all works were based on the assumption of infinite

channel blocklength, which is not suitable for short packet transmission.

Due to the appealing advantages of CF mMIMO, it has great potential to provide URLLC services for multiple

devices simultaneously in a large coverage area. Essentially, there was a significant improvement in terms of the

network’s availability over the centralized mMIMO [30]. The power allocation based on FCBL for maximizing the

minimal data rate and maximizing the energy efficiency was considered in [31], where each AP was equipped with a

single antenna. However, channel hardening can only be achieved by deploying ultra-high density of single-antenna

APs [32], which is theoretically possible but practically unrealistic due to the expensive hardware. In this paper,

we investigate the deployment of multiple-antenna APs and optimal AP selection under the short packet regime.

Then, we aim to maximize the weighted sum rate based on FCBL while considering the minimal requirements of

DEP and data rate, by optimizing the pilot power and the transmission power. The main contributions of this paper

are summarized as follows.

1) By using the user-centric approach, we derive the lower bounds (LBs) of the achievable downlink data rate

with imperfect CSI for the MRT, FZF, and local zero-forcing (LZF) precoding schemes when using FCBL.

2) The weighted sum rate is maximized by jointly optimizing the pilot power and the transmission power while

considering the minimal requirements of DEP and data rate. To solve this NP-hard problem, we first transform

the DEP and data rate requirements into the required SINR, and then reducing the number of variables by

proving that the globally optimal solution of pilot power can be derived in closed form. Furthermore, by

introducing the approximations, the problem can be simplified into a series of subproblems, which can be

transformed into a geometric programming (GP) problem by using log-function method and successive convex

approximation (SCA) [33], [34]. Finally, an iterative algorithm is proposed to solve this problem for three

linear precoding schemes.

3) Simulation results demonstrate the rapid convergence speed of our proposed algorithms, and also validate the

effectiveness of our method over the existing algorithm. Besides, by accessing various APs, the optimal AP

selection strategy based on short packet transmission is provided. More importantly, the CF mMIMO system

has a remarkable performance improvement over the centralized mMIMO system.

The remainder of this paper is organized as follows. In Section II, the system model is provided, and then the

LB date rate expression under FCBL based on statistical CSI is derived for the MRT, FZF, and LZF precoding

schemes, respectively. In Section III, the power allocation is optimized to maximize the ergodic sum data rate.

Then, simulation results are presented in Section IV. Finally, the conclusions are drawn in Section V.

Notation: The superscripts (·)∗, (·)T , (·)H stand for the conjugate, transpose, and conjugate-transpose, respectively.

The Euclidean norm and the expectation operator are denoted by || · || and E {·}, respectively. z ∼ CN (0, 1)

denotes a circularly symmetric complex Gaussian random variable (RV) z with zero mean and unit variance, and

z ∼ CN (0, IN ) means an N -dimensional complex vector, each element of which is independent and follows the

distribution of CN (0, 1). Finally, A ∈ CM×N means that A is a complex matrix with M rows and N columns.
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Fig. 1: Smart factory scenario where CF mMIMO serves multiple devices.

II. SYSTEM MODEL AND SPECTRAL EFFICIENCY

A. System Model

We consider a CF mMIMO-enabled smart factory where M APs equipped with N antennas jointly serve all K

single-antenna devices, as illustrated in Fig. 1. The channel vector gm,k ∈ CN×1 between the mth AP and the kth

device is modeled as

gm,k =
√
βm,khm,k, (1)

where βm,k is the large-scale fading and hm,k ∼ CN (0, IN ) denotes a normal distribution with zero mean and

variance of IN .

B. Uplink Training

It is assumed that each AP needs to estimate the CSI from all the devices based on time division duplex (TDD)

protocol within the limited channel blocklength L = B×TB , where B is the bandwidth and TB is the transmission

duration. In order to distinguish the channels from different devices, K devices are allocated with orthogonal pilot

sequences. Then, the mth AP estimates the channel matrix based on the received pilot signal Yp
m ∈ CN×K , which

is given by

Yp
m =

K∑
k=1

gm,k

√
Kppkq

H
k + Np

m, (2)

where ppk is the pilot power of the kth device, qk ∈ CK×1 is the kth device’s pilot sequence, and Np
m ∈ CN×K is

the additive Gaussian noise matrix at the mth AP, each element of which is independent and follows the distribution

of CN (0, 1). By multiplying (2) with orthogonal pilot qk, we have

ŷpm,k =
1√
Kppk

Yp
mqk = gm,k + npm,k, (3)

where npm,k = 1√
Kppk

Np
mqk. Based on (3), the estimated channel vector ĝm,k by using minimum mean-square

error (MMSE) is

ĝm,k =
Kppkβm,k

Kppkβm,k + 1
ŷpm,k, (4)
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which follows the distribution of CN (0, λm,kIN ) with λm,k given by

λm,k =
Kppk(βm,k)

2

Kppkβm,k + 1
. (5)

Then, let us denote g̃m,k = gm,k− ĝm,k as the channel estimation error, which is independent of ĝm,k and follows

the distribution of CN (0, (βm,k − λm,k) IN ).

C. Downlink Transmission

For downlink transmission, to reduce the computational complexity, the user-centric approach is adopted, e.g.,

each device is served by a subset of APs or each AP serves a subset of devices. Denote Mk as the set of APs

that serve the kth device and Um as the set of devices that are served by the mth AP, respectively. The transmitted

signal from the mth AP is denoted as

xm =
∑
k∈Um

√
pdm,ka

∗
m,ksk, (6)

where pdm,k is the transmission power, am,k is the precoding vector, and sk is the data symbol to the kth device.

The received signal at the kth device is

ydk =

M∑
m=1

∑
k′∈Um

√
pdm,k′g

T
m,ka

∗
m,k′sk′ + nk

=

K∑
k′=1

∑
m∈Mk′

(gm,k)
T
a∗m,k′

√
pdm,k′sk′ + nk, (7)

where nk is the noise with the distribution of CN (0, 1). Besides, since there are no downlink pilots, we assume

that the kth device treats the mean of the effect channel gain as the true channel for signal detection [35]. Then,

the received signal at the kth device can be rewritten as

ydk = E

{ ∑
m∈Mk

(gm,k)
T
a∗m,k

√
pdm,k

}
︸ ︷︷ ︸

DSk

sk

+

{ ∑
m∈Mk

(gm,k)
T
a∗m,k

√
pdm,k −DSk

}
︸ ︷︷ ︸

LSk

sk, (8)

