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Abstract

Cooperative relays improve reliability and coverage in wireless networks by providing multiple paths

for data transmission. Relaying will play an essential role in vehicular networks at higher frequency

bands, where mobility and frequent signal blockages cause link outages. To ensure connectivity in a

relay-aided vehicular network, the relay selection policy should be designed to efficiently find unblocked

relays. Inspired by recent advances in beam management in mobile millimeter wave (mmWave) networks,

this paper address the question: how can the best relay be selected with minimal overhead from beam

management? In this regard, we formulate a sequential decision problem to jointly optimize relay

selection and beam management. We propose a joint relay selection and beam management policy

based on deep reinforcement learning (DRL) using the Markov property of beam indices and beam

measurements. The proposed DRL-based algorithm learns time-varying thresholds that adapt to the

dynamic channel conditions and traffic patterns. Numerical experiments demonstrate that the proposed

algorithm outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm

can maintain high spectral efficiency under fast-varying channels.
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I. INTRODUCTION

MmWave multiple-input multiple-output (MIMO) communication is a key technology for

sensor data sharing to support automation in transportation systems [1]. Data sharing between

self-driving vehicles can increase the safety of autonomous driving by enabling exchanges of

traffic conditions and collision warnings. Safety-critical automated driving applications may re-

quire a maximum communication delay of tens-of-milliseconds to prevent catastrophic accidents

[2]. Communication at gigabit-per-second data rates will be pivotal to transmit high-resolution

data, either raw or processed, from sources such as cameras and radars [3], [4]. MmWave MIMO

systems can meet the data rate requirements of vehicular networks with beamforming by taking

advantage of wide bandwidth communication between 30 and 300 GHz.

Unfortunately, high mobility and frequent blockages in mmWave vehicular networks create

a lack of link resilience that may disrupt automotive applications [5]. High mobility systems

are subject to fast fading channels, Doppler effects, and frequent handovers. Blockages due to

mobile obstacles such as people and cars can induce shadowing losses up to 30-40 dB [6], while

blockages due to static objects such as large buildings may result in penetration losses of 40-80

dB [7]. Issues stemming from mobility and blockage can deteriorate the system throughput, and

these challenges must be addressed to enable the success of mmWave MIMO networks [8].

Link vulnerability due to mobility can be partially overcome with careful beam management.

Though Doppler frequencies are high at mmWave, directional beamforming reduces the effect

of Doppler spread by restricting the range of Doppler frequency shifts according to the received

beam directions [9]. While narrow beamwidths can mitigate Doppler spread, narrow codebooks

increase the training overhead of exhaustive and hierarchical beam alignment methods. Although

prior research has proposed fast beam adaptation in vehicular networks, which addresses the

beam alignment overhead [10]–[12], most of this work has only considered cellular networks

and one-hop transmission links between base stations and vehicles. Few studies have addressed

beam alignment overhead in the context of vehicular networks with multi-hop links, despite

the benefits of connected vehicles on cooperative decision making such as lane changing and

deceleration/acceleration [13].

Multi-hop communication, enabled by relaying, can enhance link connectivity by providing

multiple transmission paths that can be leveraged to avoid link blockages. In this context, recent

studies have shown that a proper selection of unblocked relays can maintain stable data rates
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with low latency and drop rates [14]–[17]. Recent work on relay selection, however, either

has approximated the beamforming gain using an ideal directional antenna pattern [14]–[16] or

assumed the overhead from beam alignment is negligible [17]. Because of this, prior research on

relay selection has not accounted for the overhead or the beamforming gain after beam alignment

when switching relays.

While a variety of solutions have addressed beam management and relay selection in mmWave

MIMO vehicular networks separately [10], [15], [17], [18], the extension to the joint formulation

of beam management and relay selection is nontrivial. Beam alignment is needed to establish a

robust link when switching to a new relay. The training overhead required for beam alignment,

however, may outweigh the benefit of the new relay over the present link. In this context, we

develop a DRL-based algorithm that chooses between when to select new relays and when to

perform beam management.

DRL is an online learning method that has been successfully applied to many communication

applications, such as network access, caching, and connectivity preservation [19]. In mmWave

vehicular networks, DRL has been used for resource allocation and radio access to enhance

throughput while maintaining data security [20]. DRL resolves the exploration-exploitation trade-

off, which appears in many control layer tasks such as dynamic beam selection [10], power

allocation [15], and handover [21]. DRL enjoys small control overhead by adaptively balancing

between testing new control actions versus choosing the actions deemed to have the maximum

expected return according to prior actions deployed. The benefits of DRL make it a suitable

approach for solving the joint beam management and relay selection problem.

In this paper, we propose a DRL algorithm for joint relay selection and beam management

that uses beam measurements, which are the rate estimates fed back from the receiver to the

transmitter, to decide when to switch relays and when to perform beam alignment. We presume

the available relays, which can change over time due to the varying network topology, are

identified and at most a two-hop link is allowed. We also assume the communication nodes

employ Orthogonal Frequency Division Multiplexing (OFDM), an analog MIMO architecture,

codebook-based beamforming, and that the beam measurements are fed back to the transmitter

without quantization or overhead. The feedback may be available through a dedicated channel

in the sub-6 GHz frequency range or may be sent on the reverse link with reduced coding and

spreading. The choice of relay selection or beam management is made by comparing the rate
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feedback from beam measurements to two adaptive thresholds determined by the algorithm. We

use one threshold to determine to either keep or switch the current link, where the links include

the direct link and the indirect link through relays. We use the other threshold to decide between

data transmission and beam management, which includes initial access, beam tracking, and

data transmission [22]. The DRL-based policy uses the best known relay until the performance

degrades under the learned threshold, in which case the policy tries out other relays according

to beam management procedure. We summarize our contributions as follows:

1) We formulate a joint relay selection and beam management problem for mmWave MIMO

vehicular networks that accounts for the effect of the beam management overhead on the

cumulative spectral efficiency. We devise a sequential decision-making model of the joint

relay selection and beam management problem, reducing the state space by employing

codebook-based beamforming.

2) We propose a DRL-based algorithm to solve the joint relay selection and beam management

problem. The proposed algorithm uses the spectral efficiency feedback from the receiver to

learn two thresholds, where one threshold corresponds to relay selection and the other to

beam management.

3) We demonstrate the numerical performance between the proposed algorithm versus a base-

line with prior knowledge on the channel. The heuristic selects fixed thresholds based

on an offline simulation instead of using the DRL algorithm. Note that the heuristic is

analgous to the threshold-based relay selection previously studied for cellular device-to-

device networks [23]. The proposed algorithm is able to outperform the heuristic approach

even without the prior knowledge of the channel. Further, we analyze the impact of various

system, channel, and beam management parameters on the performance. We find that the

proposed DRL-based policy is especially beneficial over baselines under dense vehicular

networks with highly-variant channels.

