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FlexEdge: Digital Twin-Enabled Task Offloading for

UAV-Aided Vehicular Edge Computing
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Abstract—Integrating unmanned aerial vehicles (UAVs) into
vehicular networks have shown high potentials in affording
intensive computing tasks. In this paper, we study the digital
twin driven vehicular edge computing networks for adaptively
computing resource management where an unmanned aerial ve-
hicle (UAV) named FlexEdge acts as a flying server. In particular,
we first formulate an energy consumption minimization problem
by jointly optimizing UAV trajectory and computation resource
under the practical constraints. To address such a challenging
problem, we then build the computation offloading process as
a Markov decision process and propose a deep reinforcement
learning-based proximal policy optimization algorithm to dynam-
ically learn the computation offloading strategy and trajectory
design policy. Numerical results indicate that our proposed
algorithm can achieve quick convergence rate and significantly
reduce the system energy consumption.

Index Terms—Digital twin, vehicular edge computing, UAV,
proximal policy optimization.

I. INTRODUCTION

Internet of Vehicles are expected to play a critical role

in future digital cities such as smart driving and intelligent

transportation systems [1]. Considering the limited computing

resource on the vehicles, vehicular edge computing (VEC) is

recognized as a promising solution to enable vehicular real-

time services via offloading computation-intensive tasks to the

network edge [2], [3]. Generally, road side units (RSUs) serve

as the edge nodes to provide computation and communication

resources for the vehicles running on the road. However, the

highly dynamic topology of vehicular networks may make

the effective interaction time duration of both vehicle-to-

vehicle and vehicle-to-RSU extremely short. Furthermore, the

locations of RSUs are usually fixed, and the deployment of

MEC servers requires a certain amount of space and cost.

Recently, unmanned aerial vehicle (UAV)-assisted VEC has

drawn extensive attention due to the provided ubiquitous

connectivity and three-dimensional networking coverage for

realizing the task offloading [4]. Compared with the traditional

VEC where the computing facilities are only available at

RSUs, the UAV-assisted VEC can provide flexible services
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according to the actual road conditions and mission require-

ments [5], [6].

In practical VEC, how to design an appropriate mechanism

to optimize the offloading decisions is a challenge [7]. As

a potential cure, digital twin (DT) has recently proposed to

build virtual network space and provide virtual images of

corresponding physical entities [8]. Based on this architec-

ture, DT can replace the vehicles and edge servers to make

offloading decisions in the virtual space in advance, while the

computing and communication resources between vehicles and

edge servers in physical space can be provided quickly and

accurately according to the request of the vehicles [9]. This is

of paramount significance to capture the time-varying resource

supply and demand in the development of VEC [10], [11].

Recently, many research efforts have mainly focused on DT-

aided service architecture. In particular, Zhang et al. [1] inte-

grated DT with multiagent learning to optimize edge resource

scheduling in VEC networks. Dai et al. [12] introduced DT to

model the stochastic task arrival and leveraged asynchronous

actor-critic to minimize the energy consumption. With the

support of DT technology, the intelligent offloading with edge

selection was studied in [13], while integrate computing, com-

munication, and storage was considered in [14] to minimize

the latency performance. Yuan et al. [15] proposed a dynamic

DT of the VEC network to reflect the network characteristics

in real-time. To provide the seamless coverage and high-

quality services, Li et al. [16] exploited DT to support UAV-

enabled MEC systems where deep Q-network is proposed.

Although the aformentioned excellent studies laid an initial

foundation on DT-aided MEC, the application of DT in UAV-

assisted VEC networks to help vehicles making the offloading

decisions has not been considered. We in this paper propose

a new DT architecture to facilitate the computation offloading

in UAV-aided VEC network. Our specific contributions are:

• We introduce DT to VEC networks for achieving real-

time computing, where UAV has two roles to play: aerial

edge server and mobile relay. Specifically, the vehicles

can offload part of the computing tasks to the UAV or

to the RSU via UAV relay link for edge processing. The

deviation between the estimated computing frequency and

the real value of devices is carefully considered.

