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A repeated unknown game: Decentralized task

offloading in vehicular fog computing
Byungjin Cho and Yu Xiao

Abstract—Offloading computation to nearby edge/fog com-
puting nodes, including the ones carried by moving vehicles,
e.g., vehicular fog nodes (VFN), has proved to be a promising
approach for enabling low-latency and compute-intensive mobil-
ity applications, such as cooperative and autonomous driving.
This work considers vehicular fog computing scenarios where
the clients of computation offloading services try to minimize
their own costs while deciding which VFNs to offload their
tasks. We focus on decentralized multi-agent decision-making
in a repeated unknown game where each agent, e.g., service
client, can observe only its own action and realized cost. In
other words, each agent is unaware of the game composition
or even the existence of opponents. We apply a completely
uncoupled learning rule to generalize the decentralized decision-
making algorithm presented in [7] for the multi-agent case.
The multi-agent solution proposed in this work can capture
the unknown offloading cost variations susceptive to resource
congestion under an adversarial framework where each agent
may take implicit cost estimation and suitable resource choice
adapting to the dynamics associated with volatile supply and
demand. According to the evaluation via simulation, this work
reveals that such individual perturbations for robustness to
uncertainty and adaptation to dynamicity ensure a certain level
of optimality in terms of social welfare, e.g., converging the actual
sequence of play with unknown and asymmetric attributes and
lowering the correspondent cost in social welfare due to the self-
interested behaviors of agents.

Index Terms—Task offloading, adversarial multi-armed bandit,
unknown game.

I. INTRODUCTION

Emerging vehicular applications, such as autonomous and

cooperative driving, require low-latency networking and com-

puting services. Besides cellular vehicle-to-everything (C-

V2X) [1], edge/fog computing is another key enabling tech-

nology that brings computing resources close to end users

like connected vehicles [2], [3]. End users with relatively

low computing power can offload compute-intensive tasks

to nearby edge/fog computing nodes. In practice, edge/fog

computing nodes can be installed in radio access networks, or

on vehicles. The latter is called vehicular fog nodes (VFNs) in

this paper, utilized as a viable component of a new computing

paradigm, vehicular fog computing (VFC) [4], [5]. Due to the

mobility of both end users and VFNs, the network topology

regarding communications between VFNs and end users is

unstable [6], [7]. This poses challenges to task offloading

decision making, i.e., where to offload tasks.

Task offloading decision making can be implemented in

either a centralized or a decentralized manner [8]–[12]. In the

first case, a controller/coordinator collects state information

This work has received funding from Academy of Finland under grant
number 317432 and 318937.

Byungjin Cho and Yu Xiao are with the Department of Communica-
tions and Networking, Aalto University, 00076 Espoo, Finland (e-mail:
byungjin.cho@aalto.fi; yu.xiao@aalto.fi).

from all the fog nodes and decides which tasks should be

offloaded to which fog nodes, with the aim of minimizing the

service costs, using a stochastic control process [8], [9] or

non-probabilistic approach [10], [11]. In the latter, each task

generator, i.e., a service client that generates computational

tasks to be offloaded, independently decides where to offload

its tasks based on its local observation [12]. Compared with

the centralized approach which causes extra signaling over-

head and raises privacy concerns, the decentralized approach

has been considered a more promising solution, given the

condition that it can dynamically adapt to the changes in

the environment, e.g., network topology, the availability of

computing capacity, and the variation in demand.

Regarding the decentralized approach, many efforts have

been invested in enabling task generators to learn directly the

states of VFNs and to make offloading decisions based on

history [7], [13]–[16], i.e., clients learn as much as possible

about different candidate actions that lead to good estimates of

their costs, and simultaneously optimize the desired objective

to select the optimal actions given the learned information.

In such learning processes, there are two fundamental issues

to address. One is to balance the self-exploration/exploitation

trade-off in the learning process for improving its efficiency,

i.e., making decisions with the aim of reducing uncertainty

over states. The other is to validate whether individual-level

learning dynamics of distributed task generators would lead

to a system-level equilibrium in some sense [17]. Such no-

regret decisions made by self-interested individuals generally

conflict with collective desires at the system level.

Game theory, designed for strategic interactions among

decision making agents sharing scarce resources, e.g., service

clients competing for limited VFN resources, has been used

to analyze individual-collective conflicts and to formulate the

alternative strategy to compete with one another [18]. Previous

works along this line have mainly focused on characterizing

game-theoretic equilibria and their efficiency, and deriving

distributed learning algorithms that converge to the desired

outcomes. Most of the existing results, however, are based

on the following two assumptions: i) each agent has com-

plete information about the composition of the game-theoretic

settings, i.e., actions and costs of the other service clients

are observable and known, and ii) one may always face the

same game repeated over time, e.g., symmetric game structure.

While these assumptions lead to strong theoretical guarantees,

e.g., converging towards the stable and efficient equilibrium, it

is often unrealistic since decentralized task offloading systems

in vehicular environments are inevitably limited in terms of

access to and use of such system-level knowledge, and are

inherently dynamic and heterogeneous. Thus, individual agents

with different resource preferences and availability due to
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volatile VFNs, may not obtain system-level optimality.

Motivated by the concerns above, this work formulates the

decentralized multi-agent decision-making in terms of VFN

selection, as a repeated unknown game where each agent i)

has access to only local information such as its own actions

and utilities, but is unaware of the game composition or

even the existence of opponents, and ii) adapts its offload-

ing decision to non-stationary and arbitrary dynamics. In

the literature, such unknown and asymmetric attributes have

not been considered due to the challenges associated with

characterizing games that lack convergence to equilibrium and

its efficiency. We overcome the challenges by embracing a

learning-based decentralized offloading algorithm based on a

variant of adversarial multi-armed bandit (MAB) for a general

multi-agent scenario with regard to the unsung game dynamic.

Our solution is able to capture the unexplored offloading cost

variations, adapt to the evolving circumstance, and achieve

a better balance between individual-level acceptability and

system-level efficiency. The main contributions of this work

are summarized below.

• This work extends the study presented in [7] where

a single agent competes with a black-box adversarial

environment for self-interested regret-optimal, to a multi-

agent case where dynamical behaviors of distributed self-

interested individuals contending with other anonymous

agents and adversaries desire to achieve a certain level of

optimality in terms of social welfare.

• This work allows each agent to provoke adjustment

dynamics in a manner adaptive to volatile resource neces-

sitate and provision, e.g., variations in requested workload

and candidate VFN set. Such independent amendment

to dynamicity may threaten community stability due to

aggravated uncertainty. We have conducted a convergence

analysis of decentralized strategies for the offloading

game, the actual sequence of play.

• This work maps the decentralized learning dynamics of

individual agents to the unsung system-level equilib-

ria with asymmetric properties: all agents may have i)

unequal learning rates, ii) asynchronous update times,

iii) dissimilar candidate VFNs, and iv) uneven implicit

explorations. The actual sequences of strategies induced

by the asymmetric explorations have proved to converge

to a small neighborhood of the equilibrium point.

• This work shows that individual perturbations for robust-

ness to uncertainty (implicit exploration) and adaptation

to dynamicity ensure certain system-level optimality, i.e.,

while reaching a sequence of stable equilibrium points,

the self-interested behaviors inclining toward robustness

and adaptation allow for lowering the upper bounds of

the price of total anarchy (PoTA). Extensive simulation

results verify its effectiveness.

The rest of this paper is organized as follows: Section

II presents the background and related works. Section III

describes a system and problem formulation. Sections IV and

V show offloading strategy and convergence analysis. Sections

VI and VII include simulation results and conclusions.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the necessary game-theoretic

background and review related works. The summary of the

parameter symbols is given in Table I.

A. Background: games and dynamics

1) Games: An |N |-agent (task offloading) game is rep-

resented by a tuple < N ,K, l > where K is a set of

actions (candidate clients) and a set of agents (clients) N
decide individually which action (VFN) to choose from K.

l = [l1, · · · , l|N |] refers to payoff (unit cost of task offloading)

vectors of agents in N , while lnk is the payoff for agent

n to take the action k (unit cost of offloading a task from

agent n to an action k). The preferences of the n-th agent

for one action over another are determined by an associated

payoff function ln: K =
∏

n Kn → R that maps the

action profile of all agents’ chosen actions to the agent’s

payoff. Every agent can mix its actions by playing probability

distributions over its action sets. A mixed strategy of agent n
is a probability vector, pn = [pn1, · · · , pn|K|] ∈ Xn where

Xn is the mixed strategy space of agent n. The space of

all mixed strategies over agents induces a strategy profile p,

p = [p1, · · · , p|N |] ∈ X =
∏

n∈N Xn.

Definition 1. Agents in a game may reach a state where no

one can further reduce its own cost by changing strategies. If

ln(p
′
n; p

′
−n)≤ ln(pn; p

′
−n)

1 for every deviation pn ∈ Xn, ∀n ∈
N , a strategy profile p′ ∈ X is a Nash equilibrium (NE).

In a game played over T rounds, after taking an action

kn potentially randomized according to a mixed strategy

in the τ ∈ T round, agent n receives a payoff and may

observe the payoff vector for all actions in its action space

against the selected actions of the other agents. Each agent

may be unwilling to disclose their private information, and

it independently selects an action for a given task without

cooperation with each other, i.e., the actions and resulting costs

of the other agents are unknown and unobservable.

Definition 2. (Repeated unknown game) In a repeated un-

known game, each agent does not know the payoff function of

any agent (including itself), and after each round, each agent

receives its own costs but it sees neither the choices of the

other agents nor the resulting payoffs.

The social welfare of an outcome is defined as the sum

of the individual payoffs of the agents. The price of anarchy

(PoA) is the well-known metric used in game theory [57], to

quantify the inefficiency of the selfish behavior of the agents

in such an information-limited situation, that is, how bad the

social welfare at equilibrium is as compared to the optimum

social welfare achievable. It is defined as the worst possible ra-

tio between the social welfare of a NE and that of any optimal

strategy, expressed as C/C∗ where C = Ek′∼p[
∑

n∈N lnk′ ]
is the expected social utility over the randomness of the

clients, and C∗ is the value of socially optimum strategy

profile, p∗ = arg infp∈X C. In order to analyze the overall

1(pn; p−n) stands for p ∈ X used to highlight the strategy of agent n
against that of all other agents.
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TABLE I
LIST OF PARAMETERS

Parameter Description

T , τ Set T = {1, · · · , τ, · · · , |T |} where τ denotes τ -th time frame

N , n Set N = {1, · · · , n, · · · , |N |} where n denotes n-th client

K, k Set K =
⋃

n Kn = {1, · · · , k, · · · , |K|}, where Kn is a subset of K, VFNs of n-th client, and k denotes k-th VFN

l, ln, lnk Vectors l = [ln]n∈N where ln = [lnk]k∈K is a cost vector of n-th client, and lnk is a unit cost for n-th client offloading to k-th VFN

Rn Regret of n-th client

Fk, fnk, ck Maximum CPU frequency of k-th VFN, its allocation to n-th client of k-th VFN, and its congestion degree

qn, wn Input data size of n-th client, and its computation complexity

δn, ζn Per-task demand measure of n-th client, and its normalized weight with per-bit demand measure

βnk, τo Patched learning score of a arm k newly appearing at τo for n-th client

η′n, γ′
n, ϑn, κ Learning and implicit exploration rates of n-th client, the number of times a client n has been involved in an interaction, reference rate

l̂nk, L̂nk, Wnk Estimated cost of lnk, weighted learning score, cumulative weighted score of an arm for n-th client

p, pn, pnk Vectors p = [pn]n∈N where pn = [pnk]k∈K is a probability vector of n-th client, and pnk is a probability that n-th client selects k-th VFN

pnk(τ), ṗnk Discrete and continuous time processes for pnk, respectively.

