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Abstract—A wide variety of sensor technologies are recently
being adopted for traffic monitoring applications. Since most of
these technologies rely on wired infrastructure, the installation
and maintenance costs limit the deployment of the traffic mon-
itoring systems. In this paper, we introduce a traffic monitor-
ing approach that exploits physical layer samples in vehicular
communications processed by machine learning techniques. We
verify the feasibility of our approach with extensive simulations
and real-world experiments. First, we simulate wireless channels
under realistic traffic conditions using a ray-tracing simulator
and a traffic simulator. Next, we conduct experiments in a real-
world environment and collect messages transmitted from a
roadside unit (RSU). The results show that we are able to predict
different levels of service with an accuracy above 80% both
on the simulation and experimental data. Further, the proposed
approach is capable of estimating the number of vehicles with a
low mean absolute error on both data. Our approach is suitable to
be deployed alongside the current monitoring systems. It doesn’t
require additional investment in infrastructure since it relies on
existing vehicular networks.

Index Terms—traffic monitoring, intelligent transportation
systems, DSRC, C-V2X, vehicular ad-hoc networks

I. INTRODUCTION

A traffic monitoring system (TMS) is used to collect traffic

data such as traffic density, types of vehicles, and speed to

perform traffic analysis, predict future transportation needs,

and improve the safety of transportation based on the collected

data. Nowadays, intrusive sensors (e.g., inductive loops, mag-

netic detectors), vision-based systems, or radars are mostly

used for traffic monitoring. Most of these systems need fixed

wired infrastructure which results in high installation and

maintenance costs. Consequently, the costs of the systems

prevent the dense deployment on roads. According to the

Georgia Department of Transportation, a TMS on two-lane

roadway costs roughly $25,000 and the cost of installation can

go up to $80,000 [1]. This motivates low-cost, non-intrusive

approaches.

In this paper, we introduce a novel traffic monitoring

approach that exploits the communication signals broadcast in

a vehicular ad-hoc network (VANET). We solely rely on the

channel state information, not the content of the messages.

In VANETs, vehicles and traffic infrastructure exchange data

periodically with each other via vehicle-to-infrastructure (V2I)

communication links. The vehicles equipped with onboard

units (OBUs) exchange data such as their position, speeds, and

certain event-triggered messages with the other vehicles and

roadside units (RSUs) in the traffic infrastructure. Similarly,

RSUs inform vehicles about signal phases of traffic lights,
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Fig. 1: A typical communication scenario in a vehicular

network.

speed limits, or road work maps [2]. We utilize the signals

transmitted from a vehicle and captured at deployed roadside

units (RSUs) as shown in Fig. 1, or vice-versa. Our approach

doesn’t require additional hardware deployment while relying

on the existing infrastructure. We also don’t rule out the

possibility of static transmitters or receivers placed on the

side of a roadway. Since our approach is based on the use of

mere channel state information over a single RF chain, it can

be an effective candidate across different standards, including

DSRC [3] and cellular vehicle-to-everything (C-V2X) which

is defined by the 3GPP as part of its LTE and ongoing 5G

families of standards. We also demonstrate that our method

provides highly accurate results in sparse settings, even when

there is a single transmitter-receiver pair. This may be highly

valuable until we transition to dense deployments of V2X

systems.

Our approach takes advantage of the radio propagation

characteristics of vehicular networks. A transmitted wireless

signal travels over multiple paths reflected from the surfaces.

In vehicular networks, reflectors are mostly vehicles on a

road and the channel state is shaped by the traffic conditions.

The idea in our approach is to infer the traffic conditions on

the road based on the channel state information, specifically

the channel frequency response (CFR). We use supervised

learning algorithms since a structured model-based mapping

between the traffic conditions and the channel frequency

response values is extremely difficult due to many possible

traffic conditions. Unfortunately, there is no available signal-

level data collected under a variety of traffic conditions to

train the machine learning algorithms. To solve this problem,

we use a ray-tracing simulator and a traffic simulator in

conjunction to simulate the wireless propagation for a four-

lane road. We first train the machine learning algorithms with

the obtained simulation data and evaluate the performance

of the proposed approach. Subsequently, we conduct DSRC-

based V2I experiments in a real vehicular network at an

intersection. Specifically, we collect signal phase and timing

(SPaT) messages broadcast by a real roadside unit (RSU).

2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

https://www.ieee.org/publications/rights/index.html for more information

http://arxiv.org/abs/2012.13448v2


This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author’s version

which has not been fully edited and content may change prior to final publication. Citation information: DOI

10.1109/TVT.2023.3244085

The messages have been collected from a static receiver and

a moving vehicle using our software-defined radio, and we

evaluate the performance with the collected experimental data.

Operational conditions in a traffic stream are characterized

by quantitative measures specified in the highway capacity

manual [4]. The highway capacity manual defines six levels

of service (LOS), from letter A to F, for the density of traffic

in terms of passenger cars per kilometer per lane while LOS A

represents the best operating conditions and LOS F represents

the worst conditions. Our approach estimates the LOS with

over 80% classification accuracy on both the simulation data

and the experimental data. We have estimated the number of

vehicles with a mean absolute error (MAE) of 2.74 vehicles

on a four-lane road in the simulations, and with a mean

absolute error of 0.93 vehicles on a two-lane road in the real-

world experiments. The main contribution of this paper can

be summarized as:

• We propose a non-intrusive and cost-effective solution

for traffic inference by exploiting the existing VANET

infrastructure.

• We demonstrate the viability of the use of mere chan-

nel frequency responses within the existing vehicular

communication technologies for high-performance traffic

state inference, without requiring any additional hardware

deployment.

• We collected a substantial amount of V2I communication

data from a roadside unit and also generated simulation

data using a ray-tracing simulator. The datasets are avail-

able at [5] for the research community use.

• We obtain multiple trained models with different machine

learning algorithms, and we show that they are able to

map the CFR values to traffic conditions with a low error.

This paper extends our previous work [6] by increasing the

number of classes for the level of service prediction, using

data preprocessing techniques, and with extended real-world

measurements. This paper is organized as follows. In Section

II, we briefly discuss the previous work done related to the

topic and Section III describes the problem model. Section

IV describes the details of our approach which include data

creation, data preprocessing, and machine learning algorithms.

