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Abstract—This paper investigates the problem of age of
information (AoI) aware radio resource management for a
platooning system. Multiple autonomous platoons exploit the
cellular wireless vehicle-to-everything (C-V2X) communication
technology to disseminate the cooperative awareness messages
(CAMs) to their followers while ensuring timely delivery of
safety-critical messages to the Road-Side Unit (RSU). Due to the
challenges of dynamic channel conditions, centralized resource
management schemes that require global information are ineffi-
cient and lead to large signaling overheads. Hence, we exploit a
distributed resource allocation framework based on multi-agent
reinforcement learning (MARL), where each platoon leader (PL)
acts as an agent and interacts with the environment to learn
its optimal policy. Existing MARL algorithms consider a holistic
reward function for the group’s collective success, which often
ends up with unsatisfactory results and cannot guarantee an
optimal policy for each agent. Consequently, motivated by the
existing literature in RL, we propose a novel MARL framework
that trains two critics with the following goals: A global critic
which estimates the global expected reward and motivates the
agents toward a cooperating behavior and an exclusive local
critic for each agent that estimates the local individual reward.
Furthermore, based on the tasks each agent has to accomplish,
the individual reward of each agent is decomposed into multiple
sub-reward functions where task-wise value functions are learned
separately. Numerical results indicate our proposed algorithm’s
effectiveness compared with the conventional RL methods applied
in this area.
Index Terms— Resource management, V2X, AoI, Platoon coop-
eration, MARL.

I. INTRODUCTION

INTELLIGENT transportation systems (ITSs) will become
a compulsory component of the future’s smart cities. In

essence, ITSs will address the issue of dense traffic networks
and transportation bottlenecks by exploiting efficient traffic
management approaches [1]. One of the foreseen services of
ITS is the so-called autonomous vehicular platoon system [2].
Platooning is the first step toward fully autonomous driving,
which is deemed one of the most representative potentials
for overcoming the transport costs. Furthermore, platooning
improves the intersection’s operational efficiency compared to
the case where cars cross the intersection one after another [3].
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In summary, a vehicle platoon is a convoy of interconnected
vehicles that continuously coordinate their kinetics and share
a typical moving pattern. In each platoon formation, the
head-of-line vehicle is known as the Platoon Leader (PL),
which is responsible for maintaining communication with
other Platoon Members (PMs) [4]. In order to reap the benefits
of the platooning system properly, several critical issues must
be tackled. Firstly, each vehicle in the platoon must have
enough awareness of its relative distance and velocity with
its surrounding vehicles. This perception is needed to allow
the vehicles in a platoon to regulate their decisions and to
guarantee that any perturbation in the position or velocity of
PL does not lead to amplified fluctuations in the behavior of
PMs. This balance, known as the string stability, is ensured
through the timely exchange of cooperative awareness mes-
sages (CAMs) among the vehicles of the platoon, and it is
regularly initiated by the PL that manages the group [5]. Then,
every platoon must have sufficient information about the other
existing platoons and vehicles in the network, especially in
the case of intersections or road curves. These points reflect
the importance of investigating an efficient resource allocation
algorithm that meets the requirements of both inter-platoon
and intra-platoon communications [6].

The advent of vehicle-to-everything (V2X) communication
technology has addressed the aforementioned challenges. Pla-
toons communicate with each other through the Road-Side
Unit (RSU) with Vehicle-to-Infrastructure (V2I) communica-
tions in order to exchange the intersection safety messages,
while vehicles in the same platoon exchange safety-critical
messages by either broadcasting or cellular vehicle-to-vehicle
(V2V) communications for CAM dissemination. The more
frequently information is exchanged in the system, the sooner
each platoon member can react and avoid prospective obstacles
[7]. The theoretical potential of Long Term Evolution (LTE)
for V2X communications has been appraised in the Third
Generation Partnership Project (3GPP) studies [8]. In LTE
systems, eNodeBs centrally perform radio resource manage-
ment (RRM). However, the conventional LTE architecture does
not natively sustain direct V2V communications. Since LTE
Release 12, 3GPP has provided several technical specifica-
tions to mitigate this problem through device-to-device (D2D)
sidelink communications (also known as Proximity Services)
[9], [10]. Furthermore, new requirements and use cases have
been proposed for 5G V2X enhancements in Release 15 [11].
Following the existing literature, this paper is based on Mode
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4, defined in the 3GPP cellular V2X architecture [12]. The
resource scheduling and interference management between
the platoons are established based on distributed algorithms
implemented between the vehicles [12], [13].

A. Related Works

Recently, the platooning system has been considered in
various studies. The authors of [14] analyze the capability
of the LTE system in establishing intra-platoon communi-
cation. In [15], the authors study the reliability and effi-
ciency of the platoon-based V2V communication, investigate
the string stability requirements for the platooning systems
and design a CAM dissemination mechanism in the LTE-
V2V network. The authors of [16] investigate the platoon
cooperation in a multi-lane scenario and consider a two-
step resource allocation along with developing a dynamic
programming based subchannel allocation and power control
algorithm to maximize the platoon size as well as to minimize
the power consumption. In [17], string stability of the platoons
and the maximum wireless system delay that guarantees the
stability are analyzed. The resource allocation based on the
evolved multimedia broadcast multicast services (eMBMS)
capability and D2D communications is examined in [18] to
enhance the reliability and reduce the transmission latency
in a scenario with a chain of platoons. A two-stage platoon
formation algorithm and a time division based intra-platoon
resource allocation mechanism are introduced to develop
stable platoons in [19]. Most of the issues that have been
addressed in the articles mentioned above are related to the
platoon’s communications and interactions with each other
or controlling algorithms employed to ensure the platoon’s
string stability. Nonetheless, an essential common concern
that has not yet been elucidated is the fast-changing channel
condition in vehicular environments that provoke uncertainty
and inaccuracy in estimating the channel state information
(CSI). On the other hand, the gradual increase in users’ number
leads to more complicated optimization problems with often
nonlinear constraints, making them challenging to optimize by
traditional optimization methods. The aforementioned hurdles
call for investigating novel methods that can deal with more
complex situations efficiently.