TABLE II
COMPARISON OF OFFLOADING STRATEGIES FOR TARGET PROPERTIES (STABILITY, SCALABILITY, PERSONALITY, ADAPTIVITY)

Works
System performance (stability)

actual play/efficiency

Uncerntainty (scalability)

noncooperative/bandit-feedback/non-stochastic

Heterogenity (personality)

learning rate/update/estimation/action

Dynamicity (adaptivity)

resource supply/demand

[19] © △ × ×
[20] © × △ ×
[21] © △ △ ×
[22] △ △ × ×

[23]–[25] △ © △ ×
[26], [27] △ © × ×
[28], [29] △ △ △ ×

[30] △ △ × ×
[31] △ △ × ×
[32] △ © × △
[7] × © × ©

This work © © © ©
* The symbols, ©, △, and ×, represent that considered aspects for each target property are fully, partially, and minimally addressed, respectively.

efficiency loss in repeated play, a generalization of PoA, called

the price of total anarchy (PoTA), is used [17], defined as

the ratio between the average total cost over a period of

time and the total cost of the optimal outcome, expressed as

PoTA = 1
|T |

∑

t∈T

∑

n∈N lnk′(τ)/C∗.

2) Dynamics: From a single agent’s perspective, a repeated

unknown game can be viewed as an online learning problem in

which the agent selects actions sequentially by learning from

past experiences. Note that online learning under uncertainty

relies on feedback in general. Thus, the quality of the feed-

back in terms of completeness has significant implications in

learning rule. In the case of full-information feedback, payoffs

(costs) of all actions (VFNs) an agent could have taken are

observed in each stage. Incompleteness could be temporal

across decision states and it could be also spatial across the

action space. One popular model of incomplete feedback is

the so-called bandit feedback, where only the payoff of the

chosen action is revealed. The term bandit feedback has its

roots in the classical single agent online learning problem

of playing a multi-armed slot machine known as a bandit

(action). An agent determines which arm to pull for each

time frame, but faces the exploration and exploitation trade-off.

The agent has to decide between exploring actions to obtain

information about the environment and selecting the action

that has historically given the lowest cost. The individual

performance of a client n is quantified via regret by measuring

the cumulative cost against a benchmark policy, e.g., the

learning objective that an online algorithm aims to achieve

over time. In case of the best policy in hindsight, regret is a

metric that measures the differences of the costs from the agent

to those from the best action, Rn(|T |) = E
[
∑

τ∈T lnk′(τ)
]

−
E
[
∑

τ∈T lnk′′ (τ)
]

where k′ is the solution obtained by an

online learning algorithm and k′′ is the optimal solutions

given that k′′ = argmink∈Kn(τ) E
[
∑

τ∈T lnk(τ)
]

, ∀n, for

the sequence of time frames T during which the actions are

identical [13].

B. Related work

We present the previous works related to offloading algo-

rithms using a game theoretic approach and online learning

algorithms for multi-agents, summarized in Table II.

Several works have tried to solve the decentralized task

offloading problem in a game-theoretic context. For example,

the work in [19] formulated the decision-making process as

a potential game where a distributed algorithm was designed

to decide computation offloading and select a proper resource,

e.g., wireless channel. The work in [20] utilized a stochastic

game to decide the actions of offloading clients in a distributed

manner. The work in [21] proposed a Stackelberg game that

considered the interaction between a central controller (leader)

and clients (followers). While the clients act as decentralized

decision makers on whether or not to use shared resources to

offload, the central entity coordinates the offloading decisions

of the clients such that the resources are efficiently utilized.

However, the aforementioned research has been built on im-

practical assumptions listed below. Firstly, they assumed that
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the environmental state could be obtained by exchanging sig-

naling information between resource requesters and providers

[19]–[21], or forecasted in a stochastic domain [21], which

is not suitable for the case where the immediate environ-

mental dynamics and action state relevant parameters are not

available. Secondly, they ignored the personal, self-interested

properties in terms of exploration strategies, e.g., asymmetric

update dynamics with different candidate action sets. Thirdly,

they overlook the individual perturbations for improving self-

objectives adapting to resource demand and supply dynamics

and their impacts on the system-level performance, e.g., in

terms of convergence to a NE and its effectiveness.

Online learning strategy in a multi-agent framework has

both similarities and differences from the single agent one.

When one agent is isolated by abstracting away all the other

agents, an online learning problem of a learner could be re-

established. In this case, the agent’s regret is most commonly

used as a quality indicator [7]. From a game-theoretic stand-

point, however, the main question that arises is whether agents

eventually settle on an equilibrium profile from which no agent

has the incentive to deviate. It has been known that if every

agent adopts a no-regret learning algorithm, the sequences of

actions taken by all agents converge to the weak or restrictive

set of correlated equilibria [22]. The convergence outcomes

are the empirical frequency of the agents’ actions. From a

game-theoretic perspective, even if such time-averaging results

might still converge, the actual sequence of play may fail to

converge altogether, so the agents’ actual behavior and the

payoffs they obtain could be different. Thus, it is crucial to

establish convergence of the actual sequence of play generated

by an online learning process, rather than leveraging the time-

average approach, particularly in a dynamic environment.

The convergence of actual sequences has been studied with

variant algorithms for no-regret learning. The works in [23]–

[25] showed that agents end up playing an equilibrium with

probability arbitrarily close to 1, and the actual sequences

induced by the multiplicative weights update rule converges

to an equilibrium with a state-dependent diminishing learning

step [23], [24], or with only a small enough constant step-size

[25]. While, in the above works, agents are assumed to have

full knowledge of their payoff vectors, including actions that

were not chosen, variants of the exponential weights algorithm

in a minimal-information setting, e.g., bandit feedback, con-

verge to a relaxed NE, based on unbounded or truncated esti-

mators [26], [27]. However, all existing works are valid in the

context of potential games admitting the finite improvement

property (FIP) with which every single-agent improvement

path sequence decreases the potential by the same amount

as the agent’s cost, and terminates at a NE in finite steps. A

general unknown offloading game with asymmetric and client-

specific features, which does not generally possess the FIP [28]

except for special cases, e.g., with only 2 agents or 2 VFNs

[29], is considered in this work.

Existing works [30] on multi-agent MAB in a repeated

game achieve system stability based on the assumptions of

state regeneration and stochastic settings. While the state

regeneration processes account for the situation where some

system entities join or leave the game, too frequent re-setting

VFNClient Discovered

Fig. 1. System model with multiple service clients and candidate VFNs.
As an example, among 3 clients, one has access to 9 VFNs, while the others
have 8 VFNs, |N | = 3, |K| = 11, |Kn| = 9, and |K−n| = 8.

in a dynamic environment may invalidate the learning process.

A well-behaved stochastic model exists for each arm, but it

is often difficult to determine the correct stochastic assump-

tions in real-world applications. Different non-stochastic MAB

settings are explored in [7], [31], [32]. Nevertheless, these

works i) leverage information exchange with other agents (lack

of scalability) [31], ii) overlook heterogeneous individuality

with an assumption of the fixed learning rate, synchronized

update time, and explicit exploration-based estimation (lack

of personality) [32], iii) do not guarantee the system-level

performance in presence of heterogeneous learning dynamics

(lack of system-level performance) [7], and iv) commonly do

not address the stability analysis with individual perturbations

resistant to uncertainty and adaptive to the agent’s demand

and arm’s availability.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model of the task offload-

ing scenario and the formulation of the offloading problem.

A. System model

Consider a system shown in Fig. 1. A set of service clients

n ∈ N = {1, ..., |N |} generate computation tasks which

are meant to be offloaded, while a set of VFNs (fog nodes),

k ∈ K = {1, ..., |K|} are candidates for handling the offloaded

computational tasks. Assume that at time t, a client n can

offload a task to a VFN, k ∈ Kn(t) ⊆ K, within the client’s

communication range. Due to inherent mobility, the set of

candidate VFNs Kn(t) varies over time. The candidate sets in

the next time slots are unknown prior due to unknown mobility

behaviors. We assume that Kn(t) 6= ∅, ∀n, t. Otherwise, the

task may be processed locally or forwarded to a remote

cloud server. Each client forms the candidate set based on

the topological states such as speeds, locations, and moving

directions of the client and the VFNs [5]. Such status informa-

tion can be acquired by other neighboring vehicles through a

vehicular communication protocol, e.g., C-V2X, while it does

not include the availability of computing capacity. To better

characterize the client and fog nodes’ movement, without loss

of generality, we assume that the VFN selection for task

offloading is scheduled periodically. The timeline is discretized

into time frames τ ∈T={1, ..., |T |}, and each client can select

at most one VFN in each time frame if it has a task to offload.

In general, computational tasks can be partitioned into sub-

ones at different granularity levels [33]. In this work, each task
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is considered as a basic unit for offloading, i.e., offloaded to

and processed by a VFN within one-time frame τ ∈ [τ, τ +1)
[16]. One can characterize a task for τ with two parameters,

including the input data size qn(τ) (bits/task) and the number

of CPU cycles required to process one-bit input for τ , wn(τ)
(cycles/bit). The input size is bounded by client-specific limits,

e.g., q
n

≤ qn(τ) ≤ q̄n where q
n

and q̄n are the lower

and upper thresholds on the input data size of a client n,

respectively. The value of wn(τ) varies depending on the

nature of performed applications. Assuming that a similar type

of application is used for all clients, one may have q̄n = q̄ and

q
n
= q, with individually different demand, q ≤ qn(τ) ≤ q̄.

The computational capacity of a VFN k ∈ Kn(τ) is mea-

sured by its maximum CPU frequency Fk (cycles/second). One

task is offloaded as a whole to a VFN. Each VFN may execute

tasks in parallel depending on its own resource allocation rules

unknown to clients. It may also adjust its CPU frequency in a

dynamic manner, e.g., with dynamic frequency and voltage

scaling technique. This work considers that the computing

capacity of a VFN k allocated to a client n for τ , denoted

by fnk(τ) (cycles/second), is determined by the computing

resource allocation policy, and remains static for each τ . The

available computing resources of a VFN k is non-increasing

w.r.t the total number of clients offloading to the same VFN k
[13], [30]. It can be also arbitrarily constrained by an attacker,

i.e., a malicious adversary may inject fake tasks into a VFN

and disturb this allowable resource allocation. The wireless

resource is orthogonally assigned to each task. The achievable

uplink and downlink transmission rates between a client n and

a VFN k are affected by the physical characteristics such as

the distance between a VFN and a client, and the amount of

allocated bandwidth.

