
RFID: Towards Low Latency and Reliable DAG
Task Scheduling over Dynamic Vehicular Clouds

Zhang Liu, Student Member, IEEE, Minghui Liwang, Member, IEEE, Seyyedali Hosseinalipour, Member, IEEE,
Huaiyu Dai, Fellow, IEEE, Zhibin Gao Member, IEEE, Lianfen Huang

Abstract—Vehicular cloud (VC) platforms integrate hetero-
geneous and distributed resources of moving vehicles to of-
fer timely and cost-effective computing services. However, the
dynamic nature of VCs (i.e., limited contact duration among
vehicles), caused by vehicles’ mobility, poses unique challenges
to the execution of computation-intensive applications/tasks with
directed acyclic graph (DAG) structure, where each task consists
of multiple interdependent components (subtasks). In this paper,
we study scheduling of DAG tasks over dynamic VCs, where
multiple subtasks of a DAG task are dispersed across vehicles and
then processed by cooperatively utilizing vehicles’ resources. We
formulate DAG task scheduling as a 0-1 integer programming,
aiming to minimize the overall task completion time, while
ensuring a high execution success rate, which turns out to be
NP-hard. To tackle the problem, we develop a ranking and
foresight-integrated dynamic scheduling scheme (RFID). RFID
consists of (i) a dynamic downward ranking mechanism that sorts
the scheduling priority of different subtasks, while explicitly
taking into account for the sequential execution nature of DAG;
(ii) a resource scarcity-based priority changing mechanism that
overcomes possible performance degradations caused by the
volatility of VC resources; and (iii) a degree-based weighted
earliest finish time mechanism that assigns the subtask with
the highest scheduling priority to the vehicle which offers
rapid task execution along with reliable transmission links. Our
simulation results reveal the effectiveness of our proposed scheme
in comparison to benchmark methods.

Index Terms—Vehicular cloud computing, directed acyclic
graph, task scheduling, network dynamics, volatile resources.

I. INTRODUCTION

A. Background and Challenges

Rapid development of Internet of Vehicles (IoV) has led to
the emergence of diverse vehicular applications (referred to as
tasks), e.g., advanced driver assistance system, Netflix stream-
ing, and VTube [1]. Many of these tasks are computation-
intensive and resource-hungry, requiring a massive amount
of computation resources to meet their execution require-
ments, provisioning of which is often beyond the capability
of onboard computation equipment of a single vehicle. One
approach to process these tasks is to exploit the vehicle-
to-infrastructure (V2I) communications and offload them to

Zhang Liu (zhangliu@stu.xmu.edu.cn), Minghui Liwang
(minghuilw@xmu.edu.cn), Zhibin Gao (gaozhibin@xmu.edu.cn) and Lianfen
Huang (lfhuang@xmu.edu.cn) are with the Department of Information and
Communication Engineering, School of Informatics, Xiamen University,
Fujian, China. S. Hosseinalipour (alipour@buffalo.edu) is with the
Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo,
NY, USA. Huaiyu Dai (hdai@ncsu.edu) is with Department of Electrical and
Computer Engineering, North Carolina State University, Raleigh, NC, USA.
(Corresponding author: Minghui Liwang).

either remote cloud servers [2] or edge computing servers [3].
Nevertheless, V2I connections are not always accessible, e.g.,
in suburban areas. Also, continuous transfer of data from the
vehicles to the cloud servers may incur high traffic congestion
on the backhaul links. Furthermore, edge computing servers
may not have enough computation resources to satisfy resource
demands of a large number of mobile vehicles.

To address the aforementioned limitations, vehicular cloud
(VC) [4]–[6] has emerged as an effective computing paradigm,
which exploits the dynamic and distributed computation and
communication resources of vehicles to provide responsive
and cost-effective computing services. Specifically, VC orches-
trates the heterogeneous resources of vehicles in geographic
proximity and exploits opportunistic vehicle-to-vehicle (V2V)
communications to build flexible and yet scaleable topologies
for provisioning of computing services.

One of the key advantages of the scalable architecture of
VC is its potential to process computation intensive tasks.
These tasks are often represented via a directed acyclic graph
(DAG) [11]–[14], where the task is partitioned into interdepen-
dent components (referred to as subtasks) and the processing
intricacies between subtasks is captured via introducing a
topological structure among them.

face recognition task antivirus task chess game task

n1 n2

n3

n4

n5 n1

n2

n3

n4 n5 n1 n2 n3 n4 n5

Fig. 1. Examples of DAG-represented tasks, and the corresponding interde-
pendence among subtasks [22].

Fig. 1 illustrates some examples of DAG tasks, and the
corresponding interdependencies among their subtasks [22].
Take face recognition task as an example, which can be
generated by smart buses to trace the contacts of patients who
are tested positive during the COVID-19 epidemic [32]. In a
face recognition task, each subtask (vertex) denotes one part
of the process of face recognition, while the edges represent
the corresponding interdependencies, such as outline and color
information. The execution of a DAG task should be conducted
in an ordered manner since processing a subtask potentially
needs the output data of others (e.g., in the face recognition
task in Fig. 1, the processing of subtask n2 relies on the output

ar
X

iv
:2

20
8.

12
56

8v
1

 [
cs

.D
C

]
 2

6
A

ug
 2

02
2

data of subtask n1 and the processing of subtask n3 relies on
the output data of both n2 and n4).

Upon execution of a DAG task over a VC, its subtasks
can be scheduled and processed by different vehicles in a
cooperative manner via V2V communication links. However,
there still remains noteworthy issues when scheduling DAG
tasks over VCs. First, the heterogeneity of vehicles’ processing
capabilities (e.g., different computation and communication re-
sources) leads to the non-triviality of determining the schedul-
ing priority of each subtask. Second, dynamic and volatile
VC topology leads to time-varying availability of computation
resources (e.g., vehicles may arrive at or depart from the VC
while a DAG task is being processed), which further adds to
the difficulty of subtask ranking and scheduling. Third, given
the sequential execution procedure of subtasks within a DAG
task, failure in the processing of a single subtask, caused by
vehicles’ mobility (e.g., upon completion of a subtask, there
are no feasible vehicles to execute the subsequent subtasks due
to the constrained V2V connections), results in the failure of
the entire DAG task. These issues make DAG task scheduling
over dynamic VC a challenging problem, which should be
carefully investigated while taking into account for the unique
characteristics of both the VC and the DAG task structure.

B. Overview and Summary of Contributions

This paper investigates DAG task scheduling over VC
aiming to minimize the overall DAG task completion time (i.e.,
low latency), while ensuring a high execution success rate (i.e.,
high reliability). We formulate the DAG task scheduling prob-
lem, while explicitly taking into account for: i) the heterogene-
ity of computation and communication resources of different
vehicles (referred to as resource providers), ii) dynamics and
volatility of VC’s topology, and iii) the sequential execution
nature of a DAG task imposed by the interdependencies among
its subtasks. We introduce the unified framework of ranking
and foresight-integrated dynamic scheduling scheme (RFID),
which aims to minimize the overall completion time of DAG
task, while ensuring a commendable probability of successful
task execution.

Our major contributions can be summarized as follows:

• To the best of our knowledge, this paper is among the first
to address minimizing DAG task completion time under
task execution success rate guarantee over dynamic VC.
This is achieved via considering the sequential execution
order of subtasks within a DAG task, while capturing the
dynamics of VC through a time-varying graph.

• We formulate the VC-assisted DAG task scheduling prob-
lem as an integer programming, aiming to minimize the
overall DAG task completion time while ensuring high
execution success rate upon considering dynamics and
resource heterogeneity of VC, which turns out to be NP-
hard.

• To tackle the problem, we propose a dynamic scheduling
algorithm over VC, called RFID. RFID first recursively
determines the scheduling priority of different subtasks

according to the assignment of their immediate prede-
cessors. It then selectively changes the scheduling priority
of a fraction of subtasks according to the availability of
vehicles’ resources. Finally, RFID selects the vehicles for
subtask assignment based on the vehicles’ connectivity
and resources.

• We implement RFID over real-world traffic data ob-
tained from the OpenStreetMap [30]. We further leverage
SUMO [31] simulation platform to simulate the environ-
ment and demonstrate the effectiveness of RFID. The
simulation results reveal that RFID outperforms bench-
mark methods in terms of DAG task completion time
and execution success rate, while enjoying a relatively
low computation complexity.

The rest of this paper is organized as follows: Section
II discusses related works on task scheduling over different
network architectures. In Section III, we present the system
model and formulate the VC-assisted DAG task scheduling
problem. In Section IV, we introduce RFID. Simulation results
are presented in Section V and the work in concluded in
Section VI.