• The formulated energy consumption minimization opti-

mization problem is a hybrid discrete-continuous action

space problem and the offloading decision and UAV

trajectory are also closely coupled with each other. We

formulate the vehicles and UAV status update problem

as a Markov decision process (MDP) and leverage the

online proximal policy optimization (PPO) algorithm to

learn environment dynamics and computing demands via

http://arxiv.org/abs/2305.01536v1
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Fig. 1. Digital twin model for UAV-assisted VEC.

DT in order to enable real-time offloading decisions and

UAV trajectory policy.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a UAV-assisted vehicular network containing

K vehicles, an RSU and a UAV, as shown in Fig. 1. To better

express the system state, we introduce a time period T , which

is spanided into N time slots, where the length of each time

slot is denoted as δt = T/N . We define the set of vehicles and

the set of time slots as K = {1, . . . ,K} and N = {1, . . . , N},

respectively. Since the vehicles typically have limited comput-

ing resource, they need to offload the time-sensitive tasks to

the RSU equipped with VEC server for further processing.

However, the communication signal between the vehicles and

RSU may be blocked by the obstacles (e.g., high building). In

addition, RSU may far away from the vehicles, which makes it

hostile for vehicles to directly communicate with RSU via poor

signals or even interruption links. Combined with the RSU,

UAV works as the temporary edge server or moving relay to

provide timely communication and computation services for

the vehicles. In this case, the vehicles can offload the portion

of tasks to UAV server or further to RSU server via UAV

relay link. To timely evaluate the status of the network, the

DT layer is maintained at the central controller to manage

UAV and RSU resources. For ease of exposition, the locations

of vehicles, UAV, and RSU at time slot n are given by

wk[n] = [xk[n], yk[n], 0]
T, q[n] = [xu[n], yu[n], H ]T, and

wr[n] = [xr [n], yr[n], 0]
T, respectively, where H is the flying

altitude of UAV.

We employ the orthogonal frequency division multiple

access protocol to avoid the interference between vehicles.

Hence, the uplink transmission rate from vehicle k is given

by

Rk[n] =
B

K
log2

(

1 +K
pkhk[n]

BN0

)

, (1)

where B is the total available bandwidth of the network, and

hk[n] denotes the channel gain between vehicle k and UAV,

which is calculated by hk[n] = β0/(‖q[n]−wk[n]‖)2.

A. Digital Twin Model

The central controller periodically collects vehicles’ and

UAV’ data to record the DT models. Several open-source plat-

forms, including Eclipse Ditto [8], Model Conductor-eXtended

Framework, Mago3D, DeepSense 6G [17] and DeepVerse 6G

[18] have been designed for creating the DT-based systems.

This can enable us to execute the digital system and physical

system.

In this paper, DT is utilized not only to model the computing

resources of vehicles and UAV server, but also to assist the

model training and parameter synchronization of learning-

based methods. For the k-th vehicle, the virtual twin need to

record its task information and location, which can be given

by

DTk[n] =
{

Vk[n], f̃k[n],wk[n]
}

, (2)

where Vk[n] = {Dk[n], Ck[n], tk[n]} means the computation

task with a latency requirement of tk[n], an input size of Dk[n]
bits, and an average number of central process unit (CPU)

cycles to processing one bit data Ck[n]. Although DT model

represents the operating state of the real network as accurately

as possible, there are still mapping errors due to the limitations

of the DT modeling method and the acquisition of modeling

data. Hence, we denote f̃k[n] as the estimated CPU frequency

for physical vehicle k at time slot n.

For UAV, the DT needs to reflect its scheduling of service,

involving the allocation of resource and location information.

Thus, the virtual twin of UAV is expressed as

DTu[n] =
{

f̃u
k [n], q[n],a[n],v[n]

}

, (3)

where f̃u
k [n] denotes the estimated CPU frequency for allo-

cating to vehicle k by UAV edge server, a[n] indicates the

acceleration of UAV, and v[n] denotes the velocity of UAV at

time slot n. The DT of UAV edge server monitors the current

status of the physical edge servers and vehicles for subsequent

real-time decision making.

