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Abstract—In this correspondence, we propose a diversity-
achieving retroreflector-based fine tracking system for free-space
optical (FSO) communications. We show that multiple retrore-
flectors deployed around the communication telescope at the
aerial vehicle save the payload capacity and enhance the outage
performance of the fine tracking system. Through the analysis
of the joint-pointing loss of the multiple retroreflectors, we
derive the ordered moments of the received power. Our analysis
can be further utilized for studies on multiple input multiple
output (MIMO)-FSO. After the moment-based estimation of the
received power distribution, we numerically analyze the outage
performance. The greatest challenge of retroreflector-based FSO
communication is a significant decrease in power. Still, our
selected numerical results show that, from an outage perspective,
the proposed method can surpass conventional methods.

Index Terms—Free-space optics, fine tracking, retroreflector,
MIMO-FSO.

I. INTRODUCTION

FOR long-distance wireless communications with high
capacity, free-space optical (FSO) communications has

become one of the most promising communications tech-
nologies. Unlike radio-frequency (RF) cellular communication
networks, FSO communications are one-to-one due to the
high directivity of laser beams. For precise beam pointing
in FSO communications then, it is imperative to have a
pointing, acquisition, and tracking (PAT) system [1], [2]. The
PAT system is divided into two steps–coarse pointing and
fine tracking [3]. At the initial stage, coarse pointing aims
to achieve link availability, and, during the communication,
fine tracking maintains the link from mechanical jitters and
atmospheric turbulence.

A coarse pointing between the optical ground station (OGS)
and the unmanned aerial vehicle (UAV) begins with the
transmission of the UAV location information from the UAV
to the OGS [3]. Then the OGS transmits a beacon beam that
covers the area where the UAV can exist. When the UAV
receives the beacon beam, it aligns the pointing to the OGS
and transmits the beam back to the incoming beam direction
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so that also the OGS can receive the beacon beam. When
both sides are well-aligned through beacon beam reception,
the fine tracking stage begins. During the fine tracking stage,
the system requires more precise and fast compensation of
pointing errors to keep both transceivers within the field of
view. For this reason, quadrant detector (QD) and fast steering
mirror (FSM) are widely used in this stage [4]. Based on the
conventional fine tracking method using QD and FSM, we
propose a fine tracking method that reduces outage probability
and saves the power budget of the UAV.

In conventional fine tracking methods for two-way FSO
communications, a beacon transmitter is deployed at both
unmanned aerial vehicles (UAVs) and ground stations. In
practice, however, the payload and power budget of UAVs
are limited. We introduce a fine tracking method that replaces
the beacon transmitter at the UAV with the multiple corner-
cube reflectors (CCRs)–a device that reflects incident light in
the same direction–to assist tracking at the ground station [5].
There have been many studies on FSO communications in
which a modulated retroreflector (MRR) replaces one side
of the conventional FSO transceivers. In [6], the authors
analyze outage probability, average bit error rate (BER), and
ergodic capacity for the MRR-based FSO communications
when nonzero boresight pointing error is assumed. The authors
in [7], test (through analysis and simulation) the feasiblity of
the FSO communication using the micro CCR array. Diffrent
from previous studies, our proposed method assumes that the
deployed CCRs are separated enough to achieve maximum
path diversity. Also, we use passive CCRs to reflect a non-
modulated beacon signal. Since each of the CCRs at the
UAV sends the reflected beam back to the ground station, the
received signal power is a sum of the uncorrelated reflected
signals. This property allows the system to significantly reduce
the link outage by achieving spatial diversity. Additionally,
a number of separated micro CCR arrays can replace CCRs
for cost and weight reduction. However, we consider classical
CCRs to avoid excessive assumptions and maintain mathemat-
ical simplicity.

In our proposed method, we base the methodology of
the outage-performance analysis on the moment-matching
approximation of the probability distribution function (PDF).
The product of the uplink and downlink channel fading can
be approximated as the α-µ distribution [8] and the sum
of the α-µ distributed random variables (RVs) can also be
approximated as the α-µ distribution [9], [10]. Because of
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this, we approximate the sum power of reflected beams into
the α-µ distribution and derive the outage probability with
a simple form of a cumulative distribution function (CDF).
We further analyze the moment of the pointing-loss effect for
the given deployment of a number of CCRs, which can be
expanded into the pointing loss of the multiple input multiple
output (MIMO)-FSO system.

