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Predicted Trajectory Guidance Control Framework of
Teleoperated Ground Vehicles Compensating for Delays
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Abstract—Maneuverability and drivability of the teleoperated
ground vehicle could be seriously degraded by large
communication delays if the delays are not properly
compensated. This paper proposes a predicted trajectory
guidance control (PTGC) framework to compensate for such
delays, thereby improving the performance of the teleoperation
system. The novelty of this PTGC framework is that
teleoperators’ intended trajectory is predicted at the vehicle side
with their delayed historical control commands and the LiDAR
3D point cloud of the environment, and then the vehicle is guided
by the predicted trajectory. By removing the teleoperator from
the direct control loop, the presented method is less sensitive to
delays, and delays are compensated as long as the prediction
horizon exceeds the delays. Human-in-the-loop simulation
experiments are designed to evaluate the teleoperation
performance with the proposed method under five delay levels.
Based on the repeated measurement analysis of variance, it is
concluded that the PTGC method can significantly improve the
performance of the teleoperated ground vehicles under large
delays(>200ms), such as the task completion time (TCT),
deviation to centerline (D2C) and steering effort (SE). In addition,
the results also show that teleoperators can adapt to smaller
delays (≤ 𝟐𝟎𝟎 𝐦𝐬), and the presented method is ineffective in
such cases.

Index Terms—Delay compensation, Trajectory prediction,
Guidance control, Teleoperation.

I. INTRODUCTION

A. Motivation
Although significant achievements have been made in

recent years, fully autonomous driving remains challenging [1].
Humans still surpass machine intelligence in cognition.
Benefiting from the merits of safety and cost, teleoperated
vehicles are widely applied in dangerous areas and occasions
unreachable by humans or too complex for an autonomous
system, such as reconnaissance, route clearing, surveillance,
and rescue [2]. In an unmanned ground vehicle (UGV)
teleoperation system, the teleoperator watches the video
feedback that is captured by onboard cameras and transmitted
via wireless communication, and takes proper steering,
braking and throttle operations like driving on a simulator.
A typical teleoperation framework is shown in Fig. 1, which is
a Direct Control (DC) framework. The driver station and
vehicle are spatially separated, and the remote vehicle is
controlled directly by the teleoperator. Connections between
vehicle and operator are realized by transmitting the
teleoperator's commands 𝒄(𝑡)(including steering, throttle and
brake commands) and the feedback 𝒔(𝑡)  (including vehicle
states, video feedback, etc.) through the wireless network.
There exist control delays 𝑡d1 and feedback delays 𝑡d2 during
transmission. This round-trip delay of 𝑡d1 + 𝑡d2  leads to a
temporal desynchronization between the operator's control

actions and the observation of its corresponding vehicle
response. When the delay is slight, human operators can adapt
to delays by predicting the outcome of operations. However,
when this delay is large, the human's adaptability to delay
decreases due to high cognitive workloads resulting from a
lack of clear correspondence between input and output [3], [4].
Our tests on a long-distance low-latency graph transmission
system in an industrial district show that the typical latency
ranges from 0.18s to 0.55s depending on the radio interference
and terrain. When the input, i.e., video feedback, suffers from
a considerable time delay (>200 ms) [5], the performance and
stability of the teleoperation system could be degraded. To
cope with the detrimental effects of large delay, a simple,
effective method is to slow down the speed or adopt a move-
and-wait strategy. Nevertheless, low efficiency is not
acceptable in most cases.

Fig. 1. Delays in a teleoperation system

This paper proposes a novel supervisory control framework
for the ground vehicle teleoperation system to compensate for
delays. The guidance trajectory is predicted based on the 3D
point cloud in a bird's eye view (BEV) and driving commands.
Then the teleoperated vehicle is directly controlled by a
tracking controller to follow the predicted trajectory. The delay
is compensated as long as the prediction horizon is greater than
the delay.

B. Related work
Since the latency increases the operator's cognitive

workload [6], the principle of reducing cognitive workload is
to maintain a correlation between commands issued by the
operator and the expected result of those commands [7]. The
predictive display aims to compensate for delays by predicting
the vehicle and operator motion. In a predictive display
solution, the vehicle response that is likely to result from the
current operation of the operator is predicted and displayed
immediately to help the operator receive feedback regarding
their control actions. Brudnak [5] adopted a feed-forward
vehicle model as a high-fidelity state estimator to predict the
vehicle response. Graf [8] presented a curvature model using
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both the teleoperator’s inputs and the vehicle states to calculate
the trajectory curvature. The above vehicle model-based
methods' performance depends on the models' accuracy.
Dybvik [9] studied the effect of using a simple predictive
display on performance and the operator’s workload. Results
from 57 participants showed a significant 20% improvement
with the help of the predictive display. However, accurate
acquisition of vehicle dynamics is challenging. Solutions that
do not require the knowledge of vehicle dynamics have been
considered in pursuit of robustness. Zheng [10], [11]proposed
a model-free predictor to compensate for communication
delays. In Zheng's study, the predictor is a first-order time
delay system whose parameters are designed based on the
stability analysis and the frequency domain performance
analysis of coupling errors, so the presented method is
sensitive to the delay and the frequency characteristic of
coupling errors. Zheng's experiments show that human
operators are affected more by the asynchrony between the
generating steering commands and monitoring the subsequent
vehicle heading than by the asynchrony between controlling
and monitoring the vehicle's longitudinal speed. Zheng [12]
further proposed a blended architecture for the vehicle heading
prediction by combining the performance benefits of a model-
based method with the robustness benefits of a model-free
prediction scheme. To improve the situational awareness of the
teleoperation system, Jung [13] developed head-mounted
displays combined with a predictive display compensating for
bidirectional network and operation delays to afford
immersive 3D visual feedback.