As one of the robust machine learning tools, reinforcement
learning (RL) has recently attracted substantial attention. In
[20], the authors analyze the spectrum allocation scheme by
devising a distributed Q-learning approach, where autonomous
D2D users try to maximize their throughput and minimize
their interference to cellular users. Furthermore, an intelligent
resource management problem in the Internet of Vehicles
(IoV) networks is analyzed in [21] using an actor-critic RL
method. However, the RL methods applied in the above works
are suitable in low-dimensional state and action spaces. RL in
combination with deep learning has led to the emergence of
deep reinforcement learning (DRL) [22]. DRL has sparked
a flurry of interest and has found its way into vehicular
network literatures [23], [24]. The authors of [25] propose
a decentralized resource allocation method in a vehicular
network for both unicast and broadcast scenarios employing

DRL. In [26], a mobile edge computing-based platooning
system has been proposed in which the platoons locate their
optimal path through RL. The authors of [27] investigate
the problem of channel assignment and power allocation in
a platooning vehicular network using the DRL approach.
In a similar framework, spectrum and energy efficiency of
vehicular platooning network is examined in [28]. In [29],
the authors investigate the spectrum sharing in a vehicular
network by implementing a multi-agent DRL method. In order
to tackle the problem of the environment’s non-stationarity, the
authors propose a fingerprint method that incorporates agents’
policies in the observation space. Spectrum allocation for D2D
communication is investigated in [30] in which the authors
propose a multi-agent actor-critic method. We can summarize
the deficiencies of the works mentioned above as follows: [25],
[26] and [28] model the policy search as a Markov decision
process (MDP), which means that all the agents update their
policies independently. However, although these algorithms
are capable of handling many complex problems, they cannot
be applied to multi-agent systems (MASs). In MASs, all the
agents act simultaneously and affect the environment, leading
to a non-stationary environment [31]. On the other hand, [27]
and [29] are based on multi-agent DRL. DRL methods employ
discrete action spaces which is not preferable in power control
scenarios leading to poor results. A widely applied MARL
framework is multi-agent deep deterministic policy gradient
(MADDPG) [30]. MADDPG is based on centralized training
and decentralized execution in which each agent collects the
information of other agents during the training time and
then executes actions independently based on its observation.
However, the Achilles heel of this method is that the critic’s
input grows linearly with the number of agents. Furthermore,
although these algorithms reach an optimal solution, there is
no explicit notion of coordination between the agents.

In vehicular networks, the traffic and intersection safety
information is time-critical, and hence acquiring timely, and
fresh traffic updates are of significant importance. Recently,
an emerging new metric has been employed for capturing the
timeliness of the information, namely the age of information
(AoI) [32]. By definition, AoI is the time elapsed since the
most recent received information update (from RSU point of
view) was generated (at the corresponding platoon). Unlike
traditional metrics such as delay, AoI only takes the informa-
tion that delivers fresh updates to the RSU into account [33].
One of the recent works in this area is [34] where the authors
formulate an AoI-aware radio resource management problem
in a Manhattan grid V2V network.

B. Contribution

This work considers the AoI minimization problem in high
mobility vehicular platooning system, consisting of multiple
connected and autonomous vehicles where PLs attempt to ac-
cess the frequency spectrum to disseminate the CAM messages
between their followers while keeping an updated connection
with the RSU. The novelty of this work lies in the following
key contributions:
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TABLE I
PRIMARY NOTATIONS USED IN THE PAPER

Notation Definition

N the set natural numbers
P/P/j number/set/index of platoons
Nj/Nj/n number/set/index of vehicles in platoon j
K/K/k number/set/index of subchannels
αj frequency independent large-scale fading
gj [k] frequency dependent small-scale fading
< RSU location
βtj,k subchannel allocation indicator
θtj inter/intra-platoon mode selection indicator
Ctj,<[k] data rate between PL j and the RSU in subchannel k
hj,<[k] channel gain from PL j to RSU in subchannel k
Ctj,i[k] data rate between PL j and its follower i ∈ Nj
hj,i[k] channel gain from PL j to its PMs in subchannel k
ptj [k] power usage of PL j

Atj AoI of PL j up to the beginning of scheduling slot t
ζj CAM messages size of PL j

Cmin
j,< minimum capacity requirement of PL

• We formulate a multi-objective optimization problem for
each platoon to jointly minimize the AoI and maximize
the CAM message transmission probability.

• We model the spectrum access of the multiple PLs as
a multi-agent problem and exploit the recent progress
of MARL structures in [35] to build a novel MARL
framework on top of deterministic policy gradients ar-
chitectures which trains two critics: A global critic which
estimates the global expected reward and motivates col-
laboration between multiple agents, and an exclusive local
critic for each agent that estimates the local expected
reward.

• In order to tackle the problem of the overestimation
bias in Q-functions, we exploit the Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm [36] for
the global critic.

• Furthermore, by treating each sub-objective as a separate
task, the individual reward of each agent is decomposed
into multiple sub-reward functions where task-wise value
functions are learned separately.

• Numerical experiments indicate that the proposed frame-
work converges 3 times faster than the conventional
RL frameworks and maintains the average AoI quantity
within 5-10 milliseconds range, and guarantees a CAM
message transmission probability of over 99 % for various
platoon sizes.

C. Paper Organization and Notations

The remainder of the paper is arranged as follows. In
Section II, we discuss the proposed system model. Section III
describes the multi-agent reinforcement learning algorithm. In
Section IV, we present the simulation results and analyses,
and finally, Section V concludes the paper.

Notations: Most of the notations applied in this paper are
standard. To ease readability, all the primary notations of the
paper are listed in Table I.

Fig. 1. The multi-lane platoon scenario.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular V2X based vehicular communication
network which consists of one RSU and multiple platoons,
as shown in Fig. 1. The RSU is located at the center of the
crossroad and is equipped with single antenna. We assume
P = {1, 2, . . . , P}, P ∈ N, indicates the set of platoons. Each
platoon itself is comprised of some connected and automated
vehicles. Let Nj = {1, 2, . . . , Nj}, Nj ∈ N, be the number
of vehicles in each platoon j ∈ P which are numbered
sequentially from one to Nj , starting from PL. We discretize
the time horizon into equal scheduling slots of length ∆t,
indexed by a positive integer t ∈ N. The system bandwidth
is divided into orthogonal subchannels of size W . They are
indexed by k ∈ K = {1, 2, . . . ,K}. In essence, there are
two types of communication modes in a platooning system,
namely the intra-platoon and inter-platoon communication.
In intra-platoon communication, vehicles within the same
platoon, exchange the CAM information periodically through
V2V links. According to the 3GPP specifications, [11], CAMs
dissemination frequency must be between 10 to 100 Hz. In
other words, the CAMs distribution period must be kept in
the range of 100 ms or fewer. In inter-platoon communication,
the RSU exchanges the intersection safety and platoon control
information with every platoon via the V2I links. The first one
is crucial in terms of guaranteeing the platoon string stability
which lets the vehicles keep a close distance with each other
and ensuring that all the platoon members are aware of the
kinematics and the decisions of the other platoon members,
especially the platoon leader. The latter is essential to inform
all the platoons to become aware of the other platoons’ status
and traffic condition of the intersection. We exploit the orthog-
onal frequency division multiplexing (OFDM) to cope with
the frequency selective wireless channels1. Furthermore, we
assume that the channel fading is independent across different
subchannels and remains constant within one sub channel. We
model the channel gain of PL j ∈ P in subchannel k during
one coherence time period t as

htj [k] = αtjg
t
j [k], (1)

where αtj and gtj [k] denote the large-scale fading effect com-
prised of path loss and shadowing, and small-scale fading,

