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Abstract—Accurate and ubiquitous localization is crucial for
a variety of applications such as logistics, navigation, intelligent
transport, monitoring, control, and also for the benefit of com-
munications. Exploiting millimeter-wave (mmWave) signals in
5G and Beyond 5G systems can provide accurate localization
with limited infrastructure. We consider the single base station
(BS) localization problem and extend it to 3D position and 3D
orientation estimation of an unsynchronized multi-antenna user
equipment (UE), using downlink multiple-input multiple-output
orthogonal frequency-division multiplexing (MIMO-OFDM) sig-
nals. Through a Fisher information analysis, we show that the
problem is often identifiable, provided that there is at least one
multipath component in addition to the line-of-sight (LoS), even
if the position of corresponding incidence point (IP) is a priori
unknown. Subsequently, we pose a maximum likelihood (ML)
estimation problem, to jointly estimate the 3D position and 3D
orientation of the UE as well as several nuisance parameters
(the UE clock offset and the positions of IPs corresponding to
the multipath). The ML problem is a high-dimensional non-
convex optimization problem over a product of Euclidean and
non-Euclidean manifolds. To avoid complex exhaustive search
procedures, we propose a geometric initial estimate of all pa-
rameters, which reduces the problem to a 1-dimensional search
over a finite interval. Numerical results show the efficiency of
the proposed ad-hoc estimation, whose gap to the Cramér-Rao
bound (CRB) is tightened using the ML estimation.

Index Terms—Localization, Orientation estimation, Mapping,
Synchronization, Single anchor localization.

I. INTRODUCTION

Millimeter-wave (mmWave) is the key enabling component

of the fifth generation (5G) and beyond 5G (B5G) communi-

cation systems, which empowers the implementation of large

antenna arrays for spatial multiplexing and provides massive

bandwidths for high data rates [1]. Despite the favorable

properties of mmWave, undesired effects, such as severe path

loss and limited channel rank, challenge the technology to

come up with advanced beamforming and resource allocation

schemes [2]. To achieve this, information on the 3D location
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of mobile users can provide important side information, so that

the base station (BS) can adjust its precoders to beam towards

the user equipment (UE) [3]. Similarly, the UE can adjust

its combiners, based on its 3D orientation, to maximize the

received signal-to-noise ratio (SNR) [4]. While UE position

estimation has been the main driver in 5G mmWave [5], there

are many applications that need 6D information (3D position

and 3D orientation, also known as the pose in robotics [6]):

the position and heading of vehicles is needed in intelligent

transport systems for driving assistance applications and pla-

tooning [7]; in assisted living facilities, the pose of residents

is informative about their health status [8]; search-and-rescue

operations involving UAVs require accurate and timely pose

information for control, self-localization, and victim recovery

[9]. Moreover, 6D localization is expected to be of importance

in 6G, with applications such as augmented reality, robot

interaction, and digital twins [10].

The source of this 6D information, whose estimation is re-

ferred to as 6D localization in this paper, can be either external

or internal to the communication systems. The external 6D

localization systems can build on a mixed-technology solution,

such as the combination of the global navigation satellite sys-

tem (GNSS) (for 3D position) and inertial measurement unit

(IMU) (for 3D orientation) [11]. However, such solutions can

be inefficient in cost, complexity, or coverage. For example,

GNSS might fail in indoor environments or urban canyons,

while IMUs suffer from drifts and accumulative errors [12].

The alternative is to exploit the already deployed cellular

communication infrastructure for 6D localization, and feed the

6D information to the communication system internally.

Prior to 5G, the majority of localization schemes in cellular

networks relied on multiple synchronized base stations and

time-difference-of-arrival (TDoA) measurements [13]. With

the introduction of new dedicated positioning reference signals

(PRSs) and measurements in 3GPP release 16 [14], a combi-

nation of angle and delay measurements has become possible

[15]. Because of the high resolution in both temporal and

angular domains, thanks to 400 MHz bandwidth at mmWave

and large antenna arrays, respectively, multipath components

can be better resolved [16], leading to new positioning archi-

tectures. A great deal of research effort has been devoted to

multi-BS1 localization approaches, which exploit these novel

features [19]–[22]. Simultaneously, there has been a paradigm

1Recent developments relying on reconfigurable intelligent surfaces (RISs)
are considered as multi-BS solutions, since a RIS acts as an additional multi-
antenna BS in localization [17], [18]. For similar reasons, approaches with a
single moving BS are also equivalent to multi-BS localization [9].
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shift towards single-BS localization solutions [23], which are

attractive because they require only minimal infrastructure and

remove the need for inter-BS synchronization. The enabler of

single-BS localization is the ability to turn multipath from

foe to friend [8]: in contrast to previous beliefs that non-

line-of-sight (NLoS) components have unfavorable effects

on positioning, they contribute to the identifiability and ac-

curacy of localization in mmWave multiple-input multiple-

output (MIMO) systems, provided there is sufficient temporal

and spatial resolution. This concept has been exploited in

recent advances in localization. In particular, [24] derived both

performance bounds and a method for 2D position and 1D

orientation estimation, with synchronized UE and BS, based

on a compressed sensing algorithm. The estimation method

was refined via an atomic norm minimization approach in

[25], where the performance is not limited by quantization

error and grid resolution. For the same scenario of 2D position

and 1D orientation, [26] showed that each NLoS path gives

rise to a rank-1 Fisher information matrix (FIM) so that the

UE can be localized with the line-of-sight (LoS) and a single

NLoS path, or with 3 NLoS paths when the LoS is obstructed.

The case of obstructed LoS was also treated in [27], without

the requirement for synchronization, but still with 2D position

and accordingly a single orientation angle. This concept was

further extended to 3D position and 2D orientation estimation

under perfect synchronization in [16], where the asymptotic

case with orthogonal multipath components was studied. A

further generalization was considered in [28], focusing on

a direct localization approach for the massive array regime,

considering a 3D position and 2D orientation estimation and

a synchronized user. The more practical case considering the

synchronization error as well as the Doppler shift-when the

transmitter or receiver is moving-was addressed in [29], where

the authors performed the FIM analysis for 2D position and

1D orientation estimation of a mobile user. In [30], the LoS

3D positioning problem using the 5G uplink channel sounding

reference signals is considered, but the UE is synchronized

and single-antenna, for which no orientation is defined. The

closest work we identified is [31], where a hybrid model/data-

driven approach for the 3D position estimation of a UE is

proposed. The model-based approach is based on the underly-

ing geometry and the angle between each two arrival directions

being independent of UE orientation. However, no algorithm is

proposed for orientation estimation or estimating the incidence

point (IP) locations.

The extension of already existing methods to 3D position

and 3D orientation case, however, is not trivial, since the

positions (both UE and IPs) are not constrained to lie in

a plane. The orientation also introduces more degrees of

freedom in the geometrical equations of channel parameters,

and hence, increases the complexity of search-based estimation

algorithms. In addition, the analysis of fundamental lower

bounds for such a general case has not yet been conducted.

The 6D localization problem was introduced in the mmWave

context in [32], but has not yet been further developed. How-

ever, it has been studied in other settings, e.g., pose estimation

in robotics [6] and visible light positioning [33]. In [33], a

simultaneous 3D position and 3D orientation estimation using

the received signal strength (RSS) for a visible light system

containing multiple light emitting diodes and photodiodes is

considered, and an approximate solution using direct linear

transformation method is proposed. This solution is further

refined using iterative algorithms for ML estimation. On a

parallel track, the problem is addressed under the label of rigid

body localization in [34]–[36], where the approach is to mount

sensors with a known topology on the body. The positions of

the sensors in the global coordinate frame are related to the

position of the rigid body and its orientation. The sensors then

form a wireless sensor network, and the position, as well as the

orientation of the body, is estimated using time and/or angle

measurements from sensors.

In this paper, we consider a single-BS localization scenario,

where the downlink mmWave signal from a multi-antenna

mmWave base station is used to estimate the 3D-position

and 3D-orientation of a UE in LoS to the BS. We evaluate

the lower bound on estimation error variance of position and

orientation of the UE, positions of the incidence points, and the

clock offset, by deriving the constrained Cramér-Rao bound

(CRB) of all unknowns. This reveals that the problem is

generally identifiable under a single NLoS path. To solve the

corresponding high-dimensional maximum likelihood (ML)

problem, we propose an efficient solution, combining a ge-

ometric ad-hoc estimator to initialize a gradient descent over

a product of manifolds. This solution is shown to attain the

corresponding CRBs. The proposed approach is related to the

literature in Table I. The main contributions of this work are

the following:

• 6D localization algorithm: We pose a high-dimensional

ML estimation problem over a product of Euclidean and

non-Euclidean manifolds, given the conditional proba-

bility distributions of angle-of-arrival (AoA), angle-of-

departure (AoD), and time-of-arrival (ToA) measure-

ments. The parameters of such distributions are obtained,

and the root mean square error (RMSE) of the ML

estimation is shown to attain the lower bounds. The

ML problem is solved by gradient descent, iterating

between the various manifolds, starting from a good

initial solution.