Delay in the control loop results in deteriorated performance
and instability. The robust control strategies against time delay
have been intensively studied for teleoperation systems.
Methods including Lyapunov function-based approaches [14],
delay estimation techniques [15] and heuristic algorithms
[16]– [18] are proven to be effective. Most studies focus on the
bilateral teleoperation system to maintain stability and
transparency. While for a ground vehicle teleoperation system,
the main objective is to follow the operator's intention stably
and avoid collisions. To deal with time-varying internet delay,
Thomas [19] designed an adaptive Smith Predictor, which
combined a delay estimation technique based on characteristic
roots of delay differential equations to measure the delay with
an adaptive Smith Predictor. In Thomas’ approach, the
teleoperator is modeled as a part of the control loop. Therefore,
the variation of the teleoperator's response characteristics
would affect the control system performance.

Adding autonomy capabilities to the teleoperated vehicle is
an alternative approach handling delays. Studies verified that
cooperative control could improve the performance and safety
of unmanned ground vehicles [20], [21]. Cooperative control
is classified into two categories: shared control and
supervisory control. The key to shared control is the
distribution of control right between the human operator and
machine intelligence [22], [23]. Storms [22] presented an
MPC-based shared control method. They found that
communication delay's effect on safety has been improved
considerably, while the control stability and the operator's
workload are not discussed.

The supervisory control mitigates the sensitivity to delays
by removing the operator from control loop. In a supervisory

control system, the operator makes decisions based on
environmental information and sets the global [24] or local
guidance points/path to vehicles. The vehicle completes the
maneuvering with its autonomous system. For some
teleoperation applications, the environment is unknown or
dynamic, so the global path guidance may not be applicable.
Researchers paid more attention to the local path guidance
model, also known as the point-to-go mode [25]. The operator
needs to actively determine guidance points without decision
support, which results in a significant cognitive workload. The
vehicle speed fluctuates if the teleoperator cannot pick the
guidance point timely. Zhu [26] proposed a method to generate
candidate guidance points with the local perception
information, decreasing the workload of picking the adequate
guidance point. The main problem of the local guidance
point/path-based approach is that teleoperators can hardly pick
collision-free waypoints or paths due to the complexity of the
driving environment and insufficient field feedback. Schitz [27]
proposed an interactive corridor-based path planning
framework. In Schitz’s research, the human operator manually
specified a corridor towards the destination in advance, and the
vehicle planned a collision-free path in the specified corridor.

The above studies have addressed delay issues effectively.
From the human perspective, experienced drivers get used to
the normal driving manner, i.e., gazing at the area of interest,
turning with a steering wheel, accelerating/decelerating with a
pedal. Therefore, human operators using the normal driving
manner could achieve better performance, such as stability and
efficiency, than others due to lower cognitive workload.
Predictive display mode seems preferable at this point.
However, uncertain vehicle dynamics decrease the prediction
accuracy and add to the workload of handling a vehicle.
Although supervisory control is less insensitive to delays and
vehicle dynamics since the autonomous system, instead of the
teleoperator, is responsible for vehicle dynamics control, the
pick-and-go mode could increase the cognitive burden. This
study aims to develop a novel supervisory control framework
to combine the merits of supervisory control and normal
driving manner, in which the human teleoperates the vehicle
as usual as normal driving, and the vehicle automatically
follows the intended path compensating for delays.

C. Contribution
This paper proposes a predicted trajectory guidance control

(PTGC) framework for teleoperated ground vehicles, aiming
to improve the maneuverability and drivability of teleoperated
vehicles under large delays. The proposed method uses a deep
learning model to predict the operator’s intended future
trajectory and a tracking controller to follow this predicted
trajectory. By removing the teleoperator from the control loop,
the presented method is insensitive to delays while retaining
the teleoperator's main authority over the vehicle by allowing
the vehicle to drive as the driver intended.

The main contributions of this paper are summarized as
follows:

1) A novel predicted trajectory guidance control (PTGC)
framework is proposed to compensate for time delays, which
reduces the teleoperator’s cognitive workload and improves
system performance by using a normal driving manner.
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2) A deep learning-based multimodal prediction model
using the operator’s history operations and LiDAR 3D point
cloud to predict the operator’s intended trajectory is designed.
The model achieves accurate trajectory prediction within one
second. Thus, a delay of less than one second is compensated
effectively.