B. Problem formulation

Performing task offloading incurs transmission and compu-

tation costs. For task offloading to a fog node, the end-to-end

latency of the task originates from a linear combination of the

following segments: i) generation of the computational tasks,

ii) uplink transmission latency, iii) processing latency at the

fog node, iv) downlink transmission latency and v) processing

of the results received from the fog node. It is often assumed

that the size of the computational results is small enough that

the downlink transmission latency can be safely ignored [16].

We define the unit cost of offloading a task from client n to

a VFN k at time frame τ as lnk(τ). It calculates the overall

delay caused by transmitting one bit of input data to k and

processing it on k. The processing delay is calculated as the

number of CPU cycles required divided by the CPU frequency

of k. The unit cost of task allocation lnk(τ) can be written as

lnk(τ) = 1/rnk(τ) + wn(τ)/fnk(τ), (1)

where rnk(τ) = B log
[

1 + Pgnk

N+Ik

]

is the link rate for trans-

mitting a task from a client n to a VFN k at the time

frame τ , B is channel bandwidth, P denotes the transmission

power of n, gnk is the uplink channel gains between n
and k, N is the noise power, and Ik denotes interference

measured at k. Given the orthogonal channel allocation [36],

the co-channel interference can be avoided. Furthermore, the

cross-channel interference can be ignored according to the

experimental results in [37]. The channel gains are static

during the uploading process of each task. The unit cost is

dominated by the computation part in particular for high-

computational complexity tasks [16], e.g., high wn(τ).
We aim at minimizing the expected unit cost of task

allocation across finite time frames by guiding clients to

make individual decisions about where to offload a task in

each time frame. The workload of fog nodes in dynamic and

heterogeneous networks is hard to predict, and exchanging

such information among the vehicles and fog nodes causes

high signaling overhead. Thus, the client may lack the state

information of fog nodes and could not make an accurate

estimate about which fog node would provide the optimal of-

floading service. To overcome this, one may utilize a learning-

and-adapting-based offloading scheme where a client observes

and learns the performance of candidate fog nodes and makes

an offloading decision based on historical observations without

exact knowledge of the current state information. For this,

each client n makes use of a learning-based algorithm [7]

focusing on task offloading problem to minimize the expected

cumulative unit cost of all tasks, expressed as

P : min
k′

E

[

∑

τ∈T

lnk′(τ)

]

, (2)

where E [·] is the expectation operator, lnk′(τ) is a sequence

of unit costs for ∀τ ∈ T in equation (1), and k
′ is a sequence

of optimization variables where each variable represents the

index of a fog node selected at a time frame τ , k′ ∈ Kn(τ).
The index τ is omitted below for ease of description.

IV. LEARNING BASED OFFLOADING STRATEGIES IN A

REPEATED UNKNOWN GAME

The VFN selection problems of multiple service clients can

be modeled as a repeated unknown game, Γ =< N ,K, l >.

This section presents learning dynamics in the game Γ, from

a multi-agent and an individual amendment points of view.

A. Completely uncoupled learning dynamics for multi-agents

Multi-agents in a repeated unknown game achieve their own

individual and societal values through their learning dynamics.

1) Adversarial MAB for single agent: A task requester

performs an online learning process while running the offload-

ing service and updating the optimal decision on the action

(VFN) selection. The objective of a single agent (client) n
is to minimize the long-term cost as shown in equation (2),

while managing the exploration-exploitation trade-off. Such

an exploration versus exploitation dilemma can be formulated

as a MAB problem where each neighboring VFN is treated

as an independent arm, and each arm generates cost in an

adversarial fashion. Upon making the decision, the agent n
receives a realized cost chosen by an adversary.

Unlike a classical stochastic MAB whereby the costs are

generated randomly and independently following a fixed but

unknown distribution, no statistical assumption about the gen-

eration of the cost is required in an adversarial MAB. In
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adversarial MAB problems, a randomized selection policy is

needed due to the possibility that an agent using a deterministic

policy may be easily fooled by adversaries. Thus, instead of

choosing an action k ∈ Kn(τ) directly, the agent selects

a probability distribution over the available actions for τ ,

pn(τ) ∈ [0, 1]|Kn(τ)| :
∑

k∈Kn(τ)
pnk(τ) = 1 and draws

an action k′ according to this distribution, k′ ∼ pn. The

selected probability distribution is proportional to its loss,

weighted appropriately. The intuition is to give more weight

to actions that performed well in the past. Weighted-average

randomized strategies with potentials could be considered to

achieve a cumulative cost (almost) as small as that of the

best action [35, Section 6]. An action k is assigned with the

selected probability for task τ , pnk(τ) which is proportional to

weighted accumulated cost caused by that action in the past,

pn(τ) =
[

Wnk(τ)∑
m Wnm(τ)

]

∀k
, where Wnk(τ) denotes a weight

of each action k maintained by the agent n, representing

the confidence that k is a good choice for n. In a bandit

setting, rather than concerns about how to get the estimated

cost of an action (arm) that was not pulled, one seeks to

investigate how such information can be used when it becomes

available. To that end, the score-based learning process is

considered as follows: The service capacity of an action

can be represented by the score parameter, the cumulative

estimated per-bit cost up to τ , L̂nk(τ) =
∑τ

τ ′=1 η
′
n(τ

′)l̂nk(τ
′),

where η′n(τ
′) ∈ (0, 1] is the learning rate of agent n for

τ ′, and l̂nk(τ
′) is the estimated cost from the action k for

τ ′. Considering the exponential potential function with the

score, the logit choice map Λn : R|Kn| → Xn yields a prob-

ability vector, pn(τ) =
[

Wnk(τ)∑
m∈Kn(τ) Wnm(τ)

]

k∈Kn(τ)
, where

Wnk(τ) = e−L̂nk(τ−1). The scores reinforce the success of

each strategy measured by the estimated cost l̂nk(τ − 1), so

an agent would rely on the strategy with the lowest score.

2) Adversarial MAB for multi-agents: We generalize the

single agent adversarial MAB by considering a set of agents

n ∈ N . Note that the realized cost for an arm, a VFN in case

of offloading decision making, is affected by an adversary and

congestion effects [31]. A third entity (or even another agent

leveraging the same arm) could be an adversary rendering an

arbitrary sequence of service costs. A VFN’s computational

capacity allocated to an agent n depends on the number of

other agents offloading their tasks to the same VFN and

the computing resource allocation policy in use. The cost

sequence forced by the adversary could be independent or

dependent on the actions of agents, e.g., oblivious or non-

oblivious. The realized costs for different agents choosing

the same action might be different due to other attributes

such as the dynamic computing resource allocation rules

and different communication costs. Such unignorable effects

caused by the asymmetric factors make the oblivious adversary

approach in an unknown game reasonable. In general, the cost

of selecting an arm k is non-decreasing w.r.t its congestion

degree. The congestion degree of an arm k is defined as

ck = 1+
∑

u∈N\n 1(k = ku), where k ∈ Kn and ku ∈ Ku are

the arms chosen by an agent n and the other agents u ∈ N\n,

respectively. Existing works in [31], [41] take a common

assumption that any collision2 with other agents could be

avoided/resolved through communication between agents or

collision indicator-like information 1ck = 1(ck > 1), e.g., a

binary value of the realized loss presumably indicating colli-

sion occurrence. The revealed information allows considering

the realized cost blending the boundary between collision and

non-collision, lnk = lcnk1ck + lank(1 − 1ck) where lcnk is

collision-occurred cost3 and lank is adversary-selected cost of

an agent n pulling an arm k. However, such non-arbitrary

and synchronous indication information is not valid in an

unknown game4, which makes a multi-agent adversarial MAB

setting more challenging due to indistinguishable sources of

cost uncertainty.

This work focuses on an unknown game where such ad-

ditional indication information is not valid. In practice, an

agent can only observe the final (realized) costs. It has no

knowledge about the source of the realized cost indistinguish-

ably5 generated by the oblivious adversary and affected by

the congestion degree of the arm k in question. The realized

cost sequence can be expressed in a form of the additive outlier

model proposed in [42] as follows: lnk = lank+(lcnk−lank)·onk,

where (lcnk − lank) is the magnitude of the outlier and onk
is the binary outlier indicator such that onk = 1 if the

received loss lnk is an outlier, and onk = 0, otherwise. The

outlier event could occur due to collision and/or adversary. The

outlier indicator becomes equivalent to the collision indicator,

if onk = ouk, ∀n, u ∈ N . In practice, the agents’ sensitivity

levels to the indication of an arm are different due to their

personalized demands. Also, the agents never know with

certainty which one of the events is true in an unknown game,

admitting to replacing the discrete indicator with a continuous

one. For ease of exposition but without loss of generality,

we consider a case where the continuous indication takes

an arbitrary value between 0 and 16. This approach allows

for the actual sequences received by an agent to shadow the

non-stochastic property in an adversarial environment while

considering the effect of congestion degree.

3) Connection between learning dynamics and equilibria:

In an unknown game, the candidate actions of agents may

differ, Kn 6= Ku ∀u ∈ N\n. Each agent may have its own

payoff function and there are no unilateral payoff ties. Thus

the game is asymmetric [38]. The existence of NE in the game

is easy to establish using an induction approach [28, Theorem

1] [29, Theorem 1] and a Kakutani fixed point approach

[39]. It is desirable to design a distributed algorithm with

an attractive property of admitting convergence to equilibria

under an information-restrictive situation. In general, however,

2It occurs when more than one agent pulls the same arm simultaneously,
e.g., ck > 1. Any collision with another agent is assumed to be perfectly
known in the literature.

3Collision may alter mean of cost distribution incurred by adversary, e.g.,
increased-mean distribution, adding extra uncertainty to the decision-maker.

4Entities may be reluctant to reveal such indication, and even if it is avail-
able, it does not ensure robustness against any potential jamming attackers.

5The difficulty lies in that the 0 rewards or 1 cost can indistinguishably
come from collisions or null arm capacities.

6Any arbitrary constant value bounded within (0,1) results in the learning
performance bounded by two extreme cases, e.g., by a collision-free but the
adversary-selected cost onk = 0 (identical to a case of ck = 1 or |N | = 1)
and a collision occurred cost onk = 1.
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NEs are unlikely to be a realistic prediction of game outcomes:

i) it is unclear how agents are expected to coordinate on an

equilibrium outcome in games with multiple equilibria, ii) it is

unrealistic to assume that all agents in a system will necessar-

ily play strategies that form an equilibrium, iii) in games with

unique NE, finding the equilibrium may require computation

using global information about the game play, that users may

not have access to, and iv) even when equilibria are easy to

compute, there is no guarantee, nor immediate motivation for

agents demonstrating selfish behavior to converge to them. As

a solution concept for the unknown game, we adopt a relaxed

NE a similar concept to NE (Definition 1).