+

K∑
k′ 6=k

∑
m∈Mk′

(gm,k)
T
a∗m,k′

√
pdm,k′︸ ︷︷ ︸

UIk,k′

sk′ + nk︸︷︷︸
Nk

,

where DSk is the desired signal, LSk is the leaked signal, UIk,k′ represents the interference due to the k′th device,

and Nk is the noise term. The SINR of the kth device is given by

γk =
|DSk|2

|LSk|2 +
∑K
k′ 6=k |UIk,k′ |2 + |Nk|2

. (9)
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For the precoding vector am,k, we consider the following three linear precoding schemes [25], [36]

am,k =



Ĝmek√
E
{
‖Ĝmek‖2

} , MRT

Ĝm(ĜH
mĜm)

−1
ek√

E
{∥∥∥Ĝm[ĜH

mĜm]
−1

ek

∥∥∥2} , FZF

ĜmEUm(EHUmĜH
mĜmEUm)

−1
ξm,k√

E
{∥∥∥ĜmEUm(EHUmĜH

mĜmEUm)
−1

ξm,k

∥∥∥2} , LZF

(10)

where E {·} denotes the expectation operator, Ĝm = [ĝm,1, ĝm,2, · · ·, ĝm,K ] is the estimated channel matrix between

all the devices and the mth AP, and ek represents the kth column of unit matrix IK . For the LZF precoding scheme,

ĜmEUm = [ĝm,d1 , ĝm,d2 , · · ·, ĝm,d|Um| ] ∈ CN×|Um| is a matrix collecting the channels of serving devices in Um,

where Um =
{
d1, d2, · · ·, d|Um|

}
is the set of devices served by the mth AP and EUm is

[
ed1 , ed2 , · · ·, ed|Um|

]
∈

CK×|Um|. For ease of exposition, let U index
m = {1, 2, · · ·, |Um|} be the set comprised of the index of Um. Given user

k, we can find an index j ∈ U index
m where dj = k. Then, we have ξm,k =

[
I|Um|

]
(:,j)

.

As can be seen from (10), for the FZF precoding scheme, the mth AP needs to estimate all devices’ channels,

and thus it can suppress the interference of all devices by sacrificing spatial degrees of freedom. In contrast, the

mth AP using the MRT and the LZF precoding methods only needs to know the serving devices’ CSI, which

reduces the implementation complexity. Besides, the system based on the LZF precoder can only suppresses the

interference causing by serving devices, which strikes a balance between the available spatial degrees of freedom

and the interference suppression.

D. Achievable Data Rate under Finite Blocklength

Based on Shannon’s coding theorem, the Shannon capacity is defined as the maximum coding rate that there

exists an encoder/decoder pair that can enable the DEP to approach zero when the channel blocklength is infinity

[37]. However, in short packet transmission, the DEP has a non-negligible impact on the data rate. In [4], the

authors derived the approximate achievable data rate for the kth device under FCBL, which is given by

Rk ≈ (1− η) log2 (1 + γk)−
√

(1− η)Vk (γk)

L

Q−1 (εk)

ln 2
, (11)

where η = K/L, γk is the kth device’s SINR, εk is DEP, Vk is the channel dispersion with Vk (γk) = 1−(1 + γk)
−2,

and Q−1 (εk) is the inverse function of Q (εk) = 1√
2π

∫∞
εk

e−t
2/2dt of the kth device.

The ergodic data rate of the kth device under FCBL is given by

R̄k ≈ E


1− η
ln 2

ln (1+γk)− Q−1 (εk)√
L (1− η)

√√√√√ 2
γk

+ 1(
1
γk

+ 1
)2


 ,

,
1− η
ln 2

E
{
fk

(
1

γk

)}
,

(12)

where fk(x) = ln(1 + 1
x )− Q−1(εk)√

L(1−η)

√
2x+1

(1+x)2 is a function based on the kth device’s DEP requirements, and the

expectation is taken over the small-scale fading channel. As can be seen from (12), the closed-form expression of

the ergodic data rate is challenging to derive, and thus we cannot allocate the power based on the exact expression
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of (12). To address this issue, we aim to derive the LB of the ergodic data rate which is more convenient for

resource allocation.

Assuming that the data rate Rk of any device is no smaller than 0, we have the following inequality

Q−1 (εk)√
L (1− η)

≤

(
1
γk

+ 1
)

ln (1 + γk)√
2
γk

+ 1

∆
= g

(
1

γk

)
, (13)

where g(x) is equal to (1+x) ln(1+ 1
x )√

2x+1
. We can readily check that the first-order derivative of g (x) is smaller than

0, and thus g (x) is a monotonically decreasing function. Besides, the feasible region of fk (x) is 0 ≤ x ≤

g−1

(
Q−1(εk)√
L(1−η)

)
. As a result, we have the following lemma.

Lemma 1: Function fk (x) is a decreasing and convex function when 0 < x ≤ g−1

(
Q−1(εk)√
L(1−η)

)
.

Proof : Please refer to Appendix B in [38]. �

By using Jensen’s inequality and Lemma 1, we have

R̄k ≥ R̂k ,
1− η
ln 2

fk (1/γ̂k) , (14)

where R̂k is the LB data rate of the kth device, and γ̂k is γ̂k = 1
E(1/γk) .

To obtain the closed-form expression of R̂k, the kth device’s SINRs based on the MRT, FZF, and LZF precoding

schemes should be derived. Specifically, we have the following results.

Theorem 1: The ergodic achievable data rate for the kth device using the MRT precoding scheme under FCBL

can be lower bounded by

R̂MRT
k ,

1− η
ln 2

fk

(
1

γ̂MRT
k

)
, (15)

where γ̂MRT
k is denoted as

γ̂MRT
k =

( ∑
m∈Mk

√
Npdm,kλm,k

)2

K∑
k′=1

∑
m∈Mk′

pdm,k′βm,k + 1

. (16)

Proof : Please refer to Appendix A. �

Theorem 2: Using the FZF precoding scheme, the kth device’s ergodic data rate is lower bounded by

R̂FZF
k ,

1− η
ln 2

fk

(
1

γ̂FZF
k

)
, (17)

where γ̂FZF
k is denoted as

γ̂FZF
k =

( ∑
m∈Mk

√
(N −K)pdm,kλm,k

)2

K∑
k′=1

∑
m∈Mk′

pdm,k′ (βm,k − λm,k) + 1

, (18)

where the number of antennas N should be larger than the number of devices K.

Proof : Please refer to Appendix B. �

Theorem 3: The kth device’s ergodic data rate based on the LZF precoding scheme is lower bounded by

R̂LZF
k ,

1− η
ln 2

fk

(
1

γ̂LZF
k

)
, (19)
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where γ̂LZF
k is given by

γ̂LZF
k =

( ∑
m∈Mk

√
(N − τm) pdm,kλm,k

)2

K∑
k′=1

[ ∑
m∈{Mk′∩Mk}

pdm,k′ (βm,k − λm,k) +
∑

m∈{Mk′\{Mk∩Mk′}}
pdm,k′βm,k

]
+ 1

. (20)

In (20), τm means the number of devices served by the mth AP and its value is given by τm = |Um|. Here, the

number of antennas N should be larger than τm.