D. Paper Organization
The remainder of the paper is organized as follows. Section

II summarizes the system structure of the PTGC framework.
The deep learning-based multimodal trajectory prediction
model is presented in Section III. Section IV describes the
details of the trajectory tracking controller. The design of
human-in-the-loop experiments, the experimental results and
discussions are given in Section V. Finally, Section VI makes
the conclusions.

II. PREDICTED TRAJECTORY GUIDANCE CONTROL
FRAMEWORK

We propose a predicted trajectory guidance control (PTGC)
framework, as shown in Fig. 2, to compensate for delays and
improve the control stability. The PTGC framework comprises
two modules: trajectory prediction and trajectory tracking.

Fig. 2. Predicted trajectory guidance control framework

As discussed above, if the teleoperator controls the vehicle
directly, the teleoperation system is sensitive to latency. In the
PTGC framework, the teleoperator's commands are sent to the
trajectory prediction module instead of directly to the vehicle
and combined with environment information, i.e., 3D point
cloud, to predict the teleoperator's intended trajectory. Since
the teleoperator's control command 𝒄(𝑡) is the response to the
vehicle-road system states 𝒔(𝑡 − 𝑡d2). Therefore, the received
control command 𝒄(𝑡 − 𝑡d1) at the vehicle side is aligned with
𝒔(𝑡 − 𝑡d) , here 𝑡d = 𝑡d1 + 𝑡d2 , and fed into the intended
trajectory prediction model. A deep learning-based
multimodal trajectory prediction model generates the intended
future trajectories with the prediction horizon greater than the
total time delay. Compared to predictive display, where only
driving commands are fed into a vehicle model to generate the
future trajectory, the 3D LiDAR point cloud is incorporated
here. The reasons are as follows: (1) Constant Turn Rate and
Acceleration (CTRA) model that takes driving operations as
input can only predict an accurate trajectory in a short period;

(2) drivable area implied in the point cloud help generate a
collision-free and feasible trajectory.

The predicted trajectory acts as the guidance trajectory and
is fed into the tracking module, which controls the vehicle
directly. The predicted trajectory is the outcome of input at
time 𝑡 − 𝑡d , so the first 𝑡d  of the predicted trajectory is
truncated and then aligned with 𝒔(𝑡) . A tracking controller
outputs steering commands 𝒄ො(𝑡) to vehicle according to the
error between the actual and predicted trajectory. The
trajectory tracking performance only depends on the tracking
controller and is irrelevant to the time delay and the
teleoperator's proficiency in driving skills.

Advantages of this PTGC framework are that, by predicting
the intended trajectories, deploying the tracking controller at
the vehicle side and removing the teleoperator from the control
loop, the presented method is less sensitive to delays and
vehicle dynamics, and the stability of trajectory following is
improved.

III. INTENDED TRAJECTORY PREDICTION USING LIDAR POINT
CLOUD AND OPERATOR'S COMMANDS

In the proposed method, the vehicle is guided by the
teleoperator's intended trajectory that is not picked directly by
the operator but predicted with the operator's control command
and environmental 3D point cloud. Our goal is to predict a
future guidance trajectory over the next T time steps.

Intended future trajectory prediction can be considered a
sequence-to-sequence problem. LSTM is with the ability to
handle time sequence issues, so we construct trajectory
prediction models based on LSTM networks. However, the
general LSTM network can only predict one trajectory
sequence and cannot perform multimodal prediction for the
uncertainty of the operator’s intention, which is prone to
degradation of prediction accuracy. We proposed a method
combining LSTM and multimodal prediction methods to
address these problems, in which the Resnet is used to encode
the context feature and LSTM is used to encode the motion
feature.

A. Trajectory prediction model

Fig. 3. Framework of the prediction model

The proposed prediction model is illustrated in Fig. 3. This
model consists of three modules, i.e., motion encoding module,
context encoding module and decoding module.

The motion encoding module is an LSTM network encoding
control commands and vehicle states that implies the operator's
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intention. We predict the trajectory of the future T time steps
with information in the past 𝑇ℎ time steps. The historical
vehicle states are denoted as

𝑺𝒕 = ൣ𝒔𝑡−𝑇h , ⋯ , 𝒔𝑡−𝑖 , ⋯ , 𝒔𝑡൧ (1)
where𝒔𝑡−𝑖 = [𝑥𝑡−𝑖, 𝑦𝑡−𝑖, 𝑣𝑡−𝑖, 𝜃𝑡−𝑖] . (𝑥𝑡−𝑖 , 𝑦𝑡−𝑖) , 𝑣𝑡−𝑖 , and

𝜃𝑡−𝑖 are the position, velocity, and heading at the time step 𝑡 −
𝑖, 𝑖 ∈ (1, ⋯ , 𝑇h), respectively.