1It is necessary to mention that in this work, we only consider the channel
gains related to the platoon leader interactions with the RSU and its followers.
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respectively. Moreover, we define the binary variable βtj,k ∈
{0, 1} that indicates whether subchannel k is allocated to pla-
toon j at time slot t. Then PL j will decide whether to use the
allocated subchannel for inter-platoon (i.e., to communicate
with the RSU) or intra-platoon (i.e., to broadcast the CAM
to its followers) communication. For this reason, we define
another binary decision variable θtj ∈ {0, 1} that indicates the
platoon leader’s decision. When θtj = 1, that means that the
PL will utilize the allocated subchannel for broadcasting (intra-
platoon) and θtj = 0 indicates that the subchannel will be used
for V2I (inter-platoon) communication. We can express the
instantaneous rates achieved in V2I communications between
PL j and the RSU according to the Shannon capacity formula
as follows:

Ctj,<[k] = log2

(
1 +

(1− θtj)βtj,kptj [k]htj,<[k]

Itj [k] + σ2

)
,

Itj [k] =
∑
j′ β

t
j′,kp

t
j′ [k]htj′,<[k], j 6= j

′
,

(2)

where the interference from other platoons is treated as noise,
ptj [k] is the transmit power level used by PL j on subchannel
k, htj,<[k] is the channel gain from PL j to RSU in subchannel
k, σ2 is the noise power, < indicates the RSU location, ht

j′,< is
the interfering channel to the RSU from PL j

′ ∈ P functioning
in whether inter (θtj = 0) or intra-platoon (θtj = 1) communi-
cation mode, and Itj [k] represents the total interference power.
Furthermore, we can calculate the instantaneous rates between
PL j and its follower i as

Ctj,i[k] = log

(
1 +

θtjβ
t
j,kp

t
j [k]htj,i[k]

I ′,tj [k] + σ2

)
,

I ′,tj [k] =
∑
j′ β

t
j′,kp

t
j′ [k]htj′,i[k], j 6= j

′
, i ∈ Nj\{1},

(3)

where ptj [k] is the power used by PL j, htj,i[k] is the channel
gain from PL j to its PMs in subchannel k, ht

j′,i
is the

interfering channel to PL j’s members from PL j
′ ∈ P

functioning in whether inter (θtj = 0) or intra-platoon (θtj = 1)
communication mode, and I ′,tj [k] represents the total interfer-
ence power. As described earlier, the PL has to maintain timely
communication with the RSU to exchange the intersection
safety messages. In this regard, we note Atj as the AoI of
platoon j ∈ P up to the beginning of scheduling slot t,
that is, the time elapsed since the most recently successful
V2I communication [32]. The AoI of platoon j ∈ P evolves
according to

At+1
j =

{
∆t, if (1− θtj)βtj,k · Ctj,<[k] ≥ Cmin

j,<,

Atj + ∆t, otherwise
(4)

where Cmin
j,< is the minimum capacity requirement of V2I

communication. As (4) suggests, within every successful trans-
mission between the RSU and PL j ∈ P , the AoI will
reset to ∆t. Accordingly, we can express the multi-objective

optimization problem (MoP) for platoon j as

min
β,θ,p

{
1

T

T∑
t=1

Atj ,− Pr
{ T∑
t=1

∑
k∈K

min
i

{
Ctj,i[k]

}
∆t ≥ ζj

}
,

1

T

T∑
t=1

∑
k∈K

ptj [k]

}
,

s.t. C1 : Ctj,<[k] ≥ Cmin
j,<, ∀j ∈ P, ∀k ∈ K,

C2 : βtj,k , θ
t
j ∈ {0, 1}, ∀j ∈ P, ∀k ∈ K,

C3 :
∑
k∈K

βtj,k ≤ 1, ∀j ∈ P, ∀t ∈ N,

C4 : ptj [k] ≤ pmax
j , ∀j ∈ P, ∀k ∈ K,

(5)
where ζj is the CAM message size. The objective is to
minimize the expected AoI and power consumption for every
platoon while maximizing the probability of CAM messages
delivery rate among the PMs within every T seconds2. Con-
straint C3 shows that each platoon can access only one
subchannel in every time slot and constraint C4 is to satisfy
that the transmit power of PL j remains below its maximum
value pmax

j . In optimization problem (5), the mode selection
indicator θtj and subchannel selection indicator β are both
binary variables. Furthermore, the objective function is non-
convex. Consequently, the optimization problem (5) is a NP-
hard combinatorial optimization problem [23], which is diffi-
cult to be solved. In this regard, we will investigate the state-
of-the-art multi-agent deep deterministic policy gradient meth-
ods to address the complexities of the proposed optimization
problem.

III. MULTI-AGENT RL BASED RESOURCE ALLOCATION

In this section, we will elaborate on the multi-agent envi-
ronment and its associated states, actions, and rewards, and
finally, we will discuss the proposed MARL algorithm and its
relevant formulations.

A. Modeling of Multi-Agent Environment

For a MARL with P agents (platoons), the optimization
problems can be expressed as

max
πj
Jj(πj), j ∈ P, πj ∈ Πj , (6)

where Jj(πj) = E[
∑∞
t=0 γ

tRt+1
j |s0j ], πj is the policy of agent

j, and Πj is the set of all feasible policies for agent j. Each PL
as an agent interacts with the vehicular network environment
and takes action according to its policy, aiming at solving the
optimization problem (5), or in other words, maximizing its
total expected reward (6). At each time t, the PL observes a
state, st, and accordingly takes action, at. The environment
transitions to a new state st+1 and PL receives a reward based
on its selected action. In our proposed system model the state
space S, action space A, and the reward function rt, are
defined as follows:

2As stated in Section II, T must be below 100 ms according to [11].
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• State space: The state observed by the PL j (agent j) at
time slot t consists of several parts: the instant channel infor-
mation between PL j and the RSU, htj,<[k], for all k ∈ K, the
channel information between PL j and its followers, htj,i[k],
i ∈ Nj\{1}, the previous interference from other platoons to
PL j, It−1j [k], the AoI of PL j, Atj , the remaining intra-platoon
payload (CAM message) designated to be transferred by T ,
ζrj , and the remaining time budget, T rj . Hence, the state space
of PL j is

stj =
[
htj,<[k], htj,i[k], It−1j [k], Atj , ζ

r
j , T

r
j

]
, j ∈ P.