Relevant studies on relay selection include [12], [14], [16], [24]–[26], which focus on the

effective system throughput affected by time overhead. For example, the work in [12] addressed

packet overhead and proposed to minimize the average delay of successfully delivered packets.

The work in [14] characterized latency in mmWave vehicular networks as the sum of transmission

delay and alignment delay. The work in [16] followed the latency characterization in [14] to

maximize the effective rate assuming zero rate is achievable during beam alignment. The beam
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alignment delay throughout [12], [14], [16], though, is dependent only on the beamwidth. Our

work uses the number of training beams and a practical 5G new radio (NR) beam alignment

procedure [22] to calculate the overhead induced by both initial access and tracking. In [24],an

overhead constraint is formulated as a bound on the total broadcasting and relaying time. The

overhead has been measured in prior studies on buffer-aided relay selection using the queue

length [25] and packet retransmissions [26]. The overhead in [24]–[26] does not incorporate the

beamforming overhead. Our work penalizes latency due to excessive beam training by assuming

exhaustive beam sweeping.

DRL has previously been applied for relay selection in wireless communication networks

[15], [17], [27]. In vehicular networks, DRL has also been applied for simultaneous power level

allocation and relay selection. In the line of this work, deep Q-learning (DQL) was used in [15]

for discrete power allocation to minimize the transmission latency. A deep deterministic policy

gradient (DDPG) algorithm for continuous power level allocation to maximize the communication

success rate was investigated in [17]. Our paper addresses beam management overhead, where

transmit power is fully devoted to a selected relay according to the beam measurement feedback.

In this context, [15] and [17] are complementary to our work. In [27], DRL is applied for relay

selection in wireless sensor networks with static nodes using a utility function defined by the

system throughput and power usage. Our paper includes mobile nodes in a dynamic mmWave

wideband channel and also accounts for the beam training overhead. Our paper also applies

DRL with beam measurements as the states instead of the channel matrices, which can greatly

improve the runtime because of the smaller state space that facilitates learning. Other online

learning algorithms that have been applied to the relay selection problem include the multi-

armed bandit framework [28], [29]. Notably, fast beam alignment algorithms based on bandits

can exploit environmental awareness [10], sparsity of mmWave channels [18], and correlation

structure among beams [11]. Our work assumes exhaustive beam sweeping as in [22], and we

leave the extension to more sophisticated beam alignment algorithms for future work.

The rest of the paper is structured as follows. In Section II, we present the system model used

to represent the mmWave MIMO vehicular network. In Section III, we formulate the joint relay

selection and beam management problem. In Section IV, we develop a DRL-based algorithm

to solve the joint relay selection and mode selection problem. In Section V, we numerically

evaluate the proposed algorithm compared to baselines with prior knowledge of the channel.
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Finally, we conclude the paper in Section VI.

We use the following notation throughout this paper: A is a matrix, a is a vector, a is a

scalar, and A is a set. We denote aT the transpose of a, a∗ the conjugate transpose, and ‖a‖
the 2-norm. We denote dae the ceiling function. We denote ∇x the gradient with respect to a

variable x. A scalar random variable a ∼ D follows distribution D. We denote the Gaussian

distribution N (a, b) and the complex Gaussian distribution NC(a, b) with mean a and variance

b.

II. SYSTEM MODEL

In this section, we describe the system model representing a mmWave vehicular network with

V2V communication. We first provide a generic view of the network and beam management

procedure in Section II-A. We then describe the signal model in Section II-B. We outline the

beam management procedure in Section II-C.

A. Network model

Consider a mmWave vehicular network as shown in Fig. 1. We assume that the vehicles

communicate based on OFDM. The transmitter generates data traffic requested by the receiver,

where other vehicles serve as potential relays. The transmitter selects one of two modes, beam

alignment or data transmission, for each OFDM frame over the subcarriers and time. We

assume the transmitter sends pilots during beam alignment and symbols during data transmission.

Whenever the mode is beam alignment, the transmitter performs beam training to send pilots for

MBA discrete time slots to establish the transmitter-to-receiver link. Otherwise, the transmitter

sends data symbols to a single receiver via the transmitter-to-receiver link for MDT discrete time

slots. This indicates that the sequence of modes can be consecutive beam alignments, consecutive

data transmissions, or alternating with an arbitrary number of consecutive modes.

Nearby vehicles can degrade the link quality by blocking the direct transmitter-to-receiver

path, as shown in Fig. 1. We assume the transmitter has already discovered a fixed number

NREL of nearby relay nodes, given as the set of indices {0, 1, . . . , NREL} where index 0 denotes

the direct transmitter-to-receiver link. Given the indices, the transmitter can establish a two-hop

indirect transmitter-to-receiver V2V link via the transmitter-to-relay and relay-to-receiver V2V

links to overcome the blockage of the direct path.



7

1 Transmitter

2 Relay

3 Receiver

4 Mobileblockages

Fig. 1. Snapshot illustration of an example system model consisting of four types of vehicles; i) the blue vehicle is the transmitter,
ii) the yellow vehicle is an available relay, iii) the orange vehicle is the receiver, and iv) the purple vehicles are mobile blockages.
Two-sided arrows indicate vehicular links; solid green links are unblocked and dashed red links are blocked.

B. Signal model

We describe the signal model from the transmitter to the receiver under the data transmis-

sion mode. The signal model also applies to other one-hop communication links, such as the

transmitter-to-relay and relay-to-receiver link. The signal model under the beam alignment mode

is similar to that under the data transmission mode, with the difference that a pilot signal is

communicated instead of a data symbol [22].

We assume an analog beamforming OFDM-MIMO architecture at both the transmitter and

receiver. Hybrid and digital architectures allow sweeping over multiple beams simultaneously

at the cost of higher energy consumption [22]. Under the analog architecture, the transmitter

and receiver communicate via a single data stream. The transmitter consists of NTX antennas

communicating with a receiver with NRX antennas. We denote fRF[m] the NTX × 1 complex RF

beamformer vector and wRF[m] the NRX × 1 complex RF combiner vector at time slot m. We

assume frequency flat RF precoder and combiners, such that fRF[m] and wRF[m] are constant over

subcarriers, as in [30]. We assume that the power constraints ‖fRF[m]‖2 = 1 and ‖wRF[m]‖2 = 1,

for all m, on the beamforming vectors fRF[m] and wRF[m]. No other hardware-related constraints



8

are assumed.

We assume a time-varying frequency-selective channel between the transmitter and the re-

ceiver. Let us denote K as the number of subcarriers and k = 1, . . . , K as the subcarrier index.