B. Computation Model

At time slot n, each vehicle generates a task Vk[n]. We

consider that the tasks can be divided into two parts and

concurrently executed. Denoting αk[n] as the task partition

factor, which means that αk[n]Dk[n] bits of task is computed

at UAV or RSU, and (1− αk[n])Dk[n] is computed locally.

1) Local computing: The estimated local computing time is

calculated as

T̃ l
k[n] = (1− αk[n])Dk[n]/f̃k[n] (4)

According to [13] and [15], the local computing time gap

between real value and DT estimation can be given by

∆T l
k[n] =

−(1− αk[n])Dk[n]Ck[n]f̂k[n]

f̃k[n](f̃k[n] + f̂k[n])
, (5)

where f̂k[n] denotes the estimated deviation of actual fre-

quency fk[n] = f̃k[n]+f̂k[n]. Then, the actual local computing

time is given by

T l
k[n] = T̃ l

k[n] + ∆T l
k[n] (6)
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2) Edge Computing: In terms of edge computing, the proce-

dure can be divided to three parts. First, the vehicles transmit

the tasks to UAV. Then, the UAV receives and processes the

tasks. Additionally, if the tasks cannot be completed, the UAV

will relay some proportion of tasks to RSU for completing the

tasks. We assume that the computing results are with small

size, and thus the downloading time is negligible. Denoting

T o
k [n] as the offloading time of vehicle k at time slot n, which

is calculated by T o
k [n] = αk[n]Dk[n]/Rk[n]. Rk[n] is the

transmission rate according to the Shannon formula.

To this end, the computing energy of UAV is given by

Eu
k [n] =κfu

k [n]
2 min

{

fu
k [n](tk[n]− T o

k [n]),

αk[n]Dk[n]Ck[n]
}

(7)

It is worth noting that if the task of vehicle k cannot

be completed at UAV, the rest part will be relayed to RSU

concurrently. Admittedly, remote offloading helps to reduce

the UAV’s energy consumption as some tasks are executed by

the RSU. Note that the relay energy consumption is relatively

negligible compared to the computing and flying energy of

UAV. The relay time T r
k [n] can be calculated by the size of

remain tasks Dr
k[n] = αk[n]Dk[n] − fu

k [n]T
o
k [n]/Ck[n] and

transmission rate. Thus, we have

Rr[n] =
B

K
log2

(

1 +K
puhu[n]

BN0

)

, (8)

and

T r
k [n] = Dr

k[n]/R
r[n]. (9)

When a task is offloaded to the UAV edge server, the com-

puting time gap between real value T u
k [n] = T̃ u

k [n] +∆T u
k [n]

and estimated DT value T̃ u
k [n] = αk[n]Dk[n]Ck[n]/f̃

u
k [n] is

∆T u
k [n] =

−αk[n]Dk[n]Ck[n]f̂
u
k [n]

f̃u
k [n](f̃

u
k [n] + f̂u

k [n])
, (10)

where f̂u
k [n] is the estimated deviation of edge server actual

frequency fu
k [n] = f̃u

k [n] + f̂u
k [n].

Denoting the f̃ rc
k [n] and f̂ rc

k [n] as the estimated CPU

frequency allocated to vehicle k and the estimated deviation

of actual frequency f rc
k [n] = f̃ rc

k [n] + f̂ rc
k [n], the computing

energy of RSU is calculated by

Erc
k [n] =κf rc

k [n]2 min
{

f rc
k [n](tk[n]− T r

k [n]), D
r
k[n]Ck[n]

}

(11)

Therefore, the estimated RSU computing time T̃ rc
k [n] and

its estimated deviation ∆T rc
k [n] for real computing time T rc

k [n]
can be similarly calculated as (10) with the relayed task size

Dr
k[n]. Then, the actual latency of edge computing can be

written as

T e
k [n] = T o

k [n] + max
{

T r
k [n] + T rc

k [n], T u
k [n]

}

(12)