Proof : Please refer to Appendix C. �

From the expressions of SINRs in (18) and (20), the FZF precoding scheme is a special case of the LZF precoder,

i.e., the device is served by all APs. Besides, we also note that τm is always no larger than the number of devices

K, as Um is a subset of devices. Therefore, by choosing the optimal set of APs, it is reasonable for the system to

adopt the LZF precoding scheme to support more devices than that based on the FZF precoder.

III. POWER ALLOCATION

In this section, we aim to optimize the power allocation to maximize the weighted sum rate.

A. Problem Formulation

We assume that all the devices have the same bandwidth B, and we aim to maximize the weighted sum rata

with limited energy constraints and the minimal data rate requirement. Mathematically, the optimization problem

can be formulated as

max
{ppk},{pdm,k}

K∑
k=1

wkR̂k (21a)

s.t. R̂k ≥ Rreq
k ,∀k, (21b)

ppk ≤ P
max,p
k ,∀k (21c)∑

k∈Um

pdm,k ≤ P dm,∀m, (21d)

where R̂k denotes the LB data rate based on the abovementioned three precoding schemes, Rreq
k is the kth device’s

data rate requirement, wk is the weight of the kth device, Pmax,p
k is the maximal power of the kth device, P dm is

the mth AP’s maximal transmission power. Specifically, constraint (21b) means the kth device’s minimal data rate

requirements, constraint (21c) and constraint (21d) mean that the uplink training power of each device and the total

transmission power of each AP are limited.

For the power allocation based on infinite blocklength in [39], [40], the problem can be converted into a convex

problem by introducing slack variables, which can be readily solved by the bisection search algorithm. However,

maximizing the weighted sum rate is an NP-hard problem, which cannot be readily solved. Besides, it is more

challenging to solve the weighted sum rate problem under imperfect CSI and FCBL. Therefore, we first simplify

the problem, and then propose an efficient algorithm for solving the problem with polynomial-time complexity.
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Using Lemma 1, the minimal data rate requirement in (21b) can be transformed into the kth device’s requirement

of SINR, denoted as

γ̂k ≥
1

f−1
k

(
Rreq
k ln 2

1−η

) , (22)

where γ̂k represents the kth device’s SINR using the abovementioned precoding schemes. Besides, we find the

globally optimal solution for pilot power based on the following lemma.

Lemma 2: fk( 1
γ̂k

) is a monotonically increasing function of pilot power ppk when 0 < 1
γ̂k
≤ g−1

(
Q−1(εk)√
L(1−η)

)
.

Proof : Please refer to Appendix D. �

By using (22) and substituting ppk = Pmax,p
k into the SINR’s expression, Problem (21) can be simplified as

max
{pdm,k}

K∑
k=1

wkR̂k (23a)

s.t. γ̂k ≥
1

f−1
k

(
Rreq
k ln 2

1−η

) ,∀k, (23b)

∑
k∈Um

pdm,k ≤ Pm,∀m. (23c)

Then, by introducing slack variables χk, Problem (21) can be equivalently transformed into the following

optimization problem

max
{pdm,k},{χk}

K∑
k=1

wk
(1− η)

ln 2
[ln (1 + χk)− αkG (χk)] (24a)

s.t. γ̂k ≥ χk,∀k, (24b)

χk ≥
1

f−1
k

(
Rreq
k ln 2

1−η

) ,∀k, (24c)

(23c), (24d)

where G (χk) is defined as G (χk) ,

√
2
χk

+1(
1
χk

+1
)2 , and αk is αk = Q−1(εk)√

L(1−η)
.

To further simplify the objective function in (24a), the following lemmas are introduced.

Lemma 3: For any given x̂ ≥ 0, function ln (1 + x) can be lower bounded by

ln (1 + x) ≥ ρ lnx+ δ, (25)

where ρ and δ are expressed as

ρ =
x̂

1 + x̂
, δ = ln (1 + x̂)− x̂

1 + x̂
ln (x̂) . (26)

Proof : Please refer to Appendix E. �

Lemma 4: For any given x̂ ≥
√

17−3
4 , function G (x) always satisfies the following inequality

G (x) ≤ ρ̂ ln (x) + δ̂, (27)

where ρ̂ and δ̂ are given by

ρ̂ =
x̂√

x̂2 + 2x̂
− x̂
√
x̂2 + 2x̂

(1 + x̂)
2 , (28)
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and

δ̂ =

√
1− 1

(1 + x̂)
2 − ρ̂ ln (x̂) . (29)

Proof : Please refer to Appendix D in [18]. �

By using Lemma 3 and Lemma 4, the weighted data rate can be approximated in an iterative manner, which is

detailed as follows

wk
(1− η)

ln 2
[ln (1 + γk)− αkG (γk)]

≥wk
(1− η)

ln 2

[
ρ

(i)
k ln (γk) + δ

(i)
k − αkρ̂

(i)
k ln (γk)− αk δ̂(i)

k

]
, (30)

where ρ(i)
k , δ(i)

k , ρ̂(i)
k , and δ̂(i)

k are obtained based on (26), (28), and (29) by using x̂ = γ
(i)
k in the ith iteration. As

a result, the weighted sum rate in (24a) can be lower bounded by

K∑
k=1

wk
(1− η)

ln 2
[ln (1 + χk)− αkG (χk)]

≥
K∑
k=1

wk
(1− η)

ln 2

[
ln (χk)

[
ρ
(i)
k −αkρ̂

(i)
k

]
+ δ

(i)
k − αk δ̂

(i)
k

]
, (31)

where the equality holds only when χk = χ
(i)
k .

Next, we focus on the term consisting of variable χk in (31), and solve the following subproblem in the ith

iteration

max
{pdm,k},{χk}

K∏
k=1

χk
ŵ

(i)
k (32a)

s.t. (24b), (24c), (23c), (32b)

where ŵ(i)
k is equal to ŵ(i)

k = wk
(1−η)
ln 2

(
ρ(i) − αkρ̂(i)

)
.

Obviously, the problem in (32) is not a GP problem as constraint (24b) is not a monomial function [41]. To

tackle this issue, considering the different expressions for various precoding schemes, we denote the numerator and

the denominator of SINR γ̂k as (θk)
2 and $k, respectively, and then introduce a general theorem to approximate

θk based on abovementioned three precoding schemes as a monomial function.