The rest of this correspondence is organized as follows.
In Section II, we introduce the signal model of the proposed
retroreflector-based fine tracking system. We then describe the
PDF of the pointing loss of an individual CCR. In Section III,
we approximate the PDF of the received power at the ground
station into the α-µ distribution by the moment-matching
method. Through this derivation, we present both exact and
approximated moments. In Section IV, we provide some
selected simulation results, and we then finally provide our
conclusions in Section V.

II. SYSTEM MODEL

A. Signal Power Model

A conventional FSO channel model is as follows [11]:

PR = hah`hpPT, (1)

where PR is a received power at the ground station, ha, h`, hp,
and PT denote channel fading, atmospheric loss, pointing loss,
and transmit power at the UAV. Based on (1), we formulate
the signal power model for the proposed system model and
describe the analytical characteristics of each term.

Assume that multiple CCRs are deployed around the com-
munication telescope at the UAV; the reflected beacon signal
power received at the ground station can be modeled as

PCCR =

M∑
i=1

Pi, (2)

and the incoming signal power reflected from the i-th CCR is

Pi = ga,ig`gpρfa,if`fp,iPGS, (3)

where each of the parameters on the right-hand side indicates,
respectively, downlink fading, downlink atmospheric loss,
downlink pointing loss, reflection effect, uplink fading, uplink
atmospheric loss, uplink pointing loss, and the transmit power
of the ground station [8]. We assume that the fading channels
for different CCRs are independent [12] and fading channels
of the uplink and downlink for each beam path are correlated.
For further mathematical analysis, we substitute each term into
the RV or a constant as follows:

X = fa, Y = ga, Z = fp, c = g`gpρf`PGS, (4)

Xi = fa,i, Yi = ga,i, Zi = fp,i. (5)

The parameters f` and g` satisfies the Beer-Lambert law
as [13]

f`, g` = exp(−σz), (6)

where z and σ are a propagation distance and an attenuation
coefficient, respectively. The size of the CCR determines the
beam divergence of the reflected beam. Assume that the shape
of the effective reflection area is a circle with a radius of
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Fig. 1. In interpreting the joint-pointing loss, one must consider the deploy-
ment of CCRs on the beam footprint plane.

aRe
1, then the downlink beam divergence angle is determined

as θRe = 1.22λ/aRe where λ is a wavelength of the optical
signal [14]. Therefore, the value of gp is as follows:

gp = 2a2GS/(zθRe)
2, (7)

where aGS is a radius of the ground station telescope. Since ρ
and PGS are the system parameters, c in (4) is a constant and
can be expressed as

c =
1.34 a2GSa

2
Re

z2λ2
exp(−2σz). (8)

Both Xi and Yi follow the same Gamma-Gamma dis-
tribution for each i and are correlated due to the channel
reciprocity [15]. Since Gamma-Gamma RV is a product of two
uncorrelated Gamma RVs, the correlation coefficient is defined
at this level. We can decompose the product of the uplink and
downlink fading channel into four Gamma variables as

U = XY = X(α1)X(β1) · Y (α2)Y (β2), (9)

where α1, β1, α2, and β2 are a unique parameter that deter-
mines the Gamma distribution. Because uplink and downlink
have the same path at negligible time intervals, α1 = α2 and
β1 = β2 can be assumed. Thus, the marginal PDF of X(α1)

and Y (α2) are the same and can be expressed as follows:

fα1
(X(α1)) =

α1(α1x)α1−1

Γ(α1)
e−α1x, (10)

where Γ(·) is the Gamma function and the shape parameter
and scale parameter are α1 and 1/α1, respectively. Similarly,
the marginal PDF of X(β1) and Y (β2) is

fβ1(X(β1)) =
β1(β1x)β1−1

Γ(β1)
e−β1x, (11)

where β1 and 1/β1 are the parameters. Then the channel
reciprocity is expressed by the channel correlation as ρα =
corr(X(α1), Y (α2)) and ρβ = corr(X(β1), Y (β2)). As each
of the fading channels is indexed as Ui = XiYi, the entire

1The incident angle of the beam to the CCR affects the power of the
reflected beam [14]. However, we assume that the multiple CCRs are installed
in the same direction on the quasi-static blimp. Thus, the effect of the variation
in the incident angle is implied in aRe, which is a constant.
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randomness of PCCR can be described with the following RV:

S =

M∑
i=1

UiZi =
PCCR

c
. (12)

The rest of the channel parameters are included in c as (4),
which is a constant for every single CCR.