In Section V, we demonstrate the experimental and simulation

results. Finally, Section VI summarizes our work.

II. RELATED WORK

There has been extensive research on traffic monitor-

ing/management systems, and different approaches have been

proposed [7] [8]. The operation of a traffic monitoring system

depends on various technologies. According to the used tech-

nology, we can categorize these systems into three groups: 1)

Sensor-based systems 2) Aerial technology-based systems and

3) Wireless technology-based systems.

Sensor-based Systems: There is a wide variety of sensors

used in traffic monitoring systems today. These sensors can

be classified as intrusive and non-intrusive sensors. Intrusive

sensors are installed directly into the road surface. Sensors

such as inductive loops, magnetic detectors, and other weigh-

in-motion devices constitute the popular intrusive sensors.

For example, the freeway performance measurement system

(PeMS) is a system used by the California department of

transportation (Caltrans). It is based on 30-second measure-

ments from inductive loops in real time. The data comprises

the number of vehicles crossing the loop and occupancy (the

average fraction of time a vehicle is present over the loop).

PeMS data can be accessed online [9]. PeMS achieves an

average accuracy of 82% on the level of service classification

task, while it is as low as 56% for LOS E [10]. The major

drawback of the intrusive sensors is the interruption of traffic

since they are installed under road surfaces. Also, the cost of

the system increases if the sensor is able to monitor a single

lane while the multiple lanes are to be monitored [11].

Non-intrusive sensors are deployed above the road level or

on the side of a roadway. As a result, they can be easily

deployed, and the installation of the systems does not interrupt

traffic flow. Cameras, microwave radars, and passive infrared

sensors are among the most popular non-intrusive sensors.

Currently, many traffic monitoring systems incorporate cam-

eras and video processing techniques [12]. As deep learning

techniques are becoming more widely adopted, they offer great

potential for traffic monitoring applications over traditional

techniques. In [13], the authors evaluate the performance of

different convolutional neural network (CNN) architectures

on the level of service classification. They achieve a mean

accuracy of more than 80% for tested CNN configurations,

while the best architecture reaches a mean accuracy of 89%.

Despite the wide usage of non-intrusive sensors, their deploy-

ment and maintenance costs are relatively high. Further, their

performance can be affected by certain weather conditions

[14].

Aerial technology-based systems: The aerial platforms,

especially the unmanned aerial vehicles (UAVs), have become

a cost-efficient solution for road traffic monitoring because of

their mobility and large range [15]. These technologies don’t

require any hardware deployment under/on the roadways, and

therefore, they are suitable for such a dynamic environment.

In [16], the authors present a computer vision-based traffic

surveillance system using an aerial camera array. They present

that the deep learning combined with speeded up robust

features (SURF)-based approach is able to achieve over 93%

accuracy in density estimation.

Wireless technology-based systems: The U.S. Department

of Transportation’s intelligent transportation systems (ITS)

Joint Program Office encourages to deploy applications utiliz-

ing data captured from multiple sources (e.g., vehicles, mobile

devices, and infrastructure) across all elements of the surface

transportation systems [17]. To this end, connected vehicle

technologies, DSRC and C-V2X, have been considered an

important part of intelligent transportation systems. Architec-

ture Reference for Cooperative and Intelligent Transportation

(ARC-IT) [18] of the US Department of Transportation uses

the collected data from connected vehicles to estimate traffic

conditions. To this end, traffic monitoring using vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure communication

links has been studied in several studies. In [10], the au-

thors propose a method for estimating traffic density using

connected vehicle technology and artificial intelligence. Using
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VISSIM, a traffic microsimulation software, they demonstrate

that the accuracy of the LOS classification is a minimum

of 85% with 20% and greater connected vehicle penetration

levels. In [19], the authors introduce CoTEC (COperative

Traffic congestion detECtion), a road congestion detection

algorithm based on cooperative awareness messages (CAM)

or beacon messages broadcasting the road traffic conditions

periodically. CoTEC is evaluated under large-scale highway

scenarios using iTETRIS, an open-source simulation platform

created to investigate the impact of cooperative vehicular

systems. In [20], the authors propose a method named SCOR-

PION (System with COoperative Routing to imProve traffIc

cONdition) that is based on V2I communication. They use

the K-Nearest Neighbor (KNN) classifier which uses the

average speed and the density of each road to classify the

traffic conditions as free-flow, slightly congested, moderately

congested, and severely congested.

Recent advances in wireless technology also enable a new

sensing paradigm that is often used to recognize human

behaviors using WiFi technologies in indoor settings [21].

Similarly, WiFi-based traffic monitoring systems have been

proposed with the motivation of reducing deployment costs for

large-scale deployment. The researchers study the feasibility

of using WiFi devices for traffic monitoring applications using

channel state information (CSI) [22] [23], received signal

strength indicator (RSSI) [24] [25], link quality indicator (LQI)

[26], and packet loss rate [26]. The proposed approaches ex-

ploit the RF propagation between a receiver and a transmitter

that is affected by passing vehicles. Consequently, different

patterns of the wireless channel metrics are observed at the

receiver depending on traffic conditions and the types of

vehicles. These patterns are used to classify and count passing

vehicles. The system proposed in [22] utilizes a laptop and

a router deployed on the roadside. The CSI powers of the

passing vehicles are captured on local roads and highways to

count and classify vehicles using machine learning techniques.

They show that road lanes have different CSI patterns and this

allows them to identify in which lane a vehicle is detected.

A similar setup and deep learning techniques are used in

their next study [23] to count and classify vehicles. In [24],

the authors employ a system that exploits the attenuation of

radio signals for the detection and classification of vehicles

using machine learning techniques. Similarly, the authors

in [25] proposed a system that exploits RSSI information

to detect and classify vehicles. The authors in [26] set up

a transmitter-receiver pair and classify traffic conditions as

free-flow or congested using a decision tree-based classifier.

In the proposed method, receivers collect packets from the

transmitter placed on the opposite side of a road and different

metrics (RSSI, LQI, packet loss) are used to classify the traffic

conditions. They achieve a classification accuracy of 97% in

their experiments.