The historical control commands are denoted as
𝑪𝒕 = [𝒄𝑡−𝑇h , ⋯ , 𝒄𝑡−𝑖 , ⋯ , 𝒄𝑡] (2)

where 𝒄𝑡−𝑖 = (𝛿𝑡−𝑖, 𝑇ℎ𝑡−𝑖, 𝐵𝑟𝑡−𝑖) . 𝛿𝑡−𝑖 , 𝑇ℎ𝑡−𝑖 , and 𝐵𝑟𝑡−𝑖
are the steering, throttle, and brake commands at the time step
𝑡 − 𝑖, respectively.

LSTM encoding module is to obtain the motion feature
vector:

𝑴𝒕 = 𝐿𝑆𝑇𝑀(𝑾 ∙ (𝑺𝒕, 𝑪𝒕) + 𝒃) (3)
where the function 𝐿𝑆𝑇𝑀(∙)  represents the input-output

function of the LSTM, 𝑾 and 𝒃 are the weights and bias of
LSTM, respectively.

The Context encoding module uses a Resnet network [28]
to encode contextual constraints. The surrounding
environment is described by the 3D point cloud. The point
cloud in the range of 32 m × 32 m × 5 m ( length ×
 width ×  height ) is converted into a binary image on a BEV
grid [29]. The grid resolution is 0.125 m. Therefore, the size of
the binary image is 256 × 256 pixels. The binary image is then
divided into two channels, one for ground points and the other
for non-ground points, and produces the pseudo-image
denoted as 𝑩𝑡 . The vector of context features 𝑬𝑡 is obtained by
encoding 𝑩𝑡:

𝑬𝑡 = 𝑅𝑒𝑠𝑛𝑒𝑡(𝑩𝑡) (4)
The dimensions of 𝑴𝒕 and 𝑬𝑡  are 128 and 512, respectively.

We concatenate the context and motion features to generate a
640-dimensional feature that is fed into the decoding module
to obtain the predicted output Pout:

𝑷out = 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑐𝑎𝑡(𝑴𝒕, 𝑬𝑡)) (5)
Note that we are not to generate one trajectory but N

candidate trajectories and their corresponding probabilities, so
the dimension of 𝑷out is (2𝑇 + 1) ∙ 𝑁.

𝑷out = [𝑷1, 𝑷2, ⋯ , 𝑷𝑗 , ⋯ 𝑷𝑁] (6)
where 𝑷𝑗 = [൫𝑥𝑡+1

𝑗 , 𝑦𝑡+1
𝑗 ൯, ⋯ , ൫𝑥𝑡+𝑘

𝑗 , 𝑦𝑡+𝑘
𝑗 ൯, ⋯ , ൫𝑥𝑡+𝑇

𝑗 , 𝑦𝑡+𝑇
𝑗 ൯,  𝑝𝑗] .

൫𝑥𝑡+𝑘
𝑗 , 𝑦𝑡+𝑘

𝑗 ൯ is the predicted waypoint of the j-th trajectory at
the time step 𝑡 + 𝑘, 𝑝𝑗 is the probability of j-th trajectory, 𝑘 ∈
(1, ⋯ , 𝑇), 𝑗 ∈ (1, ⋯ , 𝑁) and 𝛴𝑗=1

𝑁  𝑝𝑗 = 1. The candidate with
the highest probability is chosen as the predicted trajectory.

B. Loss function
The loss function [30] is constructed for the multimodal

prediction. Specifically, we use the binary cross-entropy loss
of classification and 𝑠𝑚𝑜𝑜𝑡ℎ L2  loss for the trajectory
regression tasks to calculate the total loss ℒ𝑎𝑙𝑙.

The trajectory regression loss ℒre  is defined based on
𝑀𝑖𝑥𝑡𝑢𝑟𝑒-𝑜𝑓-𝐸𝑥𝑝𝑒𝑟𝑡𝑠 loss:

ℒre = ∑ 𝐼𝑗=𝑗∗ ∑ ฮ𝑤𝑖
𝑗 − 𝑤𝑖

𝑔𝑡ฮ
2

𝑇
𝑖=1

𝑁
𝑗=1 (7)

where 𝑤𝑖
𝑗  is the predicted waypoint of the j-th candidate

trajectory at time step 𝑡 + 𝑖 , and 𝑤𝑖
𝑔𝑡  is the ground-truth

position. 𝐼𝑗=𝑗∗ is a selection function setting to 1 if 𝑗 = 𝑗∗ is
true and 0 otherwise. 𝑗∗ is the number of the closest trajectory

to the ground-truth trajectory according to the trajectory
distance function.

𝑗∗ = argmin
𝑗∈{1,⋯,𝑁}

∑ ฮ𝑤𝑖
𝑗 − 𝑤𝑖

𝑔𝑡ฮ
2

𝑇
𝑖=1 (8)

ℒ𝑐𝑙𝑎𝑠𝑠 is the classification cross-entropy loss defined as
ℒ𝑐𝑙𝑎𝑠𝑠 =  − ∑ 𝐼𝑗=𝑗∗𝑁

𝑗=1 log 𝑝𝑗 (9)
The total loss ℒ𝑎𝑙𝑙 is the sum of the trajectory regression loss

and classification loss.
ℒ𝑎𝑙𝑙 =  ℒ𝑟𝑒 +  𝛼ℒ𝑐𝑙𝑎𝑠𝑠 (10)

where 𝛼  is the classification loss weight to balance
classification and regression performance.