We denote the NRX×NTX channel matrix as H[k,m] between the transmitter and the receiver for

each k = 1, . . . , K. The channels used throughout the paper consist of the transmitter-to-receiver

channel HTX→RX[k,m], transmitter-to-relay channel HTX→REL[k,m], and relay-to-receiver channel

HREL→RX[k,m], where we omit the subscripts unless needed. We further assume the channel

matrix H[k,m] models the small-scale fading, while the averaged received power denoted by

G[m] represents the large-scale fading [31]. Let us also denote the NRX × 1 independently and

identically distributed (IID) NC(0, σ2
n) noise vector by n. Then, at subcarrier k and time slot

m, given the complex scalar s[k,m] of transmitted symbols such that E[|s[k,m]|2] = 1, the

processed received signal at subcarrier k and time slot m is [32]

y[k,m] =
√
G[m]w∗RF[m]H[k,m]fRF[m]s[k,m] +w∗RF[m]n[k,m]. (1)

Note that these normalizations imply that the signal-to-noise-ratio (SNR) prior to beamforming is

G[m]/σ2
n . As the performance metric, we use the instantaneous spectral efficiency [31] averaged

over the subcarriers

S(fRF[m],wRF[m],H[k,m]) =
1

K

K∑
k=1

log2

(
1 +

G[m]

σ2
n
|w∗RF[m]H[k,m]fRF[m]|2

)
. (2)

The receiver can measure the instantaneous spectral efficiency and feed back the beam measure-

ment to the transmitter, as discussed in Section II-C.

C. Beam management procedure

In this section, we outline the codebook-based beam management procedure. We follow a

general approach as in commercial mmWave systems like IEEE 802.11ad and 5G. We assume

the transmitter and receiver use beams from beam codebooks. We further assume the system

employs a feedback mechanism to estimate the spectral efficiency. For simplicity, we assume the

feedback is perfect with no quantization and no additional overhead is induced from the feedback

procedure. When the receiver successfully decodes one or more successful transmissions, it feeds

back the beam measurement to the transmitter. Otherwise, it feeds back a beam measurement
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of zero to the transmitter. Note that this is is analogous to the automatic repeat-request (ARQ)

used in 802.11 standards.

We describe the overall duration of the beam alignment procedure, which is a dominant

factor in the beam management overhead. The beam alignment is performed by iterating over

predefined beams to aggregate the beam measurements and select the best beam. Each iteration

is controlled by synchronization signal (SS) bursts, where a single SS burst consists of multiple

SS blocks [22]. Denoting NSS as the number of SS blocks per burst, the system can examine NSS

pairs of beams when exchanging a single SS burst. Whenever a single SS burst is exchanged,

the next SS burst is exchanged after time MSS slots, which we denote as the periodicity of SS

bursts. When beam alignment starts at time m, the first beam pair in the SS burst is exchanged

at time m + dMSS/NSSe, the second beam pair at time m + 2dMSS/NSSe, continuing up to the

last beam pair at time m+NSSdMSS/NSSe. The duration of the beam alignment period depends

on the number of beam pairs that should be examined, which can be categorized into four cases

depending on the mode and the number of hops. The mode can be either initial access or beam

tracking. The direct link has one hop, and the indirect link has two hops. Let us denote the

transmitter codebook with size Nc as F = {f1, f2, . . . , fNc}, and similarly the receiver codebook

as W and nth relay codebook as Gn. For initial access via direct link, the duration of beam

alignment can be expressed as

MIA,direct =MSS

⌈ |F| · |W|
NSS

⌉
, (3)

due to the exhaustive beam sweeping over F ×W . Let us denote NBT as the number of best

beams fed back to the transmitter from the receiver during beam tracking. Unlike in initial access

where |F| · |W| beams are swept, only NBT << |F| · |W| beams are processed in beam tracking.

The duration of the beam alignment period for beam tracking via direct link is

MBT,direct =MSS

⌈
NBT

NSS

⌉
. (4)

For simplicity, let us assume perfect time synchronization between the transmitter and the relay.

Then, the duration of the beam alignment procedure is

MIA,indirect =MSS

⌈ |F| · |Gn|
NSS

⌉
+MSS

⌈ |Gn| · |W|
NSS

⌉
, (5)
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for initial access via indirect link and

MBT,direct = 2MSS

⌈
NBT

NSS

⌉
, (6)

for beam tracking. The indirect link has a longer beam alignment period than the direct link both

for initial access and beam tracking. Nonetheless, the effective spectral efficiency accounting the

beamforming overhead may be high in the indirect link due to blockage of the direct link.

During beam alignment, the transmitter and the receiver search for the best transmit and receive

beam pair that maximizes SNR [22]. Due to the exhaustive beam sweeping procedure, beam

indices are swept sequentially over time. Let us denote the time slot when codebook indices

(iF , iW) are being swept as

md(iF , iW) =

⌈
Nc(iF − 1) + iW

NSS

⌉
, (7)

where the subscript d shows the delay due to the exhaustive beam sweeping is accounted. When

beam alignment ends at time slot m, the system obtains the beamforming vectors

(fd,iF [m],wd,iW [m]) = argmax
iF∈F ,iW∈W

S(f iF [m],wiW [m],HTX→RX[m−MBA +md(iF , iW)]), (8)

and the achievable spectral efficiency is given by

STX→RX,0,p[m] =
1

K

K∑
k=1

log2

(
1 +

G[m]

σ2
n

∣∣∣∣w∗d,iW [m]HTX→RX[k,m]fd,iF [m]

∣∣∣∣2
)
, (9)

where the subscript 0 indicates using the direct link. The subscript p indicates no measurement

error is included in (9).

To incorporate measurement error, we express the beam measurement assuming the system

uses MMSE estimator for the effective channel under a rectangular Doppler spectrum as in

[31, Sec. 4.8]. As the MMSE estimator can be obtained in terms of the ratio of pilots per

symbol transmission, we count the number of pilots over time and frequency frames between

data transmission modes. For every block between data transmission modes, in this context, we

denote the varying ratio of pilots as β and the total number of OFDM frames as Nb. Then, the

MMSE can be written as

MMSE =
1

1 + βNbSNR
, (10)
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and the effective SNR as

SNReff =
SNR(1−MMSE)
1 + SNR ·MMSE

. (11)

The estimated spectral efficiency, fed back from the receiver to the transmitter as a beam

measurement, is

STX→RX,0[m] =
1

K

K∑
k=1

log2

(
1 + SNReff

∣∣∣∣w∗d,iW [m]HTX→RX[k,m]fd,iF [m]

∣∣∣∣2
)
, (12)

when the symbol is being sent at time slot m and zero during beam management. We similarly

define the estimated spectral efficiency STX→REL,n and SREL→RX,n through transmitter-to-relay

and relay-to-receiver link. For STX→REL,n, the codebook pair (F ,W) is replaced by (F ,Gn)
and the channel HTX→RX[m] with HTX→REL,n[m]. For SREL→RX,n, the codebook pair (F ,W) is

replaced by (Gn,W) and the channel HTX→RX[m] with HREL→RX,n[m]. We replace the subscript

0 with n for the transmitter-to-relay and the relay-to-receiver link to indicate using the nth link.