• Action space: The action of each PL j ∈ P is defined
as atj = {βtj , θtj , ptj}. As mentioned earlier, βtj indicates which
subchannel the PL j ∈ P has selected, θtj represents the
mode selection, and ptj represents the power control. It is
noteworthy to mention that because we have applied the deep
deterministic policy gradient method, the agent can select any
power ranging from 0 to pmax

j . This is the advantage of policy
gradient methods that apply continuous actions spaces and can
converge to more accurate results than conventional DQNs in
which the power has to be discretized.
• Reward function: What makes the reinforcement learn-

ing framework fascinating is the flexibility we have in de-
signing the reward function that drives the learning process.
In our proposed learning problem, the agents receive two
reward signals, a global team reward, which evaluates the
agents’ cooperation, and an individual reward, which measures
each agent’s performance. Accordingly, we first discuss the
proposed learning algorithm and then return to the reward
function’s design.

The MARL frameworks’ architecture is shown in Fig. 2,
which is built on top of the MADDPG structure. In partic-
ular, we have designed two MARL frameworks, namely the
Modified MADDPG and Modified MADDPG with task decom-
position, in which the latter is the extension of the first one,
where the holistic local reward function of each agent is further
decomposed into sub-reward functions and learned separately.
Unlike MADDPG, which uses a single critic to train multiple
agents, the proposed framework trains two critics with the
following functionalities: The centralized global critic, which
is shared between all the agents, takes the observations and
actions of all the agents as input and estimates the global team
reward for them. The local critic, which is specific for each
agent, receives the agent’s local observation and action and
estimates the local expected reward. In a sense, the goal is
to simultaneously move the policy toward maximizing both
global and local rewards and solve the optimization problem
(5) for each agent. Furthermore, the agents do not necessarily
need to know each other’s policies and take actions based
on their own observations. The agents’ performance will be
considered as “decent” only when they act in a way that
results in a proper global team reward as well as a satisfactory
individual reward for each agent.

B. Modified MADDPG

Let Θπ =
(
W

(1)
π , . . . ,W

(Lπ)
π

)
and Φq =

(
W

(1)
q , . . . ,W

(Lq)
q

)
, be

the parameter space of agents’ actor and critic networks and

Ψg =
(
W

(1)
g , . . . ,W

(Lg)
g

)
be the parameter space of the global

critic, where Lπ, Lq and Lg are the number of hidden layers
in agents’ actor and critic networks and the global critic,
respectively. Ws are the neural networks’ weight matrices
and their dimensions are related to the number of nodes in the
hidden layers. We consider a vehicular environment consisting
of P platoons (agents) with policies π = {π1, . . . , πP }.
The agents’ policies πj and Q-functions Qjφj , and the global
critic’s Q-function Qgψ are parameterized by θj , φj and ψ,
respectively, where θj ∈ Θπ , φj ∈ Φq and ψ ∈ Ψg . The
MADDPG for platoon j can be written as

∇θjJj = E
[
∇θjπj (aj | sj)∇ajQπj (s,a)

∣∣
aj=πj(sj)

]
,

where s = (s1, . . . , sP ) and a = (a1, . . . , aP ) are the total
state and action spaces. Qπj (s,a) is the centralized action-
value function that takes the actions and states of the agents
as its input to estimate Q-value for platoon j. Based on the
framework depicted in Fig. 2, the modified policy gradient for
each agent j can be written as

∇θjJj =Es,a∼D

[
∇θjπj (aj | sj)∇ajQ

g
ψ (s,a)

]
︸ ︷︷ ︸

Global Critic

+

Esj ,aj∼D
[
∇θjπj (aj | sj)∇ajQ

j
φj

(sj , aj)
]

︸ ︷︷ ︸
Local Critic

,
(7)

where atj = πj(s
t
j) is the action the agent j chooses following

its policy πj . The first term in (7) refers to the global
critic which takes as input the agents’ states and actions and
estimates the team reward. The second term in (7) refers to
each agent’s local critic that unlike the global critic, only takes
each agent’s local state and action to estimate the agent’s
individual performance. The global critic is updated as

L(ψ) = Es,a,r,s′

[(
Qgψ (s,a)− yg

)2]
, (8)

where yg is the target value and is defined as follows:

yg = rg + γQgψ′ (s′,a′)
∣∣∣
a′j=π

′
j(s′j)

, (9)

where π′ = {π′1, . . . , π′P } refers to the target policies which
are parameterized by θ′ = {θ′1, . . . , θ′P }. Similarly the local
critic of agent j, Qj , is updated by

Lj(φj) = Esj ,aj ,rj ,s′j

[(
Qjφj (sj , aj)− yj`

)2]
, (10)

and yj` is defined as

yj` = rj` + γQjφ′
j

(
s′j , a

′
j

)∣∣∣
a′j=π

′
j(s′j)

. (11)

Although the proposed framework can lead to decent results,
there is still the problem of overestimation and suboptimal
policies in Q-functions due to the function approximation
errors. Motivated from the results in [36], the global critic is
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Fig. 2. The architecture of the modified MADDPG and the modified MADDPG with task decomposition frameworks. The functionality of the global critic
which is implemented at the RSU is similar for both the algorithms. However, they apply different procedures for the individual performance of the agents.
(Notice the differences between the algorithms highlighted in blue boxes.)

replaced with the Twin delayed Deterministic Policy Gradient
in (7). The resulting policy gradient is

∇θjJj =Es,a∼D

[
∇θjπj (aj | sj)∇ajQ

g1
ψ1

(s,a)
]

︸ ︷︷ ︸
TD3 Global Critic

+

Esj ,aj∼D
[
∇θjπj (aj | sj)∇ajQ

j
φj

(sj , aj)
]

︸ ︷︷ ︸
Local Critic

.

