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Abstract—Semantic communication technologies enable wire-
less edge devices to communicate effectively by transmitting
semantic meaning of data. Edge components, such as vehicles
in next-generation intelligent transport systems, use well-trained
semantic models to encode and decode semantic information
extracted from raw and sensor data. However, the limitation
in computing resources makes it difficult to support the training
process of accurate semantic models on edge devices. As such,
edge devices can buy the pretrained semantic models from
semantic model providers, which is called “semantic model
trading”. Upon collecting semantic information with the semantic
models, the edge devices can then sell the extracted semantic
information, e.g., information about urban road conditions or
traffic signs, to the interested buyers for profit, which is called
“semantic information trading”. To facilitate both types of the
trades, effective incentive mechanisms should be designed. Thus,
in this paper, we propose a hierarchical trading system to support
both semantic model trading and semantic information trading
jointly. The proposed incentive mechanism helps to maximize
the revenue of semantic model providers in the semantic model
trading, and effectively incentivizes model providers to partic-
ipate in the development of semantic communication systems.
For semantic information trading, our designed auction approach
can support the trading between multiple semantic information
sellers and buyers, while ensuring individual rationality, incentive
compatibility, and budget balance, and moreover, allowing them
achieve higher utilities than the baseline method.

Index Terms—Semantic communication, incentive mechanism,
auction

I. INTRODUCTION

With the advancement of sixth-generation (6G) mobile

communication technology, data transmission rate in the con-

ventional communication systems is increasing but approach-

ing the Shannon limit. Meanwhile, the remaining available
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spectrum resources are becoming increasingly scarce. To

solve this dilemma, semantic communication technologies are

proposed [1], which aims to transmit the extracted semantic

information relevant to the communications goal. Because the

data amount that needs to be transmitted can be reduced

significantly while ensuring the effectiveness of communica-

tions [2], semantic communications can be widely used in

intelligent wireless networks, to enable smart transportation

[3], smart logistic [4], smart cities [5], smart homes [6], and

smart healthcare [7].

Existing semantic communication systems [2], [8] are pre-

trained with labeled datasets with certain channel models.

However, a main drawback is that the accuracy and perfor-

mance of a pretrained semantic model decrease when the back-

ground knowledge or communication environment changes,

i.e., mismatch between the knowledge base/channel model

used in the training and the actual knowledge base/channel

model. To reduce the gap in performance, fine-tuning of the

model parameters can be done based on the real channel

models [9] and new background knowledge [2]. However, edge

and Internet of Things (IoT) devices with limited computation

power might not have enough resources for fine-tuning. More-

over, the results of fine-tuning depend highly on the amount

of labeled data of the new knowledge base. To solve the afore-

mentioned problems, inspired by the model trading framework

in collaborative edge learning [10], we can adopt a trading sys-

tem in which model providers trade the trained model to other

devices. Specifically, the semantic model provider has more

resources to train quality semantic models with the relevant

knowledge base and channel models, and the edge devices

can obtain the semantic model (semantic encoder/decoder)

from the model providers. Using the semantic model, edge

devices can extract semantic information from the collected

raw data. This enables semantic information exchange between

edge devices. Furthermore, as the semantic information is

helpful for the decision making of smart agents [11], the

trading of semantic information should also be studied. Using

the semantic models, the edge devices collect and trade the

semantic information with interested information buyers. For

example, one vehicle can buy semantic information [12], [13]

from nearby vehicles/smart sensors about the conditions of the

surrounding environment.

To promote the above two types of trade in the seman-

tic communication system, i.e., semantic model trading and

semantic information trading, we should design novel and

effective incentive mechanisms:

1) Semantic model trading: To encourage the participation
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of semantic model providers, incentive mechanisms are

designed so that they are rewarded for supplying quality

semantic models. In general, edge devices are willing to

pay more for semantic models that can achieve better

semantic performance. We are the first to propose a deep

learning (DL) based auction mechanism to determine an

allocation of the semantic model to the edge devices

and the price to be paid by the edge devices to the

model providers. We show analytically that the DL-

based auction attains the properties of truthfulness while

maximizing the revenue of the model providers.

2) Semantic information trading: To facilitate the semantic

information trading between multiple semantic informa-

tion buyers and edge devices, e.g., vehicles that are

interested in collecting semantic information about the

conditions of the surrounding environment [12], [13],

we introduce a double auction mechanism to model the

competition between the buyers and edge devices. In the

auction, we propose semantic based valuation functions,

i.e., the valuation of the information is a function of

semantic performance of the edge devices. In particular,

the semantic information buyers are willing to pay more

for the semantic information with higher accuracy, and

hence the edge devices have more incentive to obtain

better models from the semantic model trading. More-

over, the proposed double auction mechanism shows the

desired properties of individual rationality, incentive com-

patibility, and budget balance, which are all significant

properties to achieve sustainable and rational trading.

While many recent works have focused on improving the

performance of semantic communication systems [1], [2],

[14], few works have addressed the designs of incentive

mechanisms for semantic communication systems. By achiev-

ing the aforementioned two kinds of trade, we propose a

novel hierarchical trading system to enhance the economically-

sustainable development of semantic communication systems.

The main contributions of our paper are:

• We propose an incentive design framework for the se-

mantic model trading and semantic information trading to

support the deployment of semantic communication sys-

tems. Our designed mechanisms support the development

of semantic communication systems by motivating the

participation of model providers to build and share high-

quality semantic engines, buyers to acquire relevant and

useful semantic information, and semantic information

sellers to facilitate other stakeholders in the semantic

information exchange.

• We model the competition in the semantic model trading

and semantic information trading with auction mecha-

nisms. Different from conventional auctions, our auction

can maximize the revenue of semantic model providers

while achieving the properties of individual rationality

and incentive compatibility. Simulation results are pro-

vided based on a case study on semantic text transmission

where we derive the valuation functions based on the sen-

tence similarity score and bilingual evaluation understudy

(BLEU) score [15].

• We propose an effective feature reduction method for

data transmission under a limited data transfer budget.

In contrast to existing works of feature reduction tech-

niques for semantic communication systems [16], [17],

our method does not increase communication cost and

reduce the performance gap between partial feature and

full feature.