The overall spectral efficiency of the two-hop indirect path is

STX→RX,n[m] =
STX→REL,n[m]SREL→RX,n[m]

STX→REL,n[m] + SREL→RX,n[m]
, (13)

following the optimal time resource allocation for decode-and-forward relaying as in [33]. The

beam measurement of the transmitter-to-relay and relay-to-receiver link may be individually

available to the transmitter via the relay-to-transmitter and the receiver-to-transmitter feedback

channel.

III. FORMULATING THE JOINT RELAY SELECTION AND BEAM MANAGEMENT PROBLEM

In this section, we formulate the joint relay selection and beam management problem for the

mmWave MIMO vehicular network from the perspective of sequential decision theory. Based on

this formulation, we discuss how to choose actions for each time steps. To do this, we devise a

Markov Decision Process (MDP), which is a well-studied model for sequential decision making.

The transmitter aims to maximize the data rate by selecting the best relay and beam at each

time slot. We say that the transmitter needs to decide actions A[m] for each time slot. The

actions consist of a chosen relay index n[m] ∈ {0, 1, . . . , NREL} and a beam management mode

nmode[m] ∈ {0, 1} which dictates whether to perform beam alignment or data transmission. We

set nmode = 1 to indicate data transmission and nmode = 0 to indicate beam alignment.
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The optimal set of actions are selected to maximize the running average of the spectral

efficiency over M time slots. We assume a finite M to ensure the sum of spectral efficiency

is bounded, as in other sequntial decision formulations in wireless applications [19]. On top of

the spectral efficiency depending on the channel and beamforming vectors, as given in (12), the

action affects the spectral efficiency due to the beam management procedure. In this context, we

use a binary variable c(A[m]) to express the effect of the actions on the spectral efficiency. We

set c(A[m]) = 1 when the action is data transmission and c(A[m]) = 0 when the action is beam

alignment. Then, the optimization problem for maximizing the cumulative spectral efficiency

can be written as

max
{a[m]}

M∑
m=1

NREL∑
n=0

(
c(A[m])STX→RX,n[m]

)
. (14)

We first analyze a genie-aided policy to approach (14). At time slot m, suppose the achievable

spectral efficiency STX→RX,n[m] is known for all n. In this case, the optimal solution aOPT[m]

of (14) is selecting the relay index n[m] = argmaxn STX→RX,n[m] with the mode nmode[m] = 1.

Note that the value obtained by aOPT is the expected upper bound of the system’s performance.

The system is limited from achieving the performance of the genie-aided policy due to the

tradeoff between the performance obtained from frequent beam alignment versus frequent data

transmission. On one hand, frequent beam alignment is necessary due to the fast varying channel.

On the other hand, frequent data transmission is required to realize the spectral efficiency. The

tradeoff can be also explained in terms of the objective in (14). Frequent beam alignment can

improve the accuracy of rate feedback leading to a higher STX→RX,n[m] at the expense of the

coefficient set to c(A[m]) = 0. Conversely, frequent data transmission can achieve the coefficient

c(A[m]) = 1 at the cost of a lower STX→RX,n[m] due to beam misalignment.

The system can address the performance tradeoff between beam alignment versus data trans-

mission using sequential decision theory. Following the approach taken in sequential decision

making formulations in wireless communication applications [19], we assume an MDP as the

learning model for (14). The three components that must be specified in an MDP are the states,

actions, and the reward:

• States: The system state of interest is determined by the channel realizations. In codebook-

based directional beamforming, the beam indices (8) and measurements (12) can substitute

the channel information [34]. Accordingly, we define the link vector of the communication
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link via the nth relay as

bn[m] = [iF ,OPT[m], iGn,OPT[m], STX→REL,n[m]] . (15)

The state can then be represented as

T [m] = {b0[m], . . . ,bNREL [m]}, (16)

which consists of the link vectors for all relay indices.

• Actions: The action of the transmitter is the decision variable in the optimization problem

(14). Though discrete actions can be used, continuous actions are often preferred in wireless

applications due to scalability [19]. We follow this approach and defer the readers to

Section IV-A for the specification of the continuous action.

• Reward: The reward is designed to maximize the objective in (14), which can be represented

as

r(T [m],A[m]) =

NREL∑
n=0

(
c(A[m])STX→RX,n[m]

)
. (17)

Note that we follow the typical approach of choosing the reward as the objective at time

index m [19].

IV. POLICY DESIGN FOR JOINT RELAY SELECTION AND BEAM MANAGEMENT

In this section, we develop algorithms to solve the joint relay selection and beam management

in mmWave MIMO vehicular networks. We develop a DRL-based algorithm based on a pure

threshold policy [23], [35]. In Section IV-A, we first describe a threshold-based heuristic (Algo-

rithm 1) with fixed τrelay and τmode that determine the relay index and mode. We then specify the

proposed DRL-based policy, as in Algorithm 2, which applies DRL based on a policy gradient

approach to learn the thresholds and solve the joint relay selection and beam management in

Section IV-B.

A. Threshold-based heuristic

Threshold-based policies with one threshold have been studied for relay selection [23], [35].

One threshold is sufficient for relay selection, as it can represent one of two behaviors: to either

keep the relay or switch. For example, the receiver may switch relays if the estimated received
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SNR of the current link is below that of the best relay and hold otherwise [35]. With more

behaviors to model, however, additional thresholds may be required. For example, threshold-

based policies for data transmission through a Gilbert-Eilliot channel often required two separate

thresholds to determine to whether send data, wait, or measure the channel [36].

We follow the threshold-based policies as in [36] to use thresholds as actions. Two continuous

thresholds τrelay and τmode are defined such that the action can be represented as

A[m] = {τrelay, τmode}. (18)

The transmitter compares the rate feedback in (12) to the thresholds and then chooses one

of the following three behaviors: optimistic, opportunistic, and pessimistic action. When the

transmitter is optimistic, believing that the channel is in an unblocked state with high achievable

spectral efficiency, it keeps both the relay index and mode. When the transmitter is opportunistic,

believing that the channel is in an unblocked state but with a low achievable spectral efficiency,

it keeps the relay index but sets the mode to beam tracking. When the transmitter is pessimistic,

believing the channel is in a blocked state, it changes the relay index and also sets the mode

to beam alignment. We assume τrelay < τmode due to the rate of blocked channels being worse

than that of the unblocked and bad channels. The belief of the transmitter regarding the channel

is determined by the beam measurements in (12). For a given beam measurement S of the

current link, the transmitter takes the optimistic action if S > τmode, the opportunistic action if

τmode > S > τrelay, or the pessimistic action if τrelay > S.