• A low-complexity estimator We propose and evaluate a

low-complexity ad-hoc estimation algorithm to initialize

the solution of the ML problem, which reduces the high-

dimensional problem of estimating all unknowns, to a 1-

dimensional search over a finite interval combined with

closed-form expressions. This recovers not only the 6D

UE state, but also the UE clock bias and IP locations.

• Fisher information and numerical analysis: We obtain

the lower bound on the estimation of the 6D user state and

its clock bias, as well as the map of the environment, i.e.,

the positions of incidence points, and then we evaluate the

impact of bandwidth, number of antennas, and number

of incidence points. The analysis of the bounds indicates

that in most cases a single incidence point with a priori

unknown location is sufficient to render the problem

identifiable, though certain configurations require several

incidence points. We also evaluate a low-complexity ad-
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TABLE I: Overview of the related work.

Ref. Pos. Ori. Clock Bound Method without LoS

[24] 2D 1D ✗ ✓ ✓ ✓

[25] 2D 1D ✗ ✓ ✓ ✗

[26] 2D 1D ✗ ✓ ✗ ✓

[27] 2D 1D ✓ ✗ ✓ ✓

[16] 3D 2D ✗ ✓ ✗ ✗

[28] 3D 2D ✗ ✓ ✗ ✗

[29] 2D 1D ✓ ✓ ✓ ✗

[30] 3D ✗ ✗ ✗ ✓ ✗

[31] 3D 3D ✓ ✗ only pos. ✗

this work 3D 3D ✓ ✓ ✓ ✗

hoc and the ML 6D localization algorithms and demon-

strate that it can attain the corresponding performance

bounds.

The rest of the paper is organized as follows. Section II

describes the system model and provides the definitions. In

section III, we state the ML estimation problem, followed

by a low-complexity estimation algorithm for obtaining initial

solutions for iterative routines in Section IV. Subsequently, in

Section V, the Fisher information analysis is done, and error

bounds are derived. Section VI presents numerical results, and

finally, conclusion remarks are given in Section VII.

Notations: We denote scalars, vectors, and matrices by

italic, bold lowercase, and bold uppercase letters, e.g., x, x

and X, respectively. The element of matrix X in the i-th row

and j-th column is indicated by [X]i,j . We also use [X]i:k,j:l to

refer to the sub-matrix lying between rows i to k and columns

j to l of X. The identity matrix of size N is shown by IN ,

whereas 1N and 0N indicate all-ones and all-zeros vectors

of size N . While diag(x) is a diagonal matrix whose non-

zero elements are given by x, diag(X) is a vector composed

of the diagonal elements of X. Similarly, blkdiag(X,Y) is

a block-diagonal matrix made of X,Y. In order to show the

expectation, trace, and vectorization operators, we use E[·],
tr[·], and vec[·], respectively. The transpose, and hermitian

operators are symbolized using [·]T and [·]H; and we consider

⊙ and ⊘ in conjunction with pointwise product and division,

all in the given order. The Euclidean and Frobenius norms are

denoted by ‖ · ‖ and ‖ · ‖F, respectively.

II. SYSTEM MODEL

We consider a downlink mmWave MIMO scenario consist-

ing of a BS equipped with an arbitrary array of NBS antennas,

and a UE equipped with an arbitrary array of NUE antennas,

as shown in Fig. 1. Without loss of generality, both BS and UE

are considered to have a single radio frequency (RF) chain.

A. Geometric Model

The BS antenna array is centered at the known position

pBS = [pBS,x, pBS,y, pBS,z]
T ∈ R3 with a known orientation,

while UE antenna array is centered at the unknown position

pUE = [pUE,x, pUE,y, pUE,z]
T ∈ R

3 with an unknown ori-

entation. The paths between BS and UE include the LoS, as

well as M ≥ 1 resolvable single-bounce NLoS paths,each

corresponding to a scatterer or a reflecting point, represented

by an IP at unknown position pm = [pm,x, pm,y, pm,z]
T ∈ R3,

m = 1, . . . ,M . All positions are given in a global coordinate

pm

pn
BS
pBS,RBS

UE
pUE,RUE

Fig. 1: Schematic of system model with a UE at unknown 3D position and
unknown 3D orientation, where signals are received from LoS and NLoS
paths. The UE and BS are not synchronized.

frame as the reference, whose axes are labeled as x, y, and z
(see Fig. 2a).

Remark 1 (On the NLoS model). While we assume single-

bounce NLoS paths, in practice multi-bounce paths may also

exist. Those paths can be identified and excluded from the

localization scheme, e.g., using methods such as [37] (where

an iterative method based on the generalized likelihood ratio

test (GLRT) and change-point detection is proposed to distin-

guish single-bounce and multi-bounce paths) or [38] (which

progressively identifies the LoS path, single bounce, double

bounce, and higher bounce paths). We also assume that all

paths (including the LoS and NLoS paths) are resolvable. This

is generally correct in the mmWave scenarios, due to the large

bandwidth and antenna apertures.

The orientation of BS and UE describe how their antenna

arrays with respect to the reference orientation are arranged.

We consider rotation matrices for describing the orientations2,

so that BS and UE orientations determine local coordinate

frames, respectively described by 3 × 3 rotation matrices

RBS and RUE, in the special orthogonal group SO(3). In

particular, we define a reference orientation where the axes

are in the same direction as those of the global coordinate

frame, as shown in Fig. 2a. The local coordinate frames are

thus obtained by rotating the arrays in reference orientation

through RBS and RUE (see Fig. 2b). Therefore, the given

vector y in the global coordinate system is corresponding to

yBS = RT

BSy and yUE = RT

UEy in BS and UE coordinate

frames, respectively. We note that RBS is known, while RUE

is unknown. The 6D localization problem refers to estimation

of pUE and RUE.

B. Signal and Channel Model

We consider downlink pilot transmission of K orthogonal

frequency-division multiplexing (OFDM) symbols using Nf
subcarriers over a MIMO channel, for the purpose of snap-

shot position and orientation estimation3. Considering M + 1
(resolvable) paths indexed by m = 0, 1, . . . ,M (m = 0 is

the LoS path between the BS and the UE, which is assumed

to be present, and m 6= 0 correspond to NLoS paths), the

2Orientations in 3D can be represented by quaternions, Euler angles, and
rotation matrices [39]. We adopt rotation matrices.

3We assume a slow fading channel, which does not vary over the duration
of the pilot transmission.
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k-th received OFDM symbol, k = 1, . . . ,K , over subcarrier

n = 1, . . . , Nf , is given by [40]

yk,n = wH

k

M∑

m=0

Hmfkxk,ne
−j2π(n−1)∆fτm +wH

knk,n, (1)

in which xk,n is a unit-modulus pilot symbol with energyEs =
PTX/B, where PTX is the transmit power and B = Nf∆f is

the total bandwidth for the subcarrier spacing ∆f ; fk is the

precoding vector at BS, wk is the combining vector at UE,

with ‖fk‖ = ‖wk‖ = 1, ∀k; and nk,n ∈ CNUE is the complex

zero-mean additive white Gaussian noise (AWGN) with co-

variance matrix n0N0INUE , where N0 is the noise power spec-

tral density (PSD), and n0 is the UE noise figure. Furthermore,

each pathm is characterized by a ToA τm and a channel matrix

Hm , hm aUE(θA,m)aTBS(θD,m), where hm = hR,m+jhI,m
is the complex channel gain; aUE(θA,m) and aBS(θD,m) are

the array response vectors, where θA,m = [θ
(az)
A,m, θ

(el)
A,m]T and

θD,m = [θ
(az)
D,m, θ

(el)
D,m]T show the AoA and AoD in azimuth and

elevation (as defined in Fig. 2b and Section II-C), respectively.

The array response vectors are given by

[aUE(θA,m)]n = exp
(
j
2π

λ
[∆UE]

T

1:3,nd(θA,m)
)
, (2a)

[aBS(θD,m)]n = exp
(
j
2π

λ
[∆BS]

T

1:3,nd(θD,m)
)
, (2b)

in which λ is the wavelength at the carrier frequency fc;
and ∆UE , [xUE,1, . . . ,xUE,NUE ] ∈ R3×NUE and ∆BS ,

[xBS,1, . . . ,xBS,NBS ] ∈ R3×NBS contain coordinates of an-

tenna elements in reference orientation, with respect to the UE

and the BS coordinate frames (i.e., 3D displacements from the

phase center), respectively. In (2), we have introduced

d(φ) = [sinφ(el) cosφ(az), sinφ(el) sinφ(az), cosφ(el)]T, (3)

which describes the unit-norm direction of arrival (for φ =
θA,m) and unit-norm direction of departure (for φ = θD,m)

for path m, in UE and BS coordinate frames, respectively.