C. UAV Flying Model

In each time slot n, the UAV flies obeying the constraints

of speed and acceleration, which can be formulated as

‖v[n]‖ ≤ vmax, ∀n ∈ N . (13)

‖a[n]‖ ≤ amax, ∀n ∈ N , (14)

q[n+ 1] = q[n] + v[n]δt +
1

2
a[n]δ2t , ∀n ∈ N . (15)

Then, the propulsion energy of UAV can be expressed as

follows:

Ef [n] =
1

2
d0ρsA‖v[n]‖

3 + P0

(

1 +
3‖v[n]‖3

U2
tip

)

+ Pi

(
√

1 +
‖v[n]‖4

4v40
−

‖v[n]‖2

2v20

)

, (16)

where Pi and P0 are the induced power in hovering status

and the blade power of UAV, v0 is the mean rotor velocity,

Utip denotes the tip speed of the blade, d0 is the fuselage drag

ratio, s is the rotor solidity, ρ denotes the air density, and A
is the rotor disc area.

D. Problem Statement

We aim to minimize the energy consumption of UAV and

RSU, the optimization problem can be expressed as

min
α,f ,q

N
∑

n=1

(

K
∑

k=1

(Eu
k [n] + Erc

k [n]) + Ef [n]

)

(17a)

s.t. (13), (14), (15), (17b)

max{T l
k[n], T

e
k [n]} ≤ tk[n], ∀k ∈ K, ∀n ∈ N , (17c)

0 ≤ αk[n] ≤ 1, ∀k ∈ K, ∀n ∈ N , (17d)

K
∑

k=1

f̃u
k [n] ≤ fu

max, ∀k ∈ K, ∀n ∈ N , (17e)

f̃u
k [n] ≥ 0, ∀k ∈ K, ∀n ∈ N . (17f)

where the optimization variables α = {αk[n]}, f =
{f̃k[n], f̃u

k [n], f̃
rc
k [n]}, q = {q[n]}, ∀k ∈ K, ∀n ∈ N . fu

max

is the maximum available CPU frequency of UAV in DT

model. Constraint (17b) represents the movement constraints

of UAV. Constraint (17c) ensures that the task execution

time cannot exceed the maximum tolerable latency. Constraint

(17d) specifies the range of offloading proportion. Constraints

(17e) and (17f) refer to the estimated computation resources

for allocating to vehicle k in digital space.

III. PROPOSED DRL APPROACH

In this section, we propose a PPO-based algorithm frame-

work to address problem (17) with dynamic communication

states and highly-coupled variables.
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Fig. 2. The framework of PPO algorithm.

A. DRL Components

According to the general interaction model between DRL

agent and network environment, the elements of MDP include

state, action, and reward, which are defined as follows.

• State: In each time slot n, the DRL agent observes the

state of the environment, which is presented by a four-

tuple as sn = {wk[n], q[n], Dk[n], Ck[n]}, ∀k ∈ K.

• Action: After observing the state sn, the agent executes

an action an = {αk[n], f
u
k [n], f

rc
k [n], q[n]}, ∀k ∈ K, thus

scheduling the resource and making offloading decisions

for the UAV and the vehicles.

• Reward: The agent executes the action based on the

observed state and obtains an immediate reward rn from

the environment. To reflect the optimization objective of

(17a) in a long run, we design the form of the reward

function similar to the system energy consumption. The

reward consists of the system energy consumption and

the penalty for violating the delay constraint, which is

given by rn =
K
∑

k=1

(Eu
k [n]+Erc

k [n])+Ef [n]+P l
n, where

P l
n = µ

K

K
∑

k=1

(

max
{

T l
k[n]− tk[n], T

e
k [n]− tk[n], 0

})

is

a linear penalty function related to the violation degree

on of the latency constraint that is not satisfied, and µ is

a coefficient of the penalty term.