Theorem 4: For any given p̂dm,k > 0, θk is lower bounded by

θk =
∑

m∈Mk

√
(N − tm) pdm,kλ̂m,k

≥ ck
∏

m∈Mk

[
(N − tm) pdm,kλ̂m,k

]am,k
,

(33)

where λ̂m,k is equal to λ̂m,k =
KPmax,p

k (βm,k)2

KPmax,p
k βm,k+1

, tm is a constant that depends on the different precoding schemes,

am,k and ck are the coefficients. Specifically, tm is give by

tm =


0,

K,

τm,

MRT

FZF

LZF

. (34)
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The coefficients am,k and ck are given by

am,k =

√
(N − tm) p̂dm,kλ̂m,k

2θ̂k
, (35)

and

ck =
θ̂k∏

m∈Mk

[
(N − tm) p̂dm,kλ̂m,k

]am,k , (36)

where θ̂k is obtained by using pdm,k = p̂dm,k. Besides, it is obvious that the inequality in (33) holds with equality

when pdm,k = p̂dm,k.

Proof : Please refer to Appendix F. �

By using Theorem 4, similar to the objection function in (24a), we can approximate the numerator (θk)2 in an

iterative manner. Specifically, c(i)k and a
(i)
m,k are obtained based on (35) and (36) by using p̂dm,k = p

d,(i)
m,k , and θk

can be lower bounded by

θk ≥ c(i)k
∏

m∈Mk

[
(N − tm) pdm,kλ̂m,k

]a(i)m,k
. (37)

Based on the abovementioned simplifications and approximations, the problem is transformed into the following

GP problem

max
{pdm,k},{χk}

K∏
k=1

χk
ŵ

(i)
k (38a)

s.t.
(
c
(i)
k

)2 ∏
m∈Mk

[
(N − tm) pdm,kλ̂m,k

]2a(i)m,k
≥ χk$k,∀k, (38b)

(24c), (23c). (38c)

To run the iterative algorithm, it is necessary to find a feasible initial solution. To deal with this issue, we construct

an alternative optimization problem by introducing an auxiliary variable ϕ, which is given by

max
ϕ,{pdm,k}

ϕ (39a)

s.t.
(
c
(i)
k

)2 ∏
m∈Mk

[
(N − tm) pdm,kλ̂m,k

]2a(i)m,k
≥ ϕ

f−1
k

(
Rreq
k ln 2

1−η

)$k, (39b)

(23c). (39c)

Obviously, Problem (39) is also a GP problem, and is always feasible. Besides, Problem (38) is feasible only

when ϕ is no smaller than 1. Furthermore, we define an error tolerance ξ to guarantee that the transmission power

converges to the optimal solutions. Based on the abovementioned discussions, Algorithm 1 is provided to maximize

the weighted sum rate.
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Algorithm 1 Iterative Algorithm for Solving Maximum Weighted Sum Rate

1: Initialize iteration number i = 1, and error tolerance ζ = 0.01;
2: Initialize the pilot power {ppk = Pmax,p

k ,∀k}, calculate transmission power
{
p
d,(1)
m,k ,∀m, k

}
by solving Problem

(39), obtain SINR
{
χ

(1)
k ,∀k

}
and the weighted sum rate in (21a) denoted as Obj(1). Set Obj(0) = Obj(1)ζ;

3: while
(
Obj(i) −Obj(i−1)

)/
Obj(i−1) ≥ ζ do

4: Update
{
ŵ

(i)
k , c

(i)
k , a

(i)
m,k,∀m, k

}
;

5: Update i = i+ 1, solve Problem (38) by using the CVX package to obtain
{
p
d,(i)
m,k ,∀m, k

}
, calculate SINR{

χ
(i)
k ,∀k

}
and then obtain the weighted sum rate, denoted as Obj(i);

6: end while

B. Algorithm Analysis

1) Feasibility Analysis: For Algorithm 1, we need to check whether constraint (38b) in the ith iteration holds or

not in the (i + 1)th iteration as only constraint (38b) is approximated in an iterative manner. Constraint (38b) in

the ith iteration is given by (
c
(i−1)
k

)2 ∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]2a(i−1)
m,k ≥ χ(i)

k $
(i)
k , (40)

where
{
χ

(i)
k , p

d,(i)
m,k ,∀m, k

}
is the optimal solution in the ith iteration, and $(i)

k is obtained by using pdm,k = p
d,(i)
m,k .

Using Theorem 4 and (37), we have

c
(i)
k

∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]a(i)m,k
= θ

(i)
k

≥ c(i−1)
k

∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]a(i−1)
m,k

.

(41)

Then, by combining (40) with (41), we have(
c
(i)
k

)2 ∏
m∈Mk

[
(N − tm) p

d,(i)
m,k λ̂m,k

]2a(i)m,k ≥ χ(i)
k $

(i)
k . (42)

Obviously, the solution is also feasible in the (i+ 1)th iteration.

2) Convergence Analysis: We prove that our algorithm can converge to a locally optimal solution. Denote Obj(i)

as the weighted sum rate in the ith iteration. Since the solution in the ith iteration is also feasible in the (i+ 1)th

iteration, we have
K∑
k=1

wk
(1− η)

ln 2

[
ln
(
χ

(i+1)
k

)[ρ(i)k −αkρ̂(i)k ]
+ δ

(i)
k − αk δ̂

(i)
k

]

≥
K∑
k=1

wk
(1− η)

ln 2

[
ln
(
χ

(i)
k

)[ρ(i)k −αkρ̂(i)k ]
+ δ

(i)
k − αk δ̂

(i)
k

]

=Obj(i),

(43)

where
{
χ

(i+1)
k ,∀k

}
is the optimal solution to Problem (38) in the (i+ 1)th iteration.
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Substituting χk = χ
(i+1)
k into the inequality in (31), we have

K∑
k=1

wk
(1− η)

ln 2

[
ln
(

1 + χ
(i+1)
k

)
− αkG

(
χ

(i+1)
k

)]

≥
K∑
k=1

wk
(1− η)

ln 2
×[

ln
(
χ

(i+1)
k

)[ρ(i+1)
k −αkρ̂(i+1)

k

]
+δ

(i+1)
k −αk δ̂(i+1)

k

]

≥
K∑
k=1

wk
(1− η)

ln 2

[
ln
(
χ

(i+1)
k

)[ρ(i)k −αkρ̂(i)k ]
+ δ

(i)
k − αk δ̂

(i)
k

]
.

(44)

Then, by combining (43) with (44), we have

Obj(i+1)

=

K∑
k=1

wk
(1− η)

ln 2

[
ln
(

1 + χ
(i+1)
k

)
− αkG

(
χ

(i+1)
k

)]

≥
K∑
k=1

wk
(1− η)

ln 2

[
ln
(
χ

(i+1)
k

)[ρ(i)k −αkρ̂(i)k ]
+ δ

(i)
k − αk δ̂

(i)
k

]

≥ Obj(i).

