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Abstract

We study the problem of downlink channel estimation in multi-user massive multiple input multiple

output (MIMO) systems. To this end, we consider a Bayesian compressive sensing approach in which

the clustered sparse structure of the channel in the angular domain is employed to reduce the pilot

overhead. To capture the clustered structure, we employ a conditionally independent identically dis-

tributed Bernoulli-Gaussian prior on the sparse vector representing the channel, and a Markov prior on

its support vector. An expectation propagation (EP) algorithm is developed to approximate the intractable

joint distribution on the sparse vector and its support with a distribution from an exponential family. The

approximated distribution is then used for direct estimation of the channel. The EP algorithm assumes

that the model parameters are known a priori. Since these parameters are unknown, we estimate these

parameters using the expectation maximization (EM) algorithm. The combination of EM and EP referred

to as EM-EP algorithm is reminiscent of the variational EM approach. Simulation results show that the

proposed EM-EP algorithm outperforms several recently-proposed algorithms in the literature.

Index Terms

clustered sparse channel, Bayesian compressive sensing, Markov prior, Expectation Propagation,

Expectation Maximization, channel estimation, massive MIMO

I. INTRODUCTION

In FDD-based massive MIMO systems, downlink (DL) channel estimation is quite challenging

[1]. In the conventional pilot-based method, the length of the pilot sequence scales with the

number of transmitting antennas. This implies a long pilot sequence which results in reduced

spectral efficiency. Moreover, the time required for pilot and data transmission may exceed the
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coherence time of the channel. Recently, compressive sensing (CS) [2], [3] has been explored

to reduce the pilot-overhead. Due to the limited local scattering in the propagation environment,

massive MIMO channel has a sparse representation in the discrete Fourier transform (DFT)

basis [1], [4]–[6]. Using this sparsity structure, many CS-based estimation algorithms have

been devised. The classical orthogonal matching pursuit (OMP) [7] and compressive sampling

matching pursuit (CoSaMP) [8] are investigated in [9], [10]. In [11] the authors assumed a

common spatial sparsity among the subcarriers in a frequency-selective DL channel and proposed

the distributed sparsity adaptive matching pursuit (DSAMP). Using a similar common spatial

sparsity assumption, a generalized approximate message passing (GAMP) based algorithm is

proposed in [12] and the sparse Bayesian learning (SBL) algorithm is derived in [13], [14].

These and other algorithms which use a DFT basis to obtain the sparse representation, employ a

fixed uniformly-spaced discrete grid in the angular domain which may not be sufficiently dense.

As a result, some of the physical angles of departures (AoDs) of the massive MIMO channel

may not lie on the assumed grid points. This direction mismatch error, also known as channel

modeling error, causes leakage of energy from such physical AoDs into the nearby angular

bins resulting in a straddle performance loss. In [15], [16] this modeling error is minimized by

learning a better over-complete dictionary for the sparse representation. However, the proposed

algorithm requires extensive channel measurements from several locations in the cell to be used

as training samples. These measurements are cell-specific and difficult to collect in practice. In

[17], an Off-grid SBL algorithm is proposed in which the sampled grid points are modeled as

continuous-valued parameters and are learned iteratively to reduce the modeling error. Simulation

results in [17] show improved performance of off-grid SBL compared to the over-complete

dictionary learning algorithm in [15].

SBL and off-grid SBL aim to recover the sparse vector coefficients individually by modeling

them with an independent and identically distributed (iid) Gaussian prior distribution. However,

according to the geometry-based stochastic channel model (GSCM) [18], there are a few domi-

nant scatterers in the propagation environment, and the sub-paths from each scatterer concentrate

in small angular spreads which appear as non-zero clusters in the sparse representation. This

model is used in [19], although with the stringent assumption of uniformly-sized clusters in the



sparse vector. For non-uniform burst sparsity1, a pattern-coupled SBL (PC-SBL) algorithm is

proposed in [21] in which the precision of each coefficient in the sparse vector is tuned according

to the precision of its immediate neighbors. However, PC-SBL updates the precisions with a sub-

optimal solution. To avoid this sub-optimality, a generic version of PC-SBL is derived in [20],

referred to as PC-VB here, where the authors assigned a latent support vector to every coefficient

in the sparse vector and assumed a multinoulli prior on the support vector. The resulting joint

posterior distribution on the sparse vector and its support is approximated with a variational

Bayes-based algorithm [22]. Grid refining procedure from [17] is also used to mitigate the

direction mismatch errors. In the same vein, Turbo compressive sensing (TCS) algorithm and

expectation maximization based GAMP algorithm were proposed in [23] and [24], respectively,

in which the sparse vector coefficients are modeled with an iid Bernoulli-Gaussian (BG) prior. In

[10] the authors extended [23] for the clustered sparse structure of the massive MIMO channel

and proposed a structured turbo compressive sensing (S-TCS) algorithm. With a conditional iid

BG prior on the sparse vector, a Markov prior is assumed on its support to integrate the clustering

information of the massive MIMO channel. In [25], a super-resolution clustered sparse Bayesian

learning (SuRe-CSBL) algorithm is proposed for a Markov prior distribution on the support

vector. SuRe-CSBL approximates the true joint posterior distribution on the sparse vector and

its support with a structured GAMP algorithm. The approximated distribution is then used for

the estimation of massive MIMO channel. The grid refining method from [17] is also integrated

into SuRe-CSBL.

In this paper, we propose an expectation propagation (EP) algorithm to estimate the clustered

sparse vector representing the massive MIMO channel. Once the sparse vector is estimated from

the received signal, the physical massive MIMO channel can be easily estimated by a transform

operation on the sparse vector as in [10], [20], [25]. The contributions made in this paper are

summarized as follow:

• Expectation propagation (EP) algorithm [26], [27] has been recently applied to SIMO and

MIMO channel estimation [28]–[31]. It has also been applied to solve the inference problem

in the CS literature [32]. In [33], the authors used an EP algorithm to approximate the true

joint posterior distribution on the sparse vector and its support with a distribution from an

1This refers to the case when the non-zero clusters in the sparse vector appear with non-equal sizes separated with sequences

of zeros of arbitrary length [20].



exponential family. However, an iid Bernoulli prior is assumed on the support vector which

does not capture the clustered structure of the sparse vector. In [34] the authors assumed that

the partitioning of the cluster in the sparse vector is known a priori and modeled each cluster

with a different Bernoulli prior distribution. In contrast, we assume here that the cluster

partitioning in the sparse vector is unknown. Therefore to capture the structure of the sparse

vector we model its support vector with a first-order Markov process. An EP algorithm is

developed to iteratively approximate the intractable true joint posterior distribution on the

sparse vector and its support with a distribution from an exponential family. This distribution

is then used for the direct estimation of the DL massive MIMO channel.

• The framework of EP algorithm in [33], [34] assumes that the model parameters including

the noise precision in the signal model, the hyperparameters in the prior distribution on

the sparse vector, and the hyperparameters in the prior distribution on the support vector

are known a priori. For practical massive MIMO channel, these parameters are unknown

and need to be estimated. One way to estimate the model parameters is by maximizing the

marginal likelihood function−the procedure which is known as type-II maximum likelihood

method or evidence procedure [14]. However, directly maximizing the marginal likelihood

function does not result in closed-form update equations for the model parameters [13], [14].

Thus we derive an expectation maximization (EM) algorithm which results in closed-form

update equations and iteratively computes the maximum likelihood solution of the model

parameters [35], [36].

• In order to integrate the EP algorithm with the EM algorithm, we use a variational EM

approach [37], [38] in which the approximated joint posterior distribution by the EP al-

gorithm is used to compute the expectation step in the EM algorithm. The convergence

of the resulting EM-EP algorithm is guaranteed through the convergence properties of the

variational EM algorithm [37]. As iterations of the proposed method proceed, the EM

algorithm converges to a local maxima of the marginal likelihood function [35] and the EP

algorithm closely approximates the true joint posterior distribution with a distribution from

an exponential family [39]. Grid refining procedure from [17], [20] is also integrated in the

proposed EM-EP algorithm to reduce the channel modeling error.

• Extensive simulations are carried out to demonstrate the efficacy of the proposed EM-EP

algorithm. The results are also compared with those in the literature showing the advantages

of the proposed method.



This paper is organized as follow. Section II describes the system model for the FDD-based

downlink channel estimation in multi-user massive MIMO system. Expectation propagation

algorithm for this system is proposed in Section III. An expectation maximization algorithm

to estimate the model parameters and to refine the grid is derived in Section IV. Simulation

results are discussed in Section V, and Section VI concludes the paper.