Compared with our previous work [18], the significant exten-

sions in this paper include:

• In contrast to previous work in which the incentive

mechanism is customized for wireless powered devices,

we propose a general framework that can be applied to

semantic communication systems with different purposes.

• While the previous work focuses on semantic information

transfer, we consider both and joint semantic model

trading and semantic information trading in this paper.

• To model realistic semantic communication systems, mul-

tiple semantic information buyers and sellers are consid-

ered instead of a single buyer setting in the previous work.

Our paper is organised as follows. In Section II, we discuss

the related works of semantic communication systems and

incentive mechanism design. In Section III, we detail the

system model and problem formulation. In Section IV, we

present a case study of semantic model trading and semantic

information trading for semantic text transmission. In Section

V, we present the numerical results, and Section VI concludes

the paper.

II. RELATED WORK

A. Vehicular Networks

With the development of vehicular infrastructure in recent

years, vehicles can be seen as important network players with

computing, caching and communication capabilities [19], [20].

However, as the number of vehicles increases, the vehicular

network relies heavily on reliable real-time communication

and interactions for complex operations [21], [22], such as

route planning and collision avoidance. Thus, timely and

accurate information updates are vital to the development of

the vehicular networks. This implies that the conventional

communication paradigm which seeks the lowest latency is

no longer a sustainable development direction. To make fast

and accurate decisions in vehicular networks, it is important

to leverage the semantic meaning of information [23]. The

authors in [24] design a resource allocation algorithm for

semantic video transmission in vehicular networks. By us-

ing the proposed algorithm [24], the semantic understanding

accuracy of the video transmission is optimized by a multi-

agent deep Q-network. The simulation results show that the

proposed method can achieve as high as 70% improvement for

the density of correctly detected objects, compared with the

conventional QoS and QoE based resource allocation methods.

However, it is not realistic to train a usable semantic model

for each vehicle, due to the limited computing resources

and the dynamic positioning of vehicles [25]. Therefore, we

will consider a semantic model trading system in this paper.

Moreover, considering the importance of semantic information

in the vehicular networks, vehicles can then sell the semantic
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information to potential buyers. The trading of semantic in-

formation is gaining attraction especially for the sustainable

development of large-scale multi-agent systems.

B. Deep Learning Enabled Semantic Communication Systems

Conventional communication systems focus on transmitting

bits or symbols with minimum error from the transmitter to

the receiver, and the performance is evaluated at the bits or

symbols level. In contrast to the traditional communication

systems, semantic communication system aims to communi-

cate at the semantic level, where performance is evaluated by

the recovery of the meanings of the data instead of bits ac-

curacy. Semantic communication systems for text [2], speech

signals [8], and multimodal data [26] first encode the data by a

semantic encoder and send the encoded semantic information

to the receivers. The receivers then decode the received signals

with semantic decoders to recover the original data. Typically,

the semantic encoders and decoders are implemented by end-

to-end DL networks and trained with labeled data.

To improve the encoding efficiency, several works focus on

reducing the size of the data during transmission. The authors

in [16] mask the bits according to the original sentence length

to save the transmission resources. For the image classification

task, the authors in [17] use the gradient of the neural network

to select import features. However, the proposed method

requires extra storage cost to store the gradients of weights of

the network. Most of the existing data reduction techniques are

implemented together with the training process. A drawback

is that, after the model is trained and parameters are fixed,

further reduction of data size degrades the performance of

the networks. To solve this problem, we develop an effective

data reduction technique to reduce the performance gap in this

paper.

C. Incentive Mechanism Design

In real-world settings, data transmissions are limited by

the communication resources such as bandwidth and energy.

Incentive mechanisms are designed to encourage certain par-

ties to contribute to a communication network. For example,

in a multi-node wireless powered communication network,

selfish wireless nodes are not willing to charge other nodes

by consuming their resources. To encourage the participation

of these nodes, [27] proposed incentive schemes to deal with

the selfishness of wireless nodes with an Age of Information

(AoI) based utility functions. In collaborative edge learning,

incentive mechanisms are used to incentivise the data owners

to provide the updated model parameters for global model

aggregation [28].

Given that most of the communication networks are using

conventional communication systems, semantic-aware incen-

tive mechanisms are needed to be designed to motivate the

participation of all parties in the development of semantic

communication systems. We propose auctions as incentive

mechanisms in the semantic model trading and semantic infor-

mation trading, and derive the value of the semantic model and

semantic information with semantic-based valuation functions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a semantic communication network (Fig. 1)

that consists of a set M = {1, 2, . . . ,m, . . . ,M} of M edge

devices. To perform semantic encoding and decoding, the edge

devices have to obtain the trained semantic models from the

semantic model providers. Model trading is a common practice

in collaborative edge learning, and in particular, federated

learning [10], where the model providers (sellers) receive

incentives for providing trained models to the participants

(buyers). In the case of semantic communications, the models

being traded are the semantic encoders and decoders used for

semantic information encoding and decoding, respectively. De-

vices with limited computation and communication resources

can obtain high-quality semantic models from model trading.

Moreover, it is shown that mismatches in communication

channels and background knowledge of the communication

environment degrade the performance of a pretrained se-

mantic communication model [2]. Therefore, trading with

model providers that perform machine learning training based

on the relevant background knowledge and communication

environment helps to improve the semantic performance of

the devices. For example, devices can trade with the model

providers that collect training data from the same certain

geographical area as the buyers [29].

To encourage the participation of model providers, incentive

mechanisms should be designed to ensure that model providers

are appropriately rewarded from the semantic model trading

process. Similar to incentive mechanisms designed for the

model trading in FL, the devices have to compete to obtain

the semantic models from the semantic model providers.

Intuitively, the devices are willing to pay more if the model

obtained can achieve high semantic performance.

Besides, there exists a set N = {1, 2, . . . , n, . . . , N} of

N semantic information buyers that are interested to obtain

semantic information from the devices. For example, this

may be semantic information trading between UAVs in real

time [11], and collection of semantic information for image

classification tasks for autonomous vehicles [17]. In this case,

incentive mechanism design is also needed to facilitate the

trading of such semantic information.