C. Relation Between Geometric Model and Channel Model

Corresponding to the AoAs, the unit-norm arrival directions

dA,m = d(θA,m) are given, in the UE coordinate frame, by

dA,m =

{
RT

UE(pBS − pUE)/‖pBS − pUE‖ m = 0

RT

UE(pm − pUE)/‖pm − pUE‖ m 6= 0,
(4)

which define the AoAs as θ
(az)
A,m = atan2([dA,m]2, [dA,m]1)

and θ
(el)
A,m = acos([dA,m]3), where acos is the inverse cosine

and atan2 is the four-quadrant inverse tangent. Similarly, using

the unit-norm departure directions dD,m = d(θD,m) given by

dD,m =

{
RT

BS(pUE − pBS)/‖pUE − pBS‖ m = 0

RT

BS(pm − pBS)/‖pm − pBS‖ m 6= 0,
(5)

in BS coordinate frame, the AoDs are determined as θ
(az)
D,m =

atan2([dD,m]2, [dD,m]1) and θ
(el)
D,m = acos([dD,m]3). Fig. 2b

shows how AoDs and AoAs and their corresponding directions

are defined. Note that the arrows corresponding to the arrival

directions point towards the BS/IPs, and not the UE.

Finally, denoting the propagation speed by c and the un-

known clock bias between the UE and the BS by b, one can

x

y

z

θ(az)

θ(el)
d(θ)

(a)

x′

y′

z′

d(θ) θ(el)

θ(az)

(b)

Fig. 2: (a) The global coordinate system (x−y−z) and the reference orientation
R = I, together with the definition of angles and their corresponding direction
at orientation R = I. (b) The local coordinate system (x′−y′−z′) at a given
orientation, together with the definition of angles and their corresponding
direction at that orientation. Note that θ(az) ∈ [0, 2π] and θ(el) ∈ [0, π].

express ToAs as

τm =

{
‖pUE − pBS‖/c+ b m = 0

(‖pm − pBS‖+ ‖pUE − pm‖)/c+ b m 6= 0.
(6)

The aggregated vectors θA = [θT

A,0, θ
T

A,1, . . . , θ
T

A,M ]T, θD =

[θT

D,0, θ
T

D,1, . . . , θ
T

D,M ]T, τ = [τ0, . . . , τM ]T, and η =

[θT

A, θ
T

D, τ
T]T are defined to be used later.

III. 6D LOCALIZATION METHODOLOGY

A. Two-stage Localization and Problem Decomposition

We consider a two-stage localization scheme and decom-

pose the problem into a channel parameters estimation routine,

followed by a localization routine. The channel estimation

routine determines the marginal posterior densities of the

channel parameters (in the form of estimates and the associated

uncertainties), based on the observations (1). The localization

routine uses the output of the channel parameters estimator to

determine the 6D state of the UE. We consider the contribution

of this paper to provide a solution to the second sub-problem,

while considering a generic channel parameter estimator.

1) Channel Parameters Estimation: There exists a variety

of channel parameter estimators in the literature, including

ESPRIT [41], generalized approximate message passing [40],

[42], orthogonal matching pursuit [24], sparse Bayesian learn-

ing [43], tensor decomposition [44], and RIMAX/SAGE [45].

We assume an arbitrary estimator is applied to obtain an

estimate of η. We denote by η̂ = [θ̂T

A, θ̂
T

D, τ̂
T]T, the vector of

estimated channel parameters, also referred to as the vector of

measurements. For each parameter, there is also an associated

uncertainty, which leads to the following likelihood functions.

For the ToA measurements, we assume a multivariate Gaussian

distribution [46], [47]

p(τ̂ |τ ) = 1√
(2π)M+1|Στ |

e−
1
2 (τ̂−τ)TΣ−1

τ
(τ̂−τ), (7)

where Στ = diag(σ2
0 , . . . , σ

2
M ). Note that both τ̂m and σ2

m are

provided by the channel parameter estimator. For the AoAs

and AoDs, we follow [48] and use a Von Mises distribution,

which can be interpreted as a Gaussian distribution over the

1D manifold of angles [49, Chapter 3]. Correspondingly,4

p(θ̂A,m|θA,m) = (8a)

4While it is shown in [16] that azimuth and elevation angles are correlated
in general, we neglect the correlation and assume factorized likelihoods, for
the sake of tractability. We will later evaluate the impact of this independence
assumption (see Section VI-B).
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exp
(
κ
(az)
A,m cos(θ̂

(az)
A,m − θ

(az)
A,m)

)
/
(
2πI0(κ

(az)
A,m)

)

× exp
(
κ
(el)
A,m cos(θ̂

(el)
A,m − θ

(el)
A,m)

)
/
(
2πI0(κ

(el)
A,m)

)
,

p(θ̂D,m|θD,m) = (8b)

exp
(
κ
(az)
D,m cos(θ̂

(az)
D,m − θ

(az)
D,m)

)
/
(
2πI0(κ

(az)
D,m)

)

× exp
(
κ
(el)
D,m cos(θ̂

(el)
D,m − θ

(el)
D,m)

)
/
(
2πI0(κ

(el)
D,m)

)
,

where κ
(az)
A,m, κ

(el)
A,m, κ

(az)
D,m, and κ

(el)
D,m, are the non-negative

concentration parameters of m-th AoA and m-th AoD, in

azimuth and elevation, respectively, and I0(·) is the modified

Bessel function of order 0. Again, both the estimated angles

and the corresponding concentration parameters are assumed

to be provided by the channel parameter estimator.

2) Location Parameters Estimation: The localization prob-

lem is formulated as the maximum likelihood estimation

R̂UE, ζ̂ = arg max
RUE,ζ

ln p(η̂|η(RUE, ζ)), RUE ∈ SO(3),

(9)

where ζ = [pT

UE,p
T

1 , . . . ,p
T

M , b]
T ∈ R3(M+1)+1 and the

likelihood p(η̂|η(RUE, ζ)) is expressed of the underlying

geometry. The likelihood is of the form

p
(
η̂|η(RUE, ζ)

)
= p

(
θ̂A|θA(RUE, ζ)

)
(10)

× p
(
θ̂D|θD(ζ)

)
× p

(
τ̂ |τ (ζ)

)
,

in which, by overloading the notation for cosines, we have

p
(
θ̂A|θA(RUE, ζ)

)
∝ exp

(
κT

A cos
(
θ̂A − θA(RUE, ζ)

))
,

(11a)

p
(
θ̂D|θD(ζ)

)
∝ exp

(
κT

D cos
(
θ̂D − θD(ζ)

))
, (11b)

where κA and κD are 2(M + 1) × 1 vectors aggregating

the concentration parameters of Von Mises distributions cor-

responding to the angle estimates in θ̂A and θ̂D, respec-

tively. Considering the negative log-likelihood L(RUE, ζ) =
− ln p(η̂|η(RUE, ζ)), the ML estimation (9) can be equiva-

lently written as the constrained minimization

min
RUE,ζ

L(RUE, ζ), (12a)

s.t. RT

UERUE = I, det(RUE) = +1. (12b)

where

L(RUE, ζ) = 1/2(τ̂ − τ (ζ))TΣ−1
τ (τ̂ − τ (ζ))

− κT

A cos(θ̂A − θA(RUE, ζ)) − κT

D cos(θ̂D − θD(ζ)). (13)

However, solving the optimization problem (12) using the

classical optimization tools is difficult [33], due to the unitary

constraint (12b) on the rotation matrix RUE. In addition, the

objective function L(RUE, ζ) is highly nonlinear and non-

convex, and iterative algorithms for solving (12) might reach

local optima, if initialized by the points far from the global

solution. To address these challenges, we propose a two-step

approach: first, we determine an initial ad-hoc estimate of

unknowns from geometric arguments, being then refined by

a gradient descent of the objective function. The iterative

algorithm is explained in the following, while the process to

determine an initial point is deferred until Section IV.

B. An Iterative Algorithm for ML Estimation

As (12) involves optimization over non-Euclidean mani-

folds, a suitable optimization tool must be applied. We first

present a method for such optimization before applying that

to our 6D localization problem.