Notations: Throughout this paper, small letters (x) are used for scalars, bold small letters

(x) for vectors, and bold capital letters (X) for matrices. R and C represent the set of real and

complex numbers, respectively. The superscripts (.)T , (.)H , (.)∗, and (.)−1 represent transpose,

Hermitian transpose, complex conjugate, and inverse operations, respectively. CN (x;µ,Σ) de-

notes complex Gaussian distribution on x with mean µ and covariance matrix Σ. Bern(x; p)

denotes a Bernoulli distribution on x with mean p. For a complex variable x, |x|, ℜ{x} and

ℑ{x} represent its modulus, real part and imaginary part, respectively. For a probability density

function (pdf) p(.), Ep denotes the expectation operator with respect to p(.). δ(x) is the Kronecker

delta function which is equal to 1 when x = 0 and is zero otherwise. IN denotes the N × N

identity matrix. Finally, tr(X) and ||x|| denote the trace of a matrix X and the ℓ2-norm of the

vector x, respectively.

II. SYSTEM MODEL

Consider a single cell massive MIMO system where a BS equipped with G antennas serves

K users each one having a single antenna. It is assumed that FDD is used and to enable the

estimation of the DL channels, the BS broadcasts a sequence of N pilot symbols denoted by

X = [x1,x2, . . . ,xN ]
H where xn ∈ CG×1 for n = 1, . . . , N . The signal received by the k-th

user is given by

yk = Xhk + nk, (1)

where yk ∈ CN×1, hk ∈ CG×1 is the DL channel to the k-th user and the receiver noise nk is

distributed as CN (nk; 0, η
−1
k IN) in which ηk denotes the precision.

Assuming that the transmitted pilot sequence satisfies tr(XXH) = NG, the signal-to-noise

ratio (SNR) is given by SNR = ηk. Suppose that the BS is equipped with a uniform linear array



(ULA)2 and to transmit in the direction θ, it uses the beam steering vector

a(θ) =
[

1, e
−j2π d

λd
sin(θ)

, . . . , e
−j2π d

λd
(G−1)sin(θ)

]T

, (2)

where d is the spacing between adjacent antenna elements and λd is the wavelength of the DL

signal. Let the DL signal propagating from BS on the way to the k-th user pass across a total

of Ls scatterers each one forwarding the signal on Lp paths towards the user. Then the channel

vector hk to the k-th user can be written as

hk =

Ls
∑

s=1

Lp
∑

p=1

αk,s,pa(θk,s,p), (3)

where αk,s,p is the complex path gain for the s-th scatterer and p-th path, and θk,s,p is the

corresponding AoD [5], [40].

To reduce the pilot-overhead for estimating this downlink channel, we use the CS approach

which requires a virtual channel representation of the physical channel in (3). To this end, let

θ = (θ1, θ2, . . . , θM)T denote a uniform sampling of the interval [−π/2, π/2] into M points.

Assuming M is large enough such that the physical AoDs in (3) lie on the grid points, the

virtual representation of hk is given by

hk = A(θ)wk, (4)

where A(θ) = [a (θ1) , a (θ2) , . . . , a (θM)] and the vector wk contains the channel coefficients

in the virtual angular domain. Note that when M = G and the grid is uniformly sampled, the

dictionary A(θ) represents the unitary discrete Fourier transform matrix [17]. The choice of the

parameter M is discussed in Section V.

In this paper, we focus on the DL channel estimation for a reference user. Therefore dropping

the index k, from (1) and (4), the received signal is written as

y = Φ(θ)w + n, (5)

in which Φ(θ) = XA(θ). From (5) the likelihood function of w is given as p(y|Φ(θ),w, η)=

CN (y;Φ(θ)w, η−1IN). Given y and Φ(θ) we aim to compute the posterior distribution of the

sparse vector w. Note that the posterior distribution on w can be used to find the minimum mean

2In this work we assume a ULA at the BS. However, the proposed algorithm can be extended to an arbitrary 2-D array

using the approach suggested in [17].



squared error (MMSE) estimate of w from which the physical channel estimate is obtained using

(4).

According to the GSCM model [18], there are only a few dominant scatterers in the channel,

i.e., Ls is small. Moreover, the forwarding paths from each scatterer are concentrated in a small

angular spread around the line of sight direction between the BS and the scatterer [15], [41]. Thus,

w exhibits a clustered sparse structure with unknown marking of cluster boundaries. Hence the

support (indices of non-zero elements) of w is unknown [17], [20], [25]. To model the clustered

sparse structure of w and to determine its support, we condition the m-th element of w on a

latent variable zm ∈ {0, 1}, where wm 6= 0 when zm = 1 and wm = 0 when zm = 0. Thus given

the latent vector z = [z1, z2, . . . , zM ]T , as in [10], [25], [33], [34], the prior distribution on w is

written as

p(w|z,γ) =
M
∏

m=1

p(wm|zm, γm) =
M
∏

m=1

[

zmCN (wm; 0, γ
−1
m ) + (1− zm)δ(wm)

]

, (6)

where γ = (γ1, γ2, . . . , γM)T and γm is the precision of wm. Due to the clustered sparsity

of w, the elements of the vector z are correlated. To capture this correlation we model z as

a first-order Markov process with transition probabilities Pr(zm = 1|zm−1 = 0) = τ01 and

Pr(zm = 0|zm−1 = 1) = τ10. Note that these transition probabilities reflect the clustered sparse

structure of w in the following way. The average length of the sequence of zeros between two

consecutive non-zero clusters is large when τ01 is small, and the non-zero cluster size on average

is large when τ10 is small. Denoting τ , (τ01, τ10), the prior distribution on z is given as

p(z|τ ) = p(z1)

M
∏

m=2

p(zm|zm−1, τ )

= p(z1)

M
∏

m=2

[

(

(1− τ10)
zm−1(τ01)

(1−zm−1)
)zm (

(τ10)
zm−1(1− τ01)

(1−zm−1)
)(1−zm)

]

, (7)

where p(z1) = Bern(z1;λ) and we use the steady state distribution for z1 and set λ = τ01
τ01+τ10

.

In practice the physical AoDs may not lie on the assumed angular grid θ in (4), and thus we

treat θ as an unknown parameter and aim to estimate it for learning the dictionary. Therefore,

letting ξ , (τ , γ1, γ2, . . . , γM , η, θ
T )T , we aim to jointly estimate (w, z, ξ). We write the joint

posterior distribution of (w, z, ξ) as

p(w, z, ξ|y) ∝ p(w, z|y, ξ)p(y|ξ)p(ξ), (8)



Fig. 1. Factor graph illustrations of (a) True posterior distribution in (9), and (b) Approximated posterior distribution in (20).

Variable nodes are represented by circles (filled in circles for observed variables and empty ones for the hidden variables) and

factor nodes are denoted by small rectangles. Repetition of observed variables in the subgraph is represented using a plate (big

rectangle) notation.

where the conditioning on ξ in (8) removes the multidimensional integration over ξ required

otherwise in computing the normalization constant. Note that in (8), the marginal joint posterior

distribution on w and z is given by

p(w, z|y, ξ) ∝ p(y|Φ(θ),w, η)p(w|z,γ)p(z|τ ), (9)

Computing the joint posterior distribution in (8) is still involved. We can reduce (8) to (9) by

using the maximum a posteriori estimate of ξ in (9) obtained by maximizing p(y|ξ)p(ξ) with

respect to ξ. Assuming a uniform prior distribution on ξ, we get the maximum likelihood (ML)

estimate which can be computed as follows.

ξ̂ = argmax
ξ

p(y|ξ), (10)

The objective function in (10) is a non-concave function and due to the involved multidimensional

parameter space a brute-force search is difficult [14]. An alternative is to use the iterative

expectation maximization (EM) algorithm which increases the likelihood function p(y|ξ) in

each iteration and guarantees convergence to a local maxima [35], [36]. To this end we define

the complete data as d = [yT ,wT , zT ]T . Then if ξl is the estimate from the l-th iteration, in the

(l + 1)-st iteration of EM we perform the following two steps

E-Step : L(ξ; ξl) = Ep(w,z|y,ξl) [ln p(y,w, z|ξ)] , (11)

M-Step : ξ(l+1) = argmax
ξ

L(ξ; ξl), (12)



and (11) and (12) are repeated until convergence.

Computing the E-step in (11) requires the exact joint posterior distribution p(w, z|y, ξl) which

is computationally intractable as it requires a multidimensional integration and summation.