In the following, we propose two auction mechanisms for

semantic model trading and semantic information trading. In

the semantic model trading, we adopt a DL-based auction

mechanism to derive the semantic-aware valuation of the

semantic models. The semantic model trading could be a

channel to supply the semantic model for the devices to extract

semantic information. Then, the semantic information from

devices with higher accuracy is more valuable to semantic in-

formation buyers. For semantic information trading, we study

the double auction mechanism for information trading between

multiple buyers and multiple semantic information sellers. We

further investigate how the semantic model obtained from the

semantic model trading affects the results in the semantic

information trading.
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Fig. 1. The system model which includes semantic model trading and semantic information trading. In the semantic model trading, edge devices trade with
semantic model providers to obtain semantic encoders/decoders for semantic communications. In the semantic information trading, edge devices equipped
with semantic encoders/decoders trade semantic information with buyers.

B. Auction for Semantic Model Trading

The valuation of the devices for the model provided by the

service provider is given by:

vm = Ap −Am, (1)

where Ap is the accuracy of the model from the model

provider, and Am is the accuracy of the current model of

device m (Am = 0 if the device does not own any model). The

accuracy metric can be the text similarity score for semantic

text transmission [2], signal-to-distortion ratio (SDR) for se-

mantic speech signal transmission [8], and answer accuracy in

visual question answering (VQA) [26]. In every round of the

single-item auction, the model provider, i.e., the auctioneer

collects bids (b1, b2, . . . , bM ) from all smarts devices, i.e.,

bidders, and then decides the winner, m∗, and corresponding

payment price, θm∗ . The utility of the device is given by

um = vm − θm∗ , if the device is the winner and um = 0
otherwise.

Traditional single-item auctions such as the first-price auc-

tion and Second-Price Auction (SPA) can be used to determine

the winner and price. For an auction to be optimal [30], it

should attain the properties of incentive compatibility and

individual rationality. Individual rationality guarantees that the

utility of the devices is non-negative by participating in the

auction, i.e., um ≥ 0. Incentive compatibility ensures that

each device submits bids according to their true valuations,

respectively, i.e., bm = vm, regardless of the actions of other

devices, and the utility of each device is maximized by sub-

mitting the truthful bid. In the first-price auction, the highest

bidder wins and pays the exact bid submitted, maximizing the

revenue gain of the model provider but does not guarantee

incentive compatibility. In SPA, the highest bidder wins but

pays the price of the second highest bidder. SPA ensures

incentive compatibility but does not maximize the revenue of

the model provider.

We adopt a DL-based optimal auction mechanism [31] that

can maximize the revenue of the seller while achieving the

Algorithm 1 DL-Based Auction (DLA) Algorithm

Input: Bids of devices b = (b1, . . . , bm, . . . , bM )
Output: Winner and Payment Price

1: Initialization: w = [wm
qs] ∈ R

M×QS
+ ,β = [βm

qs] ∈
R

M×QS

2: while Loss function R̂(w,β) is not minimized do

3: Compute transformed bids bm = Φm(bm) =
minq∈Q maxs∈S(w

m
qsbm + βm

qs)

4: Compute the allocation probabilities zm(b) =
softmax(b1, b2, . . . , bM+1;κ)

5: Compute the SPA-0 payments θ0m(b) =
ReLU(maxj 6=m bj)

6: Compute the conditional payment θm = Φ−1
m (θ0m(b))

7: Compute the loss R̂(w,β)
8: Update parameters w and β using SGD optimizer

9: end while

10: return Winner m∗ and payment price θm∗

properties of incentive compatibility and individual rationality.

The auctioneer (i.e., the model provider) does not have a

priori knowledge about the bidders and optimal decisions in

determining the winner. Nevertheless, the model provider can

learn from experience and adjust the auction decision using

DL-based optimal auction. The DL-based auction consists

of three major functions: monotone increasing function, Φm,

allocation rule, zm, and conditional payment rule, θm. Firstly,

the input bids, b = (b1, . . . , bm, . . . , bM ), are transformed by

Q groups of S linear functions, followed by the min and max
operations, i.e., the transformed bid,

bm = Φm(bm) = min
q∈Q

max
s∈S

(wm
qsbm + βm

qs), (2)

where wm
qs ∈ R+, q = 1, . . . , Q, s = 1, . . . , S and βm

qs ∈ R,

q = 1, . . . , Q, s = 1, . . . , S are the weight and bias to be

trained, respectively. The linear functions are strictly monoton-

ically increasing functions to ensure the properties of incentive

compatibility and individual rationality of the auction:
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Theorem 1. ( [31]) For any set of strictly monotonically

increasing function {Φ1, . . . ,ΦM}, an auction defined by

allocation rule zm = z0m ◦ Φm and the payment rule θm =
Φ−1

m ◦ θ
0
m ◦ Φm has the properties of incentive compatibility

and individual rationality, where z0 and θ0 are the alloca-

tion and payment rule of a second price auction with zero

reserve, respectively, and ◦ indicates function composition, i.e.,

(f ◦ g)(x) = f(g(x)).

To ensure that the auction learnt by the network achieves

incentive compatibility and individual rationality, we constrain

the allocation and payment rules of the network by following

Theorem 1. After the monotone transformation, the trans-

formed bids are passed to separate networks that approximate

the allocation and payment rule. The allocation rule which

follows the second price auction with zero reserve (SPA-0)

allocation rule is approximated by a softmax function [32] to

maximize the allocation probability of the highest bid, i.e.,

zm(b) =
eκbm

∑M+1
j=1 eκbj

, (3)

where b = (b1, . . . , bM+1), bM+1 is an additional dummy

input, and κ determines the quality of the approximation. The

higher the value of κ, the higher the accuracy of approximation

but the allocation function is less smooth and harder to

optimize. The SPA-0 payment rule is given by:

θ0m(b) = ReLU(max
j 6=m

bj), (4)

where ReLU(x) = max(x, 0) is used to ensure that the

payment is non-negative. To obtain the payment price, the

inverse transformation function is applied on the SPA-0 price

of the transformed bids, i.e.,

θm = Φ−1
m (θ0m(b)), (5)

where the inverse transformation function can be expressed

by:

Φ−1
m (y) = max

q∈Q
min
s∈S

(wm
qs)

−1(y − βm
qs). (6)

To maximize the revenue, the network optimizes a loss

function that is the negative value of the seller revenue. The

loss function is given by

R̂(w,β) = −
M∑

m=1

zm(b)θm. (7)