B. Learning Algorithm Design

In this subsection, we introduce the details of our pro-

posed PPO algorithm. Here, the information involving MDP

elements is uploaded and gathered in DT layer. It can be

readily observed that the state, action, and reward are con-

tinuous variables. Therefore, we leverage the PPO algorithm

to approximate the optimal policy rather than discretizing the

action and state spaces. The framework of PPO-based DRL

training framework is displayed in Fig. 2. Specifically, the PPO

is based on actor-critic framework, where the actor network is

used as policy to generate action an, and the critic network is

used to evaluate the value of state V (sn) to adjust the current

policy.

Different from the trust region policy optimization, PPO

introduces a clipping factor in its objective function to restrict

the update rate. Moreover, the objective of actor is optimized

Algorithm 1 PPO-based DRL Training Algorithm

1: Initialize network parameters of actor θ, network param-

eters of critic ω, and replay buffer.

2: Initialize ep = 1.

3: for ep = 1 . . . epl do

4: for n = 1 . . . N do

5: UAV observes sn from the environment.

6: UAV obtains the action an via the actor network.

7: Vehicles offload and compute the tasks.

8: end for

9: UAV synchronizes the transitions {sn, an, rn, sn+1}
into DT layer.

10: DT layer calculates reward rn, ∀n.

11: Update actor network θ according to objective function

(19).

12: Update critic network ω according to loss function (20).

13: Store the policy entropy and log-probability in the

replay buffer.

14: DT layer synchronizes actor network to UAV.

15: end for

by the advantage function using generalized advantage estima-

tor (GAE) that can effectively reduce the variance of gradient

estimation, thus reducing the samples needed for training,

there holds

An =

∞
∑

l=0

(γλ)l
(

rn + γV (sn+1)− V (sn)
)

, (18)

where γ is the discount factor and λ is GAE factor realizing a

bias-variance tradeoff. In this paper, we develop a clip based

PPO algorithm to train the actor-critic network. The probabil-

ity ratio between the new policy and old policy is defined as

Υθ = πθ(an|sn)
π
θ
′ (an|sn)

, where θ and θ
′

are the policy parameters

concerning actor network and old actor network. Accordingly,

the loss function of the actor network is expressed as

Lactor = Eπθ

{

min [ΥθAn, clip (Υθ, 1− ǫ, 1 + ǫ)An]
}

,

(19)

where E{·} is the expected value, clip(·) is the clip function,

ǫ is a hyperparameter for controlling the range of Υθ. In fact,

ǫ is usually a small value that guarantees the policy to be

optimized smoothly.

By considering the mean squared error function on the value

estimation, the loss function of the critic network is expressed

as

Lcritic(ξ) =
[

V ξ(sn+1)− V (sn)
]2

, (20)

where V ξ(·) is the state value function estimated by critic

network and ξ denotes the value parameter. As a result, these

networks can be updated according to the gradient of (19) and

(20), and old actor is updated by actor for an interval.

The operating environment of PPO algorithm consists of

DT model of the whole network environment. UAV observes

the state from the DT model and inputs the observed state

into the local actor network of PPO algorithm to solve the

optimization problem (17). Then, the output computation
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offloading decisions are tested in the DT model and will

also feed back to the physical vehicles. The environment

information and the actions are periodically synchronized to

the DT layer at RSU for reward evaluation, model training,

and state monitoring. The training process pseudocode of the

proposed PPO framework is given in Algorithm 1.

C. Complexity Analysis

The actor and critic networks are composed by multi-

layer perceptions (MLPs). For an MLP, the computational

complexity of the j-th layer is O(Zj−1Zj + ZjZj+1), where

Zj is the number of neurons for j-th layer. Hence, the

computational complexity of a J-layer MLP is calculated

by O
(

∑J−1
j=2 Zj−1Zj + ZjZj+1

)

. Denoting the maximum

training episodes and the length of each episode as emax

and epl, the overall computational complexity for training is

calculated by the sum of complexity imposed by actor and

critic networks O
(

emax(epl
∑J−1

j=2 Zj−1Zj + ZjZj+1)
)

, and

for one-step execution is just O
(

∑J−1
j=2 Zj−1Zj + ZjZj+1

)