1) Overview of a Method for Optimization over non-

Euclidean Manifolds: Consider the optimization problem

X̂ = arg min
X∈M

f(X), (14)

where f : M → R is a smooth function over the (possibly)

non-Euclidean manifold M, and X denotes the (possibly) non-

Euclidean parameter. We exploit the Riemannian gradient de-

scent algorithm, which is a first-order technique analogous to

the standard gradient descent algorithm, where the Riemannian

gradient is obtained by projection of the classical gradients to

the tangent spaces. Starting from the initial point X̂
(0), the

algorithm iterates

X̂
(k+1) = R

X̂(k)

(
−εkPX̂(k) [∂f(X)/∂X]X=X̂(k)

)
, (15)

where PX(·) is an orthogonal projection onto the tangent space

at X, RX(·) is a retraction from the tangent space onto M,

and εk > 0 is a suitable step size. Intuitively, the gradient is

calculated, and projected to the tangent space (to follow the

space of M as closely as possible), the value at step k is

updated, and then the updated value is normalized back into

the M. Relevant for us is M = SO(3). Example projection

and retractions operations for the Riemannian gradient descent

algorithm are given by [50, Eqs. (7.32) and (7.22)]:

PX(U) = X(XTU−UTX)/2, (16a)

RX(U) = (X+U)(I3 +UTU)−1/2. (16b)

On the other hand, for M = Rn, PX(U) = U, RX(U) =
X+U, leading to classical gradient descent.

2) Solving the ML Estimation Problem: The optimization

variable in our algorithm Inspired by the coordinate descent

algorithm [51, Sec. 9.3], we decompose the unknowns, and

apply different optimization algorithms for the estimation

of RUE and the rest of unknowns ζ, which belong to the

Euclidean space. We then consider the Riemannian gradient

descent algorithm to optimize RUE on the SO(3) manifold,

as

R̂
(k+1)
UE = R

R̂
(k)
UE

(
− εkPR̂

(k)
UE

(
∂L/∂RUE

)∣∣
R̂

(k)
UE,ζ̂

(k)

)
, (17)

with the projection and retraction operators as defined in (16),

and εk being the step size obtained using a backtracking line-

search [50]. We also use the trust region algorithm [51, Sec.

11.2] to optimize ζ in the Euclidean space, considering the

updated rotation matrix. Then we iterate this algorithm until

a stopping criterion is met. The partial derivatives ∂L/∂RUE

and ∂L/∂ζ are obtained using the chain rule by including

the partial derivatives of channel parameters w.r.t. localization

parameters given in Appendix A. The above method requires

initial estimates R̂
(0)
UE and ζ̂(0), which will be provided by the

ad-hoc initial estimator.

IV. AD-HOC INITIAL ESTIMATE

As stated earlier, the ML problem is a nonlinear non-

convex optimization, and the elaborated iterative algorithm
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might reach local optima if the initial values are not given

properly. In the following, we propose a simple (with linear

complexity in the number of IPs and involving only a 1D line

search) sequential scheme for obtaining initial estimates of

localization unknowns based on the estimates of AoAs, AoDs,

and ToAs: First, we estimate RUE only from the estimated

AoAs and AoDs, without any knowledge of pUE, p1, . . . ,pM ,

and b. Second, given the estimated RUE, we estimate pUE,

p1, . . . ,pM from TDoA measurements. Finally, we estimate

the clock bias b using the estimated positions and ToAs. The

algorithm, therefore, takes the measurements θ̂A, θ̂D, and τ̂

as input, but we omit the “hat” ( .̂ ) of the measurements,

only in this section, for the notational convenience. Note that

the values are not confused with the true unknown channel

parameters.

A. Step 1: Estimation of UE Rotation Matrix

Our approach to estimate the UE rotation matrix from

the AoAs θA,m and AoDs θD,m (and corresponding unit

vectors d(θA,m) and d(θD,m)) is based on an axis-angle

representation of its orientation. Consider the LoS arrival and

departure directions dA,0 and dD,0, which are along LoS path,

while in opposite directions in the global coordinate frame.

Hence,

RBSdD,0 = −RUEdA,0. (18)

This equation has infinitely many solutions for RUE, satisfying

both (18) and the orthogonality constraint, among which, one

is the true RUE.

1) Characterizing the Solutions to (18): We first find a

solution for RUE in (18), denoted by R̃ ∈ SO(3). Multiplying

R̃ with a rotation ψ ∈ [0, 2π) around dA,0 yields all rotation

matrices that satisfy (18).

Lemma 1. One solution for (18) is given by

R̃ = I+ [d]× +
1

1− dT

A,0RBSdD,0
[d]2×, (19)

where d = [d1, d2, d3]
T , −dA,0 ×RBSdD,0, and

[d]× ,




0 −d3 d2
d3 0 −d1

−d2 d1 0


 . (20)

Proof. Let us define d̃ = −RBSdD,0. The result follows from

Rodrigues’ formula, by rotating dA,0 to d̃ with rotation axis

dA,0 × d̃ [52, Section 9.6.2].

Lemma 2. The transformation matrix describing rotations by

the angle ψ ∈ [0, 2π) around the arbitrary unit-norm vector

u is given by Qu(ψ) = [u]× sinψ + (I− uuT) cosψ + uuT.

Proof. The result follows from Rodrigues’ formula [52, Sec-

tion 9.6.2].

The rotation matrices RUE satisfying (18) are thus charac-

terized as

R(ψ) = R̃QdA,0(ψ), ∀ψ ∈ [0, 2π). (21)

It is easily verified that (18) holds for ∀ψ ∈ [0, 2π), since

−R̃QdA,0(ψ)dA,0 = −R̃dA,0 = RBSdD,0, where the first

yUE

zUE

xUE

dA,m

dA,0

LoS
yUE

zUE

xUE

dA,m

dA,0

LoS

Fig. 3: The example NLoS arrival direction dA,m rotates, in the global
coordinate frame, while maintaining the same angle θA,m in UE coordinate
frame, on the lateral surface of a cone (the gray cone in this figure) with axis
dA,0, and apex angle equal to the angle between dA,0 and dA,m, when the
rotation around axis dA,0 is applied. The figure illustrates two snapshots of
such rotation.

transition is due to a rotation around an axis leaving that axis

invariant, and the second transition due to Lemma 1. What

remains is now to determine ψ based on the NLoS paths.

2) Rotation Estimation Based on NLoS AoAs and AoDs:

We now determine the angle ψ ∈ [0, 2π), so that the com-

bined rotation resulting from R̃ and QdA,0(ψ), i.e., R(ψ) =

R̃QdA,0(ψ), leads to the arrival directions dA,m, m =
1, . . . ,M . To determine ψ, we note the following (see Fig. 1):

• The departure directions dD,m, m = 1, . . . ,M , deter-

mine the half-lines ℓD,m(pBS,RBS,dD,m) = {p ∈ R3 :
p = pBS + tD,mRBSdD,m, tD,m ≥ 0}, in the global

coordinate frame.

• Under UE rotation represented by R(ψ), the arrival

directions dA,m, m = 1, . . . ,M , determine the half-

lines ℓA,m(pUE,R(ψ),dA,m) = {p ∈ R3 : p = pUE +
tA,mR(ψ)dA,m, tA,m ≥ 0}, for any given ψ ∈ [0, 2π),
in the global coordinate frame. See Fig. 3.

• With the correct ψ, the half-lines ℓD,m(pBS,RBS,dD,m)
and ℓA,m(pUE,R(ψ),dA,m) intersect at the incidence

point pm (in the absence of noise).

However, (i) neither pUE nor pm are known; (ii) the half-

lines might not necessarily intersect due to the noisy measure-

ments.5 To tackle the first challenge, we note that the argument

that the half-lines intersect under the correct value of ψ is true

for any scaling of the global coordinate system. We express

pUE = pBS + ρ0RBSdD,0, where ρ0 = ‖pBS − pUE‖. Any

point p ∈ R3 can be expressed as p = pBS + ρRBSdD, with

suitable ρ and dD, where dD is a unit-norm vector. Given any

r > 0, we can define a scaled system (with scaling r/ρ0) with

the BS location as an invariant point:

p(r) = pBS +
r

ρ0
ρRBSdD, (22)

and in particular

pUE(r) = pBS +
r

ρ0
ρ0RBSdD,0. (23)

Without loss of generality, we set r = 1 so that pUE(r = 1)
is known. Hence, in the scaled coordinate system with r = 1,

ℓA,m(pUE(r),R(ψ),dA,m) and ℓD,m(pUE(r),R(ψ),dD,m)
intersect for the correct value of ψ, ∀m, in the absence

5They form a pair of so-called skew lines, i.e., lines in 3D that do not
intersect, while not being parallel.
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of noise. To cope with the second challenge (measurement

noise), we use the distance between skew lines in the

least squares objective. In particular, the shortest distance

δm(ψ) between the half-lines ℓD,m(pBS,RBS,dD,m) and

ℓA,m(p
′
UE,R(ψ),dA,m) is obtained from the solution of

parametric optimization

δ2m(ψ) = min
tm≥0

D2
m(tm,R(ψ)), m > 0, (24)

where tm = [tD,m, tA,m]
T and D2

m(tm,R(ψ)) = ‖(pBS +
tD,mRBSdD,m) − (pUE(1) + tA,mR(ψ)dA,m)‖2. The opti-

mization (24) is a quadratic convex problem, and the solution

of that is provided in Appendix B. Combining the minimum

distances, we estimate ψ as

ψ̂ = arg min
ψ∈[0,2π)

‖δ(ψ)‖, (25)

where δ(ψ) = [δ1(ψ), . . . , δM (ψ)]T, and accordingly, the

estimate of RUE is given by R̂UE = R(ψ̂), with R(ψ)
characterized as in (21).