II. RELATED WORK

Existing works devoted to task scheduling/offloading over
cloud-based networks can be roughly divided into three cate-
gories with respect to their task model: i) tasks represented
by indivisible bit streams with no interdependent subtasks,
such as [7]–[10]; ii) tasks represented via undirected graphs
considering interdependencies among subtasks, such as [24]–
[27], where the subtasks can be offloaded simultaneously and
processed on different servers in parallel; iii) tasks that are
modeled as DAG which further require explicit processing or-
der across their subtasks, e.g., [23], [11]–[14]. In the following,
we discuss the contributions of these works and highlight the
differences between the scenario considered in this paper and
prior works.

A. Scheduling of Bit Stream Tasks

X. Chen et al. in [7] studied computation offloading of bit
stream tasks in a mobile edge computing (MEC) network, by
formulating a multi-user computation offloading game, while
achieving Nash equilibrium. In [8], Y. Mao et al. addressed
computation offloading of bit stream tasks in MEC with energy
harvesting devices via proposing a Lyapunov-based algorithm.
S. Bi et al. in [9] studied the computation rate maximization
of bit stream tasks in wireless powered MEC through a bi-
section search algorithm and a coordinate descent method. In
[10], H. Guo et al. formulated the MEC offloading problem
for bit stream tasks in ultra-dense wireless networks using a
two-tiered game-theoretic task offloading scheme. Although
the aforementioned works provide useful insights on task
scheduling, none of them considers execution of computation
intensive tasks, which can be partitioned into multiple subtasks
across the computing resources.

B. Scheduling of Undirected Graph (UG) Tasks

For UG tasks, J. Ghaderi et al. in [24] proposed a ran-
domized task scheduling algorithm under stochastic task ar-
rival/departure. L. Shi et al. in [25] studied the energy-aware
scheduling problem for parallel tasks in cloud by design-
ing a time-efficient scheduling algorithm called TaPRA. In
[26] and [27], M. Liwang et al. focused on the allocation
of computation-intensive graph tasks in IoV and proposed
subgraph isomorphism extraction-based low complexity mech-
anisms. However, UG tasks do not require any specific pro-
cessing order among their subtasks, where all the subtasks of
a UG task can be executed in parallel across the computing
resources. As a result, this makes their allocation mechanism
different than DAG tasks.

C. Scheduling of DAG Tasks over Static Networks

DAG task scheduling has been extensively studied in static
MEC networks with fully connected servers. H. Topcuoglu
et al. in [23] proposed the HEFT algorithm, where each
subtask is assigned to the processor that can minimize its
corresponding completion time. In [11], L. F. Bittencourt
et al. utilized forward looking attribution to improve the
performance of HEFT. M. Aggarwal et al. in [15] developed a
genetic algorithm for DAG task scheduling. In [14], H. Kane-
mitsu et al. proposed a clustering-based DAG task scheduling
algorithm focusing on assigning the subtasks which are located
on the critical path to the same processor. G. C. Sih et al. in
[12] adopted a dynamic scheduling algorithm, where a global
time clock is used to regulate the scheduling process. Recently,
in [16], Y. Sahni et al. introduced a JDOFH algorithm to
schedule multiple DAG tasks in a multi-hop collaborative
edge computing environment. However, the aforementioned
works mainly focus on static networks, ignoring the dynamics
and instability of service provisioning, which are significant
features of VCs.

D. Scheduling of DAG Tasks over Dynamic Networks

There exist few recent works dedicated to DAG task
scheduling over dynamic networks. F. Sun et al. in [18]
addressed cooperative DAG task scheduling in VC to reduce
the overall task completion time via implementing a modified
genetic algorithm. In [19], H. Liu proposed a policy gradient-
based offloading scheme for minimizing the overall DAG
task completion time in vehicular networks. In our previous
work [20], we studied topology-aware DAG task allocation in
vehicular networks and proposed a simulated annealing-based
task allocation algorithm.

Although the aforementioned works take significant steps
toward DAG task scheduling in dynamic networks, they suffer
from several limitations, which we aim to address in this
work. In particular, in [18], scheduling time slots were de-
fined to include the execution and data transmission process,
which, however, created redundancy in the task completion
time. Also, short V2V communication path life time was not
considered in [19]. Moreover, in our previous work [20], the
topology of IoV is assumed to remain unchanged during the

p2

p3

p1 (task owner)

p4

p5

RSU
VC1

RSURSU
VC2

p3

p2

p1 (task owner)

p4

p

n1

n5

n6

n7

n2

n3

n4

n1 n4

n2

n3

V2V communication V2I communication Subtask of DAG
Interdependence
among subtasks

Fig. 2. The framework of the proposed VC-assisted DAG task scheduling.

completion of subtasks. Thus, we are motivated to develop
a dynamic scheduling scheme with reasonable computation
complexity for DAG task scheduling over VC with volatile
V2V links.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We model each DAG task A as a graph GA =
(
VA, EA

)
,

where vertex set VA = {n1, n2, ..., n|VA|} represents the
set of subtasks with

∣∣VA
∣∣ denoting the number of subtasks

in A and EA denoting the edge set. Each eAni,nj
∈ EA

is a directed edge describing the corresponding precedence,
indicating subtask ni has to be completed before the execution
of nj (i.e., the output of ni is used as the input data for
nj). A subtask without any predecessors represents the entry
subtask, denoted by nentry, (e.g., subtask n1 in Fig. 1); while
a subtask without any successors indicates the exit subtask,
denoted by nexit, (e.g., subtask n5 in Fig. 1). If there is more
than one entry/exit subtask, they are assumed to be connected
to a virtual entry/exit subtask with edges that entail zero
data exchange requirements, for analytical simplicity. Fig. 2
depicts a schematic of our system model and some examples,
where two VCs are managed by a road side unit (RSU) as a
centralized controller1. Major notations used in this paper are
summarized by Table I.

We model the dynamic topology of VC as a time-varying
undirected graph GVC(t) =

(
VVC(t), EVC(t)

)
. Specifically, the

set VVC(t) = {p1, p2, ..., p|VVC(t)|} contains the task owner p1
(i.e., the vehicle who generates the DAG task) and other ser-
vice vehicles in the network at time t; while EVC(t) represents
the corresponding edge set where each eVCpm,pn(t) ∈ EVC(t)
stands for a one-hop two-way V2V link between two vehicles
pm and pn, where pn, pm ∈ VVC(t). The existence of an edge
between two vehicles is a result of their corresponding distance
as modeled in Section III-B. Vehicles are assumed to have
heterogeneous computation capabilities modeled via different
local CPU processing speed, denoted by fpm (cycles/s) for

1This paper studies the task scheduling problem via considering one DAG
task (generated by task owner) and one VC for analytical simplicity. Our
proposed algorithm can also be well applied in networks with multiple
VCs and DAGs, e.g., two DAGs in one VC can be seen as a virtual big
DAG. Cooperation among VCs and competing for limited resources between
multiple DAG tasks are left as our future work.

TABLE I
MAJOR NOTATIONS

Notations Explanation

GA =
(
VA, EA

)
DAG task model, where VA is the set of subtasks and EA is the set of directed edges

GVC(t) =
(
VVC(t), EVC(t)

) VC model, where VVC(t) contains the vehicles in network at time t and EVC(t) contains the corresponding one-hop
V2V links among vehicles

TTni,nj (pm, pn) The data transmission time from vehicle pm (assigned to subtask ni) to vehicle pn (processing subtask nj)
CT(ni, pm) The computation time of processing subtask ni on vehicle pm
ξni,pm A binary variable indicating the assignment of subtask ni to vehicle pm
stni The scheduling time of subtask ni

pred(ni) The immediate predecessor set of subtask ni

succ(ni) The immediate successor set of subtask ni

RT(ni, pm) The ready time of processing subtask ni on vehicle pm
EST(ni, pm) The earliest execution start time of subtask ni on vehicle pm
EFT(ni, pm) The earliest execution finish time of subtask ni on vehicle pm
AFT(ni) The actual finish time of subtask ni when ni is practically processed on a specific vehicle
CVC(ni) The candidate vehicle set for scheduling subtask ni

nready The time-varying ready subtask set
DVC(ni, pm) The degree-based vehicle set when subtask ni is processed on vehicle pm
EFTW(ni, pm) The weighted earliest finish time of subtask ni on vehicle pm
ni, nj Indices used to represent subtasks
pm, pn Indices used to represent vehicles

vehicle pm. They also are assumed to execute one subtask at
a time [16], where multiple subtasks assigned to one vehicle
may have to wait for resource release.