C. Auction for Semantic Information Trading

We consider N semantic information buyers and M devices,

where the buyers are interested in buying semantic information

from the devices. Consider that the devices obtain the se-

mantic models from the semantic model trading, the semantic

information buyers are willing to pay more for the semantic

information from devices with high accuracy, Am. We propose

a single-round double auction for the one-to-one mapping of

the buyers and the sellers. In the double auction, there are

• A set of semantic information buyers N =
{1, . . . , n, . . . , N}

• A set of semantic information sellers M =
{1, . . . ,m, . . . ,M}, the devices that provide semantic

information to the buyers

• A trusted third party, the auctioneer

Based on the semantic performance, each buyer has differ-

ent preferences for the devices. Let bn = (b1n, . . . , b
M
n ) denote

the bid vector of buyer n, where bmn is the bid of buyer n for

device m, i.e., the price that buyer n is willing to pay for

receiving semantic information from device m.

Let a = (a1, . . . , aM ) denote the ask vector of the devices,

where am is the ask of device m, i.e., the price that device m
is willing to receive for trading the semantic information. The

value of the semantic information from device m to buyer n
can be expressed as

vmn = Am
n (Am), (8)

where Am
n is the accuracy of the semantic information trans-

mitted by device m to buyer n, and Am (determined by the

semantic model trading) is the upper bound of the achievable

accuracy of current semantic model.

Let pn be the price that buyer n pays, the utility of buyer

n is given by

ub
n =

{
vmn − pn if buyer n wins the auction,

0 otherwise.
(9)

Note that to compare the utility of buyer n when it wins

different devices, we also use ub
n,m and ub

n,m′ to denote the

utility of buyer n when it wins to obtain semantic information

of device m and m′, respectively.

Following [33], the data collection cost is given by

cdm = dmγm, (10)

where dm and γm are the data size and unit data cost,

respectively. The computational cost can be formulated as

ccpm = dmΓm, (11)

where Γ is the unit computational cost to extract semantic

information from the collected data. This cost can be due

to the energy consumption [28] or edge/cloud computation

resource rental fee [34]. The communication cost for device

m to transmit the semantic information is

ccmm = Pm

Nm

R
νm, (12)

where Pm is the communication power, Nm is the number

of bits used to represent the semantic information, R is the

transmission rate in bits per second, and νm is the unit energy

cost for communication. The cost of the semantic model is

given by

cmd
m =

θm
Tm

, (13)

where θm is the price paid for the current semantic model

(determined by the model trading auction in Section III-B) and

Tm is the expected number of transmissions with the model.

The total cost for device m to transmit the semantic infor-

mation is then defined as follows:

Cm = cdm + ccpm + ccmm + cmd
m

= dmγm + dmΓm + Pm

Nm

R
νm +

θm
Tm

.
(14)
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Let ym be the payment to device m, the utility of the device

m is given by

us
m =

{
ym − Cm if device m wins the auction,

0 otherwise.
(15)

The proposed double auction has two stages, the candidate-

determination and pricing stage, and the candidate-elimination

stage. The algorithms for the two stages are shown in Al-

gorithms 2 and 3 respectively. Note that the DLA refers to

the DL-Based Auction in Algorithm 1. In the candidate-

determination and pricing stage, the auctioneer determines

the buyer candidates of each device, the prices that the buyer

candidates pay, and the payment to be rewarded to the devices.

Let n and θn denote the winning buyer and payment price

determined by DLA, respectively. For each device m, all bids

are sent to DLA to determine the winner and payment price. If

the payment price is not lower than the ask am, i.e., θn ≥ am,

then the buyer n is added to the set of buyer candidates Nc

with price pn = θn, and device m is added to the set of seller

candidates Mc with payment ym = θn.

Algorithm 2 Candidate Determination and Pricing

Input: N ,M,b, a
Output:Nc,Mc,Pc,Yc, σ̂

1: for m ∈ M do

2: n, θn = DLA({bmn , ∀n ∈ N})
3: if θn ≥ am then

4: σ̂(m) = n, buyer n is added into Nc, and seller m
is added into Mc

5: pn = ym = θn
6: pn and ym are added into Pc and Yc, respectively

7: end if

8: end for

After the first stage, each buyer candidate may win more

than one device. In the candidate-elimination stage, for each

buyer candidate, the algorithm selects the best device such

that the buyer yields the highest utility in Equation (9). If

more than one device yields the same highest utility for the

buyer, the best device is randomly selected.

In the following, we prove that the double auction mech-

anism in our model satisfies the properties of individual

rationality, incentive compatibility, and budget balanced.

Theorem 2. The proposed double auction mechanism is indi-

vidually rational. All winning buyers and sellers are rewarded

with non-negative utilities i.e. pn ≤ bmn and ym ≥ am

Proof. From Algorithm 2, since DLA has the property of

individual rationality [31], we have θn ≤ bmn . Therefore

pn ≤ bmn and ym ≥ am, individual rationality is satisfied in the

candidate determination and pricing stage. Since Algorithm

3 does not change the value of pn and ym, the individual

rationality is preserved after the candidate eliminations.

Theorem 3. The proposed double auction mechanism is

incentive compatible. All buyers and sellers submit their bids

and asks truthfully as they cannot improve their utilities by

Algorithm 3 Candidate-elimination

Input: Nc,Mc,Pc,Yc, σ̂,b
Output:Nw,Mw,Pw,Yw

1: Nw ← Nc,Mw ←Mc,Pw ← Pc,Yw ← Yc, σ ← σ̂
2: for any two seller m,m′ ∈ Mw,m 6= m′ do

3: if σ(m) = σ(m′) then

4: if ub
n,m = ub

n,m′ then

5: m∗ ← randomly selected from {m,m′}
6: else

7: m∗ ← arg mink∈{m,m′} u
b
n,k

8: end if

9: end if

10: Mw ←Mw \ {m∗}
11: Pw ← Pw \ {pm∗}
12: Yw ← Yw \ {ym∗}
13: end for

submitting bids and asks that are different from their true

valuations.

Proof. We prove the incentive compatibility by the following

lemmas:

1) The proposed double auction mechansim is truthful for

the sellers (as shown in Lemma 1).