The pseudocode of the proposed threshold-based heuristic is given in Algorithm 1. The

algorithm requires the thresholds τrelay and τmode as fixed inputs. The algorithm is similar to

a state transition matrix. It takes n[m], mode nmode[m], and link vectors b0[m], . . . ,bNREL [m] at

the mth time slot to obtain T [m+ 1]. Due to the duration of beam management, the algorithm

may need to continue the mode nmode[m] over multiple time slots. To do this, the algorithm

tracks how long the current beam management mode has lasted using mBA[m] and mDT[m].

The variable mBA[m] can be thought as the number of beam indices swept in the current beam

alignment mode (7). The variable mDT[m] relates to the number of time slots spent in the

current data transmission. At the end of each beam management mode, when mBA = MBA or

mDT =MDT, the algorithm updates the relay index and beam management mode depending on

the transmitter’s belief of the channel.
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Algorithm 1 Threshold-based heuristic for joint relay selection and beam management problem
1: Input: threshold τmode on mode selection, threshold τrelay on relay selection, current time

slot index k, current relay index n[m], current mode nmode[m], and current link vectors
b0[m], . . . ,bNREL [m]

2: if nmode[m] = 0 then % Beam alignment
3: S[m] = 0
4: if mBA[m] < MBA[m] then
5: nmode[m+ 1] = 0
6: Update mBA[m+ 1] = mBA[m] + 1
7: else
8: Update beam indices bn[m][m+ 1] according to (8)
9: nmode[m] = 1

10: mBA[m+ 1] = 1
11: end if
12: else % Data transmission
13: Set measured spectral efficiency S[m] according to bn[m][m]
14: if mDT[m] < MDT then
15: nmode[m+ 1] = 1
16: Update mDT[m+ 1] = mDT[m] + 1
17: else
18: if S[m] < τrelay then
19: n[m+ 1] = argmaxn∈{0,1,...,n[m]−1,n[m]+1,...,NREL} STX→RX,n[m]
20: nmode[m] = 0
21: else if S[m] < τmode then
22: nmode[m] = 0
23: end if
24: mDT[m+ 1] = 1
25: end if
26: end if
27: Output: relay index n[m + 1], mode nmode[m + 1], link vectors b0[m + 1], . . . ,bM [m + 1],

and measured spectral efficiency S[m]

To deploy the threshold-based heuristic, the thresholds τrelay and τmode are required as inputs.

In practice, test results over varying τrelay and τmode may be compared to choose the thresholds

that provide the highest spectral efficiency. Considering dense vehicular networks with complex

and dynamic traffic patterns, the thresholds need to be computed efficiently both in terms of

data and time resources [10]. For this reason, we apply DRL to find the thresholds with short

training time and without offline data.
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B. Learning algorithm

DRL algorithms aim to find the sequence of actions that maximize the cumulative reward

by training neural networks through trial-and-error. At each iteration an action is determined

according to the output of the neural networks. The action is deployed on the environment

resulting in a reward. The reward is then used to update the weights of neural networks, which

will determine the next action.

The following fundamental aspects are involved in the design of the DRL algorithms: the

policy µ and the Q-function Q. The policy is a mapping from the state space to the action

space, such that A = µ(T ). The aim of DRL is typically formulated as finding the best policy.

The Q-function Q(T ,A) is a measure of the expected reward from a state-action pair followed

by the state-action pairs induced by the optimal policy. The Q-function Q(T ,A) is often useful

for policy search problems due to two properties: it provides a straightforward way to find the

optimal policy µOPT(s) = argmaxaQ(T ,A), and it can be computed with Bellman updates [37].

We use DDPG [38], which is a DRL algorithm that trains both the policy and Q with neural

networks, to solve the joint relay selection and beam management problem. It trains an actor

θA,ON that takes states as inputs and actions as outputs. The actor network accordingly yields

the policy µθA,ON . DDPG also trains a critic θC,ON that takes state-action pairs as inputs and Q

values as outputs. The critic network represents the Q-function Q(·|θC,ON). For stable learning,

DDPG reserves the delayed copy of θA,ON and θC,ON as the target networks θA,TAR and θC,TAR.

DDPG is a suitable algorithm for the joint relay selection and beam management, as in other

wireless applications, due to its fast convergence and capability of handling continuous action

spaces [19]. We introduce the updating rule for the neural networks in DDPG. Let us denote the

replay buffer as D. Each element in the replay buffer is a tuple consisting of state, action, reward,

and successor state. The tuple (T [m],A[m], r[m], T [m+1]) is denoted as a trajectory, referring to

the deployment history. A B-element minibatch, which consist of trajectories randomly sampled

with replacement from D, is used for updating the online actor and critic networks. Specifically,

θC,ON is updated by minimizing the loss

L =
1

B

∑
m′

(
(r[m′] + γQ(T [m′ + 1], µθA,TAR(T [m′ + 1])|θC,TAR)

−Q(T [m′],A[m′]|θC,ON))
2

)
. (19)
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Meanwhile, the sampled policy gradient, which updates θA,ON, is given as∑
m′

1

B

(
∇AQ(T ,A|θC,ON)|T =T [m′],A=µθA,ON (T [m

′]) ×∇θA,ONµθA,ON(T )|T =T [m′]

)
. (20)

The target networks are slowly updated from the online networks, where the parameter η << 1

controls the variance of the target networks:

θA,TAR ← ηθA,ON + (1− η)θA,TAR,

θC,TAR ← ηθC,ON + (1− η)θC,TAR. (21)

The parameter η can be used to suppress the overestimation of the Q-values [39].

Implementing DDPG for joint relay selection and beam management, the following steps are

repeated for the time slots m = 1, . . . ,M :

1) Select the thresholds τrelay[m] and τmode[m] according to the online actor network θA,TAR

and exploration noise distribution N , where the default exploration noise is the Ornstein-

Uhlenbeck noise.

2) Deploy Algorithm 1 with the inputs τrelay[m], τmode[m], b0[m], . . . ,bNREL [m], I[m], n[m],

and nmode[m]. As a result, obtain the successive b0[m + 1], . . . ,bNREL [m + 1], n[m + 1],

nmode[m+ 1], and S[m].

3) Append the current state action pair to the successor state and reward pair to accumulate

transition (T [m],A[m], r[m], T [m+ 1]) in replay buffer D.

4) Update the online actor and critic networks θA,ON and θC,ON according to (19) and (20).