B. PDF of Zi
As CCRs are distributed around the communication tele-

scope (as shown in Fig. 1), when analyzing the pointing
loss Zi, each CCR has a given boresight error. This can
be described as the following system model. We define the
position of the communication telescope as an origin of the
two-dimensional coordinate plane. Then, the location of the
CCR, beam displacement from the center point, and the
superposition of two vectors can be defined, respectively, as
follows:

si = [si,x, si,y]T ,d = [dx, dy]T , ri = [ri,x, ri,y]T . (13)

Assuming that both the incident beam and reflected beam are
a Gaussian beam at the far field (see [16, Sec. 4.5.2]), we
arrive at

Zi(ri;w) = A0 exp

(
−2|ri|2

w2

)
, (14)

where w is a beamwidth, which follows w = zθGS for the
uplink beam divergence angle θGS and A0 = 2a2Re/w

2 [11].
Since d is a beam displacement caused by the residual angle
jitter of the fine tracking system, it follows a zero-mean
multivariate normal distribution with the covariance matrix of
Σr = diag(σ2

s , σ
2
s). Thus, the PDF of ri is

fri(r) =
1

2πσ2
s

exp

(
−1

2
(r− si)

TΣ−1r (r− si)

)
, (15)

which then results in the following PDF [17]:

fZi(Z) =
w2

4σ2
s

· 1

Z

(
Z

A0

) w2

4σ2s

e
− s2i

2σ2s I0

 si
σ2
s

√
−w

2

2
ln

Z

A0


0 ≤ Z ≤ A0,

(16)
where si = |si| and I0(·) is a modified Bessel function of the
first kind of order zero.

III. OUTAGE PROBABILITY OF RETROREFLECTOR BASED
FINE TRACKING

According to the system model, an outage probability of
the received power can be defined as Prob[PCCR < Pth] =
Prob[S < Pth/c]. The RV S is very complex, so that the
derivation of an exact distribution is almost impossible. Hence,
in this section, we derive the moments of S and approximate
the PDF into the α-µ distribution by the moment-matching
method.

A. Moment Matching
The PDF of the α-µ RV R is [18]

fR(r) =
αµµrαµ−1

r̂αµΓ(µ)
exp

(
−µr

α

r̂α

)
, (17)

where α > 0, µ = E[rα]2/Var[rα], and r̂ = E[Zα]
1
α . Its CDF

is given by

FR(r) =
Γ(µ, µrα/r̂α)

Γ(µ)
, (18)

where Γ(z, y) =
∫ y
0
tz−1 exp(−t) dt is the incomplete Gamma

function. To approximate S into R, we use 1st-, 2nd-, and 4th-
order moments of two RVs for the moment-matching method.
The kth-order moment of R is [9]

E[Rk] = r̂k
Γ(µ+ k/α)

µk/αΓ(µ)
. (19)

The reduced form of the moment-based estimators for α, µ,
and r̂ are as follows:

Γ2(µ+ 1/α)

Γ(µ)Γ(µ+ 2/α)− Γ2(µ+ 1/α)
=

E2[S]

E[S2]− E2[S]
, (20)

Γ2(µ+ 2/α)

Γ(µ)Γ(µ+ 4/α)− Γ2(µ+ 2/α)
=

E2[S2]

E[S4]− E2[S2]
, (21)

r̂ =
µ1/αΓ(µ)E[S]

Γ(µ+ 1/α)
. (22)

In order to solve (20), (21), and (22), we then have to
derive 1st-, 2nd-, and 4th-order moments of S. The n0th-order
moment of S can be developed as

E[Sn0 ] =

n0∑
n1=0

n1∑
n2=0

· · ·
nM−2∑
nM−1=0

(
n0
n1

)(
n1
n2

)
· · ·
(
nM−2
nM−1

)
·E[Un0−n1

1 ]E[Un1−n2
2 ]· · ·E[U

nM−1

M ]