The aforementioned approaches require specialized hard-

ware (e.g., inductive loops, UAVs, camera arrays). In contrast,

our approach relies on the samples collected in available

infrastructure without a need to decrypt the message content,

thereby preserving privacy as a bonus. Also, our approach

is non-intrusive, easy to deploy, and cost-effective since it is

built upon the existing infrastructures. Thus, it can easily be

integrated with other traffic monitoring systems and improve

their performance. A unique component of our approach is

that it doesn’t observe the wireless link behavior (interruption

of line-of-sight component) for counting each vehicle as

opposed to the previous approaches. We estimate the number

of vehicles from a single channel frequency estimate. Another

unique component of our work is in the measurements. We

rely heavily on actual data collected from a real roadside unit,

as opposed to analysis or raw simulations.

III. PROBLEM MODEL AND STATEMENT

Level of Service Prediction,

Number of Vehicles Estimate, 

Wireless 
Channel

( , )

Machine 
Learning 

Algorithms

Transmitted ransmitted
Signal

Received Received 
Signal

:: Actual Number of Vehicles

Fig. 2: Problem model.

The components of the system are shown in Fig. 2. xk

are transmitted signal samples of kth frame from a static

transmitter on the roadside or a vehicle, and yk are the received

signal samples after passing through the wireless channel.

The receiver estimates the wireless channel using the received

signal samples. We can represent the wireless channel as a

linear time-varying channel filter and it can be characterized

by its baseband impulse response as:

hb(t, τ) =
∑

i

ai(t)e
−j2πfcτi(t)g(τ − τi(t)) (1)

where ai(t), τi(t), fc are the path attenuation and delay of

path i at time t, the carrier frequency, respectively. g(τ) is

the impulse response of the transmit and receiver filters. The

corresponding time-varying channel frequency response can

be calculated as [27]:

H(t, f) =

∞∫

−∞

hb(τ, t)e
−j2πfτ

dτ = G(f)
∑
i

ai(t)e
−j2π(f+fc)τi(t)

(2)

where G(f) is the frequency response of the transmit and

receive filters and it can be assumed to be constant in the pres-

ence of guard subcarriers on both sides of the spectrum [28].

We consider an orthogonal frequency division multiplexing

(OFDM) system. The channel frequency response is estimated

using the preambles at the beginning of each OFDM frame.

We can estimate the channel frequency response (CFR) at N
subcarriers for kth frame as:

Hk , [Hk,0, Hk,1, . . . , Hk,N−1]
T (3)

where Hk,i , H(kT, fi). T denotes the frame duration and

fi is the baseband frequency of ith subcarrier. Note that Hk,i

is a complex number and represented by the magnitude |Hk,i|
and the phase ∠Hk,i as Hk,i = |Hk,i|e

j∠Hk,i . Considering

the phase estimation errors and the phase noise, we only use

the magnitude frequency response values, |Hk,i|, estimated

from the received signal. The machine learning algorithms are

trained with the magnitude response values and output the
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level of service prediction, LOSk, and estimated number of

vehicles, n̂k.

Problem Statement: First, we predict the density of the

traffic conditions and assign level of service labels LOSk ∈
{A, B, C, D, E, F} for each received frame. The highway

capacity manual defines six levels of service according to the

type of roadway. In this work, we use the level of service

definitions that are based on density. The density of a roadway

is expressed in terms of passenger cars per kilometer per lane

(pc/km/ln). Table I summarizes the level of service thresholds

based on density for a basic freeway segment. The machine

learning algorithms map N-dimensional CFR vectors to level

of service predictions, c(|Hk|) : R
N −→ LOSk, where |Hk| is

the magnitude of CFR values for kth received frame and c()
represents the classification algorithm.

TABLE I: Level of service definitions according to density

Level of service Density, pc/km/ln

A 0-7
B 7-11
C 11-16
D 16-22
E 22-28
F > 28

Next, we estimate the number of vehicles on a roadway. In

this problem, a regression algorithm maps the CFR vector to

the number of vehicles estimate, r(|Hk|) : RN −→ R, where

r() represents the regression algorithm. To this end, we build a

regression model that minimizes the error between the actual

number of vehicles, nk, and the estimated number of vehicles,

n̂k.

IV. APPROACH

We need training data that include the wireless channel real-

izations under different traffic conditions to train the machine

learning algorithms. Unfortunately, such data are not available.

Therefore, we first generate data by integrating two simulators.

The integration of the simulators helps us to obtain realistic

wireless data under complex scenarios easily and evaluate the

performance of the approach. Subsequently, we collect real

experimental data in different scenarios as described in the

next sections.

A. Data Creation Methodology

Simulation of the Wireless Channel

In a vehicular network, vehicle surfaces, buildings, and

terrains are the main sources of reflections and diffractions.

The wireless channel between the highly mobile nodes is

hard to be captured by the probabilistic channel models. In

this work, we utilize the ray-tracing approach rather than

probabilistic channel models. The ray-tracing techniques rep-

resent the electromagnetic waves sent from a transmitter as a

simple particle and estimate the paths between a receiver and

the transmitter. Therefore, ray-tracing provides more accurate

and spatially consistent results compared to the probabilistic

models. More details about the principles of ray tracing can

be found in [29]. In this work, we use Remcom’s Wireless

Insite [30] as a ray-tracing simulator to simulate wireless

propagation.