A. Communication Model

Considering transmitting the processing results of subtask
ni (executed on vehicle pm) to vehicle pn which is assigned to
execute subtask nj , where eAni,nj

∈ EA, a dual-slope (power-
law) model [33] is leveraged to formulate the propagation loss
of the underlying V2V communication link in dB, which is
considered to be full-duplex as follows:

PL (dpm,pn(t)) = Lb+

10η1 log (dpm,pn (t)) + PL(d0),

if 1 ≤ dpm,pn(t) ≤ dbrk
10(η1 − η2) log (dbrk) +
10η2 log (dpm,pn (t)) + PL(d0),

if dpm,pn(t) > dbrk
(1)

where Lb is a basic transmission-loss parameter that depends
on the frequency and the antenna height. dpm,pn(t) indicates
the Euclidean distance between vehicle pm and pn at time t,
d0 = 1 (m) is the reference distance, η1 = 2 and η2 ∈ [2, 7]
denote the slopes of the best-fit line before and after distance
dbrk, respectively, and dbrk indicates the breakpoint distance
given by

dbrk =
4hthr
δ
− λ

4
, (2)

where ht and hr are the height of transmitter (i.e., the
antenna on vehicle pm) and the receiver (i.e., the antenna on
vehicle pn), δ represents the signal power fluctuations due to
surrounding objects, and λ denotes the wavelength [36].

Let the binary indicator variable ξni,pm describe the subtask
assignment: ξni,pm = 1 if subtask ni is scheduled on vehicle

pm; otherwise ξni,pm = 0. The transmission time (s) associ-
ated with data transmission over the edge eAni,nj

∈ EA, when
ξni,pm × ξnj ,pn = 1 at time t is given by

TTni,nj
(pm, pn) =

{
cni,nj

× Γ (PL (dpm,pn (t))), pm 6= pn
0, otherwise

(3)
where cni,nj

denotes the size (bit) of output data of subtask
ni, which needs to be transferred to its dependent task nj , and
Γ() is a monotone increasing function expressed in [34]. Due
to vehicles’ mobility and their limited contact durations, this
paper only considers one-hop data transmission between the
vehicles [4]–[6].

B. V2V Contact Model

A contact event between vehicles pm and pn can happen
when dpm,pn(t) ≤ R at time t, where R represents the
vehicular communication radius. The contact duration between
pm and pn is assumed to obey an exponential distribution [35]
with parameter µpm,pn . Correspondingly, the probability that
the residual contact duration denoted by

∣∣eVCpm,pn(t)
∣∣ between

vehicle pm and pn at time t is larger than T is given by

Pr
(∣∣eVCpm,pn(t)

∣∣ > T
)

= exp (−Tµpm,pn) . (4)

According to (4), a lower value of the required contact
duration T for data transmission can be provided with a higher
assurance.

C. Computation Model

Let EST(ni, pm) and EFT(ni, pm) denote the earliest ex-
ecution start time of subtask ni on pm, and the earliest
execution finish time of subtask ni on vehicle pm, respectively.

For the entry subtask, nentry is assumed to be executed on
the task owner p1, and thus EST(nentry, p1) = 0.

Next, we provide key definitions used in developing our
methodology.

Definition 1. (Ready time). The ready time RT (ni, pm) is
time when all the immediate predecessor subtasks of ni have
been completed, while the required input data for processing
ni has arrived at vehicle pm, which is given by

RT (ni, pm) = max
nj∈pred(ni),
ξnj,pn

=1

{
AFT (nj) + TTnj ,ni (pn, pm)

}
,

(5)
where pred (ni) is the set of immediate predecessor subtasks
of ni and AFT(nj) is the actual finish time of nj when it is
practically scheduled on a specific vehicle:

AFT (nj) = EFT (nj , pm) , where ξnj ,pm = 1. (6)

Definition 2. (Scheduling time). The scheduling time of
subtask ni, i.e., stni

is the earliest time to allocate ni to a
vehicle, which is given by

stni
= max
nj∈pred(ni)

{AFT (nj)} , (7)

Where, pred(ni) is the set of immediate predecessors of
subtask ni. Using Definition 1, for the other subtasks involved
in the DAG, the values of EFT and EST can be computed
recursively, starting from the entry subtask as follows:

EST(ni, pm) = max {Avail(ni, pm),RT(ni, pm)} , (8)

EFT(ni, pm) = CT(ni, pm) + EST(ni, pm), (9)

where Avail(ni, pm) represents the time, in which vehicle pm
completes its last assigned subtask prior to the execution of
ni and it is ready to process a new subtask. Also, CT(ni, pm)
denotes the computation time of processing subtask ni on
vehicle pm, which is given by

CT(ni, pm) = wni/fpm , (10)

where wni represents the required computing workload (cpu
clock cycles) of subtask ni.

Since there can be multiple exit subtasks, after all the
subtasks in a DAG are scheduled, the actual finish time of the
exit subtask nexit is defined as the overall DAG task completion
time, which is given by

OTC = AFT(nexit). (11)

The main goal of DAG task scheduling is to determine the
assignment of each subtask to the appropriate vehicle such that
the overall DAG task completion time can be minimized.

D. Problem Formulation

We formulate DAG task scheduling over dynamic VC as
the following optimization problem:

P : arg min
{ξni,pm

}, ni∈VA, pm∈VVC(stni)
OTC (12)

s.t. C1:
∑

pm∈VVC(stni
)

ξni,pm = 1,

C2: EST (ni, pm) ≥ max
nj∈pred(ni)

{AFT (nj)} , ξni,pm = 1,

C3: exp
(
−TTnj ,ni

(pn, pm)µpn,pm
)
≥ θ,

∀nj ∈ pred (ni) , and ξni,pm × ξnj ,pn = 1,

C4: ξni,pm ∈ {0, 1}.

In problem P , C1 guarantees that each subtask ni can be
assigned to only one vehicle, C2 represents that execution
of a subtask can not start until all its predecessor subtasks
are completed based on the sequential execution property of
DAG task. Considering the volatility of V2V links modeled
in Section III-B, C3 ensures that vehicle pm, scheduled to
execute subtask ni, can successfully receive input data of ni,
where θ in C3 is the predefined quality of service factor.
Besides, C4 restricts that the scheduling variables are binary.
P is a 0-1 integer programming problem which is NP-

hard. This makes finding time-efficient algorithms to solve
the problem difficult, especially in large-scale dynamic net-
works. Also, solving P requires determining the scheduling
priority of each subtask to preserve the sequential processing
requirements imposed by the DAG structure in volatile VC
environment, which is challenging since during the execution
of subtasks the links among the vehicles may begin to form
or vanish. Furthermore, since the completion of subtask nexit
is considered as the objective function, if the execution of
any intermediate subtasks fails (e.g., there are no feasible
vehicles for processing a subtask due to the constrained V2V
connections, i.e., C3 can not be satisfied), the execution of
entire DAG task will encounter failure. Motivated by these
challenges, we develop RFID, which aims to reduce the
completion time of task execution, while providing reliability
assurance. RFID will enjoy a polynomial time complexity,
which makes it suitable for implementation over large-scale
dynamic VC.

IV. RANKING AND FORESIGHT-INTEGRATED DYNAMIC
(RFID) TASK SCHEDULING

To tackle P , we develop RFID which is a unified DAG
task scheduling methodology over dynamic networks. RFID
conducts task scheduling through three phases. In phase I,
a dynamic downward ranking mechanism is designed to sort
the scheduling priority of different subtasks over dynamic VC,
via considering the assignment of their immediate predecessor
subtasks, to capture DAG task’s sequential execution nature.
In phase II, a resource scarcity-based priority changing mech-
anism is developed to overcome possible performance degra-
dations caused by the volatility of VC resources via modifying
the scheduling priority of a fraction of subtasks obtained in
phase I. Finally, in phase III, a degree-based weighted earliest
finish time mechanism is introduced to assign the subtask with
the highest scheduling priority to the vehicle which offers rapid
task execution, which also possesses reliable V2V links. A
flow chart of RFID, and the inter-relationship between the
above-mentioned three phases is shown by Fig. 3. Before

Phase I: Dynamic Downward Ranking

Phase II: Priority Changing

Phase III: Vehicle Selection

: Prioriority Cha

Obtaining the scheduling priority of subtasks based
on the assignment of their immediate predecessors

 Updating the scheduling priority of some
subtasks obtained in Phase I

Assigning each subtasks, according to the
scheduling priority of Phase II , to a feasible vehicle

III: Vehicle Sele

obtained in

Priority Updating

P
h

a
se

 R
e
p

e
a
t

Scheduling

Fig. 3. A flow chart of RFID and the inter-relationship between different
phases.

discussing RFID, we first present the definition of candidate
set, which is considered as a significant part to develop RFID.

Definition 3. (Candidate set). The candidate set CVC (ni) of
ni contains the vehicles that can receive the output data of all
the predecessors of ni, as given by

CVC (ni) , {pm : exp
(
−TTnj ,ni

(pn, pm)µpn,pm
)
≥θ,

pm ∈ VVC(stni
), nj ∈ pred (ni) , ξnj ,pn = 1},

(13)

where pred(ni) is the set of immediate predecessors of ni, and
θ represents the predefined quality of service factor, as defined
in C3.