B. Step 2: Estimation of Positions

We obtain the auxiliary points pm(r = 1) in the scaled coor-

dinate system induced by (22), as the nearest points to the half-

lines ℓD,m(pBS,RBS,dD,m) and ℓA,m(pUE(1), R̂UE,dA,m)
in a least-squares sense (considering the lines from UE and

BS as full lines, rather than half-lines, for computational

complexity considerations), using

pm(r = 1) = A−1
m bm, (26a)

Am = P⊥(RBSdD,m) +P⊥(R̂UEdA,m), (26b)

bm = P⊥(RBSdD,m)pBS +P⊥(R̂UEdA,m)pUE(1)
(26c)

where P⊥(d) , I − ddT is the projector onto the subspace

orthogonal to the one spanned by a vector d (see Appendix

C). Then, we define the auxiliary departure direction d′
D,m to-

wards pm(1) (in BS coordinate frame), and the corresponding

distance ρ′m as (see Fig. 4)

d′
D,m = RT

BS

pm(1)− pBS

‖pm(1)− pBS‖
, (27a)

ρ′m = ‖pm(1)− pBS‖, (27b)

allowing us to express pm(1) = pBS + ρ′mRBSd
′
D,m. What

remains is to find ρ0, since, with knowledge of ρ0, we can

scale the UE and IP positions to their correct place, keeping

the BS fixed. To see this, consider triangles with the vertices

{pBS,pUE(1),pm(1)}, m > 1, and scale them by ρ0, yielding

pm(ρ0) = pBS + ρ0ρ
′
mRBSd

′
D,m (28)

pUE(ρ0) = pBS +
ρ0
ρ0
ρ0RBSdD,0. (29)

To recover the value of ρ0, we rely on the TDoA mea-

surements. Introducing ∆ = [∆1, . . . ,∆M ]T with ∆m =
c(τm − τ0), and ∆̃(ρ0) = [∆̃1(ρ0), . . . , ∆̃M (ρ0)]

T, where

∆̃m(ρ0) = ‖pm(ρ0)− pBS‖+ ‖pUE(ρ0)− pm(ρ0)‖ − ρ0

= ρ0(ρ
′
m + ‖dD,0 − ρ′md′

D,m‖ − 1), (30)

allows us to formulate

ρ̂0 = argmin
ρ0

‖∆− ∆̃(ρ0)‖2. (31)

pBS

pUE(1)

pm(1)

RBSdD,m

RBSd
′
D,m

RUEdA,m

ρ′m δm(ψ̂)

Fig. 4: Visualization of auxiliary direction d′

D,m and auxiliary points pUE(1)
and pm(1) in the scaled geometric model.

Since ∆̃(ρ0) = ρ0β where βm = ρ′m+‖dD,0−ρ′md′
D,m‖−1,

the optimization (31) is quadratic in ρ0 and gives the closed-

form solution ρ̂0 = βT∆/βTβ. Note that βm ≥ 0 since

∆̃m(ρ0) ≥ 0, ∀ρ0, according to the Triangle inequality.

Hence, ρ̂0 ≥ 0, and the solution is meaningful. The esti-

mates of positions are then given by p̂UE = pUE(ρ̂0) and

p̂m = pm(ρ̂0), m = 1, . . . ,M .

C. Step 3: Estimation of Clock Bias

After estimating the positions for UE and incidence points,

we estimate the clock bias as

b̂ = argmin
b

‖τ − τ̂ (ρ̂0) + b1M+1‖2, (32)

with τ = [τ0, . . . , τM ]T, τ̂ (ρ̂0) = [τ̂0(ρ̂0), . . . , τ̂M (ρ̂0)]
T, and

τ̂m(ρ̂0) =

{
‖p̂UE − pBS‖/c = ρ̂0/c m = 0

(‖p̂m − pBS‖+ ‖p̂UE − p̂m‖)/c m 6= 0,

giving the closed-form solution b̂ = 1T(τ − τ̂ (ρ̂0))/(M + 1).

V. FISHER INFORMATION ANALYSIS

In this section, we derive the FIM of the channel parameters

and the localization parameters, and obtain the error bounds

for 6D localization, mapping, as well as UE synchronization.

A. FIM of Channel Parameters

We define the vector of channel parameters as

ηch , [θT

A, θ
T

D, τ
T

︸ ︷︷ ︸
η∈R5(M+1)

,hT

R,h
T

I ]
T ∈ R

7(M+1), (33)

where hR = [hR,0, . . . , hR,M ]T, and hI = [hI,0, . . . , hI,M ]T.

The FIM of ηch, considering the signal model (1), is given by

the Slepian-Bangs formula [53, Section 3.9] as

[Jηch
]i,j =

2Es

N0

K∑

k=1

N∑

n=1

ℜ
{
∂ỹHk,n
∂[ηch]i

∂ỹk,n
∂[ηch]j

}
, (34)

where ỹk,n is the noise-free part of the observation yk,n, and

the gradients can be found in [16, Appendix. I]. Then we

obtain the equivalent Fisher information matrix (EFIM) of

AoAs, AoDs, and ToAs as in the following:

Jη =
[
[J−1

ηch
]1:5(M+1),1:5(M+1)

]−1
. (35)
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B. FIM of Localization Parameters

Expressing RUE = [rUE,1, rUE,2, rUE,3] with rUE,1, rUE,2,

and rUE,3 as columns, we recall the vector of localization

unknowns as

ξ = [rT,pT

UE,p
T

1 , . . . ,p
T

M , b]
T ∈ R

3(M+1)+10. (36)

where r = vec(RUE) = [rTUE,1, r
T

UE,2, r
T

UE,3]
T. Then we

obtain the FIM Jξ by transforming the channel parameters

to localization parameters through the Jacobian matrix Υ as

follows [53, Eq. (3.30)]:

Jξ = ΥTJηΥ, (37)

where [Υ]i,j = ∂[Jη]i/∂[Jξ]j , and Jη is given in (35).

To obtain the elements of the transformation matrix Υ, we

need the derivatives of channel parameters w.r.t. localization

parameters, which are obtained in Appendix A. We note that

∂[η]i/∂r = vec (∂[η]i/∂RUE).

To obtain the error bounds, we need to account for the

constraint that RUE ∈ SO(3). We obtain the constrained

Cramér-Rao bound (CCRB) [54] giving the lower bound on

the estimation error covariance, for any unbiased estimator

subject to the required constraint on RUE. The set of con-

straints to be satisfied due to orthogonality of the rotation

matrix (i.e., RT

UERUE = I3) is given by

h(ξ) = [‖r1‖2 − 1, rT2 r1, r
T

3 r1,

‖r2‖2 − 1, rT2 r3, ‖r3‖2 − 1]T = 06. (38)

Considering M = blkdiag( 1√
2
M0, I3(M+1)+1) with

M0 =




−r3 03 r2
03 −r3 −r1
r1 r2 03


 ∈ R

9×3, (39)

meets G(ξ)M = 0 where [G(ξ)]i,j = ∂[h(ξ)]i/∂[ξ]j , and

gives [54]

C
(CCRB)
ξ = M(MTJξM)−1MT, (40)

in which Jξ is given in (37). Then any unbiased estimate ξ̂

subject to R̂UE ∈ SO(3) satisfies E
{
(ξ̂ − ξ)(ξ̂ − ξ)T

}
�

C
(CCRB)
ξ , where the expectation is with respect to the noise.

Finally, we define orientation error bound (OEB), position

error bound (PEB), IPs error bound (IPEB), and synchroniza-

tion error bound (SEB), which show the lower bound on the

RMSE of estimation as

OEB = [tr (CRUE)]
1/2

, PEB = [tr (CpUE)]
1/2
,

IPEB =
[∑M

m=1 tr (Cpm
)/M

]1/2

, SEB = [tr (Cb)]
1/2 ,

where CRUE , CpUE , Cpm
, and Cb are diagonal sub-matrices

in C
(CCRB)
ξ corresponding to r, pUE, pm, and b, respectively.