The ray-tracing simulator provides the rays, each corre-

sponding to a propagation path, between a receiver and a

transmitter. The simulator also gives information on power,

delay, phase, angle of arrival, and angle of departure of each

path. Given this information, we can calculate CFR values ac-

cording to Eq. 2. However, IEEE 802.11p utilizes a preamble-

based channel estimation method from noisy received signals,

and this results in an error in the channel estimation. We

incorporate this error with the following model. Suppose that

{t[n]}Ntr−1
n=0 is a known training sequence, y = [ y[L] y[L+2]

. . . y[Ntr-1] ] is the received signal samples, and w = [ w[L]

w[L+2] . . . w[Ntr-1]] is the noise samples after removing first

L received samples. We can write the received signal in a

matrix form as:

yk = tkhk +wk (4)

where tk is the (N×L) circularly shifted training matrix with

N = Ntr − L the received sequence length. hk is an L-tap

channel impulse response vector. The received frequency do-

main signal of the kth OFDM frame, after removing the cyclic

prefix and applying the discrete Fourier transform, can be

written in the vector form as Yk , [Yk,0, Yk,1, . . . , Yk,N−1]
T

can be written as:

Yk = TkHk +Wk (5)

where Tk is N × N diagonal matrix with < n, n >th

element given as Tk,n where Tk,n is the pilot subcarriers

of kth frame. Hk is the channel frequency response, and

Wk , [Wk,0,Wk,1, . . . ,Wk,N−1]
T is the frequency domain

noise vector where Wk,i is an additive Gaussian noise at

subcarrier i of kth frame, with zero mean and variance σ2
W .

The commonly used channel estimation scheme for the IEEE

802.11p is the least-squares estimation and the least-squares

channel estimate, which is also the maximum likelihood

estimate under additive white gaussian noise (AWGN), is given

by:

Ĥk = argmin
Hk

||Yk −TkHk||
2

= (Tk
HTk)

-1Tk
HYk = Tk

-1Yk

=

[
Yk,0

Tk,0
,
Yk,1

Tk,1
, . . . ,

Yk,N−1

Tk,N−1

]
(6)

where || · || denotes the norm of a vector, xH is Hermitian

transposition of x. Substituting Eq. 5 into Eq. 6, the LS channel

estimate of subcarriers can be expressed as:

Ĥk = Hk + T-1
k Wk

︸ ︷︷ ︸

E=Estimation Error

(7)

where E = T-1
k Wk denotes the estimation error. Since

E[Ĥk] = E[Hk] + T-1
k E[Wp] = E[Hk] forms an unbiased
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estimator of Hk, i.e., E[E ] = 0. The covariance matrix of the

estimation error can be calculated as:

E[EEH ] = E[T−1
k WpWp

H(T−1
k )H ]

= T−1
k E[WkW

H
k ](T−1

k )H

= σ2
W (TH

k Tk)
−1

=
σ2
W

PT
IN = σ2

EIN

(8)

where PT is equal to the transmitter power per subcarrier (i.e.,

(Tk
HTk) = PT IN, where IN is an identity matrix of size

N) and σ2
E is the error variance per subcarrier. Note that the

error variance per subcarrier depends on the noise variance,

σ2
W , and the transmitter power per subcarrier.

We estimate the CFR values using the least-squares channel

estimator in our real-world experiments. For simulations, the

propagation data obtained from the ray-tracing simulator are

used to generate the actual CFR values. Since the estimation

error is not incorporated in our simulations, we calculate the

estimation errors with Eq. 8 and add them to the actual CFR

values.

Simulation of the Traffic

Many models and simulation tools have been developed to

generate realistic vehicular mobility [31]. In this work, we

use Simulation of Urban Mobility (SUMO) [32] to simulate

realistic traffic conditions for the ray-tracing simulator since it

provides us great flexibility with various configuration files and

allows us to import real roads from OpenStreetMap(OSM).

The traffic control interface of SUMO, TraCI [33] is also

utilized to obtain different parameters of the vehicles such as

vehicle ID, position, speed, etc., and change these parameters.

Integration of the simulators

10

Positions of 
vehicles

METHODOLOGY FOR DATA GENERATION

Python 
Script

Traffic 
Simulator

Ray-tracing 
Simulator

Modifying the configuration 
files of ray-tracing simulator

Wireless 
Propagation 

Data

Channel 
Frequency 
Response Channel 

Response 
Calculation

Database

Fig. 3: The methodology that integrates the simulators.

We follow the methodology proposed in [34] as shown in

Fig. 3 to integrate two simulators and simulate the wireless

propagation under various traffic conditions. In this method-

ology, the positions of vehicles obtained from the traffic sim-

ulator are used to place vehicles in the form of Objects in the

ray-tracing simulator. To enable this, we wrote a Python script

that runs the traffic simulator for given mobility parameters

and retrieves the position of vehicles. The script later modifies

the positions of the objects in the configuration files of the ray-

tracing simulator. After modifying the configuration files, the

script uses the command line controls to run Wireless Insite’s

calculation engine. Wireless Insite runs the simulations with

given configurations and saves the requested output inside a

folder. The script repeats this procedure for a certain number

of simulations defined by us. Finally, we use MATLAB to

post-process and create the channel frequency responses from

the output folders and save them in a database. The roles of

components can be summarized as follows:

• Traffic Simulator

– Simulating traffic conditions for given mobility pa-

rameters.

– Providing the positions of the vehicles.

• Ray-Tracing Simulator

– Specifying the radio propagation environment with a

configuration file.

– Simulating the wireless propagation according to the

positions of the vehicles.

– Saving propagation information for each scenario.

• Script

– Running the traffic simulator and obtaining the atti-

tudes of the vehicles.

– Modifying the configuration files of the ray-tracing

simulator.

– Running the ray-tracing simulator via the command

line.

B. Data Preprocessing

Within the field of machine learning, data quality is a

significant consideration. Data preprocessing is an essential

procedure to improve the quality of data and the outcomes

of the inference. Fig. 4 shows how the data obtained are

preprocessed before being fed to machine learning algorithms.

In the following sections, we introduce the steps of CFR data

preprocessing.

Background Elimination

CFR does not only embody the reflections from the vehicles

but also embodies the reflections from the static environment

that should not be learned in machine learning algorithms. The

static reflections might cause over-fitting, and degrade the gen-

eralization performance of the learning algorithms. Therefore,

we need to remove the effect of the static environment from

the CFR.

To this end, we estimate a sequence of CFR vectors when

there is no vehicle on the road and calculate the average of

the CFR vectors Hb as the background CFR. We remove it

from the CFR measurements as follows:

H̄k = Hk − Hb

where H̄k is the CFR of kth frame after the background

elimination. This operation ensures that H̄k preserves only the

dynamic reflections shaped by the vehicles.