In the following, details of the three phases of RFID are
discussed. In each phase, we first highlight the shortcomings
of the current state-of-the-art methods, and then, develop our
methodology.

A. Phase I: Dynamic Downward Ranking

The major goal of this phase is to determine the scheduling
priority of subtasks, based on a metric called ranking, where
the subtask with a lower rank is considered to have a higher
scheduling priority.

1) Motivation: Existing methods such as [11]–[13], [16]
focus on subtask ranking in static environments, e.g., MEC
networks, with multiple fully-connected processors. They de-
termine the scheduling of subtasks based on downward rank-
ing, which can be obtained recursively by traversing the DAG
downward (i.e., starting from nentry to nexit). For nentry, it is
assumed that rank(nentry) = 0, while for the other subtasks,
we have the following (14)

rank (ni) = max
nj∈pred(ni)

{rank (nj) + CTni
+ TTnj ,ni

}, (14)

where pred(ni) denotes the set of immediate predecessors
of subtask ni, CTni

=
∑q
m=1 CT (ni, pm) /q is the average

computation time of subtask ni across q static processors,

and TTnj ,ni
= cni,nj

/B̄ is the average data transmission
time associated with edge eAnj ,ni

. B̄ denotes the average
transmission rate among q static processors.

Since conventional downward ranking mainly focuses on
static networks (e.g., q and B̄ are constants), which, however,
does not hold in dynamic VC. To further reveal that existing
strategies are difficult to be implemented in our problem
setting, we depict a simple example as shown in Fig. 4, where
two vehicles are connected by an edge when the distance
between them are smaller than the vehicular communication
radius. Due to the mobility and the heterogeneous resources
of vehicles, the corresponding candidates for scheduling n2
can be different according to different assignments of n1. For
example, in Fig. 4, when n1 is processed on p1, we have
CVC (n2) = {p1, p2, p4, p5} (although there exists an edge
between p1 and p3, p3 is excluded in the candidate set due to
Pr(
∣∣eVCp1,p3(t)

∣∣ > TTn1,n2
(p1, p3)) < θ). However, when n1 is

processed on p3, we have CVC (n2) = {p2, p3, p4}. Note that
the topology of VC changes in the two scenarios considered in
Fig. 4, since the processing time of n1 on p1 might be different
with that on p3, which thus results in different values of q and
B̄.

As a result, the set of candidate vehicles for process-
ing ni, can be impacted by different assignments of nj
(nj ∈ pred (ni)) due to dynamics, which should be carefully
considered during the subtask ranking mechanism design.

n1 n2

p2 p1

p4

p5

()
1 1

VC

2 ,
, 1()VC

2 ,)2 ,
,

2 ,2 ,n p
n x =

n1

p3

p2

p1

p4

p5

p3

()
1 3

VC

2 ,
, 1()VC

2 ,)2 ,
,

2 ,2 ,n p
n x =

n1
DAG Structure

Scenario 1 Scenario 2

Fig. 4. An example of showing the necessity of using dynamic ranking to
determine the priority of each subtask over VC.

2) Proposed Dynamic Downward Ranking Mechanism: To
address the aforementioned challenges, we propose a dynamic
downward ranking mechanism, which is tightly coupled with
the vehicle selection method described in phase III. We first
provide the definition of a ready subtask.

Definition 4. (Ready subtask). The set of ready subtask2

nready contains the subtasks whose immediate predecessors
have already been scheduled, and the corresponding execu-
tion order is not bounded by a precedence constraint, i.e,
∀ni, nj ∈ nready, e

A
ni,nj

/∈ EA.

We next model the dynamic downward ranking RankD of
each subtask ni ∈ nready, by leveraging available resources
and topological information of VC. In particular, the value of
RankD(ni) can be different according to different assignments
of its immediate predecessor subtasks.

2Although nready is time varying, for notational simplicity, we consider
nready only changes during the algorithm execution.

For the entry subtask, we have RankD(nentry) = 0. After
nentry is scheduled on task owner (according to our basic
assumption in previous sections), we determine the ranking
of the existing subtask ni ∈ nready and subsequently assign
them to appropriate vehicles (based on the vehicle selection
method, which will be described in phase III). To this end,
we compute the value of dynamic downward ranking as the
following (15),

RankD (ni) = max
nj∈pred(ni)

{RankD (nj) + CT
D

ni
+ TT

D

nj ,ni
},

ni ∈ nready,
(15)

where pred(ni) is the set of immediate predecessors of subtask
ni, CT

D

ni
is the dynamic average computation time, impacted

by the assignment of nj ∈ pred(ni), as given by

CT
D

ni
=

∑
pm∈CVC(ni)

CT (ni, pm)

|CVC (ni)|
, ni ∈ nready. (16)

Also in (15), TT
D

nj ,ni
represents the dynamic average data

transmission time, affected by the assignment of nj ∈
pred(ni), which is shown by

TT
D

nj ,ni
=

∑
pm∈CVC(ni)

TTnj ,ni
(pn, pm)

|CVC (ni)|
, ni ∈ nready.

(17)
As a result, different from static network environments, our

dynamic downward ranking mechanism identifies the suitabil-
ity of subtask assignment to different vehicles, which will
interactively work with the vehicle selection method described
in phase III, until the exit subtask has been scheduled.

B. Phase II: Resource Scarcity-based Priority Changing

The goal of this phase is to adjust the scheduling priority of
a fraction of subtasks obtained in phase I aiming to overcome
possible performance degradations caused by the volatility of
VC resources.

1) Motivation: Different from static computing environ-
ments with stable fully-connected computing servers [11]–
[13], dynamics and instability of VC resources can lead to
resource scarcity, which leaves heave impacts on the execution
of dependent subtasks. To illustrate this, we depict a simple
example in Fig. 5, where after the assignment of n1, subtasks
n2 and n3 become ready subtask according to Definition 4.
Suppose that RankD(n2) < RankD(n3), subtask n2 will be
firstly scheduled to its most preferred vehicle p1. However, this
case can incur a large completion time increasing, if n3 is not
assigned to p1, because p3 can execute n2 almost as rapidly.
Conversely, since the scale of candidate set for processing n3
is smaller (e.g., p3 is infeasible for processing n3 in Fig. 5),
this can raise the completion time when n3 is not assigned to
p1, as p1 is the only vehicle which can process n1 quickly.
Similar situations can be incurred when more than one ready
subtasks with different transmission requirements compete for
a same vehicle, over dynamic VC with volatile resources.

n1

n2

n3

p2 p1

p4

p5

()VC

2()VC

2
n

n1

p3

p2

p4

p5

()VC

3()VC

3
n

p1

n1

p3

DAG Structure
Scenario 1 Scenario 2

Fig. 5. An example showing the necessity of considering resource scarcity
in determining the scheduling priority of some specific subtasks over VC.

2) Proposed Resource Scarcity-based Priority Changing
Mechanism: Motivated by the aforementioned example, we
consider dynamic resource availability caused by vehicles’
mobility and address the resource scarcity problem via intro-
ducing a new metric denoted by CTI(ni), which measures the
completion time increment imposed by the case where subtask
ni is not scheduled to its most preferred vehicle, defined as

CTI(ni) = EFT (ni, p
∗
m)− min

pm 6=p∗m
{EFT (ni, pm)} ,

pm, p
∗
m ∈ CVC(ni),

(18)

where p∗m represents the most preferred vehicle with a mini-
mum value of EFT. Specifically, the minimization term in (18)
captures the earliest finish time of having ni to be executed
on the second preferred vehicle.

Consequently, we define the resource-scarcity-based dy-
namic downward ranking RSRankD(ni), to determine the
scheduling priority of each subtask ni ∈ nready as follows:

RSRankD(ni) = RankD(ni)− CTI(ni), ni ∈ nready. (19)

As a result, considering the extra completion time increment in
assigning each ready subtask to the second preferred vehicle
(in terms of completion time), can generally bring a change
of scheduling priority. For example, in Fig. 5, RankD(n2) <
RankD(n3) while RSRankD(n3) < RSRankD(n2), and thus
RFID schedules n3 earlier to avoid a large completion time
increment.

C. Phase III: Degree-based Weighted EFT for Vehicle Selec-
tion

Based on the scheduling priority obtained in Phase II, the
goal of this phase is to assign each subtask to the vehicle
which can rapidly execute it and have reliable transmission
V2V links, which is necessary to transmit the data required
for the processing of its successor subtasks.