C. Ablation Experiments and Error Analysis
Ablation experiments were conducted to analyze the

significance of input components in the proposed model. The
driving simulation was conducted on a CARLA-based
simulator to collect the dataset for model training. We
recruited six volunteers to drive vehicles on the simulator for
data collection. The sample rate is 20Hz, and the time step st
is 0.1 seconds. The trajectory in the past 20 steps (2s) was
observed, and motion in the next 5, 10, and 20 steps (0.5 s, 1 s,
and 2 s) was predicted. The collected data were split by a
sliding window, and 63897 records were acquired. The ratio of
records for training, validation and testing was 3:1:1.

We use the CTRA model [31] as the baseline. Variants of
the proposed model, i.e., M-model using motion features, C-
model using context features and MC-model using both
motion and context features, are devised for comparison. The
performance was evaluated using the average deviation error
(ADE) and the final deviation error (FDE). Results of ablation
experiments are shown in Fig. 4 and Table I.

Fig. 4. Predicted trajectory using different model

TABLE I 
RESULTS OF ABLATION EXPERIMENTS

Time 0.5 s 1 s 2 s
Metric (m) ADE FDE ADE FDE ADE FDE

CTRA 0.17 0.33 0.66 1.04 1.09 1.49
M-model 0.13 0.21 0.43 0.76 0.66 1.27
C- model 0.15 0.20 0.39 0.72 0.71 1.22

MC-model 0.13 0.18 0.24 0.54 0.56 0.86
We can find that the history command sequence and vehicle

states are more significant for trajectory prediction than the
current ones since M-model is better than the CTRA model.
The motion feature and context feature are almost of equal
importance. Combining motion and context features further
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benefits the trajectory prediction and is with the minimum
ADE and FDE.

The distribution of large FDE errors for the prediction
horizon of one second was further analyzed and presented in
Table II. It shows that MC-model is with a smaller percentage
of large error than the M-model and C-model. Especially, the
error distribution of the MC-model is less than 1% in the range
of error greater than 2m, which is much smaller than the other
two models. It further proves that combining motion and
context features is beneficial for trajectory prediction with a
smaller error range. Therefore, the ablation experiments
verified the feasibility of the proposed method. If not otherwise
stated, the MC-model was adopted as the prediction model of
the PTGC method.

TABLE II
DISTRIBUTION OF LARGE FDE ERRORS FOR THE 1S

PREDICTION HORIZON
Error M-model C-model MC-model

error > 1 m 9.4% 8.5% 5.8%
error > 1.5 m 7.2% 6.8% 3.3%
error > 2 m 4.2% 3.1% 0.6%

error > 2.5 m 2.3% 1.6% 0.3%
error > 3 m 0.9% 0.7% 0.1%

IV. TRAJECTORY FOLLOWING CONTROL

As mentioned in section II, the predicted trajectory is the
outcome of input at time 𝑡 − 𝑡d, so the first 𝑡d of the predicted
trajectory is truncated. As shown in Fig. 5, the predicted
trajectory 𝑇𝑟𝑎෢  consists of two segments, i.e., the history
segment to be truncated (dashed line) and the future segment
(solid line) to be followed. The split point 𝑤𝑡𝑑 is the predicted
waypoint at the predicted time step 𝑡 + 𝑡d. The Stanley control
method [32] based on distance and heading angle errors at the
point 𝑤𝑡𝑑  is adopted for trajectory tracking control. A
simplified bicycle model with infinite tire stiffness is adopted
in the design of the controller.

As shown in Fig. 5, the point 𝑤𝑡𝑑 is set as the preview point,
θv is the vehicle heading angle, θp is the tangential angle of
𝑇𝑟𝑎෢  at 𝑤𝑡𝑑 , and e is the lateral deviation. The heading
deviation is defined as

𝜃𝑒 = 𝜃𝑝 − 𝜃𝑣 (11)
The steering control variable 𝛿(𝑡)  can be obtained

intuitively from the relative deviation of the vehicle position to
the predicted trajectory, which contains the lateral deviation e
and the heading deviation θe.

𝛿(𝑡) = 𝛿𝑒(𝑡) + 𝛿𝜃𝑒(𝑡) (12)
If ignoring the lateral error, the direction of the front wheel

is aligned with the tangential direction of its corresponding
preview point and the heading component 𝛿𝜃𝑒(𝑡) is defined as

𝛿𝜃𝑒
(𝑡) = 𝜃𝑒(𝑡) (13)

Fig. 5. Trajectory tracking control algorithm

Similarly, if not consider the heading deviation, the larger
the lateral error is, the larger the front wheel steering angle is.
Assuming that the expected vehicle trajectory intersects the
tangent line of the preview point at a distance d(t) from the
front wheel, the lateral component 𝛿𝑒(𝑡)  can be derived
approximately from the geometric relationship if 𝛿𝑒(𝑡) is not
large.