Therefore in Section III we derive an expectation propagation (EP) algorithm to approximate

this distribution with a distribution from an exponential family. We denote the approximate

distribution by Q(w, z|y, ξl) and use it in place of p(w, z|y, ξl) in (11). Note that the estimate

of the parameters in the l-th iteration of EM, namely ξl is used by the EP algorithm to obtain

Q(w, z|y, ξl). Once the E-step is solved in this way, the solution to the M-step, derived in Section

IV, is computed to obtain ξl+1. Next the EP algorithm is run with ξl+1 to obtain Q(w, z|y, ξl+1)

which is used in the (l+1)-st iteration of E-step. The iterations between EM and EP are continued

in this way until convergence is achieved. This EM-EP approach is reminiscent of the variational

EM algorithm [37], [38]. We should point out that convergence of EM-EP is assured based on

the convergence properties of variational EM [37]. In particular, as the iterations of the EM-EP

proceed, the EM algorithm converges to a local maxima of the objective function in (10) [35]

and the EP algorithm closely approximates the true joint posterior distribution p(w, z|y, ξl) in

(9) [39]. An EM-EP algorithm has been used in [42] to solve a classification problem, whereas

here we tend to use the setting for solving the estimation problem.

III. EXPECTATION PROPAGATION ALGORITHM

In this section, we derive an expectation propagation algorithm to approximate the joint

posterior distribution p(w, z|y, ξ) in (9) with a distribution from an exponential family. For

a review of the EP algorithm we refer the reader to [26], [27], [32]–[34].

Let F denote the family of exponential distributions. Exploiting the factorized structure of

(9), we approximate the joint posterior distribution p(w, z|y, ξ) with

Q(w, z) = Q(w)Q(z), (13)

where Q(w) ∈ F and Q(z) ∈ F 3. We choose the factors in (13) as

Q(w) = CN (w;µ,Σ), (14)

Q(z) =
M
∏

m=1

Qm(zm) =
M
∏

m=1

Bern(zm; σ(pm)), (15)

3The conditioning on y and ξ is dropped in this section occasionally for notational convenience



where the sigmoid function σ(.) is used to define the mean of the Bernoulli distribution as

σ(pm)
4. The use of sigmoid function simplifies EP updates and avoids numerical underflow

errors resulting in the numerical stability of EP algorithm [34]. In (14) and (15), µ, Σ, and

p , [p1, p2, . . . , pM ]T are the unknown parameters that we next aim to estimate with the EP

algorithm.

Next we approximate each factor in (9). Let q1(w), q2(w, z) and q3(z) approximate

p(y|Φ(θ),w, η), p(w|z,γ) and p(z|τ ), respectively. Since q1(.) and q3(.) are the marginal

functions of w and z, respectively, whereas q2(.) is the joint function of both w and z, we

choose these terms as follows

q1(w) = CN (w;µ1,Σ1), (16)

q2(w, z) =

M
∏

m=1

q2,m(wm, zm), (17)

where

q2,m(wm, zm) ∝ CN (wm;µ2,m,Σ2,m)Bern(zm; σ(p2,m)), (18)

For q3(z), we approximate p(zm|zm−1) in (7) with qFR
3,m−1,m(zm−1, zm) which in factorized form

we write as qFR
3,m−1,m(zm−1, zm) = qR3,m−1(zm−1)q

F
3,m(zm). Therefore

q3(z) =

M
∏

m=1

qR3,m(zm)q
F
3,m(zm), (19)

where for j ∈ {F,R}, qj3,m(zm)= Bern
(

zm; σ(p
j
3,m)

)

and σ(pj3,m) denotes the mean of the

Bernoulli distribution. These means actually define the forward and reverse messages sent

between zm−1 and zm in the factor graph of Fig. 1(a) to get the approximate posterior distribution

in Fig. 1(b). Note that in (19) we use the convention that qF3,1(z1) = p(z1) and qR3,M(zM) = 1.

Next to find the unknown parameters in (14) and (15), we write

Q(w, z) ∝ q1(w)q2(w, z)q3(z), (20)

4For a variable x ∈ R, the sigmoid function is defined as σ(x) = 1
1+e−x .



Fig. 2. EP steps for updating q2,m(wm, zm): (a) Eliminate q2,m(wm, zm) from the factor graph to find the cavity distribution

Q\2m(wm, zm) as in (28), (b) Use p(wm|zm) factor to define the hybrid posterior distribution R2,m(wm, zm) as in (32), and

(c) Project R2,m(wm, zm) onto F and update q2,m(wm, zm) as in (34), (45), and (48).

and using (16)-(19) in (20) above, we get

Σ =
(

Σ−1
1 +Σ−1

2

)−1
, (21)

µ = Σ
(

Σ−1
1 µ1 +Σ−1

2 µ2

)

, (22)

pm =







p2,m + pF3,m + pR3,m, for m = 1, 2, . . . ,M − 1,

p2,m + pF3,m, for m =M,
(23)

where µ2= (µ2,1, µ2,2, . . . , µ2,M)T and Σ2 is a diagonal matrix with m-th entry as [Σ2]m,m =

Σ2,m. Note that pj3,m for j ∈ {F,R} and pm, p2,m in (23) are the arguments to the sigmoid

functions and not the success probabilities of the Bernoulli distributions. Thus, the value of pm

in (23) can be outside the range [0, 1]. However, the output of the sigmoid function with input pm

will be in the range [0, 1] representing the success probability5. Also note that since in (19) we

set qF3,1(z1) = p(z1), this implies that in (23) pF3,1 = σ−1(λ). Both the true posterior distribution

in (9) and the approximated one in (20) are depicted in Fig. 1 for clarity.

Now as q1(w) approximates p(y|Φ(θ),w, η) which is a complex Gaussian function of w

then to simplify we set q1(w) ∝ CN (y;Φw, η−1IN). Expanding this Gaussian distribution and

completing the square for w, we get

Σ−1
1 = ηΦHΦ, Σ−1

1 µ1 = ηΦHy, (24)

5To derive (23), we used the following facts. Firstly,
∏N

n=1 Bern(x;φn) ∝ Bern(x;φ) where φ =
∏

N

n=1 φn
∏

N

n=1 φn+
∏

N

n=1(1−φn)
.

Secondly, the inverse sigmoid (logit) function is given by σ−1(x) = ln x
1−x

.



Fig. 3. EP steps for updating qR3,m−1(zm−1) and qF3,m(zm): (a) Eliminate qR3,m−1(zm−1) and qF3,m(zm) from the factor graph

to find the cavity distributions q
\R
3,m−1(zm−1) and q

\F
3,m(zm) as in (51) and (54), (b) Use p(zm|zm−1) factor to define the hybrid

posterior distribution S3,m−1,m(zm−1, zm) as in (56), and (c) Project S3,m−1,m(zm−1, zm) onto F and update qR3,m−1(zm−1)

and qF3,m(zm) as in (62)-(65).

using (24), (21) and (22) can be simplified as

Σ = Σ2 −Σ2Φ
H
(

η−1IN +ΦΣ2Φ
H
)−1

ΦΣ2, (25)

µ = Σ
(

ηΦHy +Σ−1
2 µ2

)

, (26)

Thus to compute (23), (25), and (26) we just need to update the approximation factors q2(w, z)

and q3(z). We first update q2(w, z) as follow. Since it is equal to the product of marginals

q2,m(wm, zm), we can instead update each marginal distribution individually and in parallel [26].

The steps involved in upating q2,m(wm, zm) are depicted in Fig. 2. Let Qm(wm, zm) denote the

marginal distribution obtained from (13). Then using (14) and (15) we can write

Qm(wm, zm) = Qm(wm)Qm(zm),

∝ CN (wm;µm,Σm,m)Bern(zm; σ(pm)), (27)

where µm is the m-th element of µ, and Σm,m = [Σ]m,m, m = 1, 2, . . . ,M . Following the EP

framework we first find the cavity distribution as

Q\2,m(wm, zm) =
Qm(wm, zm)

q2,m(wm, zm)
∝ Q\2,m(wm)Q\2,m(zm), (28)



where Q\2,m(wm) = CN (wm;µ\2,m,Σ\2,m) and Q\2,m(zm) = Bern(zm; σ(p\2,m)). The parame-

ters in these distributions are given by6

Σ\2,m =
(

Σ−1
m,m − Σ−1

2,m

)−1
, (29)

µ\2,m = Σ\2,m

(

Σ−1
m,mµm − Σ−1

2,mµ2,m

)

, (30)

p\2,m = pm − p2,m, (31)

Next we define the hybrid posterior distribution R2,m(wm, zm) as

R2,m(wm, zm) =
1

Cm

p(wm|zm)Q\2,m(wm, zm), (32)

where p(wm|zm) is defined in (6). The normalization constant Cm in (32) is computed as follow

Cm =
∑

zm∈{0,1}

∫

p(wm|zm)Q\2,m(wm, zm)dwm,

=

∫

CN (wm; 0, γ
−1
m )CN (wm;µ\2,m,Σ\2,m)dwmσ(p\2,m)