Outlier Removal

Outlier removal is an important step since outliers could

affect traffic inference performance. Thus, outliers should be
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Fig. 4: Architecture overview of the system.

sifted out before further data processing. The purpose of

outlier removal is to eliminate and replace outliers with their

expected values.

To this end, linear filters are sometimes used for eliminating

outliers but it is observed that the linear filters are generally

ineffective in this regard and effective outlier removal filters

are necessarily nonlinear [35]. Further, outlier removal is

different from signal filtering. Signal filtering not only removes

outliers but also changes the data structure by reducing the data

variations. In this regard, outlier removal is more difficult than

filtering since it tries to preserve data structure while removing

outliers.

We utilize a Hampel filter, obtained by applying the Hampel

identifier to a moving data window. In detail, given a sequence

x1, x2, x3, . . . , xn and a sliding window of length w, we can

define the local median and the standard deviation as follows:

• mi = median(xi−w, xi−w+1, . . . , xi+w−1, xi+w)
• σi = κmedian(|xi−w−mi|, . . . , |xi+w−mi|), where κ =

1√
2erf −1(1/2)

≈ 1.4826.

where mi and σi are the local median and the standard

deviation. The quantity σi/κ is known as the median absolute

deviation (MAD). If a sample xi is such that

| xi −mi |> nσi (9)

for a given threshold n, then the Hampel identifier declares xi

an outlier and replaces it with mi.

Fig. 5 shows the waveform of one subcarrier and the Hampel

filtered version of it. The Hampel identifier adopted here uses

the window size of 5 and the threshold n = 3.

Denoising

Internal state transitions (e.g. transmission strength changes,

rate changes) in communication systems, electromagnetic in-

terference, and thermal noise can be listed as the main source

of noise in CFR samples. The noises in the raw CFR samples

should be wiped out to avoid unnecessary complexity in

the learning models and improve the performance of the

algorithms. Also, the signal strength variation over distances

of the order of the carrier wavelength, due to constructive and

destructive interference of multipath components, should be
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Fig. 5: Original and outlier filtered signals.

smoothed away to increase the performance of the approach.

Since the signal fluctuation created by vehicular activities has

low-frequency components, we can adopt a low-pass filter to

eliminate the noise and multipath interference in CFR.

The filter to be used should not introduce a large delay to

capture the exact time of the events and not distort the signal

characteristics. We contend that it is not convenient to utilize

traditional filters (e.g., the Butterworth and Chebyshev filters).

Specifically, IIR filters present an undesired phase shift (delay)

into the filtered signal which varies with the frequency of the

signal. This delay can be prevented only if the complete signal

is known in advance by using zero-phase filtering techniques

which is impossible in real-time measurements. They also

soften the rising/falling edges appeared in the signals, which

are critical for traffic inference.

We utilize the wavelet filter [36] since it does not only

smooth away the signal but also successfully preserves the

sharp transitions. Fig. 6 shows the performance of the wavelet

filter on a sub-carrier. The filtering is controlled by the

selection of wavelet type and the decomposition level. The

higher decomposition level means a lower frequency divider

between the signal and noise. Specifically, we employ four

levels ‘sym4’ wavelet transform on each sub-carrier signal

with the decomposition level of 9. We observe that the wavelet

filter captures the abrupt changes well while smoothing away

the signal.
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Fig. 6: Performance of the wavelet filter on the signal.

C. Machine Learning Algorithms

In this work, we use SciPy [37], an open-source Python

library used for scientific computing, and scikit-learn [38] to

construct our machine learning framework. Especially, scikit-

learn features many machine learning algorithms for classifi-

cation, regression, and more. In this paper, we use ensemble

learning algorithms [39] (extremely randomized trees, gradient

boosting, random forest), support vector machine (SVM), and

k-nearest neighbors (KNN) algorithms to train learning models

for classification and regression purposes. The hyperparameter

optimization is performed with the grid search method to find

the best parameters of the models. The parameters used for

each data set can be found at [5].

Algorithm Evaluation

We use a stratified k-fold cross-validation approach to

evaluate the performance of the different algorithms. The

approach is similar to k-fold cross-validation. It divides the

set of samples into k groups, or folds, of approximately equal

size and uses k − 1 folds for the training and the remaining

fold for the validation. This procedure is repeated k times

and a different group of the samples is used as a validation

set each time. In stratified k-fold cross-validation, the folds

are formed in a way that each fold contains approximately

the same proportion of predictor labels as the original data

set to minimize the bias inherited from the random sampling.

The stratified k-fold cross-validation estimate of a metric

(CVMetric) is computed by taking the average of the metric

over k folds as:

CVMetric =
1

k

k∑

i=1

Metrici

V. PERFORMANCE EVALUATION

A. Performance Metrics

In this work, the accuracy of the algorithms, the area under

the receiver operating characteristic curve (AUC) [40], and

the macro-averaged F1 score are employed to evaluate the

performance of the level of service prediction problem. The

receiver operating characteristic (ROC) curve is plotted with

the true positive rate (TPR) against the false positive rate

(FPR). Although the receiver operating characteristic (ROC)

curve is typically used in the binary classification problem,

we adapt it for multi-class classification with the one-vs-all

approach and averaging techniques like macro averaging. For

each class i, the TPR and FPR can be calculated as

TPRi =
TP i

TP i + FN i
,FPRi =

FP i

FP i + TN i

The macro-averaged TPR and FPR can be calculated as

TPRmacro =

∑C
i=1 TPRi

k
,FPRmacro =

∑C
i=1 FPRi

k

where C is the number of classes, which is 6 for the level

of service prediction. So, the macro-averaged ROC can be

obtained by plotting TPRmacro against FPRmacro for dif-

ferent threshold values. Here, AUC indicates the performance

of the classifier independent of the threshold value and helps

us evaluate how well the probabilities from the positive class

are separated from the negative class since we have a bal-

anced dataset. Macro-averaged F1 score maintains a balance

between the precision and the recall to measure the model’s

accuracy and it is calculated as the harmonic mean of the

macro-averaged recall (Rmacro) and macro-averaged precision

(Pmacro) as:

F1−macro =
2PmacroRmacro

Pmacro +Rmacro

where

Pmacro =
1

C

C∑

i=1

TP i

TP i + FP i
, Rmacro =

1

C

C∑

i=1

TP i

TP i + FN i

We report the mean absolute error (MAE), weighted mean

absolute percentage error (WMAPE) as a scale-independent

metric, and Pearson correlation coefficient between estimated

and actual values as performance metrics for the number of

vehicles estimation problem. For M number of samples of X

and Y, they are defined as

MAE =
1

M

N∑

i=1

|xi − yi|

WMAPE =
1
M

∑M
i=1 |xi − yi|

1
M

∑M
i=1 xi

Pearson correlation coefficient between X and Y (ρxy):

ρxy =

∑M
i=1(xi − x̄)(yi − ȳ)

√
∑M

i=1(xi − x̄)2
√
∑M

i=1(yi − ȳ)2

where xi and yi are the actual and estimated value of a sample

point, respectively. x̄ and ȳ are the sample mean of the actual

and estimated values. The Pearson correlation coefficient has

a value between +1 and -1. The higher correlation between the

predicted and actual values implies a better fit of the model

to the data.
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B. Simulation Setup

Fig. 7 shows the urban canyon scenario that corresponds

to a region in Virginia. The ray-tracing simulator simulates

the wireless channel on the four-lane road under different

traffic conditions. Two receivers are placed to capture signals

transmitted from a transmitter at an intersection that repre-

sents a roadside unit. The gray rectangular objects in Fig. 7

correspond to the vehicles on the road.

We import the real-world map of the region from Open-

StreetMap (OSM) [41] and convert OSM files to the SUMO

road network format using the network converter tool of

SUMO as shown in Fig. 8. Three types of vehicles: car (1.80
m×4.60m×1.60m), bus (2.40m×9.00m×3.20m) and trucks

(2.50m×12.00m×4.30m) are simulated in SUMO. We change

the probability of injecting a vehicle to the SUMO network to

simulate the different traffic conditions on a road segment.

The material decisions of buildings, terrain, and vehicles are

vital for simulating realistic simulations. Wireless Insite has a

material database that consists of common buildings, terrain,

and a few generic material types. We choose the materials

according to the ITU (International Telecommunication Union)

Fig. 7: Four-lane road simulation in an urban canyon scenario.

OpenStreetMap SUMO

Fig. 8: The road simulated in the ray-tracing simulator is

converted to the SUMO network from OpenStreetMap (OSM).

recommendations and Table II shows the details of the ray-

tracing parameters.

TABLE II: The ray-tracing simulator parameters

Wireless Insite parameters

Propagation Model X3D

Total Number of Rays 25

Building Material ITU Layered drywall 5GHz

Terrain Material Asphalt

Vehicle Material Metal

Antenna Half-wave dipole

Transmit Power (PTotal) 30 dBm

Tx-Rx Antenna Height 2 meters

Carrier Frequency 5.9 GHz

Bandwidth (B) 10 MHz

Simulation Results

We have created a data set that includes 12,000 simulations

under different traffic conditions using the approach described

in Section IV and performed the stratified 10-fold cross-

validation on the data set to obtain the results. For each

simulation, we obtain the number of vehicles between the

transmitter and receivers from SUMO. Next, we calculate

the traffic density in terms of passenger cars per kilometer

per lane from the number of vehicles. We observe that the

density ranges between 0 and 40 pc/km/lane, and we convert

the density values to the corresponding level of service, from

A to F, according to Table I. We have created a balanced data

set that includes 2000 samples from each level of service.

Table III shows the accuracy, macro-AUC, and macro-F1

results for the LOS prediction problem. We achieve the best

average accuracy of 88.5% with the extremely randomized

trees algorithm. Fig. 9a shows the distribution of 10-fold

cross-validation classification results on a box plot. Fig. 9b

shows the confusion matrix for the extremely randomized trees

algorithm. We notice that the mislabeled levels are higher for

LOS B-C compared to the other levels. It is an anticipated

result considering the narrow boundaries of these levels.

Afterward, the number of vehicles on four lanes between

the transmitter and receivers in Fig. 7 is estimated. Instead of

classification, the algorithms now are used to build a regression

model that maps the CFR values observed at two receivers

to the number of vehicle estimates. Table IV shows MAE,

WMAPE, and the correlation coefficients of the algorithms.

We again observe that the extremely randomized trees algo-

rithm outperforms others with a mean absolute error of 2.21

vehicles and a WMAPE of 13.8%. Fig. 10 shows the actual

and estimated number of vehicles for 50 frames obtained using

the extremely randomized trees algorithm.

TABLE III: LOS prediction results on the simulation data.

Algorithm Accuracy Macro-AUC Macro-F1

Extra Trees 88.5% 0.98 0.88
Random Forest 87.9% 0.98 0.88

Gradient Boosting 80.7% 0.95 0.80
SVM 86.7% 0.96 0.86
KNN 83.5% 0.96 0.83

2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

https://www.ieee.org/publications/rights/index.html for more information



This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author’s version

which has not been fully edited and content may change prior to final publication. Citation information: DOI

10.1109/TVT.2023.3244085

Extra Trees Random Forest Gradient Boosting SVM KNN
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(a)

A B C D E F

Predicted LOS

A

B

C

D

E

F

T
ru

e
 L

O
S

57

8

6

2

51

32

6

2

8

1

21

9

3

2

10

18

3

1

2

2

9

1

2

6

14

8

341

317

342

363

390

363

14.7%

20.7%

14.5%

9.3%

2.5%

9.3%

85.3%

79.3%

85.5%

90.8%

97.5%

90.8%

(b)

Fig. 9: a) Box-plot distributions of the classification accuracy resulting from the 10-fold cross-validation of the algorithms. b)

Confusion matrix of the extra randomized trees algorithm.

TABLE IV: Number of vehicles estimation results on the

simulation data.

Algorithm MAE WMAPE Correlation Coef.

Extra Trees 2.21 13.8% 0.96
Random Forest 2.31 14.4% 0.96

Gradient Boosting 2.60 15.9% 0.95
SVR 2.70 16.3% 0.94
KNN 2.48 15.4% 0.94
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Fig. 10: The actual and estimated number of vehicles for 50

frames in the simulation.