5) Update the target actor and critic networks θA,TAR and θC,TAR with respect to (21).

We give the pseudocode in Algorithm 2 and the flowchart in Fig. 2 for completeness. Note that,

as shown in Fig. 2, we are using Algorithm 1 as the environment with respect to the DDPG

agent.

V. EXPERIMENTAL RESULTS

In this section, we present the numerical evaluation of the proposed DRL-based algorithm for

joint relay selection and beam management problem in a mmWave MIMO vehicular network.

We describe the simulation setup and the relevant parameters in Section V-A. We use two

scenarios, one to focus on the line-of-sight (LOS) channel and the other to capture non-LOS

(NLOS) paths in vehicular networks. We detail the baseline policies and the performance metric
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Algorithm 2 DRL-based joint relay selection and beam management strategy
1: Input: Length M of decision horizon, set {0, 1, . . . , NREL} of relays, minibatch sample size
B, replay buffer D, exploration noise distribution N , length MBA of beam alignment period

2: Randomly initialize online critic network Q(s, a|θC,ON) and online actor network µ(s|θA,ON)
with θC,ON and θA,ON

3: Initialize target critic network θC,TAR ← θC,ON and target actor network θA,TAR ← θA,ON

4: for m = 1, . . . ,M do
5: Select action a[m] = {τrelay[m], τmode[m]} according to the current online actor network

and exploration noise distribution N
6: Deploy Algorithm 1 with inputs τrelay[m], τmode[m], n[m], nmode[m], link vectors

b0[m], . . . ,bM [m], and MBA[m].
7: Compute reward r[m] = S from Algorithm 1
8: Update n[m+ 1] and nmode[m+ 1] from output of Algorithm 1
9: Get successor state s[m+ 1] from updated link vectors

10: Store transition (s[m], a[m], r[m], s[m+ 1]) in D
11: Sample a random minibatch of B transitions from D
12: Update the online critic network by minimizing the loss (19)
13: Update the online actor network by policy gradient (20)
14: Update the target networks from the online networks according to (21)
15: end for

Fig. 2. Flowchart of the proposed DRL-based joint relay selection and beam management algorithm. The threshold-based
heuristic (Algorithm 1) serves as the environment in each iteration.

in Section V-B. We provide the numerical results on the LOS scenario in Section V-C. We then

give the numerical results on the more realistic scenario with NLOS paths in Section V-D.
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A. Simulation setup

We simulate a mmWave MIMO vehicular network using two scenarios. The first scenario only

considers a LOS channel with two relay nodes available to the transmitter. In the second scenario,

the channels are calculated using vehicle trajectory data based on Simulator of Urban Mobility

(SUMO) [40]. The first scenario represents a simplified version of a conceptual deployment

for mobile mmWave networks. It is used to analyze the effect of system parameters, such as

angular spread σa, on the spectral efficiency. The second scenario represents a more realistic

deployment of mmWave vehicular networks and is used to analyze specific system parameters

of the vehicular network, such as vehicle density per lane, on the spectral efficiency. We assume

stationarity in the joint process of channel and blockage in both scenarios, which is commonly

used in vehicular channel modeling [2].

The simulation parameters for both scenarios, unless stated otherwise, are summarized as

follows:

• Antenna array and codebook: We assume uniform linear arrays with half-wavelength spac-

ing equipped at both transmitter and receivers. For simplicity of exposition, we focus on a

case with uniform linear arrays (ULAs) at the transmitter and receiver, but it can be readily

extended to other array geometry and multiple panels. Denoting φ the steering angle and λ

the carrier wavelength, the array response vector for a N -element ULA is given as

a(φ) =
1√
N

[
1, e−jπ cos(φ), . . . , e−j(N−1)π cos(φ)

]T
. (22)

We select a codebook structure that equally partitions the angular domain [0, π]. The

codebook vectors are given as fiF = a(πiF/NTX), for iF = 0, 1, . . . , NTX − 1 and similarly

for the receiver codebook W and the mth relay codebook Gm over m ∈ {0, 1, . . . , NREL}.
• Channel model: We use a time-varying geometric channel composed of L[m] paths as in

[41]. For the `th path, we denote α`[m] as the complex path gain, φ`,A[m] as the AOA,

φ`,D[m] as the AOD, at(·) as the transmit array vector, and ar(·) as the receive array vector.

To further express the wideband channel, we apply the delay-d channel model denoting the

path delay as τ`, the bandlimited pulse shaping filter as p(·), the symbol period as Ts, and

the delay tap length as Nd [42]. We select K = 256 subcarriers. We additionally denote the

blockage coefficient as cBL,`[m]. The channel matrix at subcarrier k and time slot m can be
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TABLE I
TABLE OF THE NOTATIONS, PARAMETERS, AND VALUES USED IN THE SIMULATION SETUP IN FIG. 4. THE FOLLOWING

FIGURES HAVE PARAMETER VALUES HERE UNLESS MENTIONED OTHERWISE.

Notation Simulation parameter Parameter value
NREL Number of candidate relays 2
NTX Number of transmitter antennas 16
NRX Number of receiver antennas 16
σp Complex path gain spread 0.005
σa Angular spread 0.5
NBL Number of time slots in a blockage 100
Ts Symbol time 1/1760 µs
MSS Number of time slots of a single SS burst 1
NSS Number of SS blocks in single burst 64
pu→b Transition probability from blocked state to unblocked state 0.01
pb→u Transition probability from unblocked state to blocked state 0.99
qb Steady-state probability for the blocked state 0.01
K Number of subcarriers 256

expressed as

H[k,m] =

L[m]∑
`=1

cBL,`[m]α`[m]

Nd−1∑
d=0

p(dTs − τ`)e−j
2πk
K ar(φ`,A[m])a∗t (φ`,D[m]). (23)

We assume that the complex path gain, angle of arrival, and angle of departure evolves

according to a first order Gauss-Markov equation, as in [41, Eq. 7]. We denote the angular

spread as σa, and the complex path gain spread as σp.

• Beam management and algorithm initialization: We apply beam management with MSS = 1

and NSS = 64. We assume the transmitter initially uses the direct link and performs initial

access. We accordingly initialize the relay index as n[1] = 0 and the mode as nmode[1] = 0.

We initialize the link vectors as b[1] = {1, 1, 0, . . . , 1, 1, 0}. We assume the data transmission

takes a single time slot and accordingly set MDT = 1.

The parameter values used in both scenarios are organized in Table I.

B. Performance metrics and baseline policies

We use the ensemble average spectral efficiency to track the performance metric. We approx-

imate the ensemble mean by averaging over 1,000 identically distributed channel samples. For
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the performance of the DRL-based policy, we measure the average of the last 20 iterations out

of the M = 200 total iterations to represent the converged reward.