+

∫

δ(wm)CN (wm;µ\2,m,Σ\2,m)dwm(1− σ(p\2,m)),

= CN (0;µ\2,m,Σ\2,m + γ−1
m )σ(p\2,m) + CN (0;µ\2,m,Σ\2,m)(1− σ(p\2,m)), (33)

We now update the approximation Qm(wm, zm) by projecting R2,m(wm, zm) onto the closest

distribution in F by minimizing the following Kullback-Leibler (KL) divergence

Qm(wm, zm) = argmin
Qm(wm,zm)∈F

KL(R2,m(wm, zm)‖Qm(wm, zm)), (34)

since Qm(wm, zm) = Qm(wm)Qm(zm) from (27), it can be shown that the optimization problem

in (34) is equivalent to solving the following two separate problems [30]

Qm(wm) = argmin
Qm(wm)∈F

KL (R2,m(wm)‖Qm(wm)) , (35)

and

Qm(zm) = argmin
Qm(zm)∈F

KL (R2,m(zm)‖Qm(zm)) , (36)

6To derive (31) we use the fact that for a Bernoulli variable x, we have
Bern(x;φ1)
Bern(x;φ2)

∝ Bern(x;φ) where φ =

φ1/φ2
φ1/φ2+(1−φ1)/(1−φ2)

.



where R2,m(wm) and R2,m(zm) are the marginal distributions of R2,m(zm). The KL divergence

in (35) and (36) is minimized by using the moment matching property [33]. Thus for Qm(wm)

and Qm(zm) defined in (27) we set

µm = ER2,m [wm], (37)

Σm,m = ER2,m [|wm|
2]− |ER2,m [wm]|

2, (38)

σ(pm) = ER2,m [zm], (39)

The values of µm, Σm,m, and σ(pm) are given in the following lemma which is proved in

Appendix A.

Lemma 1. 1) The posterior mean value σ(pm) is given by

σ(pm) =

(

1 +
σ(−p\2,m)CN (0;µ\2,m,Σ\2,m)

σ(p\2,m)CN (0;µ\2,m,Σ\2,m + γ−1
m )

)−1

, (40)

2) The posterior mean value µm is given by

µm = µ\2,m + Σ\2,m
∂ lnCm

∂µ∗
\2,m

, (41)

where

∂ lnCm

∂µ\2,m

= −σ(pm)
µ∗
\2,m

Σ\2,m + γ−1
m

− σ(−pm)
µ∗
\2,m

Σ\2,m

, (42)

3) The posterior variance Σm,m is given by

Σm,m = Σ\2,m + (Σ\2,m)
2

[

∂ lnCm

∂Σ\2,m

−
∂ lnCm

∂µ∗
\2,m

∂ lnCm

∂µ\2,m

]

, (43)

where

∂ lnCm

∂Σ\2,m

= σ(pm)
|µ\2,m|2 −

(

Σ\2,m + γ−1
m

)

(

Σ\2,m + γ−1
m

)2 + σ(−pm)
|µ\2,m|2 −

(

Σ\2,m

)

(

Σ\2,m

)2 , (44)

Next we update the factor q2,m(wm, zm). Since q2,m(wm, zm)= q2,m(wm)q2,m(zm) we can

update the marginals separately. To update q2,m(wm) we write

q2,m(wm) =
Qm(wm)

Q\2,m(wm)
=

CN (wm;µm,Σm,m)

CN (wm;µ\2,m,Σ\2,m)
,

∝ CN (wm;µ2,m,Σ2,m), (45)

where

Σ2,m =
(

(Σm,m)
−1 −

(

Σ\2,m

)−1
)−1

, (46)

µ2,m = Σ2,m

(

(Σm,m)
−1 µm −

(

Σ\2,m

)−1
µ\2,m

)

, (47)



and to update q2,m(zm) we write

q2,m(zm) =
Qm(zm)

Q\2,m(zm)
=

Bern(zm; σ(pm))

Bern(zm; σ(p\2,m))
∝ Bern(zm; σ(p2,m)), (48)

where

σ(p2,m) =
CN (0;µ\2,m,Σ\2,m + γ−1

m )

CN (0;µ\2,m,Σ\2,m + γ−1
m ) + CN (0;µ\2,m,Σ\2,m)

, (49)

and using the logit function σ−1(.) on (49) we get

p2,m = ln CN (0;µ\2,m,Σ\2,m + γ−1
m )− ln CN (0;µ\2,m,Σ\2,m) (50)

Next we update the approximation factor q3(z) in (20). We start by updating qR3,m−1(zm−1)

and qF3,m(zm). The EP steps taken to update these factors are summarized in Fig. 3. Given

the marginal distribution on zm as Qm(zm) = qF3,m(zm)q2,m(zm)q
R
3,m(zm) which is also easily

observable from Fig. 1(b), we first find the cavity distribution q
\R
3,m−1(zm−1) as follow

q
\R
3,m−1(zm−1) =

Qm−1(zm−1)

qR3,m−1(zm−1)
= qF3,m−1(zm−1)q2,m−1(zm−1)

∝ Bern
(

zm−1; σ
(

p
\R
3,m−1

))

, (51)

where

σ
(

p
\R
3,m−1

)

=
σ
(

pF3,m−1

)

σ (p2,m−1)

σ
(

pF3,m−1

)

σ (p2,m−1) + σ
(

−pF3,m−1

)

σ (−p2,m−1)
, (52)

Solving (52) using the logit function σ−1(.) and adjusting the notation to update the m-th factor

we get

p
\R
3,m = p2,m + pF3,m, for m = 1, 2, . . . ,M − 1 (53)

Similarly, the cavity distribution q
\F
3,m(zm) can also be found by

q
\F
3,m(zm) =

Qm(zm)

qF3,m(zm)
= qR3,m(zm)q2,m(zm) ∝ Bern

(

zm; σ
(

p
\F
3,m

))

. (54)

Following a similar approach as in (52) and (53) we get

p
\F
3,m =







p2,m + pR3,m, for m = 1, 2, . . . ,M − 1

p2,m, for m =M
(55)

Once the cavity distributions are computed, we define the hybrid joint posterior distribution

on zm−1 and zm as

S3,m−1,m(zm−1, zm) = q
\R
3,m−1(zm−1)p(zm|zm−1)q

\F
3,m(zm), (56)



in which p(zm|zm−1) is given in (7). Since (56) involves a product of Bernoulli distributions,

S3,m−1,m(zm−1, zm) is a bivariate Bernoulli distribution where the marginal distributions on zm−1

and zm can be written as

S3,m−1(zm−1) =
∑

zm∈{0,1}

S3,m−1,m(zm−1, zm), (57)

S3,m(zm) =
∑

zm−1∈{0,1}

S3,m−1,m(zm−1, zm), (58)

and using their derived forms in Appendix B the means of these marginal Bernoulli distributions

are found as

ES3,m−1 [zm−1] =
1

Dm

σ(p
\R
3,m−1)

[

σ(p
\F
3,m)(1− τ10) + σ(−p\F3,m)τ10

]

, (59)

ES3,m [zm] =
1

Dm

σ(p
\F
3,m)

[

σ(p
\R
3,m−1)(1− τ10) + σ(−p\R3,m−1)τ01

]

, (60)

where the normalization constant Dm is given by

Dm = σ(−p\R3,m−1)σ(−p
\F
3,m)(1− τ01) + σ(p

\R
3,m−1)σ(−p

\F
3,m)τ10

+ σ(−p\R3,m−1)σ(p
\F
3,m)τ01 + σ(p

\R
3,m−1)σ(p

\F
3,m)(1− τ10), (61)

Now we update the approximation factors Qm−1(zm−1) and Qm(zm) by projecting

S3,m−1,m(zm−1, zm) in (56) onto the closest distribution in F . This is done by minimizing the

KL divergence between S3,m−1,m(zm−1, zm) and Qm−1(zm−1)Qm(zm). As in (34), this can be

achieved by solving two separate optimization problems

Qm−1(zm−1) = argmin
Qm−1(zm−1)∈F

KL (S3,m−1(zm−1)‖Qm−1(zm−1)) , (62)

and

Qm(zm) = argmin
Qm(zm)∈F

KL (S3,m(zm)‖Qm(zm)) , (63)

where the marginals S3,m−1(zm−1) and S3,m(zm) are computed from (57) and (58). The KL

divergence in (62) and (63) is minimized as before by using the moment matching property.

Thus we set σ(pm−1) = ES3,m−1 [zm−1] given in (59) and σ(pm) = ES3,m [zm] given in (60).