·E[Zn0−n1
1 Zn1−n2

2 · · ·ZnM−1

M ]
(23)

from (12). By (9), we can express the ordered moments of U
as follows [19]:

E[Un] =
Γ(α1 + n)2Γ(β1 + n)2

Γ(α1)2Γ(β1)2
(α1β1)−2n

· 2F1(−n,−n;α1; ρα)2F1(−n,−n;β1; ρβ),

(24)

where pFq(·) is the generalized hypergeometric function. To
calculate the joint-ordered moments of Zis, we derive the exact
and approximated form of E[Zn0−n1

1 Zn1−n2
2 · · ·ZnM−1

M ]. For
convenience, we transform the formula as follows:

E[Zn0−n1
1 Zn1−n2

2 · · ·ZnM−1

M ] = E[Zm1
Zm2
· · ·Zmn0

], (25)

where m1 = · · · = mnM−1
= M , mnM−1+1 = · · · =

mnM−2
= M − 1, · · · , mn1+1 = · · · = mn0 = 1.

Starting from the following equation:

E[Zm1Zm2 · · ·Zmn0
] =

∫ 2π

0

∫ ∞
0

n0∏
i=1

Zmi ·
δ

2πσ2
s

e
− δ2

2σ2s dδ dθ,

(26)
where δ = |d| and θ = arg(d), we derive the exact moment
including an integral operation and the approximated moment
including combinatory sums of polynomials.
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Fig. 2. Outage probability of the proposed fine tracking system in weak
turbulence channels with M = 4 and w ≈ 8.5 for different values of σs.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Visibility range (V ) 10 km
Link distance (z) 5 km
Optical threshold power (Pth) 10 nW
Radius of CCR (aRe) 5 cm
Radius of OGS telescope (aGS) 10 cm
Reflection effect (ρ) 0.5
Weak turbulence (α, β) 17.1, 16.0
Strong turbulence (α, β) 4.0, 1.9
Correlation coefficient (ρα, ρβ) 0.7

B. Exact Moment

Theorem 1: The exact form of (26) can be derived as

E[Zm1Zm2 · · ·Zmn0
]

= An0
0 e−

∑n0
i=1

2s2mi
w2

∫ ∞
0

e
−
(

2n0
w2 + 1

2σ2s

)
δ2 δ

σ2
s

I0(Kδ) dδ,
(27)

where K =

√(∑n0

i=1
4smi sinφmi

w2

)2
+
(∑n0

i=1
4smi cosφmi

w2

)2
and φi = arg(si).

Proof: See Appendix A. �

C. Approximated Moment

Theorem 2: The approximated form of (26) can be derived
as

E[Zm1Zm2 · · ·Zmn0
]

=
An0

0

2π
e−

∑n0
i=1

2s2mi
w2

n0∑
ν=1

µ(2ν)
σs P (2ν)

n0
(m1,m2, · · · ,mn0

),

(28)
where P (2ν)

n0 (m1,m2, · · · ,mn0
) can be developed as (29) for

n0 ≤ 4, φi = arg(si), and M = {1, 2, · · · , n0}. A symbol
µ
(2ν)
σs is a 2νth-moment of the Rayleigh distribution and has

a value of
µ(2ν)
σs = 2νν!σ2ν

s . (30)

A function C(·) is a definite integral of a product of cosine
functions and can be organized into the sum of cosine func-

Fig. 3. Relative error of the moments of S with respect to the ratio of σs to
w with M = 4 for different order of moments.

tions as

C(η1, · · · , η2`) =

∫ 2π

0

2∏̀
i=1

cos(θ − ηi) dθ

=
2π

22`(`!)2

∑
Sym{ki}2`i=1∈Z
∀kp 6=kq

cos

(∑̀
j=1

ηj − η`+j

)
,

(31)
where Z = {1, 2, · · · , 2`}.