(45)

Therefore, the convergence of Algorithm 1 is verified. Besides, we can prove that Algorithm 1 can converge to the

Karush-Kuhn-Tucker (KKT) point of Problem (21) for the abovementioned precoding schemes by using the similar

proof as in Appendix B in [42].

3) Complexity Analysis: The complexity of Algorithm 1 depends on the number of iterations and complexity

of each iteration. Specifically, the main complexity of each iteration in Algorithm 1 lies in solving Problem (38)

which includes (M + 1)K variables and (2K + M) constraints. Based on [41], the computational complexity of

this algorithm is on the order of O(Niter ×max{[(M + 1)K]3, (2K +M)[(M + 1)K]2, Ncost}), where Niter is

the number of iterations and Ncost is the computational complexity of calculating the first-order and second-order

derivatives of the objective function and constraint functions of Problem (38) [34]. Furthermore, our simulation

results demonstrate that Algorithm 1 can converge to the locally optimal solution with fewer iterations.

IV. SIMULATION RESULTS

The performance of the proposed algorithms are numerically evaluated and discussed in this section. We first

introduce the simulation setup and the related simulation parameters.

A. Simulation Scenario

The smart factory is assumed to be located in a D × D square. In contrast to the wraparound deployment in

[43], [44], we uniformly deploy M APs at constellation points to provide uniform service for the devices. The
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large-scale fading coefficient model is adopted [23], which is given by

PLm,k =


Lloss+35log10 (dm,k) , dm,k>d1,

Lloss+15log10 (d1)+20log10 (d0) , dm,k≤d0,

Lloss+15log10 (d1)+20log10 (dm,k) , other,

(46)

where dm,k (km) is the distance between the mth AP and the kth device, and Lloss (dB) is a constant factor that

depends on the carrier frequency f (MHz), the heights of the APs hAP (m) and devices hu (m). Specifically, Lloss

is given by

Lloss = 46.3 + 33.9log10 (f)− 13.82log10 (hAP)

− (1.1log10 (f)− 0.7)hu + (1.56log10 (f)− 0.8) .
(47)

Besides, for the small-scale fading, it is generally modeled as Rayleigh fading with zero mean and unit variance.

The corresponding normalized pilot power ppk and transmission power pdm,k can be computed through dividing these

powers by the noise power, which is given by

Pn = B × kB × T0 × 10
NdB
10 (W) , (48)

where kB = 1.381 × 10−23 (Joule per Kelvin) is the Boltzmann constant, and T0 = 290 (Kelvin) is the noise

temperature. The weights for all the devices are randomly generated within [0,1]. Unless otherwise specified, the

simulation parameters are similar to those in [25], [45] and summarized in Table I. More importantly, we fix the

total number of antennas in this smart factory to investigate the deployment of APs. In other words, if each AP is

equipped with more antennas, this area will deploy less APs.

As mentioned before, the kth device is served by the set of APs Mk. Specifically, it is assumed that the large-

scale fading factors are known at the mth AP, and then the large-scale fading factors {β1,k, β2,k, · · ·, βM,k} are

sorted in a descending order. Finally, the large-scale fading factors are selected in turn until satisfying the following

condition ∑
m∈Mk

βm,k∑M
m=1 βm,k

≥ Th, (49)

where Th is the threshold. For the set of devices served by the mth AP, by checking whether the mth AP belongs

to the set of Mk, k = 1, 2, · · ·,K, we can obtain Um.

B. Properties of the Proposed Algorithm

In this subsection, we first check the gap between the LB data rate and the ergodic data rate, illustrate the

convergence behavior of the proposed algorithm, and then investigate the impact of threshold on the system

performance.

1) Tightness: The simulation results are obtained through the Monte-Carlo simulation by averaging over 104

random channel generations with Th = 0.9 and pdm,k = 0.1 W , ∀m, k. As can be seen from Fig. 2, the derived LB

data rate is close to the ergodic rate for any system parameters, which confirms that the LB data rate is suitable

and reasonable for power allocation.
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TABLE I: Simulation Parameters

Parameters Setting Value
Carrier frequency (f ) 2.1 GHz

Bandwidth (B) 10 MHz
Transmission duration (TB) 0.05 ms

Blocklength (L = BTB) 500
Height of APs (hAP) 15 m

Height of devices (hu) 1.6 m
Noise figure (NdB) 9 dB

Number of devices (K) 10
Required data rate (Rreq) 0.5 bit/s/Hz

Decoding error probability εk 10−7

Size of square (D) 1000 m
Pilot power Pmax

k , ∀k 100 mW
d0 10 m
d1 50 m

(a) MRT (b) FZF (c) LZF

Fig. 2: Weighted Sum Rate V.S. The Number of Total Antennas under various numbers of APs.

2) Convergence: We investigate the convergence behavior of the proposed algorithm with MN = 144 in Fig. 3.

For given any transmission power Pm and threshold Th, the system performance for three precoding schemes can

converge to the locally optimal solution within only 2 or 3 iterations, which demonstrates the rapid convergence of

the proposed algorithm.

3) Threshold: The performance of the proposed algorithm is obtained by averaging 100 random devices’ locations

and the system performance is set to zero if any devices cannot satisfy the data requirements. Fig. 4 shows the

system performance versus different thresholds with Pm = 1 W , ∀m. Obviously, it is observed that the optimal

value of Th is 1 for the MRT and FZF schemes and 0.95 for the LZF precoder. This is due to the fact that selecting

more APs to provide service for devices will consume the degrees of freedom for the LZF precoding scheme,

leading to performance degradation. Here, we set Th = 0.95 for all the following simulations, to achieve a good

tradeoff between system performance and computational complexity.

C. Effect of pilot power

In this subsection, we investigate how pilot power affects the system performance. Fig. 5 depicts the average

weighted sum rate versus the pilot power with MN = 144 and Pm = 1 W , ∀m, by averaging 100 random devices’

locations. As can be seen from Fig. 5, the average weighted sum rate increases with the pilot power for any cases,
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(a) MRT (b) FZF (c) LZF

Fig. 3: Convergence of proposed algorithm for different precoding schemes.

(a) MRT (b) FZF (c) LZF

Fig. 4: Performance of the proposed algorithm versus threshold for different precoding schemes.

which demonstrates that more accurate channel estimation is beneficial for enhancing the system performance.

More importantly, we find an interesting phenomenon that the CF mMIMO (e.g., M ≥ 4) significantly outperforms

the centralized mMIMO system (e.g., M = 1) when the pilot power is low. This is attributed to the fact that the

devices are closer to the APs in CF mMIMO systems than in centralized mMIMO systems, hence less pilot power

is required to satisfy the requirements of DEP and data rate.