Finally we update the approximation factors qR3,m−1(zm−1) and qF3,m(zm) as follow. To update

qR3,m−1(zm−1) we write

qR3,m−1(zm−1) =
Qm−1(zm−1)

q
\R
3,m−1(zm−1)

∝ Bern(zm−1; σ(p
R
3,m−1)), (64)



σ(pR3,m) =
σ
(

p
\F
3,m+1

)

(1− τ10) + σ
(

−p\F3,m+1

)

τ10

σ
(

p
\F
3,m+1

)

(1− τ10) + σ
(

−p\F3,m+1

)

τ10 + σ
(

p
\F
3,m+1

)

τ01 + σ
(

−p\F3,m+1

)

(1− τ01)
,

for m = 1, 2, . . . ,M − 1, (66)

σ(pF3,m) = σ
(

p
\R
3,m−1

)

(1− τ10) + σ
(

−p\R3,m−1

)

τ01, for m = 2, . . . ,M, (67)

where σ(pR3,m−1) is computed from (66) in which the notation is adjusted to compute the m-th

factor. Similarly to update qF3,m(zm) we write

qF3,m(zm) =
Qm(zm)

q
\F
3,m(zm)

∝ Bern(zm; σ(p
F
3,m)), (65)

where σ(pF3,m) is computed from (67). This completes all the posterior updates required for an

EP’s iteration. The complete EP algorithm is summarized in Algorithm 1.

Remark 1. In order to improve the convergence of our proposed EP algorithm, when
(

(Σm,m)
−1

−
(

Σ\2,m

)−1 )−1
≥ 0, we follow the approach suggested in [26], [33] for an EP algorithm, and

damp the updates of the factors {q2,m(wm, zm)}Mm=1, {qF3,m(zm)}
M
m=2, and {qR3,m(zm)}

M−1
m=1 in

every EP iteration. Using a smoothing mechanism the parameters Σ2,m, µ2,m, p2,m and pj3,m,

j ∈ {F,R}, are damped according to the equation

ψdamp = βψ + (1− β)ψold (68)

where β ∈ (0, 1) is the smoothing factor, ψold represents the parameter in the previous EP

iteration and ψ is the value calculated according to the dervations in Section III. The superscript

damp denotes the value of the parameter after applying the smoothing mechanism. The above

damped updates replace the respective undamped ones in the next iteration of EP. Further, to

improve the convergence of EP we use the annealed damping scheme as suggested in [33] where

we start the EP algorithm with β = 0.5 and progressively anneal its value by multiplying it with

a constant κ < 1 after every iteration of EP until convergence. Based on empirical evidence

we select κ = 0.945 for the considered channel estimation problem in this paper. Note that as

indicated in [33] we can also have
(

(Σm,m)
−1 −

(

Σ\2,m

)−1
)−1

< 0 and when this happen we

just set Σ2,m = 102 and use the above smoothing mechanism.



Algorithm 1: EP Algorithm
Input: y

Parameters: ξ,θ.

/* EP run */

for each n = {1, 2, . . . , nEP }

1) Compute Q(w, z) parameters p, Σ, and µ using (23), (25),

and (26), respectively.

/* Updating factor q2(w, z): */

for each m = {1, 2, . . . ,M}

1) Find Q\2,m(wm, zm) parameters Σ\2,m, µ\2,m, and

p\2,m from (29), (30), and (31), respectively.

2) Update Qm(wm, zm) by computing pm from (40),

µm from (41), and Σm,m using (43).

3) Update the factor q2,m(wm, zm) by computing Σ2,m

from (46), µ2,m from (47), and p2,m using (50).

end

/* Updating factor q3(z): */

/* Forward pass: */

for each m = {1, 2, . . . ,M}

1) To update q
\R
3,m(zm) factor, compute p

\R
3,m from (53),

if m < M .

2) Update qF3,m(zm) by computing pF3,m using (67),

if m > 1.

end

/* Reverse pass: */

for each m = {M,M − 1, . . . , 1}

1) To update q
\F
3,m(zm) factor, compute p

\F
3,m from (55).

2) Update the factor qR3,m(zm) by computing pR3,m from

(66), if m < M .

end

/* Check for convergence: Keep track of µ for each nth iteration */

if
||µn−µ

n−1||

||µn−1||
< ǫEP then

break;

end

end

Output: µ, Σ, p



IV. EXPECTATION MAXIMIZATION ALGORITHM: E-STEP AND M-STEP DERIVATIONS

In this section we evaluate the E-Step and M-step of the EM algorithm as discussed in (11)

and (12). Using EM we aim to iteratively find the ML estimate of the unknown parameters

ξ = (τ , γ1, γ2, . . . , γM , η, θ)
T . For the complete data defined in section II as d = [yT ,wT , zT ]T

and using the EP’s approximation to the posterior distribution from (13), the E-step in (11) can

be written as

L(ξ; ξl) ≈ EQ(w,z|y,ξl) [ln p(y,w, z|ξ)] ,

= EQ(w,z|y,ξl) [ln p(y|Φ(θ),w, η)p(w|z,γ)p(z|p10, p01)] , (69)

Since jointly maximizing (69) over ξ is difficult, here we instead update ξ one element at a

time while keeping the other elements fixed to their current estimates in the l-th iteration [43].

To estimate τ10 and τ01, since only p(z|τ ) involves these parameters, (69) simplifies to

L1(τ ; τ
l) = EQ(w,z|y,ξl) [ln p(z|p10, p01)]

=

M
∑

m=2

[

ln(1− τ01) + σ
(

p(l+1)
m

)

σ
(

p
(l+1)
m−1

)

× ln
(1− τ10)(1− τ01)

τ01τ10
+ σ

(

p(l+1)
m

)

ln
τ01

(1− τ01)

+σ
(

p
(l+1)
m−1

)

ln
τ10

(1− τ01)

]

+ const, (70)

where we use the fact that EQ[zm] = σ(pm). Maximizing L1(.) with respect to (w.r.t) τ , we get

the update equations as

τ
(l+1)
01 =

∑M
m=2

[

σ
(

p
(l+1)
m−1

)(

1− σ
(

p
(l+1)
m

))]

∑M
m=2 σ

(

p
(l+1)
m−1

) , (71)

τ
(l+1)
10 =

∑M
m=2

[

σ
(

p
(l+1)
m

)(

1− σ
(

p
(l+1)
m−1

))]

∑M
m=2

(

1− σ
(

p
(l+1)
m−1

)) , (72)

Similarly, maximizing L(.) w.r.t γm and η we get

γ(l+1)
m =

(

Σ(l+1)
m,m + |µ(l+1)

m |2
)−1

, (73)

and,

η(l+1) =
N

‖y−Φ(θl)µ(l+1)‖2 + tr {Φ(θl)Σ(l+1)ΦH(θl)}
, (74)

where to get (73) we use the fact that EQ[|wm|2] = Σm,m + |µm|2 in which µm and Σm,m are

defined in (27), and in (74) we use the fact that EQ[w] = µ and EQ[wwH ] = Σ + µµH . Both

Σ and µ are given in (25) and (26).



Finally to update θ for dictionary learning and minimizing the modeling error, the objective

function in (69) can be simplified to

L2(θ) = ‖y −Φ(θ)µ(l+1)‖2 + tr
{

Φ(θ)Σ(l+1)Φ(θ)H
}

, (75)

As seen from (75), a closed-form update equation for θ can not be obtained, but we can

use numerical methods, for instance, gradient descent (GD) to update θ in the l-th iteration.

However, GD employs backtracking line search [44] to adaptively select the step-size which

requires constant evaluation of the objective function in (75). Thus, to reduce the computational

complexity we adopt the following single-step update for θ with a constant step-size as suggested

in [17], [20], i.e.,

θ(l+1) = θl −
rθ
100

sign
{

∇θlL2

(

θl
)}

, (76)

where rθ is the grid interval, and sign{.} represent the signum function which has negligible

computational complexity. The step size rθ/100 divides the grid interval into 100 equal parts,

thus in the worst case the true values may be obtained in less than 100 iterations. Further,

this step size ensures that the final direction mismatch error is less than 1% of rθ which for

sufficiently small rθ is negligible to have significant impact on the channel estimation error.

The mth term of the gradient ∇θL2(θ) is given by

[

∇θlL2

(

θl
)]

m
=

∂

∂θlm
L2

(

θl
)

= 2α
(l+1)
1 ℜ{ȧH(θlm)X

HXa(θlm)}+ 2ℜ{ȧH(θlm)X
Hα

(l+1)
2 }, (77)

in which, α
(l+1)
1 = |µ(l+1)

m |2 + Σ
(l+1)
m,m , α

(l+1)
2 = X

∑

n 6=mΣ
(l+1)
n,m a(θln) − y

(l+1)
\m

(

µ
(l+1)
m

)∗

, and

y
(l+1)
\m = y − X

∑

n 6=m(µ
(l+1)
n a(θln)). The scalar Σ

(l+1)
n,m =

[

Σ(l+1)
]

n,m
and the vector ȧ(θlm) =

∂
∂θlm

a(θl) is computed from (2) for m = 1, 2, . . . ,M .