(12)
In (12), the twin global critics are updated as

L(ψi) = Es,a,r,s′

[(
Qgiψi (s,a)− yg

)2]
, (13)

where yg is defined as follows:

yg = rg + γ min
i=1,2

Qgiψ′
i
(s′,a′)

∣∣∣∣
a′j=π

′
j(s′j)

, (14)

and similarly, the agents’ local critics are updated by (10) and
(11). The modified MADDPG framework depicted in Fig. 2
is described in Algorithm 1. The core idea in TD3 is to delay
the policy updates for d iterations until the convergence of
value estimates. Now, we can return to the issue of designing
the reward function. The Reward function must judiciously
be adjusted so that the multi-agent system steps on the path
of solving the optimization problem (5). In essence, each PL
as an agent, tries to access the available subchannels for two
reasons: i) maintain an updated connection with the RSU and
keep the AoI level at its minimum, ii) disseminate the CAM
information ζ to its followers. Accordingly, we design the local
reward of every platoon j as

rj` =−
{
κ1ζ

r
j /ζj

}︸ ︷︷ ︸
Mode 1

−κ2Atj + κ3G
(
Ctj,< − Cmin

j,<
)︸ ︷︷ ︸

Mode 0

− κ4F{ptj},
(15)

where κ1 − κ4 are weighting factors used for balancing the
reward, and F{.} is a function that restricts the power quantity

to the same range as the other components in the reward
function. Furthermore, G(x) is a stepwise function given by

G(x) =

{
A, x ≥ 0,
0, x < 0,

where A > 0 is tuned to be a positive constant to indicate
the revenue. The reward function in (15) consists of three
parts that are matched with the objective function of the
optimization problem (5): the first part is related to the reward
the agent receives when the intra-platoon communication is
chosen, the second part refers to the reward for the agent in
the inter-platoon communication mode and the third part is
related to the negative reward for the agent due to the power
consumption. Correspondingly, we define the global reward
function as

rtg = − 1

P

∑
j∈P

∑
k∈K

log10{Itj [k]}. (16)

The inspiration behind choosing the global reward function
to be equal to the average interference is that the platoons
are derived toward choosing subchannels and power levels
that impose less interference on other platoons. It is observed
from Algorithm 1 that the global critic is trained more than
the local actor and critic networks since we have applied the
TD3 algorithm. The introduced delay, which is related to the
hyperparameter d, can lead to faster convergence of the system
by addressing the overestimation bias of global Q-function.

The following section will discuss the multi-task MARL, its
corresponding formulations, and the intuition behind devising
such an algorithm.

C. Modified MADDPG With Task Decomposition

In practice, the RL agents have to perform multiple tasks.,
and in order to drive the policy toward maximizing these tasks
simultaneously, we have to integrate these tasks as a single
holistic task and design a single reward signal, as was stated
in (15). However, the drawback of applying such a method is
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Algorithm 1: Modified MADDPG
1 Start environment simulator and generate platoons
2 Initialize main global critic networks Qg1ψ1

and Qg2ψ2

3 Initialize target global critic networks Qg1
ψ′
1

and Qg2
ψ′
2

4 Initialize each agent’s policy and critic networks
5 for each episode do
6 Update platoons locations and respective channel gains
7 Reset the Intra-platoon payload ζ and maximum delivery

time T to 100 ms
8 for each timestep t do
9 for each agent k do

10 Observe stk and select action atk = πθk (s
t
k)

11 st = [st1, . . . , s
t
P ], at = [at1, . . . , a

t
P ]

12 Receive global and local rewards, rtg and rtl
13 Store (st,at, rtl , r

t
g, s

t+1) in replay buffer D
14 Sample minibatch of size S, (sj ,aj , rjg, r

j
` , s

′j ), from
replay buffer D

15 Set yjg = rjg + γminiQ
gi
ψ′
i
(s′j ,a′j )

16 Update global critics by minimizing the loss:

17 L(ψi) = 1
S

∑
j

{(
Qgiψi

(
sj ,aj

)
− yjg

)2}
18 Update target parameters: ψ′

i ← τψi + (1− τ)ψ′
i

19 if episode mod d then
20 Train local critics and actors
21 for each agent i do
22 Set yji = rji` + γQiφ′

i

(
s
′j
i , a

′j
i

)
23 Update local critics by minimizing the loss:
24 L(φi) = 1

S

∑
j

{(
Qiφi

(
sji , a

j
i

)
− yji

)2}
25 Update local actors:

26

∇Jθi ≈
1

S

∑
j

{
∇θiπi

(
ai | sji

)
∇aiQ

g1
ψ1

(
sj ,aj

)
+

∇θiπi
(
ai | sji

)
∇aiQ

i
φi

(
sji , a

j
i

)}
27 Update target networks parameters:
28 θ′i ← τθi + (1− τ)θ′i
29 φ′

i ← τφi + (1− τ)φ′
i

that it cannot guarantee each sub-objective optimality, although
the holistic reward function may exhibit encouraging signs of
convergence. Therefore, for a MARL system consisting of M
tasks and P agents, we change the optimization problem (6)
as follows:

max
πj
Jj(πj), j ∈ P, πj ∈ Πj

Jj(πj) = [J 1
j (πj), . . . ,JMj (πj)],

(17)

where JMj (πj) is related to the agent j’s objective function
for the M th task. From (17), it is conceived that we can
deconstruct the holistic objective function into multiple sub-
objectives based on the sub-tasks. The following theorem
provides the condition for task decomposition, which results
from decomposing the holistic reward function into sub-reward
functions that can optimize the corresponding sub-objectives
separately.

Theorem 1. If the reward function R, can be decomposed into
M sub-reward functions, i.e., R(s, a, s′) =

∑M
k=1 rk(s, a, s′),

Algorithm 2: Modified MADDPG with TDec.
1 Start environment simulator and generate platoons
2 Initialize main global critic networks Qg1ψ1

and Qg2ψ2

3 Initialize target global critic networks Qg1
ψ′
1

and Qg2
ψ′
2

4 Initialize each agent’s policy networks
5 Initialize each agent’s task specific critic networks
6 for each episode do
7 Update platoons locations and respective channel gains
8 Reset the Intra-platoon payload ζ and maximum delivery

time T to 100 ms
9 for each timestep t do

10 for each agent k do
11 Observe stk and select action atk = πθk (s

t
k)

12 st = [st1, . . . , s
t
P ], at = [at1, . . . , a

t
P ]