1) Motivation: Heterogeneous earliest finish time algo-
rithm (HEFT) [23], which assigns ni to pm to minimize
EFT(ni, pm) is widely used in static networks. However,
this algorithm is not practical in dynamic VC. We demon-
strate this via a simple example shown in Fig. 6, where

the topology of VC changes across three scenarios, since
the processing and transmission time of different vehicles
can be different, and we have the scheduling order of each
subtask as n1 → n2 → n3 → n4. After n1 (nentry) is
scheduled on p1 (task owner), n2 and n3 are executed on
p2 and p4, respectively, according to the corresponding EFT
associated with different vehicles, under HEFT. However, it
can be seen that the execution of subtask n4 fails since
CVC(n4) = ∅. Because p1 and p3 are feasible to transmit
the output data of n2, and p5 is applicable to transmit the
output data of n3 (although p4 and p3 are connected, p3
is infeasible since Pr(

∣∣eVCp4,p3(t)
∣∣ > TTn3,n4

(p4, p3)) < θ),
while the execution of n4 requires the output data from all its
immediate predecessor subtasks. This example demonstrates
that it is not always advantageous to schedule each subtask to
the processor that offers the minimum EFT, especially when
considering dynamic topologies and resources.

n1

n2

n3

n4 p2

p4

p5
n1

p3

p2

p1

p4

p5n2

p3

p2

p1

p4

p5

p3 n3

() ()VC VC

2 3
 () ()VC VVC VVC VVC VVC VC(VC V)VC V

2 32 32 32 32 3)2 3(2 32 32 3
n n

()VC

4
=()VC

4
=n Æ

p1

DAG Structure
Scenario 1

Scenario 2

Scenario 3

Fig. 6. An example of using HEFT to schedule DAG task over dynamic VC.

2) Proposed Degree-based Weighted EFT Mechanism: To
develop our alternative methodology to HEFT, we first define
degree set.

Definition 5. (Degree set). Let DVC (ni, pm) denotes a degree
set containing the vehicles that can receive the data transmis-
sion of maxnj∈succ(ni)

{
cni,nj

}
after ni is completed on pm,

where succ(ni) is the immediate successors set of ni, which
can be given by

DVC (ni, pm) , {pn : exp
(
−TTmax

ni,nj
(pm, pn)µpm,pn

)
≥ θ,

pm ∈ CVC(ni), pn ∈ VVC(nj)}.
(20)

And according to (3), TTmax
ni,nj

(pm, pn) is the data trans-
mission time of maxnj∈succ(ni)

{
cni,nj

}
between pm and pn,

expressed by

TTmax
ni,nj

(pm, pn)= max
nj∈succ(ni)

{cni,nj
} × Γ

(
PL
(
dpm,pn

(
stnj

)))
,

ξni,pm = 1, pm ∈ CVC(ni), pn ∈ VVC(nj),
(21)

where succ(ni) is the immediate successor set of subtask ni.

We then assign subtask to the vehicle pm to minimize the

Algorithm 1: Ranking and Foresight-Integrated
Dynamic (RFID) Scheduling Scheme

1: Input: GA, GVC(nentry), wni
, cni,nj

, fpm
2: Output: Scheduling decisions {ξni,pm}
3: Schedule subtask nentry on the task owner
4: while there are subtask ni ∈ nready do
5: stni = maxnj∈pred(ni) {AFT (nj)}
6: Calculate the value of RSRankD(ni) according to

(15)-(19)
7: Rank ni ∈ nready using the value of RSRankD in a

non-decreasing order
8: N ← unscheduled subtask with lowest RSRankD

9: L← immediate successor subtasks of N
10: for vehicles pm existing in CVC (N) do
11: Calculate EFT(N, pm) using (1)-(9)
12: Calculate DCV (N, pm) using (20)-(21)
13: Calculate EFTW (N, pm) according to (22)
14: Return to the beginning of this loop
15: end for
16: Schedule subtask N on vehicle pm such that

EFTW(N, pm) < EFTW(N, pn), pn ∈ CCV (N) \pm
17: if there are new ready subtasks then
18: Return to Line 4
19: else
20: Go to Line 8
21: end if
22: end while

weighted EFT:

EFTW (ni, pm)=αTEFT (ni, pm)−αRΦ
(∣∣DVC (ni, pm)

∣∣) ,
pm ∈ CVC (ni) ,

(22)
where αT, and αR represent the preference on completion
time and execution success rate (i.e., reliability), respectively.
Also, Φ(), which is chosen to be Φ

(∣∣DVC (ni, pm)
∣∣) =

0.5 ×
∣∣DVC (ni, pm)

∣∣, is a monotone increasing function.
Specifically, in (22) we not only consider the performance (in
terms of completion time) when ni is assigned to pm, but also
look ahead to the number of vehicles (i.e.,

∣∣DVC (ni, pm)
∣∣) the

can receive the data transmission of maxnj∈succ(ni)

{
cni,nj

}
,

after ni is completed on pm. Note that a larger value of∣∣DVC (ni, pm)
∣∣ can lead to a lower value for EFTW (ni, pm)

(i.e., a vehicle with general computation ability but commend-
able transmission potential can be given with high weight).

D. Summary

In RFID, the scheduling priority of each subtask relies
heavily on the selected vehicles of its immediate predecessor
subtasks, which is also influenced by the current resources
supply. Then, a degree-based weighted EFT is leveraged to
assign subtask to the vehicle, which can offer faster processing
with reliable transmission links.

Algorithm 1 shows the details of RFID. It can be verified
that the time complexity of RFID is O((n + r)2 · p2) where

n, r, and p are the number of subtasks within the DAG task,
the maximum number of successors per DAG task, and the
maximum number of vehicles involved in the VC, respectively.

E. A Toy Example

n4

n2

n3
n6

p2

p3

p1

p4

1

n3
nnnn6666

4

nn443

n1

Timeline

p1

p3

p2

task
owner

2 3
n /n

st
4

st
n OTC

() ()VC VC

2 3
 () ()VC VVC VVC VVC VVC VC(VC V)VC V

2 32 32 32 32 3)2 3(2 32 32 3
n n

() { }VC

4 3()VC

4 3)4 3
n p=

n1

p4

p1

p3

p2

n2

p4

{ }()VC

p1

p3

p2

n3

p4

p1

p3

p2

n4

p4

Fig. 7. Subtask-vehicle mapping.

A feasible mapping among subtasks and vehicles associated
with VC2 (given by Fig. 2) is shown in Fig. 7, where the left
subplot represents a specific processing procedure (i.e., the
assignment of subtasks to vehicles); while the right subplot
depicts the changing topology of VC2 and corresponding
CVC(ni) during the scheduling procedure. Since n1 (i.e.,
nentry) is scheduled on p1 (i.e., task owner), subtasks n2 and n3
become ready subtasks. After sorting n2, n3 under resource-
scarcity based dynamic downward ranking mechanism, n3
is scheduled firstly to its most desirable vehicle, based on
its candidate vehicle set CVC(n2) = {p1, p2, p3, p4}. Then,
according to the degree-based weighted EFT, n3 and n2 are
scheduled on p4 and p2, respectively. Finally, subtask n4
becomes ready subtask, and is scheduled on vehicle p3, which
can receive the output data both of n2 and n3.

V. PERFORMANCE EVALUATION

We conduct comprehensive simulations to evaluate the
performance of RFID. To quantify the performance of our
proposed methodology, we consider three key performance
metrics: i) overall DAG task completion time, ii) execution
success rate, and iii) running time of the algorithm.

A. Simulation Setup

Parameter setting of VC: We consider a real-world traffic
region (shown in Fig. 8(a)) with size of 1km × 1km in Xiamen,
Fujian, China, obtained from OpenStreetMap [30]. SUMO
[31] is utilized to import mobile vehicles and subsequently
form a realistic VC over the simulation region in Fig. 8(b).
Assuming that vehicles located within 500m from each other
are connected via one-hop V2V links and form an undirected
graph (VC). We conduct simulations upon considering dif-
ferent number of vehicles to better capture various vehicle
density associated with a VC, and different VC’s topologies.
Each vertex in the VC graph represents a vehicle with certain
computing capability, which follows a normal distribution with
mean 20MHz and variance 0.2 [29]. The weight of each
link (edge) connecting two vertices represents the residual
contact duration. In addition, a monotone increasing function
Γ(PL (dpm,pn (t))) = 0.15×PL (dpm,pn (t))+0.001 is applied
to determine the transmission time between different vehicles.

(a) (b)

Fig. 8. VC network visualization.