Definition 3. (ξ-equilibrium [40]) A strategy profile p′ is

called ξ-equilibrium of a game, if it has a bound for marginal

payoff loss of each agent, i.e., |ln(p′n; p′−n)− ln(pn; p
′
−n)| ≤ ξ

for every deviation pn ∈ Xn, ∀n ∈ N . The strategy pn
is mapped to a fixed score vector through a vector-valued

function, pn = Λn(·), e.g., a logit choice map in this work. At

least one ξ-equilibrium exists with logit dynamics [40].

Note that NEs can be viewed as not just a stable steady-state,

but the inevitable result of individual adaptation behavior. The

agents can play the game by updating their strategy in a way

as to optimize individual objectives selfishly and then reach

a ξ-equilibrium. That is, the relaxed equilibrium accounts for

incomplete information and random perturbation, allowing for

better versatility in describing the outcomes of natural dynamic

processes in a repeated unknown game as compared to NE.

One next question is how to design an algorithm to achieve

the relaxed solution taking into account the heterogeneous and

dynamic nature of environments

B. Perturbed learning dynamics

Next, we design a learning algorithm that uses two ex-

ploration processes: assessment and selection. The former

describes the way with which agents aggregate their past

cost information to update their actions’ scores, and the latter

details how these scores are used to select a mixed strategy.

1) Perturbed exploration in assessment rule: After an agent

n selects a suitable VFN k for the upcoming task τ and

offloads it to the selected VFN, it receives a real-valued cost

lnk(τ). Individual assessment rule is used to independently

convert the realized cost lnk(τ) into the learning-weighted

estimate of the cost l̂nk(τ) additive to the previous score

representing the VFN’s estimated capacity. The individual

conversion process is associated with the following explicit

and implicit learning parameters. The fluctuations of the loss

estimates can be controlled at the price of introducing some

bias, alleviating the uncertainty of the empirical estimates in

the assessment rule.

Parameter η′: A learning rate determines the importance

of the estimated cost for τ in terms of contribution to the

cumulative score. It is a parameter controlling how much the

weights of the current estimated cost are considered. When

the learning rate is large, pnk becomes more uniform, and the

algorithm explores more frequently. For a lower learning rate,

pnk concentrates on the action with the lowest estimated cost,

and the resulting algorithm exploits aggressively. As learning

iteration goes on, one agent may want to exploit observations

obtained so far to identify the best strategy without engaging

others too often. This work considers tuning the learning rate

iteration-dependently, exploring less over round; decreasing

the learning factor with round. Furthermore, if the exploration-

exploitation levels change too fast, it would be too short to

obtain the inflection point from exploration to exploitation.

For this matter, one may further consider varying the learning

factor with the number of candidate sets; the larger the number

of actions is, the more slowly the learning factor decreases.

Each client may have its own desire for learning rate that

are not necessarily the same as other clients. Such unequal

learning rates η′n(τ) 6= η′u(τ), u ∈ N\n, could be provoked

by two aspects, i) asymmetric arms, i.e., different clients may

be exposed to the different environments, Kn(τ) 6= Ku(τ),
and ii) asynchronous updates, i.e., their learning updates could

be performed at individual update time instants and thus

the number of active agents could be different over time,

τ = τn and τ = τu for clients n and u, respectively,

where τn = ϑn(τ) =
∑τ

τ ′=11n∈N (τ ′) ≤ τ , thus possibly

τn 6= τu, ∀n, u ∈ N . Such asymmetric and asynchronous

nature of the cost estimation update in the assessment rule

provokes unequal desires for learning rates.

Parameter γ′: In a bandit setting, the loss from an action

(arm) k 6= k′ could not be observed due to incomplete

feedback. This motivates us to use unbiased estimate, l̂nk,

that the agent n observe, enabled by i) using the loss lnk
if one observes it and 0 otherwise, l̂nk = lnk1k=k′ , and

ii) correcting the bias from dividing it by the probability of

selecting the action, l̂nk = lnk1k=k′

pnk
, thereby maintaining the

expectation property and making actions (arms) that have not

been pulled yet optimistic and being likely to be explored.

However, such unbiased estimate causes large fluctuation

in the loss due to inverse-proportion to pnk. One way to

change the cost estimates is to control the variance at the

price of extra bias. To achieve this, we consider the Exp3

algorithm endowed with implicit exploration (IX)-style cost

estimates [43]. After each action, the cost is first calculated

as l̂nk = lnk/(pnk + γ′
n)1k=k′ . It is a biased estimator due to

E[l̂nk] =
∑

k pnk l̂nk = lnk − γ′
n·lnk′

pnk′+γ′
n
≤ lnk where γ′

n is an

implicit exploration rate of agent n. The implicit exploration

makes the resulting probability of agent n smoother than when

using an explicit exploration approach [43], i.e., mixing pnk
with the uniform distribution. The smoothness property allows

actions with large losses to be chosen occasionally, while the

actions may render negligible probabilities in the classical

algorithm, Exp3. The fluctuations of the loss estimates are not

large and thus the estimator is allowed to guarantee reliable

performance in rapidly changing, adversarial environments.

2) Perturbed exploration in selection rule: We incorporate

the observation on the resource provider (VFN)’s volatility

and resource requester (agent)’s task size into the selection

rule in an adversarial setting, which could select a suitable

fog node, rather than a capable one. This achieves a better

balance between exploration and exploitation [7] where the

dynamic resource supply and demand-based exploration bonus
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is augmented in the score L̂nk(τ − 1) towards a fair and

suitable VFN selection.
Parameter δ: Note that while the objective in equation (2)

is to optimize the expected unit cost of offloading the given

task τ to VFN k, what actually needs to be learned is the

potential capability of each candidate VFN L̂nk(τ − 1) and

its projected suitability for τ under an adversarial framework.

The latter can be evaluated with the normalized end-to-end

delay of offloading at a task level, qn(τ)L̂nk(τ − 1). Such

joint consideration of both the normalized delay per bit and

per task (1 + qn(τ))L̂nk(τ − 1) may take some coordination

in terms of input data size-dependent exploration-exploitation

trade-off. For the feature scaling, the normalized size of τ is

used as a weight factor ζn(τ) = 1 + δn(τ), where δn(τ) =
(qn(τ) − q

n
)/(q̄n − q

n
), on the offloading delay in decision-

making algorithm [7], i.e., Wnk(τ) = e−ζn(τ)·L̂nk(τ−1). With-

out loss of generality, individually different but temporally

fixed demands can be considered, e.g., ζn(τ) = ζn, ∀n, τ .
Parameter β: If an action (VFN) k ∈ K̄n(τ

′) appears

in round τ ′, Kn(τ
′) = Kn(τ

′ − 1) ∪ K̄n(τ
′) where K̄n(τ

′)
is the set of the VFNs appearing at τ ′, as the previous

candidate set of VFNs did, i) all actions including the new

action could be reset, L̂nk(τ
′) = 0, k ∈ Kn(τ

′) (full reset),

or ii) only the new action’s score is initialized with zero,

L̂nk(τ
′) = 0, k ∈ K̄n(τ

′) (partial reset). However, such

conventional resetting mechanisms may invalidate the score

based learning benefit in the rapidly changing environment,

due to the inefficiency, i.e., the old actions may sacrifice their

opportunities, regardless of their accumulated experience, to

learn the dynamic task offloading environment. Such an unfair

selection rule from the perspective of old actions could be

amended by setting the initial score of each appearing action

with the already existing one from oneself or others [7], e.g.,

for k ∈ K̄n(τ
′), L̂nk(τ

′) = L̂nk(τ
′) + βnk, where βnk =

max[L̂nk(τ
′ − 1),minm∈Kn(τ ′−1) L̂nm(τ ′ − 1)]. Taking into

account the above-mentioned perturbations, this learning pro-

cess can be described in pseudo-code form as in Algorithm

1. The playing of all agents is uncoupled, which means that

each agent has individual learning parameters annealing with

respect to τ . Each agent adopts a regret-based procedure to

update its mixed strategy, which depends only on its past

costs. According to our previous work [7], the corresponding

regret has sub-linearity and could be reduced compared to the

case without taking into account dynamic resource demand

and supply. While regret captures the learning objective of an

individual agent, at the system level, it is desirable to know i)

whether the dynamical behaviors of distributed agents reach an

equilibrium in some sense, and ii) whether the self-interested

regret minimization promises a certain level of optimality

in terms of social welfare. For the case Kn(τ) ∩ Ku(τ) =
∅ ∀n, u ∈ N , there is no difference between individual and

system-level performance. As long as Kn(τ)∩Ku(τ) 6= ∅, the

impact of individual behavior on the system-level performance

becomes non-trivial.

V. CONVERGENCE ANALYSIS

This section studies system-level performance in terms of

the convergence to actual equilibria and PoTA, and shows that

Algorithm 1 MIX-AALTO [7] in game Γ

1: Input: Learning step-size sequences, η′
n, γ′

n, ϑn = 0,∀n
2: for τ ∈ T do
3: for n ∈ N do
4: if n is inactive then ⊲ Asynchronous learning
5: Continue;
6: end if
7: Set ϑn ← ϑn + 1
8: Set η ← η′

n(ϑn), γ ← γ′
n(ϑn)

9: Set Lnk ← L̂nk, βnk ← 0, k ∈ Kn

10: Set Kn ← Kn(τ ), K̄n ← K̄n(τ ) ⊲ Supply
11: Set βnk ← max[Lnk,minm∈Kn\K̄n

Lnm], k ∈ K̄n

12: Set ζn ← qn ⊲ Demand
13: Set Wnk ← ζn · (Lnk + βnk), k ∈ Kn

14: Set pn ←
[

exp(−Wnk)∑
m exp(−Wnm)

]

k∈Kn

⊲ Selection

15: Select action k′
∼ pn

16: Receive cost lnk′ ⊲ Assessment

17: Compute l̂nk ←

[

lnk·1k=k′

pnk+γ

]

k∈Kn

18: Update scores: L̂nk ← L̂nk + ηl̂nk, k ∈ Kn

19: end for
20: end for

our proposed solution on the self-interested behaviors inclining

toward robustness and adaptation yields lowering the upper

bounds of PoTA, thereby achieving a better balance between

individual-level acceptability and system-level efficiency.

A. Convergence to an approximated equilibrium

In the following, we study the (asymmetric) replicator

dynamics [27], [44] for the game, by analyzing a differential

equation expressing a continuum limit of the perturbed update

process. For a certain agent, n ∈ N , the learning procedure in

the algorithm 1 can be represented as the following recursion:
{

pn(τ) = Λn (Wn(τ − 1)) =
[

e−Wnk(τ−1)
∑

m e−Wnm(τ−1)

]

k∈Kn

,

L̂n(τ) = L̂n(τ − 1) + η′n(τ)l̂n(τ),
(3)

where l̂n(τ) =
[

lnk(τ)·1k=k′

pnk(τ)+γ′
n(τ)

]

k∈K
, η′n(τ) and γ′

n(τ) are

calculated as a reference rate κ(τ) 7 multiplied with an explicit

and implicit exploration parameters, ηn and γn, of agent n,

expressed as η′n(τ) = κ(τ)ηn(τ) and γ′
n(τ) = κ(τ)γn(τ).