𝛿𝑒(𝑡) ≈ arcsin 𝑒(𝑡)
𝑑(𝑡)

= arcsin 𝑘𝑒(𝑡)
𝑣(𝑡)

(14)
where we define d(t) relating to the vehicle speed v(t), i.e.,

d(t)=𝑣(𝑡)/𝑘, and k is a gain parameter greater than zero. The
function arcsin(∙)  produces a front-wheel deflection angle
pointing directly to the trajectory to be tracked and is limited
by the vehicle speed v(t).

Considering the above two control components together in
the steering angle control law 𝛿(𝑡), we have

𝛿(𝑡) = 𝜃𝑒(𝑡) + arcsin 𝑘𝑒(𝑡)
𝑣(𝑡)

(15)
Using a linear bicycle kinematic model, the change rate of

the lateral error 𝑒(̇𝑡) is given by
𝑒(̇𝑡) = −𝑣(𝑡)sin𝛿𝑒(𝑡) (16)

where sin 𝛿𝑒(𝑡) is known from the geometric relationship.
sin 𝛿𝑒(𝑡) = 𝑒(𝑡)

𝑑(𝑡)
= 𝑘𝑒(𝑡)

𝑣(𝑡)
(17)

𝑒̇(𝑡) is further expressed as
𝑒(̇𝑡) = −𝑘𝑒(𝑡) (18)

We can get
𝑒(𝑡) = 𝑒(0)e−𝑘𝑡 (19)

Thus, the lateral error converges exponentially to zero, and
the parameter k determines the convergence rate.

V. EXPERIMENTS AND ANALYSIS

A. Human-in-the-loop simulation platform
As shown in Fig. 6, a real-time driver-in-the-loop simulation

platform was developed for teleoperation experiments and
algorithm evaluation. The simulation platform consists of four
parts, i.e., the drive station, the vehicle-road system, the
controller and the communication network.
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At the drive station, the operator uses a Logitech○R  G27
joystick for steering, braking and acceleration control, and a
monitor for visual feedback. As shown in Fig. 7, the front view,
vehicle speed and the predicted trajectory are shown on the
monitor. Operators drive the vehicle based on this feedback.

Fig. 6. Human-in-the-loop simulation platform for 
teleoperated ground vehicle system

Fig. 7. Visual feedback displayed on the monitor

The vehicle-road system is simulated with a CARLA-based
simulator.  The CARLA simulator runs vehicle dynamics and
physical world simulation, and outputs vehicle states and
environment information, including the driver’s view of the
environment and the 3D LiDAR point cloud. The resolution of
RGB camera is 800×600 pixels at a frame rate of 20 Hz. The
LiDAR has 32 lines, scans 128,000 points per second, and
outputs a laser point cloud at 20Hz.

The communication network is simulated by a ROS node.
The control command and visual feedback are sent to the ROS
node and queued in a first-in-first-out (FIFO) pipeline. The
communication delay is realized by setting the depth of the
FIFO pipeline greater than zero. Compared to the real
teleoperation system, only the vehicle-road system dynamics
and communication system are simulated, while the human-
machine interface is almost identical.  Therefore, the
simulation platform can ensure the fidelity of the operator’s
response to delays.

B. Test Road
The test road is designed to evaluate the performance of the

presented method under various delays. Due to the restriction
of CARLA, the structural road scene was applied. As shown in

Fig. 8, the 622m long closed-loop road features two-way four
lanes and six turns with the radii ranging from 17 m to 45 m.

Fig. 8. Overview of test road

C. Teleoperation tasks and performance metrics
The study aims to improve the maneuverability and

drivability of the teleoperated vehicle under large delays. We
expect the proposed method to enable the vehicle to complete
driving tasks as fast and safely as possible under different
delay conditions. Therefore, the participants are required to
operate the vehicle to complete the driving task as fast as
possible while staying as close to the road centerline as
possible to minimize tracking errors.

Three independent parameters, i.e., task completion time
(TCT), deviation to centerline (D2C) and steering effort (SE),
are used as performance metrics. TCT is defined as the time it
takes for a participant to complete one loop of the driving task
as "fast" and "smooth" as possible. The D2C is defined as the
area between the actual vehicle track and the road centerline,
indicating the magnitude of deviation to the centerline. These
two metrics reflect the teleoperation system's longitudinal and
lateral maneuverability performance, respectively. The lower
value of metrics indicates higher performance. The SE is
denoted by the average absolute steering angle, which
characterizes the controllability of the teleoperated vehicle.
Due to the detrimental effects of delay on teleoperated driving
tasks, driving operations without timely visual feedback could
result in oversteering and repetitive correction in the form of
overdriving behavior. Less steering effort means more
manageable and more comfortable control of the vehicle.