Parameter setting of DAG task: We implement a DAG
generator [17] to randomly generate different types of DAG
task, regarding the number of subtasks, communication-to-
computation ratio (CCR) of subtasks, and the number of
layers. Specifically, subtask belongs to the same layer can
be processed in parallel and each layer in the DAG contains
at least one subtask. Besides, the first and the last layer are
occupied only by nentry, and nexit, respectively. The computing
workload of each subtask obeys a normal distribution with
mean 3Mclock cycles and 0.2 variance [16]. The correspond-
ing transmission data size of each edge follows a normal
distribution with mean 1.2Mbit and variance 0.2 [16]. Also,
we consider a real DAG task, i.e., molecular dynamics code
DAG, to achieve better performance evaluation, which has
been adopted in many existing works, such as [21], [23].

B. Benchmarks

To better verify the performance of our proposed RFID,
three benchmarks are considered below, as inspired by some
existing works:
• Heterogeneous Earliest Finish Time (HEFT) [23]: HEFT

firstly ranks all the subtasks according to their average
completion time, which is computed recursively from
the entry subtask, i.e., conventional downward ranking.
Then, the subtask with the highest scheduling priority is
assigned to the vehicle that can process the subtask in
the shortest time without considering the corresponding
transmission constraints (14).

• Lookahead (LA) [11]: As an improvement of HEFT, LA
ranks subtasks similar to HEFT. Then, it assigns subtask
ni with the highest scheduling priority to vehicle pm,
which can minimize the maximum completion time of
subtask nj , where nj ∈ succ(ni), after ni completes on
pm. In this paper, one-step LA is considered; namely, we
only care about the immediate successors of each current
scheduling subtask.

• Modified Genetic Algorithm (MGA) [18]: MGA consists
of three key parts. First, an integer encoding is em-
ployed to denote the assignment between subtasks and
vehicles. Then, to guarantee the feasibility of generated
solutions, the definition of relatives (that is, two subtasks
with dependency) is used to avoid the mis-operation of
crossover (a subtask cannot be scheduled earlier than its

15 25 35 50 70

6.5

7.0

7.5

8.0

8.5

9.0

Ta
sk

co

m
pl

et
io

n
tim

e

Number of subtasks within DAG task

 HEFT MGA LA RFID

(a)

15/10/30 25/10/30 35/10/30 50/10/30 70/10/30
0

20

40

60

80

100

Ex
ec

ut
io

n
su

cc
es

s
ra

te

Number of subtasks / layers / vehicles in a VC

 HEFT MGA LA RFID

(b)

Fig. 9. Performance evaluations upon considering different number of subtasks within DAG task, for randomly generated DAG tasks.

20 30 40 50 60

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

Ta
sk

co

m
pl

et
io

n
tim

e

Number of vehicles within VC

 HEFT MGA LA RFID

(a)

50/10/20 50/10/30 50/10/40 50/10/50 50/10/60
0

20

40

60

80

100

Ex
ec

ut
io

n
su

cc
es

s
ra

te

Number of subtasks / layers / vehicles in a VC

 HEFT MGA LA RFID

(b)

Fig. 10. Performance evaluations upon considering different number of vehicles within VC, for randomly generated DAG tasks.

predecessor). Finally, the mutation is adopted to improve
the fitness of the candidate solutions.

C. Simulation Results of Randomly Generated DAG Tasks

Performance comparisons and evaluations are conducted,
in terms of average completion time and execution success
rate, by considering diverse numbers of subtasks, vehicles,
layers of DAG tasks, and CCR of the subtask. Besides, 1000
independent iterations are simulated, as benefited by the Monte
Carlo method.

1) Impacts of diverse numbers of subtasks: Fig. 9(a) shows
the performance evaluation of the overall DAG task comple-
tion time, with an increasing number of subtasks (from 15 to
70). The number of layers is set as 10; CCR is set by 1, and
the number of vehicles involved in the initial VC is set as 30.
As can be seen from Fig. 9(a), our proposed RFID outperforms
the other three baseline methods with a much faster task

completion time. Specifically, since low resource demands can
lead to weak resource competition among vehicles, the curve
of task completion time between 25 subtasks and 35 subtasks
is relatively flat. Compared to LA, although completion time
is not the only indicator for optimization, RFID can reduce the
overall DAG task completion time with the help of changing
the scheduling priority of some specific subtasks according
to their resource availability. In summary, the performance
improvement of RFID in terms of task completion time is
19.48% better than HEFT, 14.61% better than MGA, 9.63%
better than LA at 15 subtasks; and is 19.83% better than HEFT,
15.02% better than MGA, and 8.43% better than LA at 70
subtasks.

Fig. 9(b) illustrates the performance with an increasing
number of subtasks (from 15 to 70) on the execution success
rate. It can be observed that RFID significantly increases the
corresponding execution success rate. Notably, there exists a

8 9 10 11 12

5

6

7

8

9

10

Ta
sk

co

m
pl

et
io

n
tim

e

Number of layers within DAG task

 HEFT MGA LA RFID

(a)

35/8/40 35/9/40 35/10/40 35/11/40 35/12/40
0

20

40

60

80

100

Ex
ec

ut
io

n
su

cc
es

s
ra

te

Number of subtasks / layers / vehicles in a VC

 HEFT MGA LA RFID

(b)

Fig. 11. Performance evaluations upon considering different number of layers, for randomly generated DAG tasks.

0.5 0.7 1 1.2

4

5

6

7

8

9

10

Ta
sk

co

m
pl

et
io

n
tim

e

Value of CCR of DAG task

 HEFT MGA LA RFID

(a)

0.5/35/10/40 0.7/35/10/40 1/35/10/40 1.2/35/10/40
0

20

40

60

80

100

Ex
ec

ut
io

n
su

cc
es

s
ra

te

Value of CCR within DAG / subtasks/ layers / vehicles

 HEFT MGA LA RFID

(b)

Fig. 12. Performance evaluations upon considering various CCR, for randomly generated DAG tasks.

decreasing execution success rate in the curve of HEFT, MGA,
and LA, mainly due to the increasing number of subtasks,
which requires heavily V2V connection time (i.e., the higher
requirement on residual V2V contact duration). Besides, in
Fig. 9(b), MGA has the worst performance on execution
success rate because of its randomly generated solution space.
In comparison with HEFT, LA slightly enhances the execution
success rate by considering the impact of scheduling the
successors of each assigned subtask. Also, RFID outperforms
LA by increasing the probability of scheduling each subtask
to the reliable connected vehicles by considering the degree
of each vehicle. In summary, the performance improvement
of RFID in terms of success rate is 38.3% better than HEFT,
57.5% better than MGA, 36.6% better than LA at 15 subtasks;
and is 58.7% better than HEFT, 72.8% better than MGA, and
56.6% better than LA at 70 subtasks.

2) Impacts of diverse numbers of vehicles involved in VC:

Fig. 10(a) demonstrates the performance by increasing the
number of vehicles from 20 to 60 on the overall DAG task
completion time. The number of layers is set as 10; the CCR
is set by 1; and the number of subtask is set by 50. It can be
seen from Fig. 10(a) that the increasing number of vehicles
can significantly accelerate the completion of the DAG tasks
thanks to more sufficient resources. However, after more than
50 vehicles, task completion time can not be reduced sig-
nificantly, even slightly increasing. This phenomenon mainly
owes to the redundancy of available resources complicating
VC’s topology, which thus may cause subtasks to be assigned
to vehicles with poor computing capability. Specifically, the
growing resource supply impacts less on MGA, since each
subtask is randomly scheduled on the vehicles at the begin-
ning, while the chromosome crossing procedure of MGA may
fail to ensure the feasibility of the newly generated solution
(i.e., the connection constraints of newly assigned subtasks are

not taken into account in advance). To this end, an increasing
number of vehicles in MGA does not imply an increase in
the number of feasible solutions, which thus fails to bring
an obvious decrease in task completion time. In summary,
the performance improvement of RFID in terms of the task
completion time is 18.76% better than HEFT, 9.45% better
than MGA, 8.33% better than LA at 20 vehicles; and is
19.16% better than HEFT, 12.76% better than MGA, and
8.72% better than LA at 60 vehicles.

Fig. 10(b) evaluates the performance of execution success
rate upon considering the different numbers of vehicles in-
volved in a VC. It can be observed that an increasing number
of vehicles can bring a larger execution success rate due to
more available resources. The performance trends of MGA,
HEFT, and LA in terms of the execution success rate are
similar to that of Fig. 10(b). Specifically, the performance
improvement of RFID in terms of the execution success rate is
56.2% better than HEFT, 79% better than MGA, 46.9% better
than LA at 20 vehicles; and is 56.2% better than HEFT, 81.5%
better than MGA, and 44.3% better than LA at 60 vehicles.