2) The proposed double auction mechanism is truthful for

the buyers (as shown in Lemma 2).

Lemma 1. The proposed double auction mechanism is truthful

for the sellers.

Proof. To prove that the proposed double auction mechanism

is truthful for the sellers, we discuss the three possible out-

comes for the sellers in the following subsets:

1) Subset Mw, sellers that win the auction,

2) Subset Mc \Mw, sellers that are selected as candidates

but are eliminated during the candidate elimination stage,

and

3) SubsetM\Mc, sellers that are not selected as candidates.

In each of the subsets, we discuss the cases where the sellers

bid untruthfully. In each case, we show that the sellers cannot

achieve higher utilities with the untruthful bids. Note that tilde

·̃ is shown for the notations to indicate the outcomes of the

untruthful cases.

1) For seller m ∈ Mw:

Case 1. Seller m does not win the auction with untruthful

ask, ũs
m = 0 ≤ us

m.

Case 2. Seller m wins the auction with untruthful ask. In

this case, the payment does not change because the input

bids to DLA are not changed, i.e., ũs
m = us

m.

2) For seller m ∈Mc\Mw, changing ask does not change the

price as discussed in the case of seller m ∈ Mw. Therefore

seller m ∈Mc \Mw does not win the auction regardless

of the value of am, ũs
m = us

m = 0.

3) For seller m ∈ M \Mc:

Case 1. Seller m does not win by asking untruthfully, i.e.,

m /∈ M̃w, therefore the utility remains unchanged, ũs
m =

us
m = 0.
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Case 2. Seller m wins by asking untruthfully, i.e., m ∈
M̃w. Let buyer n be the winner of semantic information

from m with price p̃n = ỹm. To win the auction, m has

to ask lower than the true valuation such that ãm < Cm.

As the payment is not affected by ãm, we have ỹm = ym
and since m does not win by asking truthfully, ym < Cm,

therefore m suffers negative utility in this case, i.e., ũs
m =

ỹm − Cm < 0 = us
m.

Therefore we can conclude that the sellers cannot obtain a

higher utility by asking untruthfully.

Lemma 2. The proposed double auction mechanism is truthful

for the buyers.

Proof. To prove that the proposed double auction mechanism

is truthful for the buyers, we discuss the two possible outcomes

for the buyers in the following subsets:

1) Subset Nw, buyers that win the auction, and

2) Subset N \ Nw, buyers that lose the auction.

In each of the subsets, we discuss the cases where the buyers

ask untruthfully. In each case, we show that the buyers cannot

achieve higher utilities with the untruthful asks. Note that tilde

·̃ is shown for the notations to indicate the outcomes of the

untruthful cases.

1) For buyer n ∈ Nw, assuming n wins seller m by bidding

truthfully. Let us consider the following cases when buyer

n bids untruthfully:

Case 1. Buyer n loses with untruthful bid, ũb
n = 0 ≤ ub

n.

Case 2. Buyer n wins the same seller m with untruthful

bid, given individual rationality property of DLA, we have

ũb
n ≤ ub

n.

Case 3. Buyer n wins with a different seller m′ with

untruthful bid. Let us consider the following cases when

buyer n bids truthfully:

• Seller m′ ∈ Mc and σ̂(m′) = n. Since buyer n wins m
in the truthful case, we have ub

n,m′ ≤ ub
n,m. Given that

DLA has the property of individual rationality, we have

ũb
n,m′ ≤ ub

n,m′ . Thus we know that ũb
n,m′ ≤ ub

n,m.

• Seller m′ ∈ Mc and σ̂(m′) 6= n. It means that there

is another buyer candidate n′ with higher or equal bid

for m′, i.e., bm
′

n′ ≥ bm
′

n . When buyer n wins m′ by

bidding untruthfully, since DLA satisfies the individual

rationality constraint, we have ũb
n,m′ ≤ 0. From Theorem

2, we know that ub
n,m ≥ 0 (all winning buyers and sellers

are rewarded with non-negative utility), thus we have

ũb
n,m′ ≤ ub

n,m.

• Seller m′ /∈ Mc and buyer n wins m′ by bidding

untruthfully. Since DLA has the property of individual

rationality, we have ũb
n,m′ ≤ 0. From Theorem 2, we

know that ub
n,m ≥ 0, thus we have ũb

n,m′ ≤ ub
n,m.

2) For buyer n ∈ N \ Nw with utility ub
n = 0. We consider

the following cases when buyer n bids untruthfully.

Case 1. Buyer n loses with untruthful bid, ũb
n = 0 = ub

n.

Case 2. Buyer n wins seller m by bidding untruthfully.

Since DLA has the property of individual rationality, we

have ũb
n ≤ 0 = ub

n.

Therefore we can conclude that the buyers cannot obtain a

higher utility by bidding untruthfully.

Theorem 4. The proposed double auction mechanism is

budget balanced. The total price paid by the winning buyers

is not less than the total payment to the winning sellers, i.e.,∑
n∈Nw

pn ≥
∑

m∈Mw
ym.

Proof. According to Algorithms 2 and 3, the price that win-

ning buyers pay and the payment received by winning sellers

are equal for every winning seller-buyer pairs. Thus, we have

∑

n∈Nw

pn −
∑

m∈Mw

ym = 0. (16)

We can conclude that the double auction mechanism is budget

balanced.

In Algorithm 2, since there are M sellers in setM, the time

complexity of the candidate determination and pricing stage is

O(M). In Algorithm 3, we know that |Mc| ≤ |M| = M . In

the worst case, the for-loop runs for
M(M−1)

2 times. Therefore,

Algorithm 3 has the time complexity of O(M(M−1)
2 ) =

O(M2). Overall, the proposed double auction mechanism is

a polynomial time algorithm with the time complexity of

O(M2).

IV. CASE STUDY: SEMANTIC TEXT TRANSMISSION

In this section, we apply the proposed auction mechanisms

to the semantic text transmission. We derive the valuations of

the semantic model trading and semantic information trading

for semantic text transmission.