D. Effect of The Number of APs

To fully explore the deployment of APs so as to maximize the system performance with limited antennas, we

evaluate the average weighted sum rate versus various numbers of APs with MN = 144 and Pm = 0.2 W , ∀m

in Fig. 6. For the MRT scheme, the average weighted sum rate initially increases with the number of APs, and

then it tends to be stable at 16 bit/s/Hz. This is due to the fact that each device relying on the MRT precoding

scheme becomes interference limited and tends to be stable. However, for the FZF precoding scheme, the system

performance will decrease when the number of APs is large, as deploying more APs causes the reduction in degrees

of freedom. In contrast, the system performance using the LZF precoding scheme increases with the number of

APs. This is because the LZF precoding scheme strikes a balance between interference suppression and available

degrees of freedom, thereby supporting more devices.
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(a) MRT (b) FZF (c) LZF

Fig. 5: Performance of the algorithm versus pilot power for different precoding schemes.

Fig. 6: Performance of proposed algorithm V.S. Number of APs.

E. Effect of The Number of Devices

To support more devices, a round robin-based scheduler is adopted for the case of K ≥ N or K ≥ |Um|.

Specifically, the APs would first transmit signals to the K1 devices, and then serve the remaining (K−K1) devices

in the next time interval. By averaging over 100 random generations, we investigate the relationship between the

number of devices and the system performance with MN = 144, K1 = K
2 , and Pm = 0.2 W , ∀m. To show

the effectiveness of our proposed method, the results of the Shannon capacity, the algorithm in [11], and power

allocation in [25] are presented. Furthermore, if any devices violate the requirements, the data rate is set to zero.

Obviously, the Shannon capacity is the ideal performance, and the benchmark one in [11] has an unpredictable

trend because it does not consider the penalty due to short packet transmissions. The performance relying on the

power allocation of [25] can approach that of the proposed method, owing to enhanced path gain. In contrast, the

proposed algorithm can approach the upper bound in CF mMIMO systems, which demonstrates the effectiveness

of our algorithm. More importantly, the weighted sum rate in the centralized mMIMO is almost zero owing to the

failure to meet the requirements, while there is a significant performance improvement in CF mMIMO systems.

This is due to the fact that the centralized mMIMO can only support those devices that are close to the APs, instead

of all devices, leading to zero data rate. Furthermore, the average weighted sum rate of M = 9 APs relying on the

FZF precoding increases when K ≤ 10 and then declines when 10 ≤ K ≤ 14. Thereafter, APs based on the FZF
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(a) MRT (b) FZF (c) LZF

Fig. 7: Performance of proposed algorithm V.S. Number of devices for different precoding schemes.

precoding scheme can support extra devices with enhanced URLLC services by implementing the scheduler, which

motivates us to enforce the appropriate scheduler when the number of served devices approaches that of equipped

antennas per AP.

V. CONCLUSION

In this paper, the resource allocation for a CF mMIMO-enabled URLLC dowlink system was treated. We first

derived the closed-form LB data rates with imperfect CSI based on MRT, FZF, and LZF precoding, and maximized

the weighted sum rate based on the derived LB data rate. Then, by deriving the globally optimal pilot power and

using SCA, the non-convex problem was transformed into a series of subproblems, which can be solved in an

iterative manner by our proposed algorithm. Simulation results demonstrated the rapid convergence speed of our

algorithm and the optimal AP selection strategy based on the short packet transmission. Furthermore, the quality of

URLLC services will benefit by deploying more APs, except for the FZF precoding scheme. More importantly, the

power allocation strategies under the short packet regime can significantly enhance the system performance over

the existing algorithms.

Regarding CF mMIMO systems, it is impractical to assign orthogonal pilot sequences to multiple devices under

the FCBL. Therefore, investigating the pilot allocation scheme and analyzing the impact of sharing pilot sequences

would be left for our future work. Furthermore, since it is unrealistic to assume an idealized fronthaul link between

the CPU and the APs, the limited fronthaul will be studied in the future.
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APPENDIX A

PROOF OF THEOREM 1

Before proving this theorem, we need to calculate the precoding vector for the MRT case. The normalized

precoding vector is given by

aMRT
m,k =

αm,k

(
gm,k + npm,k

)
√

E
∥∥∥αm,k (gm,k + npm,k

)∥∥∥2
=

gm,k + npm,k√
N
(
βm,k + 1

Kppk

)
=

√
λm,k

βm,k
√
N

(
gm,k + npm,k

)
,

(50)

where αm,k is αm,k =
Kppkβm,k
Kppkβm,k+1

.

Then, we need to derive the expressions of |DSk|2, E
(
|LSk|2

)
, E
(
|UIk,k′ |2

)
and E

(
|Nk|2

)
, respectively. We

first compute DSk. Since ĝm,k and g̃m,k are independent, we have

|DSk|2

=

∣∣∣∣∣E
{ ∑
m∈Mk

√
pdm,k(gm,k)

T (
aMRT
m,k

)∗}∣∣∣∣∣
2

=

∣∣∣∣∣E
{ ∑
m∈Mk

√
pdm,k(gm,k)

T

√
λm,k

βm,k
√
N

(
gm,k + npm,k

)∗}∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
m∈Mk

√
Npdm,kλm,k

∣∣∣∣∣
2

.

(51)

The term E
(
|LSk|2

)
is given by

E
{
|LSk|2

}
= E


∣∣∣∣∣ ∑
m∈Mk

√
pdm,k(gm,k)

T (
aMRT
m,k

)∗ −DSk

∣∣∣∣∣
2


+ E


∣∣∣∣∣∣
∑

m∈Mk

√
pdmkλm,k

βm,k
√
N

(gm,k)
T
(
npm,k

)∗∣∣∣∣∣∣
2


−

( ∑
m∈Mk

√
Nλm,kpdm,k

)2

=
∑

m∈Mk

pdm,kβm,k.

(52)
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Then, E
(
|UIk,k′ |2

)
can be calculated as

E
(
|UIk,k′ |2

)
= E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T

(gm,k′)
∗

∣∣∣∣∣∣
2


+ E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T
(
npm,k′

)∗∣∣∣∣∣∣
2
 .

(53)

For each term in (53), we have

E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T

(gm,k′)
∗

∣∣∣∣∣∣
2


=
∑

m∈Mk′

pdm,k′γm,k′
βm,k
βm,k′

(54)

and

E


∣∣∣∣∣∣
∑

m∈Mk′

√
pdm,k′γm,k′

βm,k′
√
N

(gm,k)
T
(
npm,k′

)∗∣∣∣∣∣∣
2


=
∑

m∈Mk′

pdm,k′γm,k′
1

Kppk′

βmk

(βmk′)
2 .