3) Impacts of diverse numbers of layers of DAG task: Fig.
11(a) shows the impacts of changing the number of layers
from 8 to 12 on the overall DAG task completion time. The
number of subtasks is set by 35; CCR is set as 1, and the
number of vehicles is set by 40. Interestingly, increasing the
number of layers can significantly lead to a larger overall
DAG task completion time due to unsatisfying parallelism of
the DAG task. Specifically, when the parallelism of a DAG
task keeps decreasing (namely, the number of layers keeps
increasing), more subtasks require sequential execution, which
causes an increase in the completion time of the DAG task.
Notably, when the number of layers of a DAG task equals
that of subtasks (e.g., chess game task shown in Fig. 1), local
computing will become the best choice to avoid frequent data
transmission among vehicles. In addition, as the number of
layers increases, MGA and LA perform almost equivalently,
which indicates that the decrease of the average number of
successors of each subtask can result in an ineffectiveness
when adopting LA, which concerns the impact of scheduling
of the successors of the each assigned subtask. Specifically,
the performance improvement of RFID in terms of the overall
DAG task completion time is 20.08% better than HEFT, 15.5%
better than MGA, 10.22% better than LA at 8 layers, and
is 16.82% better than HEFT, 11.15% better than MGA, and
6.74% better than LA at 12 layers.

Fig. 11(b) depicts the execution success rate performance
upon considering different layers (from 8 to 12) in a DAG
task. It can be observed from Fig. 11(b) that all the four
algorithms show a decreasing trend in execution success rate
as the number of layers increases, especially for HEFT, MGA,
and LA. The key reasons are that increasing the number of
layers can lead to increased data transmission time between
interdependent subtasks and ready time at the vehicles. For ex-
ample, given a small number of layers (e.g., one layer contains
many subtasks), most subtasks can be processed in parallel,
which thus results in fast completion. More importantly, the

15 25 35 50 70
0.0

0.1

0.2

0.3

0.4

0.5

A
lg

or
ith

m
 ru

nn
in

g
tim

e

Number of subtasks within DAG task

 HEFT MGA LA RFID

Fig. 13. Performance evaluations upon considering different number of
subtasks associated with DAG task, on algorithm’s running time.

20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
lg

or
ith

m
 ru

nn
in

g
tim

e

Number of vehicles within VC

 HEFT MGA LA RFID

Fig. 14. Performance evaluations upon considering different number of
vehicles associated with VC, on algorithm’s running time.

VC’s topology during task scheduling may stay relatively
stable due to the high parallelism of the DAG task. Using
MGA can cause sharp performance degradation as the number
of layers changes from 9 to 10, which indicates that layers
heavily impact the random-based subtask-vehicle assignment
mechanism. In summary, the performance improvement of
RFID in terms of the execution success rate is 1.1% better
than HEFT, 1% better than MGA, 0.5% better than LA at
8 layers; and is 67.7% better than HEFT, 78.8% better than
MGA, and 64.7% better than LA at 12 layers.

4) Impacts of considering various CCR of DAG Task:
Different values of CCR are tested in Fig. 12(a). The number
of subtasks and layers are set by 35 and 10, respectively, while
the number of vehicles is set as 40. As can be seen from Fig.
12(a), the overall DAG task completion time rises as the CCR
of each subtask increases due to the growing data transmission
time. Additionally, MGA and LA show similar performance
trends in Fig. 11(a), which indicates that an increase in the
CCR of the DAG task conforms to a decrease in the parallelism
of the DAG task and thus results in a significant raising in data

transmission time. In summary, the performance improvement
of RFID in terms of the task completion time is 20.39% better
than HEFT, 15.79% better than MGA, 10.23% better than LA
at 0.5 CCR; and is 16.95% better than HEFT, 10.77% better
than MGA, and 7.34% better than LA at 1.2 CCR.

Fig. 12(b) compares the performance on execution success
rate by considering CCR from 0.5 to 1.2. Similar to Fig.
11(b), given a small CCR, due to the fast data transmission,
VC’s topology stays relatively stable during the execution of
subtasks, and all the algorithms can enjoy a high execution
success rate. In summary, the performance improvement of
RFID in terms of the execution success rate is as same as
HEFT, MGA, and LA at 0.5 CCR and is 58.4% better than
HEFT, 69.5% better than MGA, and 57.4% better than LA at
1.2 CCR.

D. Comparison of Running Time of Different Algorithms

In this subsection, we conduct a performance comparison
in terms of the algorithm running time by considering various
numbers of subtasks associated with randomly generated DAG
tasks and different vehicle densities.

1) Impacts of diverse numbers of subtasks: Fig. 13 shows
the impact on algorithm running time caused by a varying
numbers of subtasks within a DAG task (from 15 to 70).
The CCR of the DAG task is set by 1; the number of layers
is set as 10, and the number of the vehicle is considered
by 30. Due to the predefined initial population number of
MGA (mainly used to generate random assignments), the
running time of MGA is slightly affected by increasing the
number of subtasks. Besides, in comparison with the other
three algorithms, MGA has the longest running time caused
by the internal iteration time for convergence. Also, HEFT
outperforms other algorithms in running time since increasing
the number of subtasks can lead to an extra increasing time
in evaluating the performance of corresponding successors,
which significantly raises the running time of LA. Since RFID
only needs to evaluate the transmission data size between
different subtasks and successors, the corresponding running
time remains relatively lower as compared to LA. In summary,
although the running time of RFID is higher than that of
HEFT, its overall DAG task completion time and execution
success rate significantly outperforms HEFT, as verified by
Fig. 9-Fig. 12.

2) Impacts of diverse number of vehicles: Fig. 14 com-
pares that performance upon considering a varying number
of vehicles (from 20 to 60) on the algorithm’s running time.
The number of subtasks and layers are set by 50 and 10,
respectively, while the CCR of the DAG task is set as 1.
The growing vehicles can bring rising running time since
more resource providers should be considered during task
scheduling. Specifically, LA’s running time is significantly
impacted by the number of vehicles, which mainly owes to
the increased time spent on evaluating the performance of
each vehicle to determine the assignment of each subtask.
Similarly, in RFID, more vehicles can complicate the topology
of VC, resulting in an increased running time for calculating

n1

n2 n3 n4

n5 n6 n7 n8 n9 n10 n11

n12 n13 n14 n15

n16 n17 n18 n19 n20 n21 n22

n23 n24 n25 n26 n27 n28 n29

n30 n31 n32 n33 n34 n35

n36 n37 n38

n39 n40

n41

Fig. 15. The DAG of the molecular dynamics code. [21] [23]

TABLE II
PERFORMANCE COMPARISON UNDER DIFFERENT METRICS FOR

MOLECULAR DYNAMICS CODE DAG

Metric HEFT MGA LA RFID
Overall completion time 7.7240 7.0638 6.8537 6.2233

Execution success rate 72.3 62.7 72.7 100

Algorithm running time 0.0499 0.6575 0.1409 0.1268

the degree of each vehicle. In summary, although the running
time of RFID is higher than that of HEFT, its overall DAG task
completion time and the execution success rate is significantly
better than HEFT as verified in Fig. 9-Fig. 12.

E. Simulation Results for Real Application DAG Task

Fig. 15 depicts a real-world DAG task of a modified
molecular dynamic code [21], [23]. Table II presents the
performance comparison of different algorithms regarding the
overall DAG task completion time, the execution success rate,
and the algorithm running time. It can be observed that LA
and RFID algorithms exhibit a higher running time than others
(i.e., HEFT and MGA). However, regarding overall DAG task
completion time, the performance improvement of RFID is
19.43% better than HEFT, 11.9% better than MGA, 9.19%
better than LA, and is 27.7% better than HEFT, 37.3% better
than MGA, 27.3% better than LA in terms of execution
success rate. In summary, simulation results verify that our
proposed RFID algorithm offers an efficient and commendable
reference in scheduling DAG tasks over dynamic VCs.

VI. CONCLUSION

In this paper, we investigate the DAG task scheduling prob-
lem over dynamic VC with the goal of minimizing the overall
DAG task completion time while ensuring high execution
success rate. We formulate DAG task scheduling as a 0-1
integer programming problem, which is NP-hard. To tackle the
problem, we propose RFID, which considers the availability
and scarcity of vehicles’ resources in determining the schedul-
ing priority of different subtasks. Subsequently, RFID selects
the processing vehicles based on their degree (i.e., feasible
V2V connections) and resources to reduce the latency of task
processing while ensuring a high reliability. Comprehensive
simulations are conducted to evaluate the performance of the
proposed RFID while considering multiple existing bench-
marks for performance comparison. Performance comparisons
reveal that our proposed RFID outperforms the existing meth-
ods in terms of the overall DAG task completion time and
the execution success rate while having a marginally higher
running time. Several future directions can be considered, such
as the cooperation among different VCs, resource competitions
among multiple DAG takes, and auction-based task allocation
mechanisms.