To ensure the convergence of the strategies induced by

the proposed algorithm, we show that equation (3) is an

asymptotic trajectory for the underlying mean dynamic, i.e.,

its continuous-time version. To compare the actual sequence

of play (discrete) to the replicator dynamics of evolutionary

game theory (continuous), we employ the powerful ordinary

differential equation (ODE) method in [45]. The ODE method

leverages the convergence of a continuous-time dynamical

system to obtain convergence of the algorithm. We also show

how to seek convergence to NEs, which is non-trivial in

presence of independently perturbed explorations. Next, the

dynamic of an individual’s probability distribution over the

available actions is given by a perturbed replicator.

7This is not revealed but commonly taken to be the maximum learning rate
among agents for the convergence analysis later.
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Lemma 1. (ODE) Considering the algorithm’s update rule,

the expected update in the probabilities, by deriving the

limit as a parameter, κ(τ) → 0, is the following first-order

differential equation known as the replicator dynamic:

En[ṗnk] = ζnηnpnk

[

∑

m∈K

lnmpnm − lnk

]

. (4)

Proof: The proof is in Appendix-A.

The dynamics can be intuitively understood as an update

mechanism where the probability for a client to choose actions

whose expected costs are below average will increase in time,

while non-beneficial actions may be gradually abandoned.

Given the dynamics, a natural question is whether the linear

interpolation of the sequences p(τ) converges to a fixed point

of the replicator dynamics.

We focus on the sequences pn(τ) and its linear interpolation

which would track the continuous-time version of the learning

procedure up to imperfection error8, i.e., the iterates pn(τ) are

interpolated into a continuous-time process with interpolation

intervals associated with learning steps. The ODE method is

used to show that asymptotically the iterates follow the path

of the mean of ODE. The works in [46]–[48] used the ODE

methods to cover general noise processes by the use of average

conditions. The main idea is to show that, asymptotically,

the noise effects average out so that the asymptotic behavior

is determined effectively by that of a mean ODE, i.e., the

asymptotic of the iterate sequence is analogue to the one of

the interpolated sequence [48].

Consider that elements of R are limits of perturbed solutions

to the ODE,
∂pn(t)

∂t . In [45], it has been shown that for

κ(τ)ηn(τ) → 0, all limit points of pn(τ) belong to R and that

each element of R can potentially be a limit point of pn(τ)
with a nonzero probability, limi→∞ d(pn(τ),R) = 0, i.e., the

interpolated process of the sequences pn(τ) is an asymptotic

pseudo9 trajectory (APT) of the solutions of ODE. However,

this APT could not be guaranteed for the perturbed replicator

dynamic, since the limit trajectory of the ODE may not be

concentrated at a single point, limτ→∞ d(pn(τ),R) 6= 0. To

accommodate the issue, one considers pseudo-orbits rather

than trajectories, reflecting imperfection error where the iterate

remains in a small neighborhood of the limit point for enough

time before possibly leaving.

The stability of the mean ODE guarantees that the

continuous-time process converges to an asymptotically stable

equilibrium point of the perturbed replicator dynamics. While

p(t) converges with probability one to a bounded invariant

or limit set of the ODE, it is not always guaranteed that

the largest invariant or limit sets contain points to which

convergence clearly could occur. Typically, some properties of

a Lyapunov function are used to show that a discretized system

has a nearby attracting set. According to the Lasalle principle

[49] and Corollary 6.6 of [50], the existence of a strictly

8We stress that our aim is not to rectify the particular model imperfections,
but to develop an approach which is of value in the ubiquitous case where
model imperfection is not known.

9Owing to the types of averaging methods adopted, the noise can be pseudo
rather than true random process.

decreasing Lyapunov function implies that p(t) converges to

the connected sets of fixed points of the dynamic. A potential

function admitted in a game could serve as a Lyapunov

function for the stabilization of dynamic systems associated

to the game. The potential game with users adopting bandit

feedback-based algorithms allows to have a strictly decreasing

Lyapunov function [27]. Even if the game has not yet reached

an equilibrium, the turn of a deviating client will arrive

eventually and its action will decrease the potential function.

However, such improvement property is not guaranteed in an

asymmetric scenario where every client has not only a distinct

VFN resource set but also client-specific cost realization.

To circumvent this issue we show that the iterates not only

eventually stay in the compact recurrent set but that they

converge to the limit set of the ODE in that recurrent set. Next,

we first characterize the chain recurrent set and asymptotic bias

of the perturbed ODE [51].

Lemma 2. If noise conditions, limτ→∞ κ(τ)ηn(τ) = 0 and
∑

τ κ(τ)ηn(τ) = ∞, ∀n ∈ N , are satisfied, the iterative

process (3) tracks the continuous-time system up to a bounded

error ǫ < ∞ and converges to the internally chain recurrent

set of the mean-field system.

Proof: The proof is in Appendix-B.

Next, we show the converged limit set contained in every

attractor under the logit rule, asymptotically stable for its ODE.

Lemma 3. If 2ζθ < 1 where ζ = maxnζn and θ is an

upper bound for the impact over a client’s cost when a single

client changes its move for each client n ∈ N , every strategy

kn ∈ Kn, and all pairs k−n, k′−n ∈ K−n, then l(Λ(W)) is a

contraction and its fixed point is asymptotically stable for (4).

Proof: The proof is in Appendix-C.

Remark 1. (Weakly stable) One agent’s offloading decision on

a VFN causes others to reduce their probability of selecting

that VFN henceforth. Such asymmetric behavior is in self-

reinforcement driven by the decentralized nature of dynamics

in the game, and this can be justified by the symmetry-breaking

[23] implied by spectral properties of the Jacobian of the

dynamics defined at an equilibrium of the game, i.e., a weakly

stable equilibrium in which the Jacobian is allowed to have

eigenvalues whose real part is at most a small positive real,

i.e., less than a unity [54]. Thus, agents are able to steer clear

of undesirable equilibria in the presence of arbitrary events

captured in a discretized time frame10, i.e., unknown arrivals

with different delay values.

Corollary 1. In a game with a θ-Lipschitz linear cost function

w.r.t ck, if θζ/2 < 1, the corresponding dynamics converge to

an asymptotically stable fixed point.

Proof: The proof is in Appendix-D.

Remark 2. (Asymptotically stable) While ζ < 2, the condition

θ < 1 is sufficiently satisfied if each VFN k can allocate to

all agents selecting the VFN k at least the amount of CPU

frequency fnk (cycles/second) larger than the computational

10The time scale is determined by the iteration τ and the step size κη.
Such interpolated time intervals are natural choices for the problem related
to the characterization of the asymptotic properties of the sequences [56].
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complexity wn
11 (cycles/bit) required for processing one input

data bit, e.g, θ = wn

fnk
= wn

wn+f ′
nk

< 1 where f ′
nk is a positive

computing capability value of a VFN k further allocated to

an agent n than the minimum, fnk = wn + f ′
nk.

With the fulfilled conditions above, the iterative process (3)

tracks the continuous-time system up to a bounded error ǫ <
∞ and, from any initial state, converges almost surely to the

stable fixed point of the dynamics (4). One natural question is

whether the converging point is consistent with a NE of the

game Γ, stated in Definition 3.

Proposition 1. (Converged NE) If
∑

τ κ(τ)ηn(τ) → ∞ and

κ(τ)γn(τ) > τ−1, the actual profile sequence p(τ) converges

(a.s) toward a NE of the game Γ and the converging point is

ξ-equilibrium with ξ = maxn∈N (log(|Kn|)/ζn).
Proof: The proof is in Appendix-E.

Proposition 2. (Converging rate) The convergence occurs at

a quasi-exponential rate,

Λnk′(T )≥1− (K − 1)e−ζn·[∆β+∆l·
∑

T
τ=1 κ(τ)ηn(τ)],

where ∆l ≤ lnk(τ)− lnk′(τ)∀τ and ∆β = βnk(0)− βnk′(0).

Proof: The proof is in Appendix-F.

Remark 3. The game converges faster when i) the number of

candidate VFNs, K , gets fewer, ii) the minimum cost difference

between costs of a selected VFN, k′, and other VFNs, lnk(τ)−
lnk′(τ), gets larger, and iii) the time period a selected VFN k′

has resided in the candidate VFN set of a client, n, is longer

than or equal to the other VFNs.

Remark 4. The game converges faster for the larger

resource demand and learning rate, i.e., when δn and
∑T

τ=1 κ(τ)ηn(τ), ∀n, get larger.

To address the unknown game setup, this work considers

strategy learning with an asynchronous update. Due to agents’

inherent dynamicity and heterogeneity, the number of active

agents may not be constant over time, and no agent knows

when the other agents will be active. In the following, we

try to make the convergence analysis on approaches used for

strategy learning applicable in the asynchronous setting where

the set of active agents is variable and unknown12. For the sake

of the aim, one may consider an individual clock, a random

variable representing the number of times the agent n ∈ N has

been involved in an interaction until τ , expressed as ϑn(τ) =
∑τ

τ ′=1 1n∈N (τ ′) interacting agents. Rather than requiring a

global timer, it is adequate for the analysis above only to

consider a reference type of learning rate which refers to the

maximum value among the learning rates of the active agents,

represented by κ∗(τ) = maxn∈N (τ) κ(ϑn(τ))ηn(ϑn(τ)).

Proposition 3. (Async update) If
∑

τ κ(τ)ηn(τ) = ∞ and
∑

τ κ
2(τ)η2n(τ) < ∞, ∀n, we have

∑

τ κ
∗(τ) = ∞ and

∑

τ [κ
∗(τ)]2 < ∞.

Proof: The proof is in Appendix-G.

11It may vary with applications
12When the time is divided into several intervals, each client can be run

independently each of these intervals as suggested in [41].

Remark 5. Asynchronous updates ϑn(τ) 6= ϑu(τ), ∀n, u ∈ N
exhibit inherently aligned and independently calibrated with

a referral learning rate κ∗(τ) unknown. Since κ∗(τ) is the

largest one, the individual conditions for the convergence are

sufficiently satisfied, that is, the convergence analysis for the

case ϑn(τ) = ϑu(τ) = τ, ∀n, u ∈ N is valid.

B. Efficiency

At the system level, one may want to know if the self-

interested objective optimizations of multiple clients in N in

equation (2) collectively promise a certain level of optimality

in terms of social welfare. We now address the important

question of how far the system performance induced the

learning algorithm would be from optimal in a NE. The

relation between the delay cost induced by such an equilibrium

state converged by the learning dynamic (Algorithm 1) and

the socially optimal solution minimizing the total cost over

different clients has been well studied under the PoA [57].

The PoA indicates the suboptimality caused by selfish

behavior. The PoA close to one means that the negative

impact of selfish behavior is relatively small, all NEs are

near-optimal, and hence any equilibrating learning dynamics

suffices to reach approximately optimal system performance.