This completes all the sequential updates required to estimate ξ in the (l + 1)-st iteration.

The parameters in ξ are repeatedly updated in the EM iterations until convergence. The overall

EM-EP algorithm is summarized in Algorithm 2.

A. Computational Complexity of EM-EP algorithm

The computational complexity of the proposed EP algorithm per iteration is dominated by

(25) and (26) which can be solved in O(NM2) computations. This complexity is the same as

that of the EP algorithm proposed in [33]. For the EM part of the algorithm, the dominant terms



Algorithm 2: Overall EM-EP Algorithm
Input: y

Parameters: ξ(0),θ(0), µ2,m = 0, Σ2,m = 102, p2,m = 0, pF3,m = 0 for m = 2, . . . ,M , pR3,m = 0 for

m = 1, 2, . . . ,M − 1.

/* EM-EP run */

for each l = {0, 1, 2, . . . , nEM − 1}

1) Given ξl and θl run the EP algorithm described in

Algorithm 1 to generate µ(l+1), Σ(l+1), and p(l+1).

2) Check for convergence:

if
||µ(l+1)−µ

l||

||µl||
< ǫEM then

break;

end

3) Use µ(l+1), Σ(l+1), and p(l+1) to update τ10, τ01,

γ, η, and θ using (71), (72), (73), (74), and (76), respectively.

end

Output: ĥ = A(θ(l+1))µ(l+1)

include the update of η by (74) which takes O(NM2) computations, and the update of θ by

(76) which takes O(GNM) computations. Since M is usually greater than G, the complexity

of the proposed EM-EP algorithm is O(NM2) per iteration which is the same as that of the

off-grid SBL algorithm proposed in [17].

V. SIMULATION RESULTS

In this section, we investigate the performance of the proposed EM-EP algorithm for massive

MIMO channel estimation. We consider a single-cell where a BS equipped with a ULA has G

antennas and transmits N pilot symbols to a reference user. The elements in the pilot matrix X

are selected from a circularly symmetric complex Gaussian distribution with unit variance, and

the DL channel h between the BS and the user is generated using the 3GPP spatial channel model

[45] with urban-micro cell environment. We assume that each channel realization is composed

of Ls scatterers with AoDs randomly located in the interval [−90o, 90o], and each scatterer has

Lp paths with the AoDs randomly generated and concentrated in an angular spread denoted by

A. Unless stated otherwise, the AoDs of all the paths in a channel realization are continuous-

valued variables and thus may not lie on the assumed angular grid. The DL channel frequency

is selected as 2.17 GHz and the spacing between adjacent antennas in the ULA is set as d = c
2f0

where c is the speed of light and f0 = 2 GHz.
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Fig. 4. Magnitude of the elements in w for four independent trials with G = 128, M = 200, N = 48, Ls = 3, Lp = 10, and

SNR = 10 dB, and for (a) EM-EP, (b) SuRe-CSBL, (c) S-TCS, (d) EM-EP-B, (e) PC-VB, (f) EM-BG-GAMP. The dotted

lines indicate locations of the true AoDs.

In order to compare our algorithm with the EP algorithm proposed in [33], we need to extend

this algorithm. In [33] the authors modeled the elements of the support (latent) vector z with

an iid Bernoulli prior distribution having a parameter p0 which, along with the other model

parameters, is assumed to be known. To apply their approach to the problem under consideration

here, we need to estimate these parameters. Therefore we extend the method in [33] with the

EM algorithm as discussed in section II and refer to the resulting algorithm as EM-EP-B. More

specifically, in the (l+1)-st iteration of EM-EP-B algorithm, p0 is updated according to p
(l+1)
0 =



Fig. 5. Channel estimation error vs. number of pilot symbols N with parameters G = 128, M = 200, SNR=10 dB, and for

(a) Ls = 3, Lp = 10, and A = 10o, (b) Ls = 4, Lp = 10, and A = 10o.

Fig. 6. Channel estimation error vs. SNR (dB) with parameters G = 128, M = 200, N = 64, and for (a) Ls = 3, Lp = 10,

and A = 10o, (b) Ls = 4, Lp = 10, and A = 10o.

1
M

∑M
m=1 σ(p

(l+1)
m ). Moreover, the other model parameters, i.e., η, γm, and (to integrate grid

refining) θ are updated using our results in (73), (74), and (76) from section IV.

We also show the performances of SBL [46], Off-grid SBL [17], PC-SBL [21], PC-VB [20],

EM-BG-GAMP [24], TCS [23], S-TCS [10], and SuRe-CSBL [25]. For Off-grid SBL, PC-SBL,

PC-VB, SuRe-CSBL, EM-EP-B, and EM-EP algorithms, the dictionary A(θ) is initialized to

be a (partial) DFT matrix. For the other algorithms, however, A(θ) is the fixed DFT matrix as



required for the derivation of the algorithms and state evolution analysis7. In all the experiments,

we initialized the EM-EP algorithm with λ(0) = 0.3, τ
(0)
01 = 0.1, τ

(0)
10 = λ(0)

1−λ(0) τ
(0)
01 , η(0) = γ

(0)
m =

(

||y||2

(SNR(0)+1)N

)−1

with SNR(0) = 100, and θ
(0)
m = sin−1

(

−1 + 2m
M

)

for m = 1, 2, . . . ,M as in

[24], [25]. The maximum iterations of EM and EP algorithms are set as nEP = nEM = 100 and

the tolerance coefficients are selected to be ǫEP = ǫEM = 10−4. The channel estimation error is

computed by using the following normalized mean-squared-error (NMSE),

NMSE (dB) = 10 log10
E[||ĥ− h||2]

E[||h||2]
, (78)

in which ĥ is the channel estimate.

In Fig. 4 we investigate the performance of the selected channel estimation algorithms for

recovering the sparse vector w with non-uniform burst sparsity1. We consider a BS with G = 128

antennas transmitting N = 48 pilot symbols to the user with SNR = 10 dB. The physical

channel between the BS and the user has Ls = 3 scatterers with Lp = 10 paths per scatterer. The

channel estimators assume a fixed uniformly-spaced angular grid with θm = sin−1
(

−1 + 2m
M

)

for m = 1, 2, . . . ,M with M = 200, and the physical AoDs corresponding to the three non-zeros

clusters are assumed to be located on the grid points at m = 81, 82, . . . , 90,100, 101, . . . , 109,

122, 123, 124, 128, 129, . . . , 134. We get the following observations from Fig. 4. Firstly, when the

non-zero clusters are closely located as shown by the dotted lines in Fig. 4, the algorithms such

as PC-VB which tune each coefficient based on the nearest neighbor, exhibit a performance

loss due to the leakage of energy into the bins between the adjacent clusters. For instance,

observe the energy leakage around −3o, 8o, and 15o in Fig. 4 (e). Secondly, the algorithms such

as EM-EP-B and EM-BG-GAMP which aim to recover the coefficients individually result in

outliers at random positions far away from the true AoDs. This effect, when pronounced as in

the case of EM-BG-GAMP, causes significant performance loss. Thirdly, SuRe-CSBL and S-

TCS which employ a Markov prior on the support vector z eliminate the outliers, but suffer from

significant leakage of energy into the bins near the clusters true AoDs. Finally, our proposed

EM-EP algorithm eliminates the leakage of energy as well as the occurrence of outliers, and

much more accurately represents the channel.

7For consistency, to initialize EM-EP-B, we set p
(0)
0 = λ(0) whereas the other hyperparameters and the termination condition

were set the same as those for EM-EP. To compare our results with TCS and S-TCS, all the hyperparameters were updated using

the EM update equations from [24] except for the transition probabilities for S-TCS which were updated using the posterior

means in (71) and (72).



Fig. 7. Channel estimation error vs. Angular spread A with parameters G = 128, M = 200, N = 64, and for (a) Ls = 3,

Lp = 10, and SNR = 10 dB, (b) Ls = 4, Lp = 10, and SNR = 10 dB.

Fig. 8. Channel estimation error vs. grid length M with parameters G = 150, N = 64, SNR = 10 dB, and for (a) Ls = 3,

Lp = 10, and A = 10o, (b) Ls = 4, Lp = 10, and A = 10o.