We compare the proposed DRL-based algorithm to three baseline policies:

• Genie-aided policy: This algorithm has perfect knowledge of the channel. Subsequently,

this policy chooses the data transmission action with the correct relay index and the best

beam indices. Therefore, the performance achieved by the genie-aided policy is the expected

upper bound of the system.

• Algorithm 1 with optimal threshold: This algorithm applies Algorithm 1 with the optimal

thresholds τOPT
relay and τOPT

mode, where τOPT
relay and τOPT

mode are found by exhaustively searching over

τrelay and τmode; we return the best result from the tests with varying τmode and τrelay from 0

up to τmax where τmax is the 99% percentile of the achievable spectral efficiency.

• Direct policy: This algorithm chooses an action in each iteration following the genie-

aided policy and expect the relay index fixed to zero. This policy represents the expected

performance using suitable beam tracking and alignment without the aid of available relays.

Selected implementation details that may be useful for reproduction are summarized as follows.

To implement the proposed learning algorithm based on policy gradients, we use OpenAI Gym

[43] as the environment template with Python TensorFlow. We set the action arguments a1

and a2 as real numbers such that τrelay = 10a1/10 and τmode = 10a1/10 + 10a2/10; we learn the

dB representation of the threshold τrelay and the dB representation of the difference between

thresholds τmode− τrelay. We found this useful since it allows the tanh activation function which

is known for its stable convergence in training the neural network. An implementation of our

method is available on our github page [44].

C. Numerical evaluation with LOS channels

In this section, we provide the experimental results for the scenario that only considers LOS

channels between the vehicles. We observe the change in spectral efficiency when varying

system parameters. We select the transmit SNR, complex path gain spread σp, angular spread

σa, codebook size Nc, beam management parameters NSS, MSS, and blockage parameter qb as

the parameters of interest.

We assume that the time-varying blockage model of the LOS channel scenario can be described

by a Markov chain, as in [45]. The blockage model, depicted in Fig. 3, consists of two states
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indicating the path being blocked or unblocked. We denote the transition probabilities pb→u from

blocked to unblocked state and pu→b from unblocked to blocked state. The transition probabilities

determine the steady-state distribution of the two states. Denoting qu the steady-state probability

of the unblocked state and qb the steady-state probability of the blocked state, qu = pb→u
pb→u+pu→b

and qb =
pu→b

pb→u+pu→b
. We apply the blockage model along with the evolution of the time-varying

Unblocked Blocked

pu→b

pb→u

1− pu→b 1− pb→u

Fig. 3. LOS blockage evolution model represented as a two-state Markov chain. The steady state probability of blocked state
can be computed as qb = pu→b/(pb→u + pu→b), given the transition probabilities pb→u from blocked to unblocked state and
pu→b from unblocked to blocked state.

propagation channel in (23). We assume that a state transition in the blockage model takes NBL

time slots. Typically, NBL >> 1 since the duration of a blockage is much longer than the symbol

period [45]. For each path `, cBL,`[m] = 1 for NBL time slots if the state transits to the unblocked

state. If the state transits to the blocked state, cBL,`[m] = 0 for NBL time slots.

In Fig. 4 we illustrate the average spectral efficiency versus SNR, ranging over −20 dB to 10

dB under the parameters specified in Table I. Fig. 4 shows that the proposed learning-based relay

selection algorithm achieves spectral efficiency surpassing Algorithm 1 and the direct policy. This

implies that the DRL-based policy is accurately choosing relay indexes to overcome the blockage

of the direct LOS path. Furthermore, the DRL-based policy using ε-greedy method efficiently

balances the tradeoff between spectral efficiency gain from frequent beam alignment and loss

from beam management overhead. When compared to Algorithm 1 using relays, the DRL-based

policy achieves non-negligible spectral efficiency increase due to resolving the tradeoff.

Fig. 5 illustrates the performance of the policies per channel parameters, complex path gain

spread σp and angular spread σa. Low σp and high σa translates to a fast-varying system with

complex traffic; the noise term becomes dominant in the recurrence relations of complex path

gain, AOA, and AOD. For fixed SNR at 0 dB, we vary σp and σa within [0, 1]. We fix the
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Fig. 4. Average spectral efficiency vs. transmit SNR for (i) the genie-aided policy, (ii) the DRL-based policy, (iii) the relay
selection heuristic with optimal threshold, and (iv) the policy that only use the direct link. Allowing the use of relays improve
spectral efficiency overcoming the blockage of LOS path. Relay selection based on DRL further increases spectral efficiency
over random selection by balancing exploration and exploitation with ε-greedy method.
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Fig. 5. Average spectral efficiency vs. channel parameters (a) complex path gain spread σp and (b) angular spread σa. The
DRL-based policy achieves more spectral efficiency compared to the baselines under low complex path gain spread σp. Spectral
efficiency achieved by the DRL-based policy degrades slower as the σa increases compared to that of the baseline with prior
channel knowledge.

angular spread to 0.5 when varying σp and we fix the standard deviation of complex path gain

noise to 0.005 when varying σa. The DRL-based policy still outperforms Algorithm 1 and the

direct policy for varying σp and σa. We observe interesting behaviors for specific σp and σa

regimes. For instance, the DRL-based policy gain more performance per decreased σp compared

to the baselines. This indicates that the DRL-based policy may be further enhanced with power

allocation designs that address variant complex path gain. The performance of the DRL-based

policy is resilient against increasing σa compared to that of Algorithm 1 and direct policy. This

implies that the DRL-based policy is particularly beneficial under highly-variant channels.
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Fig. 6. Average spectral efficiency vs. transmit SNR for different codebook sizes. The relay codebook sizes and receiver
codebook size are set equal to Nc. Increasing the codebook size from small Nc results an increase of spectral efficiency due to
accurate quantization of the beam angles. For high Nc, however, the overhead from beam management dominates the quantization
accuracy resulting in a decrease of spectral efficiency.
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Fig. 7. Average spectral efficiency vs. different beam management parameters: (a) NSS and (b) MSS. Decreasing NSS and
increasing MSS results in larger overhead spent in initial access and beam tracking. While the DRL-based policy outperforms
the baselines in most NSS and MSS condition, it may underperform under extreme overhead.