The lower bound on PoA is meaningful only if participants can

successfully reach an equilibrium. However, individuals might

fail to coordinate on a particular equilibrium or fail to compute

a NE, which motivates to adopt robust bounds on PoA.

The work in [57] identifies that such efficiency loss can be

bounded whenever clients minimize their regrets and the game

is (λ, µ)-smooth, if, for a NE p′ and the optimal strategies

p∗, it satisfies the following relation: C′ =
∑

n∈N lnk′ =
∑

n∈N ln(k
′; k′−n) ≤

∑

n∈N ln(k
∗; k′−n) ≤ λC∗+µC′ where

k∗ is the socially optimum action of agent n, or equivalently

C′/C∗ ≤ λ/(1 − µ) with λ > 0 and µ < 1. The relation

holds for every pair of strategies, not just NEs or social

welfare minimizing outcomes since the smoothness arguments

imply worst-case bounds beyond the supermum of PoA with

inf{λ/(1− µ)}.

Next, we generalize the well-known results of [57], for

different constants λ and µ based on the information available

at a time instant, t, showing that such optimal welfare can be

approached when clients minimize their regrets.

Proposition 4. Assume that Rn(T ) be the individual regrets

up to T for different clients, n ∈ N , and Γ is {λ(τ), µ(τ)}-

smooth at each time τ , then the efficiency loss of the evo-

lutionary process, also known as PoTA [17], is PoTA ≤
ρ +

∑

n∈N
Rn(T )

T (1−µ′)C∗ where ρ = λ′/(1− µ′) is the robust

PoA, λ′ = maxτ∈T λ(τ), and µ′ = maxτ∈T µ(τ) < 1.

Proof: The proof is in Appendix-H.

Remark 6. For any strategies in the evolutionary process, the

worst-case bound generated through smoothness arguments

ρ = λ′/(1− µ′) is larger than the supermum of PoTA.

Remark 7. The convergence of the PoTA to the PoA of the

stage game implies that no-regret learning can fully null the

impact of the unknown nature of the game on social welfare.
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If the regret is sub-linear w.r.t T , for any T ≥ τo, n ∈ N ,

there exists a non-increasing per-round regret function such

that limT→∞

∑

n Rn(T )/T → ǫT ≥ 0. For any almost

sure no-regret sequence, as T goes to infinity, PoTA ≤ ρ
almost surely. When the action profiles are generated by

Algorithm 1 with κ(τ)ηn(τ) > τ−1, κ(τ)γn(τ) > τ−1

and γn(τ)/ηn(τ) ≤ 0.5, then for any T ≥ τo such that

PoTA ≤ ρ + ǫT / [(1− µ′)
∑

τ C
∗
τ /T ] almost surely, where

ǫT → 0 as T → ∞.

Remark 8. The upper bound of PoTA induced by Algorithm

1 with δn > 0 and βn > 0 is lower than the one with δn = 0
and βn = 0, ∀n, where βn =

∑

k βnk.

VI. NUMERICAL ILLUSTRATION

This section conducts numerical studies to show the con-

verging sequences of dynamics and their efficiency in terms

of PoTA. For the simulation evaluation, we follow the detailed

simulation setting as in [7].

A. Evaluation setting

Consider multiple clients of interest, requesting the compu-

tational resource from candidate edge computational resource-

providing vehicles (VFC nodes). Three different clients are

considered, |N | = 3. The distance between the client and

each candidate VFC node is assumed to follow a uniform

distribution, d ∼ U [0, dr] where dr is the communication

range equal to 400 m. The transmission power of the client is

24 dBm, the large-scale fading gain follows the 3GPP pathloss

model [58], Ao = 128.1+37.6 log10(d), the small-scale fading

gain follows Rayleigh distribution with unit variance, channel

bandwidth is W = 10 MHz, the number of subchannels is

10, and noise power is No = −174 dBm/Hz. A subchannel is

equally divided by the number of agents and the noise power

for an agent is proportional to the bandwidth of interest.

Consider 10 volatile VFNs K = {1, · · · , 10} with

the respective maximum CPU frequency values, Fk ∈
{6, 6, 5, 4, 1.5, 2, 4, 6, 4, 5} GHz that appear or disappear as

candidate fog nodes of one task generating client for a finite

number of time frames (tasks) in 3 epochs, within each epoch

consisting of 1000 tasks and keeping the same fog node

set for a client, which could be identical or different for

different clients. For each VFN k, the allocated CPU frequency

to the task client n, fnk, is a fraction of the maximum

CPU frequency which is distributed from 20% to 50%, but

arbitrarily constrained by an adversary, e.g., affected by the

oblivious attack as in [7], and by the resource congestion due

to some or all other clients offloading to the same VFN, e.g.,

affected by the number ck of clients selecting the VFN k,

both of which could yield collision-free but adversary-selected

cost sequence, lank, and collision occurred cost sequence, lcnk,

of the task client n, respectively. The available computing

resources of a VFN k are non-linear decreasing w.r.t to the

total number, ck of clients offloading to the same VFN k [30],

e.g., 1/
√
ck. The realized task offloading cost is assumed to

be from any linear combination of the two sources, lank and
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Fig. 3. Impact of suitability-based VFN selection on the regret and PoTA,
when K = Kn(τ), ∀n ∈ N , K = {1, · · · , 7}.

lcnk with onk ∼ U [0, 1]13, lnk = lank(1 − onk) + lcnk · onk.

The total tasks are split into phases with different lengths,

each of which is with different means for different arms. The

computation intensity is set to w = 1000 Cycles/bit. To meet

the client’s diverse demands, the request service type can be

changed with different task sizes arbitrarily. Varying service

types could be considered at regular intervals. For simplicity,

a periodic interval for changing service types is aligned with

an epoch. The task size, δ Mbits, is either fixed or randomly

distributed according to either a uniform or truncated normal

distribution on a predefined interval δ ∈ [0.2, 1].

B. Evaluation result

Benchmark: The perturbed learning algorithm is compared

with its counterparts, implicit exploration-based algorithms.

The performance results of learning algorithms in terms of

the cumulative bit-cost summed over the clients with |N | = 3,

and PoTA, are depicted in Fig. 2, showing that the proposed

algorithm exhibits converging behavior and outperforms other

implicit exploration-based algorithms where an arm is selected

based on the scores L̂n. Every computing resource client using

learning strategies perturbed with ζn(L̂n + βn) where βn > 0
and/or δn > 0 could achieve a better exploration-exploitation

trade-off, since βn > 0 could save unnecessary exploration

time for the arms appearing to the available VFN set of a

client n and δn > 0 could add more input-size dependent

importance weight on the arms having the better scores. Such

adaptive perturbation strategies allow to reduce the sum bit-

cost by 11% in Fig. 2(a) and the PoTA by 17% in Fig.

2(b) from that of the vanilla Exp3IX algorithm, and being

13It approximately settles down to the case of onk = 0.5.
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much closer the full information setting where the complete

cost vector is revealed after every round (full feedback). As

the number of epochs increases, the sum bit-cost resulting

from the perturbed learning algorithm decreases, while the

vanilla algorithm increases. This is because the patching rule-

based scores enforce the accumulated experience even in the

evolving circumstance, while the vanilla one may not be

supportive. Note that, however, no such opposite phenomenon

occurs in terms of PoTA, since the increasing number of VFNs

increases the robust PoA bound ρ.

Impact of δ: A task requester has personalized task resource

demand affecting ζn, n ∈ N , which can be considered for

drawing suitability-based selection in the exploration process

of the online learning algorithm. Fig. 3 shows its impact

on regret and PoTA. When a positive value of the normal-

ized input data size δn > 0, n ∈ N is considered in a

selection rule, a client’s learning regret performance can be

improved compared to others including vanilla Exp3, Exp3P,

and Exp3IX algorithms, since i) considering a score associated

with both normalized per-task cost and per-bit cost, make

a more suitable candidate and thus ensure a better trade-

off between exploitation and exploration, and ii) an implicit

exploration approach κγn > 0 could achieve better and more

robust performance in terms of regret due to lower empirical

mean and standard deviation of the regret than others [7] and

thus of PoTA (Prop. 4). The better regret performance gain

can be achieved by making exploitation more for a large δ
and less for a small δ. For example, the per-bit learning regret

of a client with δ1 equal to 0.67 is lower than the ones of others

with δ2 and δ3 equal to 0.16. The resource demand dependent

algorithm brings unequal gains in terms of regret for the

heterogeneous tasks resource demands, while it results in more

or less the same gains in terms of system-level performance,

PoTA, if those cumulative demands are homogeneous one

another. The excessive surplus earnings from a task of large

size and less surplus ones from a task of small size can be

offset in social welfare increment, thereby making the upper

bounds of PoTA for the different combinations of resource

demands but with the same aggregate demand over clients.

Impact of κη and ϑ: Fig. 4 shows the effect of the

personalized learning rates on the learning regret and PoTA. A

resource client has individual learning rate κηn, n ∈ N used

for piling up desired cost estimation, time-varying importance

of the estimated cost, κ(τ)ηn(τ)l̂n(τ), to an accumulated

score, L̂n(τ − 1). In practice, the learning rates, κ(τ)ηn(τ),
are not necessarily the same for different clients who have

a common tendency to assume the decreasing learning rate

with round; the more distant the past, the more its learning

factor, e.g., κ(τ)ηn(τ) =
√

a·log(|Kn|)
|Kn|τ

[7, Corollary 2] where

κ(τ) is the unknown referral learning rate among the clients

for the assumed attribute over the sampled interval14 of the

continuum that is of interest. One may observe that a client

with a larger learning rate or more slowly decreasing learning

rate in conjunction with iterate, learns at a faster rate (Prop.

2), effectively speeds up a learning process, but its individual

14Every client does not know the global clock, but only knows how many
time she has been active, the activity of others is not known.
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learning performance in terms of bit-cost is vanishing too fast,

resulting in a lower cumulative bit-cost in Fig. 4(a). This

phenomenon can be also validated in asynchronous updates

ϑn(τ) 6= ϑm(τ), which lower bounds on the synchronous

case due to T ≥ ϑn(T ) and obtains the similar result

in the synchronicity but with a doubled value of a due

to independently and uniformly randomized activation. The

achieved strategy could be suboptimal due to [7, Remark

7] prone to premature convergence, Fig. 4(b). The PoTA of

clients with a larger learning rate is larger than the one with a

smaller learning rate. This phenomenon is due to the fact that

the personalized learning rate affects the algorithm’s efforts

between exploration and exploitation: a smaller learning rate

leads to more conservative exploration over the candidate

action set, k ∈ Kn, while a larger learning rate leads to more

aggressive exploration but with insufficient time to learn.