Teleoperated driving tasks under five delay levels ranging
from 200ms to 1000ms with the interval of 200ms and
applying two control frameworks, i.e., direct control (DC) and
predicted trajectory guidance control (PTGC), are studied. The
experiments follow a 5×2 within-subject factorial design and
aim to determine how the delay magnitude and control method
affect mobility and drivability. Including the zero-delay case
as the baseline, eleven driving tasks are tested, and each task
is repeated three times. Therefore, each participant needs to
complete 33 runs. The task sequence is randomly scheduled to
reduce the learning impact on individual scenes or one
trajectory.
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D. Experimental procedure
Nine people with an average age of 22 ± 3 years were

recruited to participate in the experiments. They had a driver's
license and at least one year's driving experience. All
participants had a normal or corrected-to-normal vision and
some experience driving in a virtual environment with a
steering wheel and pedals (e.g., playing a virtual racing game)
but no teleoperation driving experience in a delayed condition.

The whole testing process was divided into two sessions: the
training session and the testing session. The training session
served to help participants adapt to teleoperation under large
latency based on the simulation platform. Participants were
verbally informed of the test details, including the driving task
and performance goals, i.e., completion time,  deviation error
and steering effort. Participants were asked to complete the
driving task as quickly as possible but were not told which
metric had a higher priority. Instead, it is up to them to adapt
and adjust to the driving task. Once the training session had
been completed, the test session began. Participants were
asked to run 11 tasks in a randomized order during the testing
session, and each task was repeated three times. A run was
valid if the following events did not occur.

1) The vehicle ran off the road for 5 s.
2) Vehicle rollover.
3) The average speed is less than 18 km/h.

E. Analysis methods
A two-way RM-ANOVA was used to study the effects of

two independent variables, i.e., delay level and control method,
on TCT, D2C and SE. Here, two-way refers to two factors:
delay level and control method.

The two null hypotheses for each metric were tested using
an F-test based on the type III sum of squares and 95%
confidence level. These null hypotheses are as follows:

(1) There is no significant difference in performance metrics
when different control methods are used for teleoperation.

(2) No significant differences in performance measures exist
between the different delay levels.

If the F-test indicated that at least one mean is different from
the others (i.e., P < 0.05), Fisher’s least significant difference
method was used to identify the groups with pairwise
significant differences in the means.

F. Experimental results and discussion
A total of 297 records were obtained, and one participant’s

result was discarded as the average speed was lower than
18km/h. Therefore, 264 valid records were used for
experimental analysis.

A case (800 ms delay) study is shown in Fig. 9. Compared
with the DC, the actual path is closer to the destined path when
using the PTGC, and the steering intention of the driver can be
recognized in advance before entering the intersection, thus
controlling the vehicle steering as early as possible. Especially
in the adjusting phase after the turning, the DC case has a
longer overshoot, while using the PTGC reaches stability more
quickly after turn, which means that using the PTGC has better
maneuverability and stability.

Fig. 9. Actual path under 800 ms delay

TABLE III
RM-ANOVA RESULT FOR THE METRIC D2C

Factor DF F P
Control 1 30.63 0.000
Delay 4 28.61 0.000

Control * Delay 4 4.39 0.002

TABLE IV
RM-ANOVA RESULT FOR THE METRIC TCT

Factor DF F P
Control 1 30.63 0.000
Delay 4 28.61 0.000

Control * Delay 4 4.39 0.013

TABLE V
RM-ANOVA RESULT FOR THE METRIC SE

Factor DF F P
Control 1 30.63 0.001
Delay 4 28.61 0.000

Control * Delay 4 4.39 0.005

Two-way RM-ANOVA on each performance metric was
conducted individually as a general linear model. The details
of RM-ANOVA are shown in Tables III-V. With a
significance level of 0.05, the P values of the F-test with
respect to the factor of delay level are close to 0 and much
smaller than 0.05 in all three RM-ANOVA tables, which
indicates that the hypothesis of no significant difference
between the different delay levels tested can be rejected with
95% confidence level. In terms of the effect of the control
method, the P values for the metrics of TCT, D2C, and SE  are
0.000, 0.000 and 0.001, respectively. All P values are smaller
than 0.05. Thus, there is a significant difference in
performance metrics when different control methods are used
with a 95% confidence level. However, the P values of the
factor Control*Delay for three metrics are 0.002, 0.013, and
0.004, respectively, indicating a significant interaction effect
between the Control Method and the Delay Level. Therefore,
we conducted a pairwise ANOVA comparison to determine
whether the control method significantly affects the
teleoperation performance at different delay levels. Results are
shown in Fig. 10, where the ‘*’ denotes the pairs with a
statistically significant difference. For delays greater than 200
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ms, the performance improvements in D2C and TCT metrics
are significantly different using the PTGC relative to the DC,
as shown in Fig. 10(a) and 10(b). The performance
improvements in the SE metric are significant only when
delays are greater than 400 ms, as shown in Fig. 10(c). All
three metrics slightly worsen when the delay is not greater than
200 ms, indicating that humans can adapt to slight delay
without assistance. The performance even decreases in the
existence of assistance due to the prediction errors.