Proof: See Appendix B. �

IV. NUMERICAL RESULTS

In this section, we first discuss the implementation issues
and the simulation parameter settings. Then, we show numer-
ical results of the outage probability during the fine track-
ing stage. Table. I lists general simulation parameter values
throughout this section. The link distance in the simulation
is 5 km, which can be considered as the altitude of the
UAV2. For the proposed method, the link distance affects
the received signal power by the atmospheric loss and free-
space path loss (in (8) and (14), respectively) twice for the
uplink and downlink. However, for the conventional method,
the link distance only affects the downlink channels. Thus, the
decreased link distance is always more advantageous to the
proposed method than the conventional one. For this reason,
the proposed method will perform better than the following
outage results for the UAVs lower than the altitude of 5 km.

The radius of the CCRs is set to 5 cm, which is generally a
larger size than most commercial passive CCRs. Considering
the weight and size of the CCRs, we assume the blimp UAV
to ensure sufficient CCR spacing and large payload capacity.
That being said, the system providers can take advantage
of the decreased operational altitude by launching smaller
CCRs, which will considerably reduce the payload weight and
operating costs. In this case, smaller UAVs, such as rotary-
wing drones, can also carry multiple CCRs to apply our

2The vertical link distance of 5 km is grounded to the airspace Class E in
the United States, an altitude of 370 m to 5500 m. Through the simulations,
we show that the proposed method is applicable to UAVs at the highest altitude
of the airspace Class E and below.
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Fig. 4. Comparison between the outage probability of the proposed and
conventional fine tracking systems in strong turbulence channel with w = 10.

method. As noted in Sec. II-A, we assume that all the CCRs
and the communication telescope are at least

√
2 m apart to

preserve the channel independence3 [12]. CCRs in a linear
deployment are aligned at equal intervals along the axis, and

3According to [12], atmospheric correlation length is about 59 cm for the
link distance of 5 km and weak turbulence conditions. The weak turbulence
is expressed by the refractive index structure constant, as C2

n = 10−17. In
the simulation, the minimum CCR spacing is

√
2 m, which is larger than the

correlation length.

Fig. 5. Outage probability of the proposed fine tracking system in moderate
channel with w = 10 for different numbers and deployments of CCRs.

those in a circular deployment are listed at equal intervals
above the circumference of radius

√
2 m. The moment-based

parameter estimation of (20), (21), and (22) is calculated by the
fsolve function in MATLAB. Moreover, the outage probability
is obtained by (18), with the estimated parameters.

As shown in Fig. 2, for different σs values, the analytical
results follow the simulation results, due to the joint-pointing
loss derived in this paper. In Fig. 3, we show the approximation
error of (28), the moment of joint-pointing loss. As a point of

P (0)
n0

=2π (29a)

P (2)
n0

=
∑

Sym{ki}2i=1∈M
∀kp 6=kq

1

2!

2∏
j=1

(
− 4

w2
smkj

)
C(φmk1 , φmk2 ) +

∑
Sym k1∈M

[
8

w4
s2mk1 C(φmk1 , φmk1 )−

4π

w2

]
(29b)

P (4)
n0

=
∑

Sym{ki}4i=1∈M
∀kp 6=kq

1

4!

4∏
j=1

(
− 4

w2
smkj

)
C(φmk1 , φmk2 , φmk3 , φmk4 )

+
∑

Sym{ki}3i=1∈M
∀kp 6=kq

1

2!

2∏
j=1

(
− 4

w2
smkj

)(
8

w4
s2mk3 C(φmk1 , φmk2 , φmk3 , φmk3 )−

2

w2
C(φmk1 , φmk2 )

)

+
∑

Sym{ki}2i=1∈M
∀kp 6=kq

[
1

2!

2∏
j=1

(
8

w4
s2mkj

)
C(φmk1 , φmk1 , φmk2 , φmk2 )−

16

w6
s2mk1 C(φmk1 , φmk1 ) +

1

2!

8π

w4

] (29c)

P (6)
n0

=
∑

Sym{ki}4i=1∈M
∀kp 6=kq

1

2!

2∏
j=1

(
− 4

w2
smkj

){
1

2!

4∏
j=3

(
8

w4
s2mkj

)
C(φmk1 , φmk2 , φmk3 , φmk3 , φmk4 , φmk4 )

− 16

w6
s2mk3 C(φmk1 , φmk2 , φmk3 , φmk3 ) +

1

2!

4

w4
C(φmk1 , φmk2 )

}
+

∑
Sym{ki}3i=1∈M
∀kp 6=kq

[
1

3!