A. Deep Learning Enabled Semantic Communication Systems

We consider the M devices perform text data transmission

with DL enabled semantic communication systems, e.g., voice

controlled devices (Google Nest Hub 1, Amazon Echo 2, and

Apple HomePod 3). In DL enabled semantic communication

system, collected sentences, S = [s1, s2, . . . , sNs
], are en-

coded by semantic encoder and channel encoder. The encoded

signal can be represented by

X = encc(encs(S)), (17)

where X ∈ R
Ns×L×D, Ns is the number of sentences, L is the

sentence length, D is the output dimension of channel encoder,

encc(·) is the channel encoder, and encs(·) is the semantic

encoder. Note that all inputs are padded to length L before

passing to the encoders. After winner determination of the

double auction, winning devices transmit encoded information

to the winning buyers. At the buyer, signal received can be

expressed as

Y = HX+A, (18)

1https://www.cnet.com/home/smart-home/how-to-set-up-your-new-google-
nest-hub-or-nest-hub-max/

2https://www.androidauthority.com/amazon-echo-5th-gen-3095027
3https://www.apple.com/sg/newsroom/2021/10/apple-introduces-homepod-

mini-in-new-bold-and-expressive-colors/



8

where H is the channel gain between the transmitter and

receiver and A ∼ N (0, σ2
n) is the additive white Gaussian

noise (AWGN). The decoded sentences are given by

Ŝ = decs(decc(Y)), (19)

where decs(·) and decc(·) are the semantic decoder and

channel decoder of the receiver.

We adopt the network architecture of DeepSC [2] where the

semantic encoder and decoder are implemented as multiple

Transformer [35] encode and decode layers, and channel

encoder as dense layers with different units. Our incentive

mechanism can be easily extended to other network architec-

tures by following the same evaluation procedure.

The BLEU score and the sentence similarity are two of

the critical performance metrics of the text-based semantic

communication system. The BLEU score measures an exact

matching of words in the original and recovered sentences

without considering their semantic information. In contrast to

the BLEU score, the sentence similarity is calculated by the

cosine similarity of the extracted semantic features from origi-

nal and recovered sentences. In our model, a pre-trained Bidi-

rectional Encoder Representations from Transformers (BERT)

[36] model is used for the semantic features extraction. Let

s and ŝ denote one sentence from S and Ŝ, respectively. The

BLEU score can be expessed as

logBLEU = min

(
1−

l̂
s

ls
, 0

)
+

I∑

i=1

ui log pi, (20)

where ls and l̂
s

are the lengths of the original and recovered

sentences respectively, ui is the weight of i-grams, and pi is

the i-grams score, which is given by

pi =

Ki∑

k=1

min(Ck(ŝ), Ck(s))

Ki∑

k=1

min(Ck(ŝ))

, (21)

where Ki is the number of elements in i-th grams, and Ck(·)
is the frequency count function for the k-th element in i-th
grams. The sentence similarity is given by

similarity(ŝ, s) =
B(s) ·B(ŝ)T

‖B(s)‖‖B(ŝ)‖
, (22)

where B(·) is a pre-trained BERT model used to measure the

sentence similarity.

In general, to obtain a higher BLEU score and similarity

score, we need to increase the output dimension D of the

encoder [36]. However, increasing D comes at the cost of

a larger data size, and the amount of data that devices can

send is limited by the communication resources, e.g., energy

supply to the devices [18]. Specifically, the BLEU score and

the similarity score of device m can be expressed as

sm = fsim(D) = fsim(
Nm

Ns × L× bf
), (23)

and

BLEUm = fBLEU (D) = fBLEU (
Nm

Ns × L× bf
), (24)

respectively, where fsim(·) and fBLEU (·) are simple lookup

to obtain the scores of the model, bf is the number of bits used

by a unit feature, and Nm is the total number of bits that the

device m can transmit. The values of fsim(·) and fBLEU(·)
can be obtained by using different output dimension D to

evaluate the similarity score and the BLEU score, respectively.

A unit feature is a single entry of X ∈ R
Ns×L×D, and bf is

the number of bits used to represent a float type data. In our

model, the data size in Equations (10) and (11) is given by

the number of words collected, i.e., d = Ns × L. The total

number of bits affects the communication cost as shown in

Equation (12).

From Equations (23) and (24), it is clear that the scores

are affected by the size of data and model performance. Since

each device has a different model performance and data to

be sent, the similarity score and the BLEU score are different

among the devices.

B. Semantic-Aware Valuation for Auctions

In the semantic model trading, the devices bid according to

the performance of the semantic model (Equation (1)), i.e.,

bm = vm = Ap −Am. (25)

The accuracy of the model from the model provider can be

expressed as follows:

Ap = λmsp + βmBLEUp, (26)

where sp and BLEUp are the similarity score and the BLEU

score achievable by the model provided, respectively, λm is

the preference for the similarity score by the device m, βm

is the preference for the BLEU score by the device m, and

λm + βm = 1. If βm > λm, it indicates that the device

has more interest in the exact recovery of words whereas

λm > βm indicates higher interest in the matching of the

semantic meaning. For example, some medical devices [37]

would have higher βm because the exact recovery of medical

terms is more important, whereas devices that collect data for

text classification [38] would have higher λm.

The accuracy of the current model of device m is given by:

Am = λmsm + βmBLEUm, (27)

where sm and BLEUm are the similarity score and the

BLEU score achievable by the current model. In the semantic

information trading, based on the communication environment

and resources, each device can achieve different semantic

performance when transmitting information to the buyers.

Therefore, based on the semantic performance, each buyer has

different preferences for the devices.

The value of the semantic information from device m to

buyer n is given by:

vmn = λnsm + βnBLEUm, (28)

where λn is the preference for the similarity score, and βn

is the preference for the BLEU score by the buyer n. As the

auction is truthful for all buyers and sellers, the buyers and

sellers submit bids and asks according to their true valuations,

i.e., bmn = vmn and am = Cm. Again, the cost of collecting

the information by device m can be obtained from Equation

(14).
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C. Feature Reduction Technique

Let Nm denote the number of bits that device m can send to

the buyer. Based on the bit budget Nm, not all features of the

encoded information can be sent. However, the semantic com-

munication model is trained with a fixed number of features

with output dimension D. A sample of feature representation

output by semantic encoder with 16 features is shown in

Fig. 2. Sentences decoded from partial features have a lower

similarity score and BLEU score than that decoded from all

features. Deep neural networks need to fine-tune the model

parameters to reduce the gap in performance. Unfortunately,

devices that operate on limited resource might not be able to

fine-tune the model in real-time because it is both time and

energy consuming. Therefore an effective feature reduction

method is required for these devices to minimize the gap in

performance when they have to communicate with a limited

bit budget.