(55)

By combining (54) with (55), we have

E
(
|UIk,k′ |2

)
=

∑
m∈Mk′

pdm,k′γm,k′
βm,k
βm,k′

+
∑

m∈Mk′

pdm,k′γm,k′
βm,k

(βm,k′)
2

1

Kppk′

=
∑

m∈Mk′

pdm,k′βm,k. (56)

Finally, we compute E
(
|Nk|2

)
, which is written as

E
{
|nk|2

}
= 1. (57)

Substituting (51), (52), (56), and (57) into (9), we obtain γ̂MRT
k in (16).
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APPENDIX B

PROOF OF THEOREM 2

Before proving this theorem, we need to provide the precoding vector. By using the identity [46], the normalized

coefficient can be derived as

E

{∥∥∥∥Ĝm

[
ĜH
mĜm

]−1

ek

∥∥∥∥2
}

= E
{

(ek)
H
[
ĜH
mĜm

]−1(
Ĝm

)H
Ĝm

[
ĜH
mĜm

]−1

ek

}
= E

{
(ek)

H
[
ĜH
mĜm

]−1

ek

}
=

1

(N −K)λm,k
. (58)

Then, |DSk| can be derived as

|DSk|2

=

∣∣∣∣∣E
{ ∑
m∈Mk

(gm,k)
T (

aFZF
m,k

)∗√
pdm,k

}∣∣∣∣∣
2

=

∣∣∣∣∣E
{ ∑
m∈Mk

(ĝm,k + g̃m,k)
T (

aFZF
m,k

)∗√
pdm,k

}∣∣∣∣∣
2

=

( ∑
m∈Mk

√
(N −K) pdm,kλm,k

)2

.

(59)

Next, the leakage power can be formulated as

E
{
|LSk|2

}
= E


∣∣∣∣∣ ∑
m∈Mk

(gm,k)
T (

aFZF
m,k

)∗√
pdm,k −DSk

∣∣∣∣∣
2


= E


∣∣∣∣∣ ∑
m∈Mk

(g̃m,k)
T (

aFZF
m,k

)∗√
pdm,k

∣∣∣∣∣
2


=
∑

m∈Mk

pdm,k (βm,k − λm,k).

(60)
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The term E
(
|UIk,k′ |2

)
can be expressed as

E
{
|UIk,k′ |2

}
= E


∣∣∣∣∣∣
∑

m∈Mk′

(gm,k)
T (

aFZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣
∑

m∈Mk′

(g̃m,k)
T (

aFZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


=
∑

m∈Mk′

pdm,k′ (βm,k − λm,k).

(61)

Finally, we complete the proof by substituting the expressions of (59), (60), (61), and E
{
|nk|2

}
= 1 into the

SINR expression.

APPENDIX C

PROOF OF THEOREM 3

The normalized coefficient can be derived as

E

{∥∥∥∥ĜmEUm

(
EH
UmĜH

mĜmEUm

)−1

ξm,k

∥∥∥∥2
}

= E
{

(ξm,k)
H
(
EH
UmĜH

mĜmEUm

)−1

ξm,k

}
=

1

(N − τm)λm,k
, (62)

where τm is defined in (34).

Then, the desired signal |DSk|2 can be given by

|DSk|2

=

∣∣∣∣∣E
{ ∑
m∈Mk

(gm,k)
T (

aLZF
m,k

)∗√
pdm,k

}∣∣∣∣∣
2

=

∣∣∣∣∣E
{ ∑
m∈Mk

√
(N − τm)λm,kpdm,k(ĝm,k)

T

(
ĜmEUm

(
EH
UmĜH

mĜmEUm

)−1

ξm,k

)∗}∣∣∣∣∣
2

=

( ∑
m∈Mk

√
(N − τm) pdm,kλm,k

)2

.

(63)

Next, similar to the FZF case, the leakage power for the AP using the LZF precoding scheme can be formulated
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as

E
{
|LSk|2

}
= E


∣∣∣∣∣ ∑
m∈Mk

(gm,k)
T (

aLZF
m,k

)∗√
pdm,k −DSk

∣∣∣∣∣
2


= E


∣∣∣∣∣ ∑
m∈Mk

(g̃m,k)
T (

aLZF
m,k

)∗√
pdm,k

∣∣∣∣∣
2


=
∑

m∈Mk

pdm,k (βm,k − λm,k).

(64)

The term of the devices’ interference is different from that of the FZF scheme, as the interference from other

devices may not be suppressed. The term E
(
|UIk,k′ |2

)
can be given by

E
{
|UIk,k′ |2

}
= E


∣∣∣∣∣∣
∑

m∈Mk′

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′ +

∑
m∈{Mk′\{Mk∩Mk′}}

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

m∈{Mk′\{Mk∩Mk′}}

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2
 .

(65)

As can be seen from (65), the devices’ interference consists of two terms. In specific, the first term means that

the vector ĝm,k is chosen by the selection matrix EUm and the second term means that not chosen by matrix EUm .

Obviously, the interference of the first term can be suppressed as ĝm,ka
LZF
m,k′ is equal to zero, while the second

term’s interference cannot be suppressed.

Then, the first and the second terms of E
(
|UIk,k′ |2

)
are given by

E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣

∑
m∈{Mk∩Mk′}

(g̃m,k)
T (

aLZF
m,k′

)∗√
pdm,k′

∣∣∣∣∣∣
2


=
∑

m∈{Mk∩Mk′}

pdm,k′ (βm,k − λm,k),

(66)

and

E


∣∣∣∣∣∣

∑
m∈{Mk′\{Mk∩Mk′}}

(gm,k)
T (

aLZF
m,k′

)∗√
pdm,k′
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2


=
∑

m∈{Mk′\{Mk∩Mk′}}

pdm,k′βm,k.

(67)

Finally, the kth device’s SINR using the LZF precoding scheme is obtained by substituting the expressions of



24

(63), (64), (65), and E
{
|nk|2

}
= 1 into (9).

APPENDIX D

PROOF OF LEMMA 2

We first derive the first-order derivative of fk( 1
γ̂k

), denoted as

dfk

(
1
γ̂k

)
dppk

=
−fk′

(
1
γ̂k

)
(γ̂k)

2

dγ̂k
dppk

. (68)

As can be seen, the sign of the first-order derivative depends on the sign of dγ̂k
dppk

. Due to the different SINR

expressions of the three precoding schemes, we define a general expression γ̂k = Y (λm,k). Then, it is readily

to prove that γ̂k monotonically increases with λm,k, and the first-order derivative of λm,k is K(βm,k)2

(Kppkβm,k+1)
2 > 0.

Therefore, the function fk( 1
γ̂k

) monotonically increases with pilot power ppk, and the data rate can be maximized

when ppk = Pmax,p
k .