13 Receive global and local rewards, rtg and rtl
14 Store (st,at, rtl , r

t
g, s

t+1) in replay buffer D
15 Sample minibatch of size S, (sj ,aj , rjg, r

j
` , s

′j ), from
replay buffer D

16 Set yjg = rjg + γminiQ
gi
ψ′
i
(s′j ,a′j )

17 Update global critics by minimizing the loss:

18 L(ψi) = 1
S

∑
j

{(
Qgiψi

(
sj ,aj

)
− yjg

)2}
19 Update target parameters: ψ′

i ← τψi + (1− τ)ψ′
i

20 if episode mod d then
21 Train local critics and actors
22 for each agent i do
23 for each task k do
24 Set yji,k = rji`,k + γQi,k

φ′
i,k

(
s
′j
i , a

′j
i

)
25 Update local critics by minimizing the loss:
26 L(φi,k) =

1
S

∑
j

{(
Qi,kφi,k

(
sji , a

j
i

)
− yji,k

)2}
27 Update local actors:

28

∇Jθi ≈
1

S

∑
j

{
∇θiπi

(
ai | sji

)
∇aiQ

g1
ψ1

(
sj ,aj

)
+

M∑
k=1

[
∇θiπi

(
ai | sji

)
∇aiQ

i,k
φi,k

(
sji , a

j
i

)]}
29 Update target networks parameters:
30 for each task k do
31 φ′

i,k ← τφi,k + (1− τ)φ′
i,k

32 θ′i ← τθi + (1− τ)θ′i

then the holistic objective function Jj(πj) can be written as
Jj(πj) =

∑M
k=1 J kj (πj), where

J kj (πj) = E

[ ∞∑
t=0

γtrt+1,k
j |s0j

]
, k = 1, . . . ,M. (18)

Proof. We refer the readers to Section III of [37] for a
extensive review of reward decomposition literature in RL.

Based on Theorem 1, we can decompose the agents’ local
critics in (12) based on the sub-tasks, and the resulting policy
gradient considering the functionality of the global critic
would be,
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∇θjJj =Es,a∼D

[
∇θjπj (aj | sj)∇ajQ

g1
ψ1

(s,a)
]

︸ ︷︷ ︸
TD3 Global Critic

+

M∑
k=1

Esj ,aj∼D
[
∇θjπj (aj | sj)∇ajQ

j,k
φj,k

(sj , aj)
]

︸ ︷︷ ︸
Decomposed Local Critics

,

(19)
where the parameters of sub-critics for agent j are updated as

Ljk(φj,k) = Esj ,aj ,rj ,s′j

[(
Qj,kφj,k (sj , aj)− yj,k`

)2]
,

yj,k` = rj,k` + γQj,kφ′
j,k

(
s′j , a

′
j

)∣∣∣
a′j=π

′
j(s′j)

, k = 1, . . . ,M.

(20)
Comparing (19) with (12) reveals that

Qj (sj , aj) =

M∑
k=1

Qj,k (sj , aj) , (21)

which can be easily derived from Theorem 1. In other words,
the decomposition of the holistic reward function leads to the
decomposition of the value functions. From the aforemen-
tioned analysis, the holistic reward function in (15) can be
decomposed into two sub-reward functions as follows:
• Task. 1 reward (CAM message transmission)

rj,1` = −
{
κ1ζ

r
j /ζj

}
− θtjκ′4F{ptj}. (22)

• Task. 2 reward (AoI minimization)

rj,2` =− κ2Atj + κ3G
(
Ctj,< − Cmin

j,<
)

− (1− θtj)κ′4F{ptj},
(23)

where κ′4 = κ4 in (15). In other words we have

rj` = rj,1` + rj,2` , ∀j ∈ P.

The general rule of thumb which governs the task decompo-
sition procedure in (22) and (23) is that there should not be
any temporal relationship between the sub-tasks. Due to this
reason, we have considered the impact of power control in
both the sub-reward functions as it influences both sides. The
corresponding algorithm of modified MADDPG with task-
decomposition is shown in Algorithm 2. In the next section,
we will investigate the complexities of the proposed algorithms
and assess the growth of the parameter space as the number
of agents increases.

D. Computational Complexity

The computational complexity is crucial to the utility of the
algorithms. Therefore, we analyze the computational complex-
ity of the two proposed RL methods and compare them with
the conventional MADDPG framework, which is extensively
applied in the literature. In essence, these analytics depend on
two parameters, i) the number of trainable parameters, ii) the
total number of neural networks used in the algorithms.

i) The number of trainable parameters:
In MADDPG, the centralized Q-functions take all the agents’
observations and actions as their input. Concretely, assuming

all the agents have identical observation and action spaces
shown by ω and α, the number of trainable parameters for
the MADDPG method would be O(n2(ω + α)), where n
indicates the number of agents. Conversely, the two proposed
RL methods incorporate two types of critic networks: the
global and local critics. Both the algorithms share a global
centralized Q-function whose parametric space increases lin-
early and is represented as O(n(ω + α)). On the other hand,
the local critics in the two RL methods only take the respective
agent’s observation and action as their input. Consequently, the
parameter space of local critics can be expressed as O(ω+α),
and this is similar for both the algorithms.

ii) The total number of neural networks:
In MADDPG, the total number of neural networks used during
the training process is equal to 2 × (n(1Q + 1A)), where the
multiplication by 2 is because of the target networks, 1Q, and
1A represents that there is one critic and actor network specific
for each agent, and n is the total number of agents. For the
modified MADDPG framework, the total number of neural
networks is 2 × (n(1Q` + 1A`) + 1Qg ), where 1Qg indicates
the total number of global critics. It is worth mentioning that
applying the TD3 algorithm doubles the number of global
critics, and in this case the number of neural networks will be
2× (n(1Q` + 1A`) + 2Qg ). Finally, for the modified MADDPG
method with task decomposition, number of neural networks
will be 2 × (n(kQ` + 1A`) + 1Qg ), where kQ` indicates that
there is a separate Q-function for each agent’s decomposed
tasks. Similarly, this number will be 2× (n(kQ` + 1A`) + 2Qg ),
whenever the TD3 algorithm is further applied.