We propose a simple feature reduction method where the

performance can be adjusted by a regularization technique

[39] during the training of the model. Consider that the model

on device is pre-trained with output dimension D, under the

limited bit budget, the encoded signal, X ∈ R
Ns×L×D is

reduced to X
′ ∈ R

Ns×L×D′

, where 0 < D′ < D. At

the receiver, the received signal Y′ ∈ R
Ns×L×D′

is padded

with zeros to become Y ∈ R
Ns×L×D. The proposed data

reduction method is illustrated in Fig. 3. To obtain fsim(·)
and fBLEU(·), we first train the DeepSC model with the data

with dimension D and use the trained model to evaluate the

similarity scores for output dimension d, ∀d ∈ [1, D]. Then,

we can obtain fsim(·) and fBLEU (·) from the evaluation

results of test datasets.

To reduce the degradation of performance, we add a con-

trolled dropout [39] layer before the channel decoding layer of

the receiver. For example, if index di is selected by controlled

dropout, all units from (0, 0, di) to (Ns−1, L−1, di) become

zeros. The conventional dropout [40] technique randomly

drops units (Fig. 4(a)) in the training process to solve the

overfitting issue of the deep neural networks. In contrast to

conventional dropout, controlled dropout drops units inten-

tionally, i.e., dropping a selected index of a dimension, as

shown in Fig. 4(b). An illustration of the effect of controlled

dropout during training is shown in Fig. 3. In our experiments,

we drop units from a certain index of the output dimension.

As shown in [39], we can obtain a better performance than

conventional dropout when the index is randomly selected.

Following [39], the index is randomly selected with a dropout

rate, pdrop, 0 < pdrop < 1. Controlled dropout helps the model

to generalize to the reduced features during the training.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

auction mechanisms and feature reduction method. The values

of experiment parameters are presented in Table I. The similar-

ity and BLEU scores are sampled according to the simulation

settings in [28], [41] for the DL-based auction. The dropout

rate is set according to [39]. Following [33], [42], we set the

cost-related parameters in the double auction as shown in Table

I.

TABLE I
EXPERIMENT PARAMETERS [28], [33], [39], [41], [42]

Parameters Values

Similarity score coefficient, λn ∼ U [0, 1]
BLEU score coefficient, βn 1− λn

Dropout rate, pdrop 0.1
Reduced output dimension, D′ ∼ U [1, 16]
Data size, dm ∼ U [10, 100]
Unit data cost, γm 0.001
Unit computational cost, Γm 0.001
Communication power, Pm 1
Number of bits transmitted, Nm 10000
Transmission rate, R 100000
Unit energy cost, νm 0.01
Expected number of transmissions, Tm 100

A. Evaluation of DeepSC with Feature Reduction

We first investigate the improvement of semantic perfor-

mance under the proposed feature reduction method. With

the help of the DeepSC, we set the output dimension of

encoder D to 16, and train the model under AWGN channel for

200 epochs. The training and test data is obtained from the

proceedings of the European Parliament [43]. We use 7347
English sentences in the dataset for our evaluation, and use

the rest of the English sentences for training. The performance

scores are considered for the evaluation of the proposed double

auction mechanism.

As described in Section IV-C, we add a controlled dropout

layer between the physical layer and receiver. The dropout

probability is set as 0.1 which means 10% of the features

are dropped randomly in a controlled setting. We record the

similarity score and the BLEU score for the output dimensions

from 1 to 16, which is shown in Fig. 5. Regardless of

the application of controlled dropout, we observe that the

performance degrades as the output dimension decreases. The

reason is that fewer features are transmitted. However, when

the output dimension changes from 1 to 15, the performance of

model trained with controlled dropout outperforms constantly

the baseline mode. In other words, as the output dimension

decreases, the baseline model has a larger performance gap

compared to the model with controlled dropout. Specifically,

the reduction of the similarity score per output dimension is

0.05 in the baseline model and 0.04 in the proposed model.

For the reduction of the BLEU score per output dimension,

it is 0.06 for the baseline model and 0.05 for the proposed

model. This result shows that the proposed model can maintain

a similarity score of 0.80 even after 25% of feature reduction

(D = 12) whereas the baseline model can only achieve the

similarity score of 0.60 with the same output dimension. As

shown in Table II, the recovered sentence has higher similarity

when the controlled dropout is applied.

However, we notice that the best performance achieved by

the baseline model at D = 16 is slightly higher than that of

the proposed model. The BLEU score and the similarity score

for our proposed model are 0.89 and 0.91, respectively, but

both scores are 0.94 for the baseline model. The reason is that

the accuracy is slightly dropped due to the generalization of

the feature reduction. Overall, the gap in performance at fewer

output dimensions is compensated by the controlled dropout
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Fig. 2. Sample output of semantic encoder with 16 features, input sentence: “thirdly it criticises the shortcomings but in a positive manner”.
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B. Evaluation of Deep Learning based Auction Mechanism

Without loss of generality, we consider that the devices

do not own any semantic model initially, i.e., Am = 0 and

bm = vm = Ap. To obtain the bid profiles, we consider

Ap ∼ U [0, 0.4] and ∼ U [0.5, 0.9]. We collect 1000 training

samples with 10 bidders (devices) in each of the samples and

perform training for 500 epochs. From Fig. 6, we observe

that the DL-based auction can always achieve higher revenue

than that of the SPA, regardless of the values of Ap. The

reason is that the DL-based auction mechanism can adapt to

different bid profiles by optimizing the parameters in the DL

network. Moreover, we observe that, while SPA is incentive

compatible, it does not maximize the revenue of the model

providers. In contrast to SPA, the DL-based auction maximizes

the revenue of model providers while keeping the desired

properties of incentive compatibility and individual rationality,

which helps to attract more model providers to offer quality

semantic encoder/decoder for semantic communications.
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TABLE II
SAMPLE SENTENCES WITH AND WITHOUT CONTROLLED DROPOUT

Original Sentence thirdly it criticises the shortcomings but in a positive manner

Output Dimension = 15, with controlled dropout thirdly it have the shortcomings but in a positive manner

Output Dimension = 14, with controlled dropout thirdly it have the shortcomings but in a positive manner

Output Dimension = 15, without controlled dropout thirdly it forward the shortcomings but in a positive manner

Output Dimension = 14, without controlled dropout thirdly it played the shortcomings but in a off manner
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C. Evaluation of Double Auction Mechanism

To evaluate the performance of the double auction mecha-

nism, we generate 1000 samples and average the simulation

results. We set the number of sellers to M = 20 and evaluate

the performance under different number of buyers. Note that in

the following discussion, we refer semantic information buyers

as buyers and devices as sellers for simplicity.