Effect of Signal-to-Noise Ratio (SNR): The signal quality

is an important consideration for machine learning algorithms.

Especially, the noise in data can prevent knowledge extraction

from the data. The noise can impair the models trained with

such data since the algorithm can interpret the data noise as

a pattern and try to generalize from it [42]. We evaluate how

the signal quality (i.e., signal-to-noise ratio) affects our results

by varying the transmitter power level. The SNR of kth frame

at a receiver can be defined as:

SNRk =
PR

σ2
W

=
PT ‖Hk‖

2

kBTNFB

where PR is the total received power, and PT is the trans-

mitter power per subcarrier which is equal to PTotal/N with

uniform power allocation across the subcarriers. kB = 1.38×
10−23J/K is the Boltzmann’s constant, T is the temperature

in Kelvin (K), NF is the receiver noise figure, and B is the

total bandwidth.

To evaluate the performance of the algorithms with different

SNR levels, we decrease the total transmit power to 20 dBm

from 30 dBm which results in a 10 dB decrease in SNR.

The instantaneous SNR ranges from −35.3 dB to 50.6 dB

at the first receive antenna with a mean value of 19.7 dB,

by using PTotal = 20 dBm, B = 10 MHz, and T = 300
K, NF = 2. Table V shows the accuracy, macro-AUC, and

macro-F1 results for the LOS prediction problem with 20 dBm

transmitter power. We observe that the classification accuracies

decrease by 1-5.2% compared to Table III. Since SVM is

sensitive to noisy data [43] [44], especially with a low-bias

kernel, the performance of SVM weakens significantly among

the other algorithms.

Table VI shows the number of vehicles estimation results

with 20 dBm transmit power. Again, we observe a performance

degradation from the results in Table IV. Fig. 11 shows

the cumulative distribution function (CDF) of MAE with the

extremely randomized trees algorithm. We note the right shift

of the curve that indicates the increasing error when we

decrease the transmit power.

Performance with a single antenna: We also evaluate

the single antenna scenario in which it is not possible to

obtain signals from multiple receivers. To this end, the single

antenna scenario where only Rx#1 in Fig. 7 is used for

TABLE V: LOS prediction results with 20 dBm transmit

power.

Algorithm Accuracy Macro-AUC Macro-F1

Extra Trees 87.1% 0.98 0.87
Random Forest 86.9% 0.98 0.87

Gradient Boosting 79.7% 0.95 0.79
SVM 81.5% 0.87 0.81
KNN 81.4% 0.94 0.81
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TABLE VI: Number of vehicles estimation results with 20

dBm transmit power.

Algorithm MAE WMAPE Correlation Coef.

Extra Trees 2.31 14.53% 0.96
Random Forest 2.42 15.3% 0.95

Gradient Boosting 2.69 16.9% 0.95
SVR 4.92 31.1% 0.75
KNN 2.84 17.9% 0.92
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Fig. 11: The CDF of the mean absolute error under different

transmit power levels.

data creation by disabling Rx#2 in the simulations. Table

VII and Table VIII show the performance of the algorithms

with the single antenna for the level of service prediction

and the number of vehicles estimation problems, respectively.

When we compare the results with Table III and IV, we

observe that the results worsen when we use a single antenna.

Specifically, the classification accuracies drop by 2.6-3.4%,

and WMAPEs of the algorithms increase by 2.9-5% with the

single antenna. Hence, we observe a significant improvement

in the performance by utilizing a second antenna. With this

motivation, we evaluate the performance with a third and a

fourth antenna in the simulations. However, the performance

improvement is not significant and we observe a diminishing

return while increasing the number of antennas.

TABLE VII: LOS prediction results with the single antenna.

Algorithm Accuracy Macro-AUC Macro-F1

Extra Trees 86.6% 0.98 0.86
Random Forest 86.1% 0.98 0.86

Gradient Boosting 74.3% 0.93 0.74
SVM 82.9% 0.95 0.82
KNN 81.7% 0.94 0.81

TABLE VIII: Number of vehicles estimation results with the

single antenna.

Algorithm MAE WMAPE Correlation Coef.

Extra Trees 2.74 17.1% 0.93
Random Forest 2.86 17.9% 0.93

Gradient Boosting 3.16 20.1% 0.92
SVR 3.30 20.5% 0.90
KNN 3.01 18.5% 0.92

C. Real-world Experiments

The feasibility of the proposed approach is tested under

a real-world DSRC communication scenario by collecting

signal phase and timing (SPaT) messages broadcasted from

a roadside unit. In the experiments, a software-defined radio

is used for data acquisition and an action camera recorded the

road to obtain the ground truth of the number of vehicles. Our

experiments include two types of scenarios:

1) Static transmitter-static receiver experiments.

2) Static transmitter-moving receiver experiments.

The details of the scenarios and the experimental setup are

summarized in the following sections.

Hardware and Software Setup

Even though there are commercial IEEE 802.11p modems,

they only provide minimal access to the physical layer. For

this reason, we prefer working with an open-source software

tool, GNU Radio [45], and building our receiver prototype

using a software-defined radio. X300 of Ettus Research with a

TwinRX daughterboard is used for the experiments. We choose

the TwinRX daughterboard since it is sufficient for the DSRC

spectrum that is allocated from 5.850 to 5.925 GHz with 10

MHz subchannels [3]. Table IX shows the hardware used in

the experiment.

GNURadio is a framework that contains signal processing

blocks for software-defined radios. The authors in [46] pre-

sented the first OFDM receiver for the GNU Radio which

supports IEEE 802.11a/g/p and channel bandwidth up to

20MHz. We modified this implementation to enable us to

obtain the CFR values of subcarriers and the correct time of

each frame reception. The time information is subsequently

used to synchronize the frame reception time with the video

records. While the receiver provides different algorithms for

channel estimation, we use the least-squares channel estima-

tion algorithm to estimate the channel frequency response

vector using the long training sequence of the received frames.

TABLE IX: Hardware used for the experiments.