Impact of β and K: Fig. 5 shows the impact of the number

of VFNs, |K̄n(τ)|, appeared in τ , on regret and PoTA. As

the density of the candidate VFNs becomes higher, more

exploration would be performed, requiring more rounds to

make the unit offloading cost converged and resulting in a

higher regret for each client. The perturbed exploration taking

into account dynamic resource supply, where a client sets the

score of a new or re-discovered VFN to its recent update,

e.g., the lastly updated score the rejoining VFN had before or

the others have, could achieve lower learning regret compared

to vanilla Exp3IX with initializing the learning history of all

candidates (full-reset case in [7]), L̂nk(τ) = 0, ∀k ∈ Kn(τ).
This is because such a dynamic resource supply-based policy

allows for avoiding unfair selection opportunities, i.e., reduc-

ing the exploration rounds the appearing arms may require
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Fig. 5. Impact of arms on regret and PoTA. (Upper) symmetric arms K1(τ) = K2(τ) = K3(τ) and (Bottom) asymmetric arms K1(τ) = K2(τ) 6= K3(τ),
while K1(τ − 1) = K2(τ − 1) = K3(τ − 1).

to experience, and thus adapting quickly to the change in a

volatile environment. The PoTA enhancement by the perturbed

exploration with β > 0 compared to the full reset case with

β = 0 decreases in the number of VFNs. The effect of the

score difference among the existing VFNs becomes minimal

for a high density of the appearing VFNs, since an importance-

weighted mechanism assigns a probability proportional to the

number of the candidate VFNs as well as the cumulative

scores. Note that every task requester may have a different set

of VFN candidates due to its inherent attributes such as com-

munication range, mobility, availability, and so on. When only

a minority of the clients have increasing candidate VFNs, the

system-level performance variation becomes minimal, since

another majority of the clients use a dominant strategy.

VII. CONCLUSION

This work considered the decentralized task offloading

decision-making problems of multi-agents in unknown and

dynamic environments as a repeated unknown game where

each agent has access only to local information and makes

an adaptive offloading decision to individually heterogeneous

and dynamic situations. Particularly, every agent can take

exploration implicitly controlling the variance at the expense

of introducing some bias, and observe the current contexts in

terms of personalized resource demand and volatile resource

supply before playing an action. This work showed that the

dynamic behaviors of distributed agents with individual pertur-

bations for robustness to uncertainty (implicit exploration) and

adaptation to dynamicity (demand/supply exploration) could

converge towards a sequence of stable equilibria and such

self-interested decisions ensure better optimality in terms of

social welfare, e.g., lowering the upper bounds of PoTA. The

effectiveness of the proposed algorithm was verified by simu-

lation results. The future effort could be directed at studying

joint computation and communication resource selections in

real clock time rather than on the interpolated time interval.

APPENDIX

A. Proof of Lemma 1

We show that the derivative of the continuous-time limit of

the algorithm is the replicator equation. We consider the effect

of client n’s action pnk(τ) on its own probability update on

k ∈ Kn(τ). We obtain the continuous time process from the

rate of change of pnk(τ) w.r.t κ(τ)ηn(τ) as κ(τ)ηn(τ) → 0.

i) The selection probability is expressed: when k = k′

and m ∈ K\k′, pnk(τ + 1) = e−Wnk(τ)

e−Wnk(τ)+
∑

m∈K\k e−Wnm(τ) =

e−Wnk(τ−1)Ank(τ)

e−Wnk(τ−1)Ank(τ)+
∑

m∈K\k e−Wnm(τ−1)=
Ank(τ)

Ank(τ)−1+1/pnk(τ)

where Ank(τ) = e−ζnκ(τ)ηn(τ)l̂nk(τ), and when k ∈ K\k′
and m = k′, pnk(τ + 1) = e−Wnk(τ)

e−Wnm(τ)+
∑

m′∈K\m e−W
nm′ (τ)

= e−Wnk(τ−1)

e−Wnm(τ−1)Anm(τ)−e−Wnm(τ−1)+
∑

m′∈K e−W
nm′ (τ−1)

= pnk(τ)
pnm(τ)Anm(τ)−pnm(τ)+1 . ii) The expected update in the

probabilities is the following differential equation, ṗnk: when

k′ = k,

ṗnk = ∂pnk(τ+1)
∂κ(τ) = ∂

∂κ(τ)

(

Ank(τ)
1/pnk(τ)−1+Ank(τ)

)

,

=
∂Ank(τ)

∂κ(τ)
(1/pnk(τ)−1+Ank(τ))−Ank(τ)

∂Ank(τ)

∂κ(τ)

(1/pnk(τ)−1+Ank(τ))2
,

= ∂Ank(τ)
∂κ(τ)

(1/pnk(τ)−1)
(1/pnk(τ)−1+Ank(τ))2

,

and when k′ = m 6= k

ṗnk = ∂
∂κ(τ)

(

pnk(τ)
1+pnm(τ)(Anm(τ)−1)

)

= ∂Anm(τ)
∂κ(τ)

−pnk(τ)pnm(τ)
(1+pnm(τ)(Anm(τ)−1))2 ,

where
∂Ank(τ)
∂κ(τ) = −ζnηn(τ)lnk(τ)pnk(τ)

(pnk(τ)+κ(τ)γn(τ))2
e−κ(τ)ηn(τ)l̂nk(τ).

iii) The continuous time process is obtained by taking

the limit κ(τ) → 0, i.e., the rate of change in pnk with

respect to κ(τ) as κ(τ) → 0. Then, with dropping the discrete

time index script τ , we derive the limit of the probability

update rule as follows: a) when k′ = k, limκ(τ)→0 ṗnk =
−ζnηnlnk

pnk

(1/pnk−1)
(1/pnk)2

= −ζnηnlnk(1 − pnk) and b) when k′ =

m 6= k, limκ(τ)→0 Ṗnk = ζnηnlnm

pnm
pnkpnm = ζnηnlnmpnk.

iv) The expected change in pnk w.r.t the probability distri-

bution of a client over all VFNs k ∈ Kn is given as

En[ṗnk]=En

[

∑

m 6=k∈Kn
ζnηnlnmpnk − ζnηnlnk(1− pnk)

]

,

= −ζnpnkηnlnk(1− pnk) +
∑

m 6=k∈Kn
ζnpnmηnlnmpnk,

= ζnηnpnk

[

∑

m 6=k∈Kn
lnmpnm −∑

m 6=k∈Kn
lnkpnm

]

,

= ζnηnpnk
[
∑

m∈Kn
lnmpnm − lnk

]

,

= ζnηnpnk
[
∑

m∈K lnmpnm − lnk
]

.

B. Proof of Lemma 2

The actual recursive forms of the algorithm are of the

stochastic approximation type. The dynamic of Algorithm 1

can be written as follows: Using Taylor’s Remainder Theorem,
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pnk(τ + 1)=Λnk(Wn(τ))=Λnk(Wn(τ−1)+ζnκ(τ)ηn(τ)l̂n(τ)),

= pnk(τ) + κ(τ)
[

ηn(τ)∇ΛT
nk(Wn(τ − 1))ln(τ)

+ ηn(τ)∇ΛT
nk(Wn(τ − 1))(l̂n(τ) − ln(τ))

+0.5κ(τ)η2n(τ)l̂
T
n (τ)∇2Λnk(Wn(τ − 1))l̂n(τ)

]

,

= pnk(τ) + κ(τ) [Fnk(τ) + σnk(τ)] ,
where Fn(τ) is the mean replicator dynamic (Lemma

1), Fnk(τ) = ηn(τ)∇ΛT
nk(Wn(τ − 1))ln(τ) =

ηn(τ)ζnΛnk(Wn(τ − 1))(
∑

m Λnm(Wn(τ − 1))lnm(τ) −
lnk(τ)) due to ∂Λnk(Wn)=ζnΛnk(Wn)(Λnm(Wn)−1k=m).

i) (Lipschitz condition) The derivative of the logit choice

map function, ∇Λnk

(

ζn(L̂n + βnk)
)

, is continuously differ-

entiable with respect to L̂n, which is locally bounded so its

gradient is locally bounded as well. By changing the input of

the derivative function by some amount L̂n, its output changes

by at most a multiple of L̂n, known as the Lipschitz con-

stant, a measure of the smoothness of the derivative function.

The logit choice map function is the gradient of the log-

sum-exp function, lse(L̂n) = −ζ−1
n log(

∑

k exp(−ζnL̂nk)),
Λn(Wn) = ∇lse(L̂n), its convexity is well-known [52, p.93].

The Jacobian of the logit choice map function is the Hessian

of the log-sum-exp function, ∇Λn(Wn) = ∇2lse(L̂n). Ac-

cording to [53, p.58], a function has a Lipschitz continuous

gradient with Lipschitz constant L > 0 if 0 ≥ vT∇2lse(z)v ≥
−L||v||22 is bounded for all z, v, which is fulfilled by the

following relation: vT∇2lse(z)v = −ζn(
∑

k v
2
kΛnk(z) −

(
∑

k vkΛnk(z))
2) ≥ −ζn

∑

k v
2
kΛnk(z) ≥ −ζn

∑

k v
2
k due

to negative semidefinite, thus |vT∇2lse(z)v| ≤ |ζn|||v||22 and

∇Λn(·) is a Lipschitz continuous gradient with ζn.

ii) (noise condition) The term σnk(τ) is the noise per-

turbation, σnk(τ) = ηn(τ)∇ΛT
nk(Wn(τ − 1))(l̂n(τ) −

ln(τ)) +
κ(τ)η2

n(τ)
2 l̂n(τ)∇2Λnk l̂n(τ). The noise term σ(τ)

admits the decomposition, for i ≥ 0, σn(τ) = χn(τ) +
ǫn(τ) where χn(τ) is a mean sequence and ǫn(τ) is a

bias. If χn(τ) is averaged out by step-sizes κ(τ)ηn(τ) ≥
0, limτ→∞maxτ≤j<a(τ,t)

∣

∣

∣

∑j
z=τ κ(z)ηn(z)χn(z)

∣

∣

∣
= 0,

and if ǫn(τ) is bounded, limτ→∞ sup |ǫn(τ)| < ∞,

then the limits of slightly perturbed solutions to the

ODE are an invariant set, called chain recurrent. The se-

quence χnk(τ) is a martingale difference noise, χnk(τ) =
ηn(τ)∇ΛT

nk(Wn(τ − 1))(l̄n(τ) − ln(τ)) due to the follow-

ing relation, E[χnk(τ)|Fn,τ−1] = E[ηn(τ)∇ΛT
nk(Wn(τ −

1))(l̄n(τ)−ln(τ))|Fn,τ−1] = ηn(τ)∇ΛT
nk(Wn(τ−1))(ln(τ)−

ln(τ)) = 0, which fulfills the zero-mean sequence condi-

tioned on past information, Fn,τ−1. The sequence ǫn(τ) can

be further divided into two sub errors, ǫn(τ) = ǫ1n(τ) +
ǫ2n(τ) where the error ǫ1n(τ) comes from an implicit bias

estimation, ǫ1nk(τ) = ηn(τ)∇ΛT
nk(Wn(τ − 1))(l̂n(τ) −

l̄n(τ)) < ∞ and the error ǫ2nk(τ) comes from a stochas-

tic approximation, ǫ2nk(τ) =
κ(τ)η2

n(τ)
2 l̂n(τ)∇2Λnk l̂n(τ) <

∞ due to the facts that all components of ∇ΛT
nk in

ǫ1nk(τ) and ∇2ΛT
nk in ǫ2nk(τ) are bounded [27], by defi-

nition of the considered implicit bandit estimator. Due to
∂ǫ1nk

∂pnk
< 0, we have ǫ1nk = limi→∞ sup |ηn(τ)|. And with

κ(τ) → 0, ǫ2nk → 0 due to bounded components having

a type of c′/(pnk(τ) + κ(τ)γn(τ)) where 0 < c′ < ∞.