Fig. 6 shows the impact of codebook size on the performance of policies. We vary the codebook

size for the transmitter, relay, and receiver from 4 to 64 for the 16-element ULA equipment. We

observe that increasing the codebook size from Nc = 4, all strategies gain spectral efficiency. This

is expected, since it is known that insufficient quantization of beam angles results in performance

degradation for analog beamforming [46]. At Nc = 16, increasing the codebook size results in

a decrease of spectral efficiency except for the genie-aided policy. This indicates the spectral

efficiency lost in the beam management procedure dominates the spectral efficiency gain from

higher beam angle quantization. Fig. 6 suggests that there is a codebook size that maximizes

the spectral efficiency. While we simulated a codebook equally partitioning the angular domain
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Fig. 8. Average spectral efficiency vs. different blockage parameter qb. Various blockage parameters qb ∈
{0.0001, 0.001, 0.01, 0.1, 0.5} are plotted to represent the negligible (qb < 0.01), low (qb = 0.01), and high (qb = 0.5) traffic
densities. The DRL-based policy shows gradual slope similar to that of genie-aided policy’s, which implies that it effectively
mitigates blockage similar to the optimal policy.

[0, π], it is likely that a similar tradeoff between beam angle quantization and overhead from

codebook size exists for other codebooks.

In Fig. 7 we demonstrate the effect of the parameters related to SS bursts and blocks. We vary

the number NSS of SS blocks per burst in {8, 16, 32, 64} and periodicity MSS of SS bursts in

{1, 2, 4, 8, 16}, as in [22]. Fig. 7 shows that the DRL-based policy outperforms baselines in most

cases but it may underperform when NSS is low or MSS is high. For example, the DRL-based

policy severely lose performance both at NSS = 4 and MSS = 16. Such low performance of the

DRL-based algorithm happens because the increased time slots required for exploration causes

the learning algorithm to fail to converge. This implies that the DRL-based policy is sensitive

to beam management parameters, but it works well under practical scenarios.

Fig. 8 illustrates the effect of the blockage parameter. We vary the steady-probability qb of

blocked state in {0.0001, 0.001, 0.01, 0.1, 0.5}. For a given qb, we use a Markov chain in Fig. 3

with transition probabilities set to pu→b = qb and pb→u = 1−pu→b. We simulate the scenario with

a high vehicular density by setting qb = 0.5, low density by setting qb = 0.01, and negligible

density by setting qb < 0.01. Fig. 8 depicts that DRL-based policy behaves similarly to the genie-

aided policy over the change of qb compared to baselines. Both baselines severely lose spectral

efficiency compared to the DRL-based policy within the negligible density regime, whereas

the genie-aided policy suggests high spectral efficiency can be maintained within the negligible

density regime. This implies that the DRL-based policy is able to effectively mitigate blockage
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by jointly selecting the relay and the mode.

D. Numerical evaluation on SUMO-generated channel

In this section, we provide the experimental results for the scenario that represents a more

realistic deployment of a mmWave MIMO vehicular network. We follow the approach in [47]

to generate the channels based on the time-varying wideband channel (23) and the vehicle

trajectories from SUMO. We apply a simple ray tracing method to obtain the number of paths

L[m] and blockage coefficient cBL,`[m] assuming all vehicles have length of 4.645 m, vehicles

can block LOS, and the vehicle surfaces act as lossless reflectors to create reflected paths. We

calculate the AOA/AOD and path gain assuming the ray propagation starts at the end of vehicles

facing each other, the angle of the reflected ray by the vehicle surface is equal to the angle of

incident ray, and the path loss exponent is 2. We report the change in spectral efficiency when

varying system parameters. We select the transmit SNR, vehicle density, and average vehicle

speed as the parameters of interest.

In Fig. 9 we show the average spectral efficiency versus SNR, ranging over −20 dB to 10 dB

under the parameters specified in Table I. We set the traffic density as 10 vehicles per km and the

average vehicle speed as 80 km/h. Fig. 9 confirms that the proposed DRL-based relay selection

policy outperforms baselines in a realistic scenario. We observe the spectral efficiency obtained

using Algorithm 1 is closer to the spectral efficiency using the direct policy decrease compared

to that in Fig. 4. This highlights the model-free aspect of the proposed DRL algorithm, which

may further outperform policies based on fixed data in realistic scenarios due to the increased

model complexity.

Fig. 10 shows the effect of vehicle density. We vary the number of vehicles per kilometer

from 10 to 50 in the SUMO simulation. We observe a loss spectral efficiency achieved by the

proposed DRL-based policy as the vehicle density increases. Still, the performance loss of the

DRL-based policy due to the increase in the vehicle density is minor compared to that of direct

policy, which plummets in the congested case. Since the direct policy only uses the direct link,

this indicates that cooperative relays become more beneficial as the vehicular networks gets

denser.

Fig. 11 depicts the impact of average vehicle speed. We select the range of vehicle speed from

80 km/h to 120 km/h, following the common highway speed limit in the United States. The
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Fig. 9. Average spectral efficiency vs. transmit SNR for (i) the genie-aided policy, (ii) the DRL-based policy, (iii) the relay
selection heuristic with optimal threshold, and (iv) the policy that only use the direct link. Similar to that observed in Fig. 4,
the proposed DRL-based policy improves spectral efficiency over baseline methods.
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Fig. 10. Average spectral efficiency vs. different vehicle densities. Overall policies suffer spectral efficiency loss due to the
increased chance of blockage from higher vehicle density. Still, the proposed DRL-based policy outperforms baselines, especially
under dense vehicle networks, by efficiently using the indirect links to avoid the frequent blockage of the LOS paths.

spectral efficiency of all the policies gradually improves as the average vehicle speed increases.

The performance enhancement may be due to the decreased blockage duration from the increased

vehicle speed, despite negative performance factors such as increased beam alignment frequencies

[48]. The proposed DRL algorithm shows the steepest increase of spectral efficiency compared

to the baselines. Fig. 11 indicates that proposed relay selection algorithm is suitable for mobile

vehicular networks, especially those with high mobility.

VI. CONCLUSIONS AND FUTURE WORK

Future vehicular networks will benefit from relay selection algorithms addressing the frequent

blockages induced by dense deployment of mobile nodes. Regarding the higher frequency bands

used at 5G at beyond, sources of overhead should be incorporated in the analysis of relay
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Fig. 11. Average spectral efficiency vs. average vehicle speeds. Increased mobility, which may decrease the blockage duration,
shows an overall increase in spectral efficiency for all of the considered policies. The proposed DRL-based policy outperforms
baselines, especially under highly mobile networks.

selection algorithms. We derived an MDP and devised a DRL-based algorithm for the spectral

efficiency optimization problem accounting both relay selection and beam management. We

observed that the spectral efficiency achieved by the proposed method is greater than that of

a fixed threshold policy over different transmit SNRs. The simulation results show that the

DRL-based algorithm can adapt to fast-varying channels using beam measurements, which are

compared with thresholds, to determine actions. This indicates the proposed DRL algorithm can

be implemented to vehicular networks to maximize spectral efficiency by exploiting the time-

varying adaptive thresholds. For future work, we plan to extend our work to incorporate fast

beam alignment algorithms and realistic beam measurement feedback procedures.
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