APPENDIX E

PROOF OF LEMMA 3

The inequality in (25) can be readily proved by substituting the expressions of ρ and δ into (25). Then, we define

J (x) = ln (1 + x)− ρ lnx− δ, the first-order derivative is given by

dJ (x)

dx
=
x− ρ (1 + x)

(1 + x)x
=
x (1 + x̂)− x̂ (1 + x)

(1 + x̂) (1 + x)x
. (69)

Since both x and x̂ are positive values, the sign of dJ(x)
dx only depends on the numerator. Let us define H(x) =

x (1 + x̂)− x̂ (1 + x), and then the first-order derivative of H(x) is given by H ′(x) = 1, which means H(x)

monotonically increases. Consequently, since H(x̂) is equal to zero, we have H(x) ≥ 0 when x ≥ x̂ and H(x) ≤ 0

when x ≤ x̂, which indicates that J (x) is an increasing function when x ≥ x̂ and a decreasing function when

x ≤ x̂. As a result, we complete the proof by showing that J (x) is always larger than J (x̂) = 0.

APPENDIX F

PROOF OF THEOREM 4

By taking the logarithm operator for the left hand side of (33), we have

ln (θk) = ln

( ∑
m∈Mk

√
(N − tm) pdm,kλ̂m,k

)
, F (x) , (70)

where x is given by x =
[
ln[(N − t1) pd1,kλ̂1,k], · · ·, ln[(N − tm) pdm,kλ̂m,k]

]T
,m ∈Mk.

The first-order partial derivative of F (x) is given by

∂F (x)

∂xj,k
=

√
exj,k

2
∑

m∈Mk

√
exm,k

=

√
(N − tj) pdj,kλ̂j,k

2θk
, (71)
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where e is the exponent. The second-order partial derivatives of F (x) are given by

∂2F (x)

∂(xj,k)
2 =

√
exj,k

( ∑
m∈Mk

√
exm,k

)
−
(√
exj,k

)2
4

( ∑
m∈Mk

√
exm,k

)2 , (72)

and
∂2F (x)

∂xj,k∂xi,k
=

−
√
exj,kexi,k

4

( ∑
m∈Mk

√
exm,k

)2 . (73)

Then, we define zk =
[√

ex1,k ,
√
exm,k , · · ·,

√
e
x|Mk|,k

]T
,m ∈ Mk, and thus the Hessian matrix of F (x) can

be given by

H =
1

4(1T zk)
2


( ∑
m∈Mk

√
exmk

)
√
ex1,k · · · 0

0
√
exm,k 0

0 · · ·
√
e
x|Mk|,k

− zk(zk)
T


=

1

4(1T zk)
2

{
1T zkdiag {zk} − zk(zk)

T
}

︸ ︷︷ ︸
Ξ

,

(74)

In (74), 1 is a vector of [1, 1, · · ·, 1]
T , |Mk|means the cardinality of the setMk. For any given v =

[
v1, · · ·, v|Mk|

]T ∈
R|Mk|, by using the Cauchy-Schwartz inequality, we have the inequality that is given by

vTΞv = 1T zkv
T diag {zk}v − vT zk(zk)

T
v

=

( ∑
m∈Mk

√
exm,k

)( ∑
m∈Mk

vm
√
exm,kvm

)
−

( ∑
m∈Mk

vm
√
exm,k

)2

=

( ∑
m∈Mk

(√√
exm,k

)2
)( ∑

m∈Mk

(
vm

√√
exm,k

)2
)
−

( ∑
m∈Mk

vm
√
exm,k

)2

≥ 0.

(75)

Therefore, we prove ln (θk) is a convex function of x. Then, by using Jensen’s inequality, we have

F (x) ≥
∑

m∈Mk

am,kxm,k + ln (ck) , (76)

where am,k and ck are given in (35) and (36), respectively.

Finally, we complete the proof by taking the exponential operation for both sides of (76) and using xm,k =

ln
(
pdm,k

)
.

REFERENCES

[1] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen., “An industrial perspective on wireless sensor networks — a survey of requirements,

protocols, and challenges,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1391–1412, 3rd Quart. 2014.
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[4] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,

pp. 2307–2359, May 2010.

[5] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proc.

IEEE, vol. 104, no. 9, pp. 1711–1726, Sept. 2016.

[6] C. She, C. Yang, and T. Q. S. Quek, “Radio resource management for ultra-reliable and low-latency communications,” IEEE Commun.

Mag., vol. 55, no. 6, pp. 72–78, Jun. 2017.

[7] C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint blocklength and location optimization for URLLC-enabled UAV relay

systems,” IEEE Commun. Lett., vol. 23, no. 3, pp. 498–501, Mar. 2019.

[8] A. A. Nasir, “Min-max decoding-error probability-based resource allocation for a URLLC system,” IEEE Commun. Lett., vol. 24, no. 12,

pp. 2864–2867, Dec. 2020.

[9] X. Xie, X. Ou, H. Lu, and Q. Huang, “Joint uplink and downlink resource allocation in NOMA for end-to-end URLLC services,” IEEE

Commun. Lett., vol. 25, no. 12, pp. 3942–3946, Dec. 2021.

[10] J. Wan, B. Chen, M. Imran, F. Tao, D. Li, C. Liu, and S. Ahmad, “Toward dynamic resources management for IoT-based manufacturing,”

IEEE Commun. Mag., vol. 56, no. 2, pp. 52–59, Feb. 2018.

[11] W. R. Ghanem, V. Jamali, Y. Sun, and R. Schober, “Resource allocation for multi-user downlink URLLC-OFDMA systems,” in Proc.

IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1–6.

[12] V. K. Huang, Z. Pang, C.-J. A. Chen, and K. F. Tsang, “New trends in the practical deployment of industrial wireless: From noncritical

to critical use cases,” IEEE Ind. Electron. Mag., vol. 12, no. 2, pp. 50–58, Jun. 2018.

[13] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans.

Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[14] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas

Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[15] J. Zeng, T. Lv, R. P. Liu, X. Su, N. C. Beaulieu, and Y. J. Guo, “Linear minimum error probability detection for massive MU-MIMO with

imperfect CSI in URLLC,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 384–11 388, Nov. 2019.

[16] J. Zeng, T. Lv, R. P. Liu, X. Su, Y. J. Guo, and N. C. Beaulieu, “Enabling ultrareliable and low-latency communications under shadow

fading by massive MU-MIMO,” IEEE Int. Things J., vol. 7, no. 1, pp. 234–246, Jan. 2020.

[17] T. Yu, X. Sun, and Y. Cai, “Secure short-packet transmission in uplink massive MU-MIMO IoT networks,” in Proc. Int. Conf. Wireless

Commun. Signal Process. (WCSP), Oct. 2020, pp. 50–55.

[18] H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Joint pilot and payload power allocation for massive-MIMO-enabled URLLC

IIoT networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 5, pp. 816–830, May 2020.
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