Fig. 5 shows the channel estimation error versus the number of pilot symbols N for the

selected channel estimation schemes. We consider the massive MIMO channel with Ls = 3

or 4 scatterers and Lp = 10 paths per scatterer. The AoDs for all the paths are randomly

generated continuous-valued parameters with no on-grid assumption as before, and all the paths

per scatterer are concentrated in an angular spread A = 10o. We observe that in both cases

shown in Figs. 5(a) and 5(b), the performance of the algorithms improve with N and EM-EP

significantly outperforms all the algorithms. The channel has more paths in case of Ls = 4 in

Fig. 5(b) and thus larger values of N are required to reach the same level of performance. SBL,

Off-grid SBL, EM-BG-GAMP, and EM-EP-B aim to recover the coefficients individually and



hence their performance is degraded due to the occurrence of outliers in the angular domain.

Compared to SBL and Off-grid SBL which assume an iid complex Gaussian prior on w, EM-

BG-GAMP, TCS, and EM-EP-B assume an iid Bernoulli-Gaussian (BG) prior where the level

of sparsity in w is directly adjusted by the weight of the Bernoulli component. This weight

determines the fraction of coefficients that are a priori set to zero. Thus, EM-BG-GAMP and

TCS perform better than the SBL-based algorithms. On the other hand, EM-EP-B includes the

correlations in w by using Σ in its estimation of the posterior distribution and also performs

grid refining to learn the dictionary. Therefore EM-EP-B outperforms both EM-BG-GAMP and

TCS. PC-SBL and PC-VB aim to recover each coefficient in w according to its nearest neighbor.

PC-SBL uses an SBL-based algorithm and tunes the precision of each coefficient according to

the precisions of its immediate neighbors but using a sub-optimal solution. PC-VB avoids this

sub-optimality by linking a support vector with a multinoulli prior to every coefficient and using

a variational Bayes (VB) [22] based algorithm. Hence, PC-VB performs better than PC-SBL,

but its performance suffers due to the leakage of energy when multiple non-zeros clusters are

closely located. Performance of PC-VB is inferior to that of EM-EP-B. Due to its dependence on

the VB method, PC-VB may approximate the true distribution locally around one of its several

sub-optimal modes, whereas EM-EP-B employs the EP method which approximates the true

distribution globally over a wider support and thus results in a better performance [36]. Finally

in contrast to S-TCS and SuRe-CSBL, EM-EP takes into account the correlation in w thereby

outperforming the former two algorithms.

Fig. 6 shows the channel estimation error versus SNR for the selected algorithms. We consider

the same scenario as in Fig. 5 except that the number of pilot symbols is now fixed to N = 64.

We observe that the performance of the algorithms improves with SNR and the proposed EM-EP

algorithm has the best performance of all the schemes. In case of Ls = 4 scatterers the channel

has more paths and therefore has more chances of having non-equal size clusters. Therefore

in this case the performance of EM-EP-B which aims to recover the coefficients individually

deteriorates and is worse than that of SuRe-CSBL. Fig. 6 also shows that while the performance

of all the methods reaches a floor at some value of SNR (This is more evident in Fig. 6(b).),

the proposed EM-EP continues to improve with SNR.

Fig. 7 shows the channel estimation error for different values of the angular spread A. We

consider two cases of Ls = 3 and Ls = 4 scatterers as before and with G = 128, M = 200,

and N = 64. The SNR value is fixed to 10 dB. As A increases severe non-equal size burst



sparsity may exist with isolated paths, and thus as observed from Fig. 7 the performance of the

algorithms degrades accordingly. For a fixed A, such non-equal size burst sparsity becomes more

intense when the channel has more paths as in case (b), and hence the channel estimation errors

are relatively higher. However, in both cases the EP-based algorithms show significant gains in

performance, and the proposed EM-EP algorithm outperforms all the algorithms. In Fig. 7 we

also show the performance of EM-EP when no grid refining is performed, i.e., no optimization

over AoDs θ, denoted in Fig. 7 as EM-EP(no-GR). It can be seen that EM-EP(no-GR) performs

better than most of the other algorithms due to the use of the EP method and taking into account

the correlation in w.

In Fig. 8 we examine the effect of varying the grid length M on the channel estimation

performance of the algorithms. Consider the channel with Ls = 3 or 4 scatterer where the BS

has G = 150 antennas, the number of pilot symbols are fixed to N = 64, angular spread is

selected to be A = 10o, and the SNR is set to 10 dB. It is observed that in both cases shown in

Fig. 8 the performance of the algorithms improve with M , and our proposed EM-EP algorithm

outperforms all the algorithms for large M . The parameter M defines the resolution of the initial

angular grid which is here given by ∆θ(0) = sin−1(2/M). When M is small, the initial grid

is coarse and thus the algorithms suffer from convergence to local minima resulting in higher

channel estimation error. As M increases the grid resolution improves which in turn improves

the channel estimation performance of the algorithms. Further, for a fixed number of paths, as M

increases the level of sparsity increases and thus the non-zero coefficients are more successfully

recovered by the algorithms.

Fig. 9 shows the average channel estimation performance of the EM-EP-B and EM-EP

algorithms over the EP iterations when the EM iterations for both algorithms are either fixed

to 1, 50, or 100. The normalized mean squared error plotted in the figure is computed after the

selected number of EM iterations are run, and thus the error corresponds to the EP run in the last

iteration of EM. The estimation error is defined as NMSE (dB) = 10 log10
E[||hn−h||2]

E[||h||2]
where hn

is the channel estimate obtained at the n-th iteration of the EP-B or EP algorithm. We see that

when the EM iteration is fixed to 1, our proposed EP algorithm converges faster than the EP-B

algorithm with a significant improvement in channel estimation. As the EM iterations increase

both algorithms converge in just 3 iterations, but as expected EM-EP continues to maintain a small

edge in channel estimation performance. This improvement in the convergence performance of

the EP-based algorithms is achieved due to the following two reasons. Each full run of the EP-B
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Fig. 9. Channel estimation error vs. EP iterations when EM

iterations are either 1, 50, or 100, and other parameters are

G = 128, N = 64, M = 200, Ls = 3, Lp = 10, and

A = 10o.
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Fig. 10. Convergence error of estimating the model param-

eters ξ vs. EM iterations when EP-B and EP iterations are

100, and other parameters are G = 128, N = 64, M = 200,

Ls = 3, Lp = 10, and A = 10o.

and EP algorithms in an EM iteration is initialized using the approximate distribution Q(w, z)

obtained in the previous EM iteration. Our experiments show that such initialization of the

EP algorithm results in an improved estimation and convergence performances. Another reason

is that as the EM iterations continue, the EM estimates of the model parameters ξ converges

to the local maximum of the likelihood function p(y|ξ), and the EP-based algorithms closely

approximate the true joint posterior distribution on the sparse vector and its support.

Finally, in Fig. 10 we show the average convergence error performance of the EM-EP-B and

EM-EP algorithms in estimating the model parameters ξ over the EM iterations. The iterations

of the EP-B and EP algorithms are fixed to 100 and the results are averaged over 1000 Monte

Carlo trials. The convergence error plotted in the figure is defined as convergence error (dB) =

10 log10
||ξ(l+1)−ξl||2

||ξl||2
where index l represents the l-th iteration of EM, and l = 1, 2, . . . , nEM . It

is observed that in the first four iterations the error of EM-EP is larger than EM-EP-B due to

the fact that EM-EP is also estimating the Markov transition probabilities τ01 and τ10. However,

after that EM-EP outperforms EM-EP-B. Moreover, after 70-80 iterations EM-EP-B has reached

a plateau whereas EM-EP continues to improve. As observed the convergence error reduces with

the EM iterations until the EM estimates converges to a local maximum of the objective function.

Furthermore, comparing Figs. 9 and 10, we observe that after 50 EM iterations, any further EM

iteration does not improve the channel estimation performance of EM-EP-B algorithm, whereas



as expected our proposed EM-EP algorithm continues to improve.

VI. CONCLUSIONS

We consider the problem of downlink channel estimation in the multi-user massive MIMO

systems. To capture the clustered sparse nature of the channel, we assume a conditionally

independent identically distributed Bernoulli-Gaussian prior on the sparse vector representing

the channel, and a Markov prior on its support vector. We develop an expectation propagation

(EP) based algorithm to approximate the intractable joint distribution on the sparse vector and

its support with a distribution from an exponential family. To find the maximum likelihood

estimates of the hyperparameters and the angular grid points, we integrated the EP algorithm with

the expectation maximization (EM) algorithm. The resulting EM-EP algorithm directly estimates

the hyperparameters and the clustered sparse downlink channel. Simulation results show that due

to the inclusion of the correlations in the sparse vector in the approximated posterior and the use

of EP method, our EM-EP algorithm can recover the channel with non-equal size burst sparsity.