IV. PERFORMANCE EVALUATION

In this section, we assess the simulation results to validate
the proposed multi-agent RL based resource allocation for the
platooning system. We have built our simulation following
the urban case defined in Annex A of [8]. Major simulation
parameters, including the channel models for V2I and V2V
links, are listed in Table II. In addition, the Gaussian noise
ε ∼ N (0, 0.2) is added to the actions chosen by the target
actor networks, and then clipped to (−0.5, 0.5) to smooth
the target policy, and the policy update delay factor is set to
d = 2. Throughout the simulations, the number of available
RBs is fixed to three; however, we have varied the number of
platoons, the number of PMs, and the intra-platoon spacing to
investigate their impact on the system’s overall performance.
It is worthwhile to mention that we fix the large-scale fading
during each episode and let the small-scale fading alter;
therefore, the RL algorithm can better procure the underlying
fading dynamics. Due to the sensitivity of RL algorithms to
the reward quantity, the global reward function in (16) is
normalized to be consistent with the local reward’s range.
Furthermore, to verify our proposed method’s efficiency, three
algorithms are adopted as baselines:
• Baseline 1: Modified MADDPG

This algorithm was introduced earlier in Algorithm 1
and is shown to outperform the conventional MADDPG
in [35]. In this algorithm, the global critic implemented
in the RSU motivates cooperation between the platoons
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TABLE II
SIMULATION PARAMETERS

Vehicular environment parameters Value

Carrier frequency 2 GHz
Number of RBs 3
Bandwidth of each RB 180 kHz
Number of Vehicles 16 – 50
Size of Platoons 4 – 10
Platoons Speed 36 – 54 km/h
Intra-platoon gap 5, 15, 25, 35 m
RSU and vehicles antenna heights 25, 1.5 m
RSU and vehicles antenna gains 8, 3 dBi
RSU and vehicles receiver noise figure 5, 9 dB
Vehicles mobility model Urban case of A.1.2 [8]
Vehicles maximum power 30 dBm
Noise power σ2 -114 dBm
Time constraint of CAM dissemination, T , 100 ms
CAM message size 4000 bytes
V2I links1 minimum capacity requirement, Cmin

j,< 3 bps/Hz [38]
V2I links path loss model 128.1 + 37.6 log10(d)
V2V links2 path loss model LOS in WINNER+ B1

Manhattan [39]
Shadowing distribution Log-normal
Shadowing standard deviation for V2I links 8 dB
Shadowing standard deviation for V2V links 3 dB
Decorrelation distance for V2I/V2V links 50, 10 m
Pathloss/shadowing update for V2I/V2V links Every 100 ms [8]
Fast fading update for V2I/V2V links Every 1 ms [8]
Fast fading Rayleigh fading

Neural networks parameters Value

Experience replay buffer size 50000
Mini batch size 64
Number/size of local actor networks hidden layers 2 / 1024, 512
Number/size of local critic networks hidden layers 2 / 512, 256
Number/size of global critic hidden layers 3/ 1024, 512, 256
Critic/Actor networks learning rate 0.001/0.0001
Discount factor 0.99
Target networks soft update parameter, τ 0.0005
Number of episodes 500
Number of iterations per episode 100

1Link between PL and RSU 2Link between PL and its followers

by periodically reporting the effectiveness of platoons’
chosen action. The local critics and actor networks are
implemented in each platoon and trained with each pla-
toon’s local training dataset without the need for other
platoons’ information.

• Baseline 2: Fully decentralized MADDPG
To illustrate the global critic’s impact on the network
performance, in this algorithm, the global critic is not
taken into account, and the platoons choose their actions
in a fully decentralized way, based on their observations.

• Baseline 3: DDPG
In this algorithm, the RSU has to acquire all the pla-
toons’ observations and actions and is considered a fully
centralized algorithm in which all the computations and
decision-making have to be performed in the RSU.

A. Simulation Results

Fig. 3 indicates the convergence of agents sub-tasks when
the intra-platoon gap is 25 m, and the number of platoon
members at each platoon is 6 (30 vehicles in total). For each
agent, we have plotted its sub-tasks reward function. Two
notable trends stand out in the figure; first, it can be seen that
all the agents have been able to fulfill their associated tasks
and maximize the designated reward functions in (22) and

(23) during the T seconds. Second, the proposed algorithm is
quite fast in convergence time. It is observed that for most of
the agents, the task-wise reward functions converge in less
than 50 episodes. In addition to some fluctuations due to
the channel fading that arose by platoons’ movements in the
environment, the following observations can also be noticed.
Since the number of vehicles is large compared to the available
resources, there is high contention between the platoons in
terms of accessing the available resources. Therefore, the
platoons have to share the resources. However, they have to
control their power usage jointly with the mode they choose to
operate so as not to impose much interference to the other pla-
toons reusing the same resources. This issue is of paramount
importance as the platoons choose their actions based on
their own observations. The figure implicitly indicates that
different components of the system have somehow reached an
equilibrium. In other words, not only the global critic has been
able to drive the platoons toward selecting proper resources to
impose less interference on each other, but also the local critics
have motivated their respective platoons to flexibly alter their
decisions between inter and intra-platoon modes and meet the
predetermined requirements.

Fig. 3 also reveals that the number of episodes agent
three and agent five needed for proper convergence is longer
compared to the other agents. Starting with agent three, it
is observed that during the first 100 episodes, agent three has
focused only on task one (CAM dissemination, θtj = 1), which
has led to a destructive reward for task two. This irregular
functionality, which has stemmed from the destructive actions
chosen by the agent’s actor network, is feedbacked through
(19) into the agent’s actor network to update the policy toward
better performance. As the policy starts to improve, agent
three, like the other agents, begins to exhibit encouraging
signs as it is highlighted in a blue rectangle for both of its
tasks. The same procedure applies for agent five. During the
first 200 episodes, agent five has focused only on one of
its tasks leading to an increase in one task’s reward and a
substantial decrease in the other one. These fluctuations are
demonstrated with red and black arrows for agent five’s task-
wise reward functions. Aside from what is explained so far, for
some episodes, there can be seen some unusual bounces in the
reward function, one of which is marked with a red ellipsoid in
agent four’s reward function, which can be partly related to a
phenomenon called catastrophic forgetting in neural networks
[40]. In general, the proposed MARL method has robust
functionality, and yields compelling results even in complex
environments consisting of even more vehicles.

Fig. 4 compares the convergence of the four approaches in
terms of the average reward performance when the number
of platoons is five and seven, respectively. At first glance,
the proposed method indisputably outperforms the other three
baselines. The DDPG method has the worst reward perfor-
mance among the considered RL algorithms in both figures.
The reason for this weak execution can be related to the
DDPG’s centralized behavior. Since the DDPG has to take
all the agents’ observations and actions as input and evaluate
how decent the policy has performed for all the agents, it
fails to address the agents’ individual performance and acts
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Fig. 3. Convergence performance of agents sub-tasks following Algorithm 2, intra-platoon gap = 25m, platoon size = 6.
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(a) P = 5, N = 4, intra-platoon gap = 5m
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(b) P = 7, N = 4, intra-platoon gap = 5m

Fig. 4. Comparison of convergence performance

non-stationarily in multi-agent environments. This improper
execution is further intensified with the number of agents in
Fig. 4(b).