We note that Cb is a scalar equal to the variance of clock

bias estimation, and that the RMSE of estimation of r is

equal to E
{
‖r− r̂‖2

}
= E

{
‖RUE − R̂UE‖2F

}
. In addition,

the IPEB (in meters) represents the RMSE of all the IP location

estimates, and is a simplified form of the widely used GOSPA

metric, from radar sensing and target tracking [55].

BS

UE
IP1

IP2

y x

z
x y

z
Global Coordinate System

Fig. 5: The indoor scenario considered in simulations, with default parameters
provided in Table II.

VI. NUMERICAL RESULTS

A. Simulation Setup

Our simulation scenario consists of an indoor environment

shown in Fig. 5, where the BS is mounted vertically. We

employ uniform planar arrays (UPAs) in both BS and UE,

consisting of rectangular configurations of
√
NBS×

√
NBS and√

NUE×
√
NUE antennas, with half-wavelength inter-element

spacing. Assuming the configurations in the reference orien-

tation where the planar arrays are parallel to the global XY-

axes, facilitates expressing ∆BS and ∆UE, i.e., the matrices

containing the positions of antenna elements in local coordi-

nate frames6. For the channel model, we correspond incidence

points to reflecting surfaces with reflection coefficient Γref
7.

We consider that the channel gains are proportional to the free-

space path loss, with a random phase uniformly distributed in

[0, 2π), and account for the radiation pattern of antennas [56,

Chapter 4] as follows:

|hm|2 =





λ2 cos2 θ
(el)
A,0 cos

2 θ
(el)
D,0

(4π)2‖pBS − pUE‖2
m = 0

λ2Γref cos
2 θ

(el)
A,m cos2 θ

(el)
D,m

(4π)2(‖pBS − pm‖+ ‖pUE − pm‖)2 m 6= 0.

The pilots are set to xk,n =
√
Es and the components in

precoding and combining vectors fk and wk are assumed to

comprise unit-modulus elements with random phase, different

for each OFDM symbol.

The rotation matrices are also generated with help of Euler

angles α ∈ [0, 2π), β ∈ [0, π), γ ∈ [0, 2π) [39], using R =
Rz(α)Ry(β)Rx(γ), where Rz(α), Ry(β), and Rx(γ) are

transformation matrices for counter-clockwise rotations around

z, y, and x axes through α, β, and γ, respectively [39].

Table II lists all the default simulation parameters, where

default orientation for UE is either of R1 or R2 given by

R1 = Rz(π/6)Ry(−π/4)Rx(−π/36),R2 = Rx(π/2). (41)

6The antenna element located at row i and column j of such configuration
for BS, 1 ≤ i, j ≤

√
NBS, is (i−1)

√
NBS+ j-th antenna, which is located

at x
BS,(i−1)

√
NBS+j

= [j−(
√
NBS+1)/2,−i+(

√
NBS+1)/2, 0]TdBS,

with dBS = λ/2. Similarly, we express the positions of antenna elements in
UE array.

7For the specific IP1 and IP2, at the given positions p1 and p2, we assume
Γref,1 = 0.2 and Γref,2 = 0.8, respectively. However, for the general IPs at
random positions, Γref = 0.7.
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TABLE II: Default simulation parameters. Parameters that vary are marked
with ∗.

Parameter Symbol Value

Propagation Speed c 3 × 108 m/s
Carrier Frequency fc 28 GHz
Subcarrier Spacing ∆f 120 kHz
# Subcarriers∗ Nf 3333
# OFDM Symbols K 10
Transmit Power∗ PTX 10 dBm
Noise PSD N0 −174 dBm/Hz
UE Noise Figure n0 13 dB
BS # Antennas∗ NBS 64 (8 × 8)
UE # Antennas∗ NUE 4 (2 × 2)

BS Position pBS [4, 0, 4]T

BS Orientation RBS Rx(−π/2)
UE Position∗ pUE [5, 4, 1]T

UE Orientation∗ RUE given in (41)
IP Positions∗ pm given in (42)
Reflection Coefficient∗ Γref [0.2, 0.8] , 0.7
Clock Offset b 100 ns
# Monte Carlo Simulations Ns 1000

−25 −20 −15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

10 log
(
PEB [m]

)

C
D

F M = 1, dep.

M = 1, indep.

M = 2, dep.

M = 2, indep.

M = 10, dep.

M = 10, indep.

Fig. 6: cumulative distribution function (CDF) of PEB with and without
independence of channel parameters for a varying number of incidence points.

In some cases, we generate the orientation randomly. More

precisely, α, β, and γ are generated randomly. Although we

note that this is not equivalent to uniform sampling of SO(3),
it is an easy way to evaluate different orientations. Also, in

some simulations, the positions of IPs are generated randomly,

while the positions of default IPs labeled in Fig. 5 are given

in

P = [p1,p2] =
[
[8, 2, 1]T, [0, 6, 2]T

]
. (42)

The simulations are done in MATLAB 2021b. For the opti-

mization on manifolds, we utilize the Manopt toolbox [57].

B. Obtaining the Likelihood Parameters

To obtain the parameters κA, κD, and Στ presented in

Section III, considering the independence of angles and delays,

we derive the covariance matrix

Cη = diag
(
J−1
η

)
= blkdiag(CθA ,CθD ,Cτ ), (43)

where CθA , CθD and Cτ are diagonal matrices corresponding

to AoAs, AoDs, and ToAs, respectively. Furthermore, using

the independence assumption, FIMs of θA and θD are given,

with respect to κA and κD, respectively, by [22]

JθA = diag
(
κA ⊙ I1(κA)⊘ I0(κA)

)
, (44a)

JθD = diag
(
κD ⊙ I1(κD)⊘ I0(κD)

)
, (44b)
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Fig. 7: RMSE of UE orientation estimation (top) and UE position estimation
(bottom) vs. PTX, for ML and ad-hoc estimators, with search granularity
π/200, for M ∈ {1, 2}, with RUE = R2 and the default pUE, p1, and p2

(in case of M = 2). The figures also include the OEB and PEB.

where I1(·) is the modified Bessel function of order 1. Solving

the above equations gives κA and κD
8. Obviously, Στ = Cτ .

In order to motivate removing dependencies, we evaluate the

CDF of PEB with and without the independence assumption,

using Ns = 1000 Monte Carlo simulations. In every simu-

lation, we randomize RUE as well as pUE, p1, . . . ,pM ∈
[0, 8] × [0, 8] × [0, 4] m3. Then we obtain the PEB in two

cases: the general case using Jη in (37) and then (40); the

independent case, with Jind
η = (diag

(
J−1
η

)
)−1 in (37) and then

(40). The CDF curves are shown for three different numbers of

IPs, i.e., M ∈ {1, 2, 10}. As seen in Fig. 6, the distribution of

PEB with the independence of channel parameters is closely

following that of the general case, meaning that not only

the angles and delays of different paths but also the azimuth

and elevation angles of every individual path can be taken

to be independent without a considerable impact. Similar

observations hold for the other bounds, i.e., OEB, IPEB,

and SEB. Although in certain cases the performance with

dependencies can differ significantly (up to 50%) from the

independent case, the effect is limited on average.

C. Results and Discussions

1) Performance Evaluation of ML and Ad-hoc Estimators:

The performance evaluation for the proposed estimators is

8Specially in high SNR regimes, the values in κA and κD are large,
and therefore, I1(κA) ⊘ I0(κA) → 12(M+1) and I1(κD) ⊘ I0(κD) →
12(M+1), leading to κA = diag

(

C
−1
θA

)

and κD = diag
(

C
−1
θD

)

. There are

other approximations for the ratio I1(x)/I0(x), for example [58, Lemma 2].
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shown in Fig. 7, where we show the RMSE of UE orientation

and position estimation vs. the transmit power PTX, for two

cases, i.e., M = 1 with IP1, and M = 2, with both IP1

and IP2, with the reflection coefficients Γref = 0.2 for IP1,

and Γref = 0.8 for IP2. We observe that the performance of

both estimators improves by increasing the transmit power,

closely following the corresponding bounds. Specifically, the

RMSE of UE position estimation using the proposed ad-hoc

routine sees a negligible gap compared to the CRB, for a

large range of transmit powers. This of course depends on

the geometry as well as the granularity of the 1-dimensional

search for obtaining ψ. Not surprisingly, in the low SNR

regimes, the performance deviates from the bound, but in

the case of M = 2, the ML estimator is able to reduce the

gap. This gap is due to the ignorance of the distribution of

measurements in the ad-hoc estimator, and it is especially

pronounced in unfavorable positions of UE, where the quality

of different paths arriving at UE are remarkably different. In

moderate SNR, the ML estimation yields an RMSEs close

to the performance bounds. In very high SNR regimes, the

performance of the ad-hoc estimator saturates due to the

granularity of angle search. It is then refined using the ML,

and the gap to the bounds is substantially reduced. As a

benchmark, we compare the positioning performance of the

ad-hoc estimator to that of the only other available estimator,

i.e., [31, eq. (15)–(16)]. We observe that the proposed ad-hoc

estimator achieves identical performance. The strength of [31]

is that it does not require an estimate of the rotation matrix

for estimating the UE position, but at the same time, the one-

dimensional search of our method for estimation of rotation

matrix should be done anyway, to initialize the ML algorithm.