(a)

(b)

(c)
Fig. 10. Pairwise ANOVA comparison on D2C, TCT and SE

at different delay levels

To find out why there exist performance differences under
different delay levels using the PTGC, a one-way ANOVA

was applied in DC cases to explore the performance
differences to the baseline. The results are shown in Table VI.

TABLE VI
ONE-WAY ANOVA RESULTS FOR DIFFERENCES TO THE

BASELINE USING DC METHOD

Metric Delay (ms) Mean
Difference P

D2C 0

200 -133.464 0.433

400 -222.104* 0.008

600 -326.271* 0.000

800 -528.021* 0.000

1000 -616.021* 0.000

TCT 0

200 -1.929 1.000

400 -15.785* 0.000

600 -22.554* 0.000

800 -29.098* 0.000

1000 -40.285* 0.000

SE 0

200 -0.195 1.000

400 -1.078 0.095

600 -3.023* 0.000

800 -3.847* 0.000

1000 -4.168* 0.000

* indicates a significant difference

All three performance metrics under 200ms delay are not
significantly different from the zero-delay cases (P < 0.05),
which indicates that human drivers can adapt to the low delays
(≤ 200 ms) without compromising driving performance. Under
400 ms delay, the SE of DC cases is also not significantly
different from the baseline (P<0.05). The reason could be that
human drivers try to control the vehicle with minimal effort at
relative low delay levels. The significance results at different
delay levels in Table VI are consistent with those shown in Fig.
10, which indicates that the PTGC framework can result in
remarkable performance improvements only when the DC
framework is significantly affected by the delay. The reason is
that the PTGC framework is based on the driver's intention
prediction, and due to errors in trajectory prediction, its
performance is always inferior to the baseline. To analyze the
improvement quantitatively, results are further normalized
using the average performance metrics of the zero-delay case
as the benchmark [33]. The D2C, TCT and SE performance
improvement of PTGC cases relative to DC cases at different
delay levels is denoted as PD2C, PTCT, and PSE, respectively.
Referring to [34] and taking PD2C   for example, the
improvement is calculated by

𝑃𝐷2𝐶 = |𝑟c−𝑟d|
|𝑟d−𝑟0| (20)

where 𝑟𝑐 , 𝑟𝑑 𝑎𝑛𝑑 𝑟0  are the means of D2C of PTGC, DC and
zero-delay cases, respectively.

Assuming each metric contributes equally to the overall
performance 𝑃ove, we get:

𝑃ove = 𝑃𝐷2𝐷
3

+ 𝑃𝑇𝐶𝑇
3

+ 𝑃𝑆𝐸
3

(21)
Note that the overall performance is based on the

significance analysis. If the performance improvement at a
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certain delay level is not statistically significant, the value is
set to zero.

TABLE VII
PERFORMANCE IMPROVEMENT VS. DELAY LEVELS

Delay 400 ms 600 ms 800 ms 1000 ms
𝑃𝐷2𝐶 41% 59% 60% 35%
𝑃𝑇𝐶𝑇 48% 49% 33% 21%
𝑃𝑆𝐸 0 38% 28% 23%
𝑃ove 30% 49% 41% 27%

Fig. 11. Pairwise ANOVA comparison on the normalized 
overall performance metrics

The normalized improvement in the three metrics and the
pairwise ANOVA comparison of the normalized overall
performance metrics at different delay levels are shown in
Table VII and Fig.11, respectively. It shows that under large
delay levels, e.g., 400ms, 600ms, 800ms and 1000ms, the
overall performance improvement of PTGC cases over the DC
cases is 30%, 49%, 41% and 27%, respectively, and the overall
performance improvement with the PTGC framework is
statistically significant at these delay levels. The performance
improvement decreases as the time delay increases when the
delay is greater than 600ms. The reason is that the prediction
error increases as the prediction horizon increases, and the
prediction error is insignificant when the prediction horizon is
less than 600ms. So, the overall improvement reaches its
maximum at the delay level of 600ms.

VI. CONCLUSION

This paper proposes a predicted trajectory guidance control
framework for teleoperation of ground vehicles, aiming to
improve the maneuverability and drivability of teleoperated
vehicles under delays. The control method is novel in that it
uses a deep learning model to predict the teleoperator’s driving
intentions and intended trajectories at the vehicle side, and the
vehicle is guided by the predicted trajectory using a closed-
loop tracking controller. The advantage of this approach is that
it removes the teleoperator from the closed-loop control
system and reduces the sensitivity of the human driver to time
delays. The performance of the proposed method is verified
with a human-in-loop driving simulation at delay levels
ranging from 200ms to 1000ms. Three performance metrics,
i.e., D2C, TCT and SE, are used to evaluate the performance

improvement. The results show that the proposed method
improves maneuverability and drivability under delays>200ms.
Under 600ms delay, the overall improvement is about 49%.
However, there is no improvement for cases of delay ≤ 200ms
due to the human teleoperator’s adaptability to small delays.
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