Thus, there exists a non-decreasing function φ such that

limτ→∞ d(pn(τ),R) ≤ φ(ǫ) where ǫ is a bounded error that

tends to an asymptotic bias, ǫ = limτ→∞ sup |ǫn(τ)| < ∞.

Then, according to [51, Theorem 2.1], the iterative process

pn(τ) converges to the internally chain recurrent set of the

mean-field system, within a vicinity to R.

C. Proof of Lemma 3

A fixed point of a system is an attractor, when

the cost function l(Λ(W)) is || · ||∞-contractive, a

contraction map of a locally compact metric space,

that is, there exists a constant15 ω̂ ∈ (0, 1) such

that for all agents n ∈ N and all score variables L̂,

L̂′ ∈ R
|N |×|K|, ||l(Λ(W)) − l(Λ(W ′))||∞ ≤ ω̂||L̂ − L̂′||∞.

Consider a cost function, θ-Lipschitz in the congestion

degree ck, i.e., a function of a number of agents

using k-th VFN, ck =
∑

n∈N 1(k = kn) where

kn ∈ Kn w.r.t || · ||1 norm: |lnk(ck) − lnk(c
′
k)| =

|ln(k; k−n(ck)) − ln(k; k−n(c
′
k))| ≤ θ||ck − c′k||1 for

all pairs k−n(ck), k−n(c
′
k) ∈ K−n. According to [55], the

two difference costs for different scores can be expressed

as follows: |lnk(W) − lnk(W ′)| ≤ θ
∑

u6=n ||Λu(Wu) −
Λu(W ′

u)||1 ≤ θ
∑

u6=n

∑

m∈Ku
||∇Λum||1Θu ≤

θ
∑

u6=n

∑

m∈Ku

(

ζnΛnm

∑

k∈Kn
|Λnk − 1m=k|

)

Θu ≤
θ
∑

u6=n

∑

m∈Ku
(2ζnΛnm(1− Λnm))Θu ≤

θ
∑

u6=n

∑

m∈Ku
2ζnΛnmΘu ≤ θ

∑

u6=n 2ζn||L̂u − L̂′
u||∞ ≤

2θζ||L̂ − L̂′||∞ where Θu = ||L̂u − L̂′
u||∞, ζ = maxnζn

and θ is an upper bound for the impact over a client’s cost

when a single client changes its move for each client n ∈ N .

According to [45, Theorems 6.9 and 6.10] and [55, Theorem

4], the converged limit set is contained in every attractor

under the logit rule, asymptotically stable for its ODE.

D. Proof of Corollary 1

In case that the cost function is linear in ck, e.g., lnk =
lonk + θ · ck where lonk is communication cost and θ ·
ck is computation cost upper-bounded by the worst ser-

vice capability and the number of agents choosing VFN

k, we have the following relation:
∑

m∈Ku
||∇Λum||1 =

∑

m∈Ku
ζnΛnm

∑

k |Λnk − 1m=k| =
∑

m∈Ku
2ζnΛnm(1 −

Λnm) ≤ 2ζnΛnk(1 − Λnk) ≤ ζn/2 where the last in-

equality is due to x(1 − x) ≤ 1/4, ∀x ∈ [0, 1], and thus,

|lnk(W) − lnk(W ′)| ≤ θ
∑

u6=n

∑

m∈Ku
||∇Λum||1||L̂u −

L̂′
u||∞ ≤ θ

∑

u6=n ζu/2||L̂u − L̂′
u||∞ ≤ θζ/2||L̂ − L̂′||∞.

E. Proof of Proposition 1

(NE) We show by contradiction that limT→∞ p(T ) = p′ is

a NE. Suppose the contrary, there exists ∆l > 0 such that

lnm(p′) > lnk(p
′), ∀m ∈ supp(p′n), k ∈ Kn, k /∈ supp(p′n).

The support of p′ is the set of pure strategies that have a

15The iterative update is a contracting iteration, if every agent satisfies
the condition individually [54, Lemma 1], without knowing the number of
other agents. Intuitively, the contractive condition depends on the two different
Lipschitzness of the logit function Λn and the game’s cost vector ln. Also,
if an extended system with Kn = K,∀n ∈ N is contracting, the reduced
system Kn ⊆ K,∀n ∈ N is also contracting [54].
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positive probability of being selected, denoted by supp(p′n) =
{kn ∈ Kn : pn > 0}, ∀n ∈ N . Thus,

pnm(T + 1) = Λnm(Wn(T )) = e−Wnm(T )/
∑

k e
−Wnk(T )

≤ eWnk(T )−Wnm(T ) ≤ e−ζn(T )·∆l

∑
T
τ=1 κ(τ)ηn(τ)+ζn(T )·∆β ,

where the last inequality relation is due to the following:
Wnk(T )−Wnm(T ),

= ζn(T )
∑T

τ=1[κ(τ)ηn(τ)(l̂nk(τ) − l̂nm(τ))] + ζn(T ) ·∆β ,

≤ ζn(T )
∑T

τ=1[κ(τ)ηn(τ)(−∆l)] + ζn(T ) ·∆β ,
where ∆β = βnk(0) − βnm(0), if i)

∑

τ κ(τ)ηn(τ) → ∞,

ii) κ(τ)γn(τ) > τ−1, and iii) lnm(τ) − lnk(τ) ≥ ∆l

according to [7, Prop.3], Lemma 1 and Lemma 2. Then,

limT→∞ pnm(T ) = 0 which is a contradiction with

m ∈ supp(p′n), and p′ is a NE. Thus, the actual sequence

p(τ) converges toward a NE of Γ.

(ξ-equilibrium) According to Definition 3, the NE can

be satisfied with approximated one with margin ξ. Similar

to the NE, all agents need not change its strategy profile,

in ξ-equilibrium. According to [40], for any ζn > 0 and

pn, the logit choice map Λ(·) is ξ-approximate with ξ =
maxn∈N (log(|Kn|)/ζn), if the score value of the option it

picks is at most the minimum value plus ξ. In other words,

agents do not change their strategy profiles when they cannot

obtain more than ξ from other deviations, i.e., an option of

value larger than the minimum plus ξ is never chosen.

F. Proof of Proposition 2

limT→∞ p(T ) is a pure state of the form

p∗(T ) = {Λnk′(T )}n∈N expressed as follows:

Λnk′(T ) = e−W
nk′ (T )

∑
k
e−Wnk(T ) = 1/(

∑

k e
Wnk′(T )−Wnk(T )),

= 1/(1 +
∑

k 6=k′ eWnk′(T )−Wnk(T )),

≥ 1/(1 + (K − 1)maxk 6=k′ eWnk′(T )−Wnk(T )),

(i)

≥ 1/(1 + (K − 1)e−ζn·{βnk(0)−βnk′(0)+∆l·
∑

T
τ=1 κ(τ)ηn(τ)}),

(ii)

≥ 1− (K − 1)e−ζn·{βnk(0)−βnk′(0)+∆l·
∑T

τ=1 κ(τ)ηn(τ)},

where (i) is due to the sub-relations: Wnk′ (T ) −Wnk(T ) ≤
−ζn · {βnk(0) − βnk′(0) + ∆l · ∑T

τ=1 κ(τ)ηn(τ)} and

lnk(τ) − lnk′(τ) ≥ ∆l > 0, and (ii) is due to the relation

1/(1 + x) ≥ 1− x, x > 0. Then k′ is a.s a strict equilibrium

of Γ and convergence occurs at a quasi-exponential rate.

G. Proof of Proposition 3

Note that the clients inactive at τ do not update. We assume

that limτ→∞ inf ϑn(τ)/τ > 0, ∀n ∈ N satisfied if N (τ) is an

irreducible Markov chain over 2N := {N ′ ⊆ N}. Thus, when

τ → ∞, we have ϑn(τ) → ∞, i.e.,
∑∞

τ≥0 1n∈N (τ) = ∞.

For any n ∈ N , if
∑

τ κ(τ)ηn(τ) = ∞, we have
∑

τ κ(τ)ηn(τ) =
∑

τ κ(ϑn(τ))ηn(ϑn(τ))1n∈N (τ) ≤
∑

τ [maxn∈N κ(ϑn(τ))ηn(ϑn(τ))] =
∑

τ κ
∗(τ) = ∞. We

have
∑

τ [κ
∗(τ)]2 =

∑

τ [maxn∈N (τ) κ(ϑn(τ))ηn(ϑn(τ))]
2 ≤

∑

τ

∑

n∈N [κ(ϑn(τ))ηn(ϑn(τ))]
2
1n∈N (τ) ≤

|N |∑τ κ
2(τ)η2n(τ) < ∞, if

∑

τ κ
2(τ)η2n(τ) < ∞.

H. Proof of Proposition 4

Consider a sequence of strategies generated by repeated

play. For any smooth game of individual clients n ∈ N

for stage τ ∈ T , one may have the following inequalities:
∑

τ C(τ)=
∑

τ

∑

nlnk′(τ) =
∑

τ

∑

nln(k
′(τ); Θ),

=
∑

τ

∑

n[ln(k
∗; Θ)] +

∑

τ

∑

n[lnk′(τ)−ln(k
∗; Θ)],

≤ ∑

τ [λ(τ)C
∗ + µ(τ)C(τ)] +

∑

τ

∑

n[lnk′(τ)−ln(k
∗; Θ)],

≤ ∑

τ [λ(τ)C
∗ + µ(τ)C(τ)] +

∑

τ

∑

n[lnk′(τ)−ln(k
′′; Θ)],

≤ ∑

τ [λ
′C∗ + µ′C(τ)] +

∑

τ

∑

n[lnk′(τ)−ln(k
′′; Θ)],

≤ λ′∑
τ
C∗

1−µ′ +
∑

n

∑
τ

(1−µ′) [lnk′(τ)−ln(k
′′; Θ)],

=
λ′∑

τC
∗

1−µ′ +
∑

n

(1−µ′)

∑

τ [lnk′ (τ)−lnk′′(τ)],

where Θ = k′−n(τ) and lnk′(τ) = ln(k
′(τ); Θ),

a function of (k′(τ); k′−n(τ)), e.g., the cost

observed by a client n for τ with bandit feedback,
∑

τ lnk′′(τ)=
∑

τ ln(k
′′; k′−n(τ))=mink

∑

τ ln(k; k−n(τ)),
i.e., the minimum cost a client n could have achieved

by playing the best-fixed action in case the sequence

{k−n(τ)}∀τ of others’ actions and the cost function were

known in hindsight, and λ′ and µ′ are the worst case

smoothness of Γ, not necessarily context-dependent, e.g.,

regardless of resource demand and supply [57].
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