Regarding the fully decentralized MADDPG, the agents
act absolutely oblivious without any knowledge about other
existing agents’ policies or actions in the environment. This
unawareness can lead to increased levels of interference in the
system, which will degrade the agents’ overall performance.
This phenomenon is not very severe when the number of
platoons is low, as can be seen from Fig. 4(a); however,
by increasing the number of platoons, its tendency even to
perform worse than DDPG is not inconceivable, as observed
from Fig. 4(b). One prominent feature that separates the
modified MADDPG and proposed RL framework from the
fully decentralized and DDPG, aside from their better reward

performance and faster convergence, is their stability and min-
imal fluctuations during the convergence. We can summarize
the primary reasons for this performance gap as follows: i)
The proposed frameworks can learn to maximize the individual
and global rewards for all the agents simultaneously, leading
to improved collaboration between the agents, hence driving
towards better performance. ii) The global critic, which is
based on TD3, considers the correspondence between func-
tion approximation error in both policy and value updates.
On the other hand, the DDPG method is highly susceptible
to inaccuracies provoked by function approximation errors,
making it overfit to narrow peaks in the value estimate. iii) Last
but not least, unlike the original implementation of DDPG,
which leverages the correlated Ornstein-Uhlenbeck noise, the
proposed MARL framework applies an uncorrelated Gaussian
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(a) Average Age of Information versus the intra-platoon gap for P=5 , N=4
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(b) Average CAM message transmission probability versus the intra-platoon
gap for P=5 , N=4
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(c) Average Age of Information versus the the number of platoon members
for P=5 , intra-platoon gap = 25 m
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(d) Average CAM message transmission probability versus the number of
platoon members for P=5 , intra-platoon gap = 25 m

Fig. 5. Comparison of proposed RL algorithms in terms of Average Age of Information and CAM message transmission probability

noise for exploration. Eventually, by analyzing Figs. 4(a) and
4(b), it is unveiled that the proposed RL algorithm tends to
converge to the same quantity even though the vehicle density
has increased in the environment, while the other baselines’
performance diminishes with the increased load.

Fig. 5(a) illustrates the mean AoI of platoons as a function
of the intra-platoon gap when P = 5 and N = 4. From the
figure, it can be observed that the AoI quantity rises for all the
considered algorithms as the intra-platoon spacing increases.
The intuition behind this observation is straightforward. By
increasing the intra-platoon gap, it is perceptible that the
channel conditions from PLs to their followers sustain more
variations, leading to lower data rates. Accordingly, the PL
spends more time transmitting the CAM message to its fol-
lowers and operating in Mode 1. In the meantime, the PL
less frequently interacts with the RSU; therefore, the average
AoI increases. Nonetheless, our proposed MARL framework
performs significantly more reliable than the other baselines,
maintaining the average AoI quantity within 5-10 milliseconds
range, and guarantees better QoS. Stunningly, the modified
MADDPG framework acts close to our proposed algorithm.
This behavior is anticipated as both the algorithms leverage the
global and local critics simultaneously to learn a global and

individual reward. However, there is still a slight performance
gap between them due to the task decomposition in our
proposed algorithm. In comparison, the DDPG acts less stable,
and its performance degrades by increasing the intra-platoon
spacing. It is also observed that the performance of fully
decentralized MADDPG is close to the modified MADDPG,
and our proposed algorithm up to 25 meters intra-platoon gap;
however, there can be seen a sharp jump in the AoI quantity
when the intra-platoon gap rises to 35 meters. This is because,
with longer distances between the PL and its followers, the PLs
tend to use more power to compensate for the reduced levels of
channel gains to guarantee the CAM message transmission to
their followers, which inevitably results in severe interference
to other platoons, and as these platoons are acting in a
fully decentralized way, they cannot discern the appropriate
resources to select, hence leading to these sharp changes in
the performance metrics. The aforementioned analysis is also
extendible to results in Fig. 5(c), which demonstrates the
average AoI versus the number of platoon followers.

Another compelling result can be observed from Figs.
5(b) and 5(d), which show the CAM message transmission
probability. From the figures, the performance metric drops
for all the schemes as the intra-platoon gap increases. In
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conjunction with the observations from Figs. 5(a) and 5(c), the
intuition behind this phenomenon is explicit. However, as Figs.
5(b) and 5(d) suggest the proposed framework is robust against
alterations in platoon sizes or intra-platoon spacing variations.
The proposed framework maintains a transmission probability
of over 99 percent for different platoon sizes when the intra-
platoon gap is less than 25 meters, whereas this metric drops
significantly for DDPG and fully decentralized MADDPG. We
finalize the respective analysis with a critical look at all four
figures. By comparing Figs. 5(a) - 5(d), it is conceivable that
the number of vehicles significantly impacts the performance
metrics quantity. In Fig. 5(d), by increasing the number of
vehicles up to 30, except DDPG, all the algorithms have
shown a similar behavior. As we continue increasing the
number of vehicles up to 50, the gap between these algorithms
starts to grow. One interesting observation from this figure is
that the CAM message transmission probability has dropped
to 65 percent for fully decentralized MADPG, even worse
than DDPG, which directly relates to its lack of interference
management when the number of vehicles is considerable.
Nevertheless, care must be taken since these observations
are based on the particular setting for the simulation, and
additional caution is required when generalizing them. We
can still conclude that our proposed framework in Algorithm
2 indicated a very robust behavior against the parameter
modifications and outperformed the other baselines.

V. CONCLUSION

In this paper, a MADDPG-based transmission mode se-
lection and resource allocation method was developed for
platooning systems, aiming at minimizing the AoI of platoons
while guaranteeing the CAM message delivery to PMs. The
proposed MARL framework consists of a collaborative setting
where a group of PLs simultaneously learns to maximize
the collective global reward and individual local reward. Fur-
thermore, we decomposed the agents’ holistic reward signal
into multiple sub-reward functions based on their sub-tasks
and learned them separately. Through such a mechanism,
we demonstrate that the proposed RRM scheme is signifi-
cantly robust and effective in encouraging platoons to improve
system-level performance, although the PLs independently
select their transmission mode, RB, and power levels. Finally,
through extensive simulations we verified the effectiveness and
performance of the proposed MARL method. Future work will
carry an in-depth extension of the proposed framework to
Non-orthogonal Multiple Access (NOMA) scenarios for the
platooning system. Also, examining the spectrum sharing sce-
narios in vehicular networks is another encouraging direction
worth further investigation.
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