The tightness of ML estimator to the CRB, and the negligible

gap between the performance of the ad-hoc estimator and the

lower bounds for a practical range, shows the efficiency of our

proposed estimation algorithms.

2) Impact of System Parameters: In Fig. 8, we evaluate the

impact of bandwidth, the number of antennas, and the number

of IPs, using RUE = R1 and the default pUE. For evaluation

of the impact of bandwidth and number of antennas, we

consider one IP at the default position p1, while we evaluate

the impact of the number of IPs, in an average sense, i.e., the

positions of IPs are randomized, and the average error bounds

are obtained.

As it is observed in the left plot in Fig. 8, increasing the

bandwidth, which leads to higher ToA accuracy and improved

delay resolution, decreases the error bounds. This trend, how-

ever, saturates at some point (≈ 100 MHz), because further

improvement is limited by the accuracy of angle measure-

ments. The OEB is the least benefited from the enhancement

of ToA accuracy, which makes sense since the orientation is

determined mainly by angle measurements and not the delays.

The two middle plots of Fig. 8, show the performance gains

achieved when the angular resolution and accuracy improve

thanks to an increase in the number of UE and BS antennas.

PEB and SEB benefit most from additional UE antennas,

while IPEB benefits most from additional BS antennas. Since

analog combining is used with a fixed number of precoders

and combiners, there is no array gain, which leads again to

saturation at a larger number of antennas, when there are no

further resolution gains, and the performance is limited by the

bandwidth.

Finally, in the right plot of Fig. 8 we show the impact

of the number of IPs. We see that increasing number of

IPs leads to improvements in the OEB, PEB, and SEB. The

reduction of error bounds is especially considerable when the

number of IPs changes from 1 to 2. The reason is that, when

M = 1, the quality of estimating AoA or AoD degrades

in certain positions, and this causes larger error bounds, on

average. However, when another IP is added, the probability of

having both IPs at unfavorable positions reduces significantly,

and the average error bounds decrease. For the IPEB, while

it decreases at the beginning with the number of incidence

points, it may experience small fluctuations or even increase

at larger M . This is due to the increase in the number of

unknowns, i.e., positions of IPs.

3) Impact of Known Parameters: In this part, we assess

the impact of known parameters, i.e., we evaluate the best

achievable estimation accuracy, if some of the parameters

are known. For that, we depict the CDF of error bounds in

Fig. 9. To set up the Monte Carlo simulations, we consider

only one IP at the default position p1, while we randomize

[pUE,x, pUE,y] ∈ [0, 8] × [0, 8] in the pUE,z = 1 plane

(though pUE,z = 1 is considered unknown), as well as the

UE orientation. The CDF curves are shown for Ns = 10, 000
realizations. In terms of the OEB, position knowledge of either

the UE or IP improves the orientation accuracy, congruent

with the findings from [22] with 2 BSs. In terms of the PEB,

orientation awareness is less important than the knowledge

from the mapping, i.e., the position of the incidence point.

Similarly, the knowledge of UE position can help mapping,

and certainly, if both pUE are RUE are known, lower IPEB is

achieved. Finally, in terms of the SEB, a variety of cases exist,

with and without side information from either or some of RUE,

pUE, and p1. As we have seen on the other bounds, knowledge

of orientation is the least informative, and the UE and IP

location awareness provide a large amount of information on

the clock bias.

4) 6D Localization Coverage: As the last step in our simu-

lations, we evaluate the localization coverage and performance

robustness, via contour plots of OEB and PEB, in the region

around the BS and IPs. Fig. 10 shows the contour plots of

error bounds, when x and y coordinates of UE position are

varied, while the z coordinate is fixed to 1, considering 1
NLoS path (top row) or 2 NLoS paths (bottom row). As

the UE gets closer to the IP (which has the lower channel

gain compared to the direct path from the BS), the quality of

estimation of all parameters improves, unless if UE approaches

the y = 0 plane resulting in θ
(el)
D,0 close to π/2, which in turn

strongly attenuates the LoS path, degrades the estimation of

θD,0, and accordingly increases the error. Including IP2 at the

default position provides another signal source and improves

the coverage. In summary, good performance is achieved close

to IPs, with a graceful degradation further away. However, if

the UE should not be so close to the IP that the NLoS paths

is no longer resolvable from the LoS path.

In a similar fashion, we depict the contour plots of error
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Fig. 8: Impact of bandwidth (left), number of UE antennas (middle-left), number of BS antennas (middle-right), and number of IPs (right) on (average)
performance error bounds.
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of UE are randomized, and the default IP1 is included.
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Fig. 10: Contour plots of (a) OEB, (b) PEB [m] with IP1; (c) OEB, (d) PEB
[m] with IP1 and IP2, for pUE,z = 1, RUE = R2.

bounds, for a range of rotation angles of UE in Fig. 11, by

fixing one of the Euler angles β = −π/4. If only IP1 is

present, we observe a continuous set of orientations for which

the bounds are infinite. Specifically, the orientation caused by

the composition of rotations around z and x axes through α
and γ respectively, results in the received ray from either LoS

or NLoS paths to hit the UE antenna array on the endfire, and

does not provide a high-quality estimation of either of AoAs.

Subsequently, both OEB and PEB are affected. However, once

these specific orientations change, the signal arrives in more

(a) 10 log(OEB) (b) 10 log(PEB)

(c) 10 log(OEB) (d) 10 log(PEB)

Fig. 11: Contour plots of of (a) OEB, (b) PEB [m] with IP1; (c) OEB, (d)
PEB [m] with IP1 and IP2, for β = −π/4.

appropriate directions, and the bounds improve. Once a second

IP is added, the problem is non-identifiable for only a reduced

set of configurations. Hence, with M > 1 NLoS paths, a more

uniform 6D localization coverage can be achieved.

While not shown, the performance as a function of the IP

location can also be evaluated. With a single IP, the bounds

become infinite when the IP is on the 3D line between BS and

UE, which is a very unlikely configuration.
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VII. CONCLUSIONS

In this paper, we considered a single BS transmitting a

mmWave OFDM signal and a multi-antenna UE receiving the

LoS path and at least one resolvable NLoS path. The objective

was to solve the snapshot 6D localization problem whereby the

3D position, the 3D orientation, and the clock bias of the UE

have to be estimated, as well as the positions of the incidence

points. Two estimation routines, namely ML estimation (which

is a high-dimensional non-convex optimization problem over a

product of manifolds) and an ad-hoc routine, were applied and

their performance was evaluated. Although the performance of

the former attains the CRB, the latter provides estimates based

on geometrical arguments. These estimates closely follow the

CRB for a large transmit power range, and serve as initializa-

tion to the recursive algorithms for solving the ML complex

estimation problem. In contrast, the proposed ad-hoc solution

reduces the complexity to a single 1-dimensional search over a

finite interval, combined with closed-form expressions. After

obtaining an efficient ML-based estimator, we evaluated the

impact of different parameters, such as bandwidth, number of

antennas, number of NLoS paths, etc., through evaluation of

CRB. These results indicate that at least 2 NLoS paths are

needed to render the problem identifiable for most geometric

configurations.

There are several possible extensions of the current work,

which may be addressed in future studies. First of all, a

solution to the obstructed LoS scenarios should be devel-

oped. Secondly, besides single-bounce NLoS paths, there may

double- and multiple-bounce reflections, and the performance

of localization in these conditions should be investigated.

APPENDIX A

PARTIAL DERIVATIVES OF AOAS, AODS, AND TOAS W.R.T.