To validate that the double auction mechanism is individ-

ually rational and budget balanced, we record the values of

ask, bid, and price in one of the samples with M = 20
and N = 10. The values are shown in Fig. 7. We observe

that there are totally 7 winning seller-buyer pairs, and the

utilities for all of the winning pairs are positive. This means

that the winning sellers are paid higher than their cost, and

the winning buyers pay no more than their true valuation for

the semantic information. Therefore, both buyers and sellers

have incentives to participate in the auction. For the losing
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Fig. 9. Average utility of winning sellers with and without deep learning
(baseline) in the double auction mechanism.
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Fig. 10. Average utility of winning sellers with different ranges of θm.

sellers and buyers, their utilities are zero. This shows that the

property of individual rationality is achieved because all of the

buyers and sellers are awarded with a non-negative utility. The

price paid by winning sellers is equal to the payment received

by the winning buyers. Thus, the budget balanced property is

satisfied.

The average utility of the winning buyers and sellers are

presented in Fig. 8, which is obtained by averaging the values

of 1000 samples. Intuitively, as the number of buyers increases,

the sellers have more choices to achieve higher utilities.

From Fig. 8, we observe that the auction mechanism helps

to increase the average utility of the winning sellers as the

number of buyers grows. Thus, our proposed mechanism can

attract more sellers to participate in the information exchange



12

2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Buyers

S
im

il
ar

it
y

S
co

re θm ≥ 0.5

θm < 0.5

(a)

2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Buyers

B
L

E
U

S
co

re

θm ≥ 0.5

θm < 0.5

(b)

Fig. 11. (a) Average similarity score of sellers (b) Average BLEU score of
sellers with different cost of the semantic model, θm.
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Fig. 12. Average number of winning sellers with and without deep learning
in the double auction mechanism.

with semantic communication systems.

To investigate the impact of DL in the double auction,

we compare the average utilities of winning sellers with

and without DL mechanism. The results without the DL

mechanism (i.e., the baseline) are obtained by using the double

auction mechanism proposed in [44]. It is shown in Fig. 9 that

the average utility of the winning sellers is higher when DL

mechanism is adopted in the double auction. The reason is

that the DL mechanism helps to maximize the revenue of the

sellers.

As shown in Fig. 10, the average utility of the winning

sellers is higher when the sellers set the payment price θm ≥
0.5. The reason is that the sellers with higher θm obtain the

semantic model which has a higher BLEU score and similarity

score. Hence the buyers are willing to pay more to obtain more

accurate information. This insight is verified in Fig. 11, in

which we can see that the similarity score and the BLEU score

are higher for sellers with θm ≥ 0.5. The higher similarity and

BLEU scores motivate the buyers to submit higher bids to the

sellers, which results in higher utilities as shown in Fig. 10.

Furthermore, it is shown in Fig. 12 that there are more sellers

with θm ≥ 0.5 from the winning sellers. In other words, the

seller with higher θm has a higher chance to win the auction,

regardless of the number of buyers.

To verify the truthfulness of the double auction, the sellers

and buyers are randomly chosen to evaluate their utilities when

their bid and ask are different from their true valuation. In Fig.

13 (a), seller m wins and gains the utility us
m = 0.12 when
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Fig. 13. Utility when asking untruthfully by (a) seller m that wins the auction,
m ∈ Mw (b) seller m that loses the auction, m /∈ Mw .
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Fig. 14. Utility when bidding untruthfully by (a) buyer n that wins seller
m in the auction, n ∈ Nw (b) buyer n that loses seller m in the auction,
n /∈ Nw .

it asks truthfully with am = Cm = 0.19. It is shown that the

utility cannot be improved by other values of ask. From Fig.

13 (b), seller m loses the auction with truthful ask us
m = 0.18

obtaining zero utility. It is shown that seller m does not obtain

a higher utility when asking untruthfully. In Fig. 14 (a), buyer

n wins seller m when it bids truthfully with bmn = vmn = 0.19
achieving a utility ub

n,m = 0.0018. There is no other higher

utility achieved when it bids untruthfully. Fig. 14 (b) shows

the scenario when buyer n does not win seller m and achieve

a non-positive utility when it bids untruthfully.

From the experiment results, we observe that the sellers that

pay higher prices for the semantic models can achieve better

similarity and BLEU scores in the double auction. It is shown

that the sellers with better performance are more likely to win

the auction and obtain higher utilities. Numerical results also

show that the proposed double auction is incentive compatible,

individually rational, and budget balanced.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed incentive mechanisms for

both semantic model trading and semantic information trading.

We developed the valuation functions for general semantic

communications, and performed a case study of the proposed

auctions for semantic text transmission. To improve the system

performance, we have proposed an effective feature reduction

method to support devices with limited transmission resources.

Simulation results show that the proposed method helps to

increase significantly the utility of devices in the semantic

information trading. Moreover, with the double auction mech-

anism, we have matched the buyers and devices effectively.

It is also shown that the revenue of the semantic model

provider can be maximized while keeping the properties of

incentive compatibility and individual rationality. For future



13

research directions, we can consider the semantic-aware incen-

tive mechanism design in non-text-based transmission such as

wireless images and video transmission, and other semantic-

based intelligent tasks.

For future works, considering that the raw data collected

from different regions decays over time, we can count the

age of information in the value functions of raw data. The

difference in the age of information can also be taken into

account in the evaluation of transmission accuracy. Moreover,

we can consider that the semantic information, which is

extracted from different types of raw data, e.g., text, image,

and audio, has difference values.
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