3∏
j=1

(
8

w4
s2mkj

)
C(φmk1 , φmk1 , φmk2 , φmk2 , φmk3 , φmk3 ) +

1

2!

2∏
j=1

(
8

w4
s2mkj

)(
− 2

w2

)

· C(φmk1 , φmk1 , φmk2 , φmk2 ) +
1

2!

32

w8
s2mk1 C(φmk1 , φmk1 ) +

1

3!

16π

w6

]
(29d)

P (8)
n0

=
∑

Sym{ki}4i=1∈M
∀kp 6=kq

[
1

4!

4∏
j=1

(
8

w2
s2mkj

)
C(φmk1 , φmk1 , φmk2 , φmk2 , φmk3 , φmk3 , φmk4 , φmk4 )

+
1

3!

3∏
j=1

(
8

w2
s2mkj

)(
− 2

w2

)
C(φmk1 , φmk1 , φmk2 , φmk2 , φmk3 , φmk3 )

+
1

2!2!

2∏
j=1

(
8

w2
s2mkj

)
4

w4
C(φmk1 , φmk1 , φmk2 , φmk2 )−

1

3!

64

w10
s2mk1 C(φmk1 , φmk1 ) + 2π

1

4!

16

w8

] (29e)
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comparison with our results, we also offer moments to which
the 1st-order Taylor approximation is applied. In Fig. 4, we
emphasize the diversity effect of multiple passive CCRs by
comparing the outage probability of the proposed system to
that of the conventional fine tracking system, where a beacon
transmitter is used at aerial vehicles. In this case, we assume
that the transmit power is equal to or half of the power at
the ground station due to the limitation of the aerial payload.
Furthermore, since we derived the joint-pointing loss for the
given locations of CCRs, we compare (in Fig. 5) the outage
performance of the systems with different CCR deployments
around the communication telescope.

V. CONCLUSION

In this correspondence, we introduced and analyzed a novel,
fine tracking system that uses multiple passive corner-cube
reflectors (CCRs) for spatial diversity and power saving.
For the system model in which a number of passive CCRs
are distributed around the communication telescope at the
aircraft, we formulated a received power model at the ground
station. We then derived the exact and approximated moments
to approximate the PDF into the α-µ distribution. While a
concern has been the low power of the reflected beam, the
simulation results and analytical results support our argument
that multiple passive CCRs can exceed the outage performance
of the conventional method.

APPENDIX A
PROOF OF THEOREM 1

From (14) and (26), we obtain

E[Zm1
Zm2
· · ·Zmn0

]

=An0
0 e−

∑n0
i=1

2s2mi
w2∫ ∞

0

e
−
(

2n0
w2 + 1

2σ2s

)
δ2 δ

2πσ2
s

∫ 2π

0

e−
∑n0
i=1

4smi
δ cos (φmi

−θ)
w2 dθ dδ.

(32)
Since the sum of cosine functions −

∑n0

i=1
4smiδ cos (φmi−θ)

w2

can be simplified into a single cosine function, the inner
integral is then expressed as a modified Bessel function of
the first kind. Then (32) results in (27).

APPENDIX B
PROOF OF THEOREM 2

By substituting r = s + d into (14) and (15) and applying
2nd order Taylor approximation, the Gaussian beam profile at
s results in an approximated form of Zi as

Zi≈A0e
− 2|si|

2

w2

{
1− 4

w2
sTi d +

1

2
dT
( 16

w4
sis

T
i −

4

w2
I
)
d

}
.

(33)
By substituting (33) into (26), we get

E[Zm1
Zm2
· · ·Zmn0

]

=

∫ 2π

0

∫ ∞
0

n0∏
i=1

[
A0e

−
2s2mi
w2

(
1− 4smi

w2
δ cos(φmi − θ)

+
8s2mi
w4

δ2 cos2(φmi − θ)−
2

w2
δ2
)]
· δ

2πσ2
s

e
− δ2

2σ2s dδ dθ.

(34)

With respect to the Rayleigh distributed δ, (34) can be inter-
preted as an expected value of the polynomial. Consequently,
we transform this into the integral of the product of cosine
functions with coefficients involving Rayleigh moments. After
calculating the integral of cosine functions with respect to θ
by (31), the moment of a joint-pointing loss can be expressed
without integral operations as (28).
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