.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

PPO algorithm for UAV-aided VEC networks. We consider a

rectangular areaa of size 500 m × 500 m, where the vehicles

are moving on a cross road with an average velocity of 15

m/s. Unless other stated, we set K = 12 vehicles. The

RSU is located at the (-50 m, 0 m). The UAV is flying

at the altitude of H = 100 m. The channel bandwidth is

B = 2 MHz, the noise power density is N0 = −130
dBm/Hz, and the transmit power of vehicles and UAVs are

pk = 0.5 W and pu = 0.8 W, respectively. The channel gain

is set as β0 = −30 dB. For computational settings, we have

κ = 10−26, fu
max = 20 GHz, Dk[n] ∈ [0.2×106, 2×106] bits,

Ck[n] ∈ [500, 1500] cycles/bit, T = 40 s, and N = 40. The

UAV settings P0, Pi, Utip, v0, A are set as 39.03 W, 89.07 W,

100 m/s, 3.6 m/s, and 0.5030 m2, respectively. The maximum

acceleration and speed of UAV is amax = 5 m/s2 and vmax=20

m/s, respectively. For training settings, the discount factor is
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γ = 0.95, the length of an episode is equal to N , and the

penalty factor is µ = 100.

Fig. 3 shows the convergence of reward behavior during the

DRL training. We compare the proposed PPO-based method

with the deterministic deep policy gradient (DDPG) and the

advantage actor-critic (A2C). DDPG is an off-policy DRL

algorithm with double actors and double critics, and simply

adds exploration noise to output deterministic actions. In

contrast, A2C is an efficient on-policy method that substitutes

the original reward function with advantage function to better

evaluate the quality of state. It can be seen that the proposed

PPO approach can efficiently enhance the reward and outper-

form the DDPG-based method. The proposed PPO algorithm

converges at around 100K steps, while DDPG algorithm is

more tortuous and reaches the lowest reward and with higher

penalty for latency. This verifies that the PPO approach is more

steady than the A2C, and can effectively search better policy

for the formulated problem than the DDPG.

To evaluate the impact of number of vehicles, Fig. 4 presents

the objective function versus the number of vehicles under

different bandwidth. Intuitively, the energy consumption grows

as the number of vehicles increases, and decreases with the in-
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creasing of bandwidth. Another observation is that the energy

consumption increases faster when more vehicles are served

simultaneously. This is because the average computation and

communication resources gradually reduce as more vehicles

join in the area. Then, the transmission latency increases and

more computation resource on UAV is needed by vehicles.

For comparison, we consider three benchmarks in the ex-

isting literature, i.e., DDPG algorithm, A2C algorithm, and

random offloading. Note that the random offloading scheme

is based on fixed computing frequency allocation and fixed

circle trajectory with radius of 300 m at center. It can be

found from Fig. 5 that the proposed PPO algorithm has the

lowest objective, and the random offloading has the highest.

As the maximum task size increases, the energy consumption

gradually grows faster, and the gap between PPO and DDPG

algorithms becomes larger. This is due to the fact that as the

task size increases, the computing energy at initial stage of

exploiting becomes larger. This makes it hostile for DDPG

algorithm, which uses exploration noise to search the action

space, to learn more optimal policy than PPO algorithm.

Fig. 6 shows the trajectories of vehicles and UAV. We can

observe that UAV will quickly fly to the center of target

area to reduce the distance between itself and vehicles. By

adopting the acceleration model, the trajectory is smooth and

is applicable to practical use. Moreover, with DRL control

of UAV movement, the decisions of DT become adaptive to

unpredictable physical environment. The main reason is that

the policy can be preliminarily trained and dynamically adjusts

itself to provide the timely optimization for the UAV-aided

VEC network.

V. CONCLUSION

This paper proposed a DT framework to realize intelligent

offloading in UAV-assisted vehicular networks, where UAV

acts both as the edge computing node and the relaying

node. We aimed to minimize the system energy consumption

performance while ensuring the delay requirement. The state-

of-the-art DRL algorithm was designed to obtain near-optimal

solution. Numerical results were conducted to demonstrate

that the proposed PPO algorithm significantly outperforms the

existing benchmarks.
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