Further, the proposed EM-EP algorithm outperforms the existing algorithms in the literature

including S-TCS and SuRe-CSBL algorithms which also use a Markov prior on the support

vector.

APPENDIX A: PROOF OF LEMMA 1

Given the hybrid posterior distribution as

R2,m(wm, zm) =
1

Cm

p(wm|zm)CN (wm;µ\2,m,Σ\2,m)×

Bern(zm; σ(p\2,m)), (79)

where the normalization constant Cm is written as

Cm =
∑

zm∈{0,1}

∫

p(wm|zm)CN (wm;µ\2,m,Σ\2,m)×

Bern(zm; σ(p\2,m))dwm, (80)

First, we compute ∂ lnCm

∂µ∗
\2,m

in (82) which can be written as

∂ lnCm

∂µ∗
\2,m

=
ER2,m [wm]

Σ\2,m

−
µ\2,m

Σ\2,m

, (81)

Setting µm = ER2,m [wm] in (81) and rearranging it we get



∂ lnCm =
1

Cm

∑

zm∈{0,1}

∫

p(wm|zm)∂
[

CN (wm;µ\2,m,Σ\2,m)
]

Bern(zm; σ(p\2,m))dwm,

=
1

Cm

∑

zm∈{0,1}

∫

p(wm|zm)CN (wm;µ\2,m,Σ\2,m)Bern(zm; σ(p\2,m))

[

wm − µ\2,m

Σ\2,m

]

dwm∂µ
∗
\2,m,

(82)

∂ lnCm =
1

Cm

∑

zm∈{0,1}

∫

p(wm|zm)∂
[

CN (wm;µ\2,m,Σ\2,m)
]

Bern(zm; σ(p\2,m))dwm

=
1

Cm

∑

zm∈{0,1}

∫

p(wm|zm)CN (wm;µ\2,m,Σ\2,m)Bern(zm; σ(p\2,m))

×
[ |wm − µ\2,m|2

(

Σ\2,m

)2 −
1

Σ\2,m

]

dwm∂Σ\2,m, (83)

∂ lnCm =
1

Cm

∑

zm∈{0,1}

∫

p(wm|zm)CN (wm;µ\2,m,Σ\2,m)∂
[

Bern(zm; σ(p\2,m))
]

dwm

=
1

Cm

∑

zm∈{0,1}

∫

p(wm|zm)CN (wm;µ\2,m,Σ\2,m)Bern(zm; σ(p\2,m))

×
[ zm
σ(p\2,m)

−
(1− zm)

(1− σ(p\2,m))

]

dwm∂σ(p\2,m), (84)

S3,m−1,m(zm−1, zm)

∝ exp
{

zm−1 ln
σ
(

p
\R
3,m−1

)

τ10

σ
(

−p\R3,m−1

)

(1− τ01)
+ zm ln

σ
(

p
\F
3,m

)

τ01

σ
(

−p\F3,m

)

(1− τ01)

+ zm−1zm ln
(1− τ10)(1− τ01)

τ10τ01

}

, (85)

µm = µ\2,m + Σ\2,m
∂ lnCm

∂µ∗
\2,m

, (86)

Next we compute ∂ lnCm

∂Σ\2,m
in (83) and write it as

∂ lnCm

∂Σ\2,m

=
ER2,m

[

| wm − µ\2,m |2
]

(

Σ\2,m

)2 −
1

Σ\2,m

, (87)



Expanding the ER2,m [.] operator in (87) and using (86) in it then rearranging gives

ER2,m [|wm|
2] = Σ\2,m +

(

Σ\2,m

)2 ∂ lnCm

∂Σ\2,m

+ |µ\2,m|
2+

Σ\2,mµ\2,m
∂ lnCm

∂µ\2,m
+ Σ\2,mµ

∗
\2,m

∂ lnCm

∂µ∗
\2,m

, (88)

subtracting |ER2,m [wm]|2 from both sides of (88) and using (38) and (86) we get

Σm,m = Σ\2,m +
(

Σ\2,m

)2

[

∂ lnCm

∂Σ\2,m
−
∂ lnCm

∂µ∗
\2,m

∂ lnCm

∂µ\2,m

]

, (89)

Finally we compute ∂ lnCm

∂σ(p\2,m)
in (84) which can be written as

∂ lnCm

∂σ(p\2,m)
=

ER2,m [zm]

σ(p\2,m)
−

(1− ER2,m [zm])

(1− σ(p\2,m))
, (90)

rearranging (90) and using (39) we get

σ(pm) = σ(p\2,m) + σ(p\2,m)(1− σ(p\2,m))
∂ lnCm

∂σ(p\2,m)
, (91)

where using (33), we compute

∂ lnCm

∂σ(p\2,m)
=

1

Cm

[

CN (0;µ\2,m,Σ\2,m + γ−1
m )−

CN (0;µ\2,m,Σ\2,m)
]

, (92)

inserting (92) in (91) and again using (33) gives (40).

APPENDIX B: DERIVING THE MARGINALS IN (57) AND (58)

Let the joint probability mass function (pmf) on zm−1 and zm can be defined as p(zm−1 =

i, zm = j) = φij for i, j ∈ {00, 01, 10, 11}. This pmf can be written as

p(zm−1, zm) = [φ11]
zm−1zm [φ01]

(1−zm−1)zm ×

[φ10]
zm−1(1−zm) [φ00]

(1−zm−1)(1−zm) , (93)

∝ exp{zm−1ℓ1 + zmℓ2 + zm−1zmℓ3}, (94)

where we define

ℓ1 = ln
φ10

φ00
, ℓ2 = ln

φ01

φ00
, ℓ3 = ln

φ00φ11

φ01φ10
, (95)



Next we use (95) and
∑

i,j φij = 1 to get the solution to this system of equations as

φ00 =
1

1 + exp{ℓ1}+ exp{ℓ2}+ exp{ℓ1 + ℓ2 + ℓ3}
, (96)

φ01 =
exp{ℓ2}

1 + exp{ℓ1}+ exp{ℓ2}+ exp{ℓ1 + ℓ2 + ℓ3}
, (97)

φ10 =
exp{ℓ1}

1 + exp{ℓ1}+ exp{ℓ2}+ exp{ℓ1 + ℓ2 + ℓ3}
, (98)

φ11 =
exp{ℓ1 + ℓ2 + ℓ3}

1 + exp{ℓ1}+ exp{ℓ2}+ exp{ℓ1 + ℓ2 + ℓ3}
, (99)

Now the joint distribution on zm−1 and zm in our case is given in (56) as

S3,m−1,m(zm−1, zm) = q
\R
3,m−1(zm−1)p(zm|zm−1)q

\F
3,m(zm), (100)

using (7), (51), and (54) in (100) and simplifying we get (85). Comparing (94) and (85), we see

that

ℓ1 = ln
σ
(

p
\R
3,m−1

)

τ10

σ
(

−p\R3,m−1

)

(1− τ01)
, (101)

ℓ2 = ln
σ
(

p
\F
3,m

)

τ01

σ
(

−p\F3,m

)

(1− τ01)
, (102)

ℓ3 = ln
(1− τ10)(1− τ01)

τ10τ01
, (103)

and using the above equations in (96)-(99) we get

φ00 =
1

Dm

σ(−p\R3,m−1)σ(−p
\F
3,m)(1− τ01), (104)

φ01 =
1

Dm

σ(−p\R3,m−1)σ(p
\F
3,m)τ01, (105)

φ10 =
1

Dm

σ(p
\R
3,m−1)σ(−p

\F
3,m)τ10, (106)

φ11 =
1

Dm

σ(p
\R
3,m−1)σ(p

\F
3,m)(1− τ10), (107)

where the normalization constant Dm is given by

Dm

= σ(−p\R3,m−1)σ(−p
\F
3,m)(1− τ01) + σ(p

\R
3,m−1)σ(−p

\F
3,m)τ10

+ σ(−p\R3,m−1)σ(p
\F
3,m)τ01 + σ(p

\R
3,m−1)σ(p

\F
3,m)(1− τ10), (108)



Now once φijs’ are computed in (104)-(107), the marginal distributions on zm−1 and zm can be

found from

S3,m−1(zm−1) = [φ10 + φ11]
zm−1 [φ01 + φ00]

(1−zm−1) , (109)

S3,m(zm) = [φ01 + φ11]
zm [φ10 + φ00]

(1−zm) , (110)

where (109) and (110) is derived from (93) by marginalizing over the other variable. Notice

that the means of these marginal distributions are given by ES3,m−1 [zm−1] = φ10 + φ11 and

ES3,m [zm] = φ01 + φ11 which can be easily computed using (104)-(107).
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