REFERENCES

[1] M. Shojafar, N. Cordeschi and E. Baccarelli, “Energy-Efficient Adaptive
Resource Management for Real-Time Vehicular Cloud Services,” IEEE
Trans. on Cloud Comput., vol. 7, no. 1, pp. 196-209, 1 Jan.-March 2019.

[2] M. Barbera, S. Kosta, A. Mei, and J. Stefa, “To Offload or Not To
Offload? The Bandwidth and Energy Costs of Mobile Cloud Comput-
ing,” Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2013, pp.
1285–1293.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

[4] W. He, G. Yan and L. D. Xu, “Developing Vehicular Data Cloud Services
in the IoT Environment,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp.
1587-1595.

[5] J. Zhao, Q. Li, Y. Gong and K. Zhang, “Computation Offloading and
Resource Allocation for Cloud Assisted Mobile Edge Computing in
Vehicular Networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp.
7944-7956, Aug. 2019.

[6] R. Florin, A. Ghazizadeh, P. Ghazizadeh, S. Olariu, and D. C. Marinescu,
“Enhancing Reliability and Availability through Redundancy in Vehicu-
lar Clouds,” IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1061–1074,
2021.

[7] X. Chen, L. Jiao, W. Li and X. Fu, “Efficient Multi-User Computa-
tion Offloading for Mobile-Edge Cloud Computing,” IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2795-2808, October 2016.

[8] Y. Mao, J. Zhang and K. B. Letaief, “Dynamic Computation Offloading
for Mobile-Edge Computing With Energy Harvesting Devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590-3605, Dec. 2016.

[9] S. Bi, and Y. J. Zhang, “Computation Rate Maximization for Wireless
Powered Mobile-Edge Computing with Binary Computation Offload-
ing,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177-4190,
2018.

[10] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-Edge Compu-
tation Offloading for Ultra-dense IoT Networks,” IEEE Internet Things
J., vol. 5, no. 6, pp. 4977-4988, 2018.

[11] L. F. Bittencourt, R. Sakellariou and E. R. M. Madeira, “DAG Schedul-
ing Using a Lookahead Variant of the Heterogeneous Earliest Finish
Time Algorithm,” Proc. Eur. Conf. Parallel Process., 2010, pp. 27-34.

[12] G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 175-187, Feb.
1993.

[13] H. Arabnejad and J. G. Barbosa, “List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 682-694, March 2014.

[14] H. Kanemitsu, M. Hanada and H. Nakazato, “Clustering-based Task
Scheduling in a Large Number of Heterogeneous Processors,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 11, pp. 3144-3157, 1 Nov.
2016.

[15] M. Aggarwal, R. D. Kent and A. Ngom, “Genetic Algorithm based
Scheduler for Computational Grids,” Int. Symp. High Perform. Comput.
Syst. and Appl., 2005, pp. 209-215.

[16] Y. Sahni, J. Cao, L. Yang and Y. Ji, “Multihop Offloading of Multiple
DAG Tasks in Collaborative Edge Computing,” IEEE Internet Things
J., vol. 8, no. 6, pp. 4893-4905, 15 March15, 2021.

[17] L.-C. Canon, M. El Sayah, and P.-C. Héam, “A Comparison of Random
Task Graph Generation Methods for Scheduling Problems,” Proc. Eur.
Conf. Parallel Process., 2019, pp. 61–73.

[18] F. Sun et al., “Cooperative Task Scheduling for Computation Offloading
in Vehicular Cloud,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp.
11049-11061, Nov. 2018.

[19] H. Liu, H. Zhao, L. Geng and W. Feng, “A Policy Gradient based Of-
floading Scheme with Dependency Guarantees for Vehicular Networks,”
IEEE Global Commun., 2020, pp. 1-6.

[20] Z. Liu et al., “Topology-Aware Dynamic Computation Offloading in
Vehicular Networks,” IEEE Veh. Technol. Conf., 2021, pp. 1-5.

[21] S. Sundar and B. Liang, “Offloading Dependent Tasks with Commu-
nication Delay and Deadline Constraint,” Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Honolulu, HI, USA, 2018, pp. 37–45.

[22] C. Shu, Z. Zhao, Y. Han, G. Min and H. Duan, “Multi-User Offloading
for Edge Computing Networks: A Dependency-Aware and Latency-
Optimal Approach,” IEEE Internet Things J., vol. 7, no. 3, pp. 1678-
1689, March 2020.

[23] H. Topcuoglu, S. Hariri and Min-You Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260-274, March 2002.

[24] J. Ghaderi, S. Shakkottai, and R. Srikant, “Scheduling Storms and
Streams in The Cloud,” ACM Trans. Modeling and Performance Eval.
of Comput. Syst., vol. 1, no. 4, pp. 1–14, 2016.

[25] L. Shi, Z. Zhang, and T. Robertazzi, “Energy-Aware Scheduling of
Embarrassingly Parallel Jobs and Resource Allocation in Cloud,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 6, pp. 1607–1620, 2017.

[26] M. LiWang, S. Hosseinalipour, Z. Gao, Y. Tang, L. Huang, and H. Dai,
“Allocation of Computation-Intensive Graph Jobs over Vehicular Clouds
in IoV,” IEEE Internet Things J., vol. 7, no. 1, pp. 311-324, 2019.

[27] M. LiWang, Z. Gao, S. Hosseinalipour, and H. Dai, “Multi-Task Offload-
ing over Vehicular Clouds under Graph-based Representation,” IEEE Int.
Conf. Commun. (ICC), Dublin, Ireland, Jun. 2020, pp. 1-7.

[28] T. X. Tran and D. Pompili, “Joint Task Offloading and Resource
Allocation for Multi-Server Mobile-Edge Computing Networks,” IEEE
Trans. Veh. Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[29] S. Misra and S. Bera, “Soft-VAN: Mobility-Aware Task Offloading in
Software-Defined Vehicular Network,” IEEE Trans. Veh. Technol., vol.
69, no. 2, pp. 2071-2078, Feb. 2020.

[30] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Comput., vol. 7, no. 4, pp. 12-18, Oct.-Dec.
2008.

[31] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” Int.
Conf. Intell. Transp. Syst. (ITSC), 2018, pp. 2575-2582.

[32] J. Yu, X. Hao, Z. Cui, P. He, and T. Liu, “Boosting Fairness for Masked
Face Recognition,” Proc. IEEE/CVF Int. Conf. Comput. Vision (ICCV)
Workshops, Virtual, Oct. 2021, pp. 1531–1540.

[33] T. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A
Survey of Various Propagation Models for Mobile Communication,”
IEEE Antennas Propag. Mag., vol. 45, no. 3, pp. 51–82, Jun. 2003.

[34] M. Liwang, Z. Gao, and X. Wang, “Energy-Aware Graph Task Schedul-
ing in Software-Defined Air-Ground Integrated Vehicular Networks,”
arXiv:2008.01144, 2021.

[35] X. Zhu, Y. Li, D. Jin, and J. Lu, “Contact-Aware Optimal Resource
Allocation for Mobile Data Offloading in Opportunistic Vehicular Net-
works,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7384-7399, 2017.

[36] M. Giordani, T. Shimizu, A. Zanella, T. Higuchi, O. Altintas and
M. Zorzi, ”Path Loss Models for V2V mmWave Communication:
Performance Evaluation and Open Challenges,” IEEE 2nd Connected
and Autom. Vehicles Symp. (CAVS) , 2019, pp. 1-5.

http://arxiv.org/abs/2008.01144

	I Introduction
	I-A Background and Challenges
	I-B Overview and Summary of Contributions

	II Related Work
	II-A Scheduling of Bit Stream Tasks
	II-B Scheduling of Undirected Graph (UG) Tasks
	II-C Scheduling of DAG Tasks over Static Networks
	II-D Scheduling of DAG Tasks over Dynamic Networks

	III System Model and Problem Formulation
	III-A Communication Model
	III-B V2V Contact Model
	III-C Computation Model
	III-D Problem Formulation

	IV Ranking and Foresight-Integrated Dynamic (RFID) Task Scheduling
	IV-A Phase I: Dynamic Downward Ranking
	IV-A1 Motivation
	IV-A2 Proposed Dynamic Downward Ranking Mechanism

	IV-B Phase II: Resource Scarcity-based Priority Changing
	IV-B1 Motivation
	IV-B2 Proposed Resource Scarcity-based Priority Changing Mechanism

	IV-C Phase III: Degree-based Weighted EFT for Vehicle Selection
	IV-C1 Motivation
	IV-C2 Proposed Degree-based Weighted EFT Mechanism

	IV-D Summary
	IV-E A Toy Example

	V Performance Evaluation
	V-A Simulation Setup
	V-B Benchmarks
	V-C Simulation Results of Randomly Generated DAG Tasks
	V-D Comparison of Running Time of Different Algorithms
	V-E Simulation Results for Real Application DAG Task

	VI Conclusion
	References