LOCALIZATION PARAMETERS

A. Auxiliary Variables

We define auxiliary variables

uA,m 6=0 =
pm − pUE

‖pm − pUE‖
, uA,0 =

pBS − pUE

‖pBS − pUE‖
, (45a)

uD,m 6=0 =
pm − pBS

‖pm − pBS‖
, uD,0 =

pUE − pBS

‖pUE − pBS‖
, (45b)

as well as u1 = [1, 0, 0]T, u2 = [0, 1, 0]T, and u3 = [0, 0, 1]T,

for later use. Considering RUE = [rUE,1, rUE,2, rUE,3] and

RBS = [rBS,1, rBS,2, rBS,3] gives RUEui = rUE,i and

RBSui = rBS,i, i = 1, 2, 3.

B. Mathematical Identities

The following mathematical identities are used in obtaining

the derivatives:
∂

∂X
aTXTb = baT, (46a)

∂

∂x
aTx = a, (46b)

∂

∂x
acos(v(x)) = − 1√

1− v2(x)

∂v(x)

∂x
, (46c)

∂

∂x
atan2(v(x), w(x)) =

w(x)∂v(x)∂x − v(x)∂w(x)
∂x

v2(x) + w2(x)
, (46d)

∂

∂x

x− a

‖x− a‖ =
I

‖x− a‖ − (x − a)(x− a)T

‖x− a‖3 , (46e)

∂

∂x
‖x− a‖ =

x− a

‖x− a‖ . (46f)

In (46c) and (46d), if the derivatives are taken with respect to

a matrix, we replace x by X, and the equations still hold.

C. Reformulation of AoAs and AoDs

Using the defined auxiliary variables, one can express

θA,m= [atan2(rTUE,2uA,m,r
T

UE,1uA,m),acos(r
T

UE,3uA,m)]
T,

θD,m= [atan2(rTBS,2uD,m,r
T

BS,1uD,m),acos(r
T

BS,3uD,m)]
T.

D. Derivatives with respect to UE Rotation Matrix

We make use of (46a), (46c), and (46d),

∂θ
(el)
A,m

∂RUE
= − uA,muT

3√
1− (rTUE,3uA,m)2

, (48a)

∂θ
(az)
A,m

∂RUE
=

(rTUE,1uA,m)uA,muT

2 − (rTUE,2uA,m)uA,muT

1

(rTUE,1uA,m)2 + (rTUE,2uA,m)2
.

(48b)

Note that AoDs and ToAs have no dependence on RUE,

leading to partial derivative 03×3.

E. Derivatives with respect to UE Position

The derivatives with respect to pUE are obtained using the

chain rule. We make use of (46b), (46c) and (46d) to obtain

∂θ
(el)
A,m

∂uA,m
= − rUE,3√

1− (rTUE,3uA,m)2
, (49a)

∂θ
(az)
A,m

∂uA,m
=

(rTUE,1uA,m)rUE,2 − (rTUE,2uA,m)rUE,1

(rTUE,1uA,m)2 + (rTUE,2uA,m)2
, (49b)

∂θ
(el)
D,m

∂uD,m
= − rBS,3√

1− (rTBS,3uD,m)2
, (49c)

∂θ
(az)
D,m

∂uD,m
=

(rTBS,1uD,m)rBS,2 − (rTBS,2uD,m)rBS,1

(rTBS,1uD,m)2 + (rTBS,2uD,m)2
, (49d)

and (46e) to obtain

∂uA,m 6=0/∂pUE =
(
uA,muT

A,m − I3
)
/‖pm − pUE‖, (50a)

∂uA,0/∂pUE =
(
uA,0u

T

A,0 − I3
)
/‖pBS − pUE‖, (50b)

∂uD,0/∂pUE =
(
I3 − uD,0u

T

D,0

)
/‖pUE − pBS‖, (50c)

and ∂uD,m 6=0/∂pUE = 03×3. Also, considering (46f) gives

∂τm
∂pUE

=

{
(pUE − pBS)/(c ‖pUE − pBS‖) m = 0

(pUE − pm)/(c ‖pUE − pm‖) m 6= 0
. (51)

F. Derivatives with respect to Incidence Points Positions

The derivatives with respect to IP positions are also obtained

using the chain rule. We note that ∂uA,m/∂pn = 03, n 6= m,

for m = 0, . . . ,M and n = 1, . . . ,M , with the same case for

∂uA,m/∂pn and ∂τm/∂pn, while for m 6= 0

∂uA,m/∂pm =
(
I3 − uA,muT

A,m

)
/‖pm − pUE‖, (52a)
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∂uD,m/∂pm =
(
I3 − uD,muT

D,m

)
/‖pm − pBS‖ (52b)

∂τm/∂pm = (pm − pBS)/(c ‖pm − pBS‖)
+ (pm − pUE)/(c ‖pm − pUE‖). (52c)

G. Derivatives with respect to Clock Bias

The angles have no dependence on b, while ∂τm/∂b = 1.

APPENDIX B

SOLVING THE OPTIMIZATION PROBLEM FOR THE

SHORTEST DISTANCE BETWEEN HALF-LINES

For the half-lines ℓ1 = {p ∈ R3 : p = p1 + t1d1, t1 ≥ 0}
and ℓ2 = {p ∈ R3 : p = p2 + t2d2, t2 ≥ 0}, the shortest

distance δmin is obtained from δ2min = mint=[t1,t2]T ‖(p1 +
t1d1) − (p2 + t2d2)‖2, s.t. t ≥ 02, which is a quadratic

convex optimization problem in t, and its solution is found

by writing the K.K.T. conditions [59]. We utilize a simpler

procedure in which we first obtain the unconstrained optimal

solution

t∗1 = −dT

1

(
I− d2d

T

2

)
p12/

(
1− (dT

1d2)
2
)
, (53a)

t∗2 = dT

2

(
I− d1d

T

1

)
p12/

(
1− (dT

1d2)
2
)
, (53b)

with p12 , p1−p2. If t∗ > 02, the solution is δmin = |nTp12|
where n = (d1 × d2)/(‖d1 × d2‖).
Proof. Substituting the optimal solution (53) in ‖(p1 +
t1d1) − (p2 + t2d2)‖ gives δmin = ‖P⊥(D) · p12‖, where

D , [d1,d2], and P⊥(D) , I − D(DTD)−1DT = I −(
d1d

T

1

(
I− d2d

T

2

)
+ d2d

T

2

(
I− d1d

T

1

) )
/
(
1− (dT

1d2)
2
)

is

the projector onto the subspace orthogonal to the one spanned

by d1 and d2, which is in turn spanned by the unit-norm vector

n normal to d1 and d2, given by n = (d1×d2)/(‖d1×d2‖).
Hence, δmin = ‖(nTp12) n‖ = |nTp12|.
Otherwise, we obtain ť1 = −dT

1p12, ť2 = dT

2p12, λ̌1 =
dT

1P⊥(d2)p12, and λ̌2 = −dT

2P⊥(d1)p12, where P⊥(d) ,
I−ddT. If [ť1, λ̌2]

T > 02, then δmin = δ̌1, and if [ť2, λ̌1]
T >

02, then δmin = δ̌2, where δ̌1 , (pT
12P⊥(d1)p12)

1/2 and

δ̌2 , (pT

12P⊥(d1)p12)
1/2 are both non-negative, due to

the Cauchy–Schwarz inequality. Otherwise, δmin = ‖p12‖.

Obtaining expressions is straightforward. As the unconstrained

solution t∗ often satisfies the constraints, especially in high

SNR regimes, this approach is more efficient.

APPENDIX C

PROOF OF THE CLOSED-FROM EXPRESSION FOR THE

CLOSEST POINT TO SKEW LINES

We determine p0 to be mutually closest to the half-lines

ℓ1 = {p ∈ R3 : p = p1 + t1d1, t1 ≥ 0} and ℓ2 = {p ∈
R3 : p = p2 + t2d2, t2 ≥ 0}, in a least-squares sense, so that

d2(p0, ℓ1) + d2(p0, ℓ2), with d(p0, ℓi) denoting the distance

of p0 to ℓi, i = 1, 2, is minimized. According to Pythagorean

theorem, d2(p0, ℓi) = ‖p0 − pi‖2 −
(
(p0 − pi)

Tdi
)2

, where

(p0 − pi)
Tdi is the projection of (p0 − pi) on line ℓi.

Taking gradient of d2(p0, ℓ1) + d2(p0, ℓ2) with respect to

p0 and setting it to 0 results in p0 = A−1b, where A =
(I−d1d

T

1 )+(I−d2d
T

2 ) and b = (I−d1d
T

1 )p1+(I−d2d
T

2 )p2.

Setting p1 = pBS, p2 = pUE(1), d1 = RBSdD,m, and

d2 = R̂UEdA,m gives (26).
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telematics: A ten-year anniversary,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 10, pp. 2802–2825, 2017.

[12] D. Dardari, P. Closas, and P. M. Djurić, “Indoor tracking: Theory, meth-
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