Component Type

CPU Intel Core i7-4720 HQ CPU 2.6GHz

USRP Ettus X300

RF Daughter Board Ettus TwinRx

RF Antenna VERT 2450

Camera Akaso 12 MP Action Camera 1080p

Static Transmitter-Receiver Setup

This experiment aims to imitate the simulation setup for a

single receiver-transmitter pair and evaluate the performance

of our approach in the real world. For this experiment, we

have equipped a vehicle with our software-defined radio and

experimented on the 33 Smart Mobility Corridor. The corridor

is a 35-mile highway test corridor that aims to test real-

world autonomous and connected vehicle technologies. To this

end, roadside units are placed at intersections to broadcast

SPaT messages and other safety messages. Fig. 12 shows
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Fig. 12: The roadside unit at the intersection. Photographed

by City of Dublin [47].

Fig. 13: The vehicle collected SPaT messages 120 meters away

from the roadside unit.

the roadside unit that is utilized during our experiments. Our

experiment setup is shown in Fig. 13. We have collected

SPaT messages from the RSU while our vehicle is parked

120 meters away from the roadside unit. 5700 SPaT messages

are collected during the experiment and the vehicles on two

lanes close to the parking location are counted from the video

record to obtain the actual number of vehicles. The number of

vehicles on the road ranges between 0 and 11 which results in a

maximum of 46 pc/km/lane on two lanes along the experiment.

Static Transmitter-Receiver Results

We time-stamp each received frame from the RSU to log

the time of frame reception. With the help of the timestamps,

we determine the number of vehicles at the frame reception

time from the video records. Fig. 14 shows the power of the

first pilot sub-carrier and the number of vehicles. It is seen that

there is a correlation between the power level and the number

of vehicles on the road.

First, we predict the level of service on the road between

the receive antenna and the roadside unit. The stratified 10-

fold cross-validation results of the accuracy, macro-AUC, and

macro-F1 are shown in Table X. We obtain accuracy results

above 81.7% and the extremely randomized trees algorithm

achieves the best accuracy with 91.8%.

Next, we estimate the number of vehicles on two lanes

closest to the receive antenna while the number of vehicles

on the road ranges between 0 and 11. The results are shown

in Table XI. The extremely randomized trees algorithm reaches

a mean absolute error of 0.93 vehicles and a WMAPE of
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Fig. 14: The power of the first pilot subcarrier and the number

of vehicles on the road.

TABLE X: LOS prediction results on the experimental data.

Algorithm Accuracy Macro-AUC Macro-F1

Extra Trees 91.8% 0.99 0.91
Random Forest 91.4% 0.99 0.90

Gradient Boosting 81.7% 0.94 0.80
SVM 82.9% 0.95 0.85
KNN 87.3% 0.96 0.86

TABLE XI: Number of vehicles estimation results on the

experimental data.

Algorithm MAE WMAPE Correlation Coef.

Extra Trees 0.93 23.4% 0.85
Random Forest 0.98 24.5% 0.85

Gradient Boosting 1.07 26.8% 0.82
SVR 1.22 32.2% 0.80
KNN 0.97 26.7% 0.83

23.4%. Fig. 15 shows the estimated and actual values for 50

received frames obtained using the extremely randomized trees

algorithm.

When we compare the simulation and the static transmitter-

receiver results on the estimation of the number of vehicles,

we observe that the simulation results are better than the

experimental results in terms of WMAPE and the correlation

coefficient. However, we note that a small error in the exper-
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Fig. 15: The actual and estimated number of vehicles for 50

frames.
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iment results translates into a large percentage error since the

actual number of vehicles on the road is mostly close to 0

and WMAPE is sensitive to such numbers. This is one of the

reasons we have a larger percentage error as compared to the

simulation results.

Static Transmitter - Moving Receiver Setup

After static transmitter-receiver experiments, we have ex-

tended our experiments with a more challenging scenario, a

moving receiver scenario. With the help of this experiment,

we aim to evaluate the performance of our approach when

the signals are received from a moving vehicle at a known

location. During the experiments, we drive our vehicle in the

right lane toward the location where we collected the static

data and record the road using the camera on the vehicle. Fig.

16 shows a caption from the video recorded while we are

collecting data along the road. The video can also be found

at [5].

Static Transmitter- Moving Receiver Results

Since collecting enough data from a moving vehicle to train

a machine learning model may not be feasible for some roads,

we propose using models trained with the data collected from

a static receiver or simulation data. In this experiment, we use

our best model trained with the data obtained from the static

receiver scenario to directly estimate the number of vehicles

on the road. So, the data obtained from the moving vehicle is

merely used for test purposes with the best model.

We drive in the right lane and collect data while driving 5

meters away from the location where we collected the static

data. The frames received from the moving vehicle are later

used for testing. We have passed on the road 8 times and

collected 140 frames in total. In these experiments, we achieve

to estimate the number of vehicles with a mean absolute error

of 0.95 and a WMAPE of 24%. Fig. 17 shows the estimated

number of vehicles of two passes alongside the video records.

We round the estimates to the nearest integer to ease the

comparison with the actual values. The frames received in

the proximity (under 5 meters away from the static receiver

location) are indicated in rectangular frames on the plots. We

Fig. 16: SPaT messages collected from a moving vehicle. The

received signal and the constellation diagram are seen at the

upper left.

observe that the performance of the trained model is affected

by the location mismatch. Specifically, the estimation error

increases with the location mismatch. When we approach the

static receiver location, the outputs of the algorithm get closer

to the actual number of vehicles as expected.

VI. CONCLUSION

In this work, we introduce a novel traffic monitoring ap-

proach that is based on signal level measurements at a receiver

and machine learning techniques. It is a cost-effective and

non-intrusive approach. We infer the level of service and the

number of vehicles on a roadway using the channel frequency

response estimated at a receiver. Since there is no available

data, including the traffic conditions and the channel frequency

response values, we first create a dataset using a ray-tracing

simulator and a traffic simulator. Next, we conduct real-world

experiments by collecting DSRC messages broadcast from a

roadside unit. Both simulation and experimental results show

that the proposed approach is capable of estimating the number

of vehicles and predicting the level of service. Our system

aims to exploit the infrastructures of vehicular networks, and

it doesn’t need the deployment of a dedicated device. It can

enhance the performance of a current traffic monitoring system

when used alongside the system.
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