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Integral-based event triggering actuator
fault-tolerant control for an active suspension

system under a networked communication scheme
Fernando Viadero-Monasterio , Beatriz L. Boada , Hui Zhang , Senior Member, IEEE, and Maria Jesus

L. Boada

Abstract—This paper presents a research on the problem of
enhancing ride safety and comfort during driving of a vehicle
using an active suspension control system under a networked
communication. An integral event-triggered condition is defined
to reduce the network usage over time, a Dynamic Output
Feedback Controller is designed under the H∞ criteria and
Lyapunov-Krasovskii functionals to guarantee the system stabil-
ity, actuator faults are considered for the controller design. The
control algorithm is solved in terms of Linear Matrix Inequalities.
In order to prove a practical feasibility, control performance
characteristics for vibration suppression are evaluated under
various road conditions.

Index Terms—H∞ control, Networked Control System, Active
suspension, Dynamic Output Feedback Control (DOFC), Integral
Event-Triggering, Communication Delay

I. INTRODUCTION

Vehicle Suspension Systems (VSSs) are the link between
the vehicle chassis and the ground. They play an important
role, either while ensuring road holding and reducing the
affection of road disturbances to the passengers. Although
VSSs have evolved notoriously throughout history, they can
be divided into three groups: 1) passive; 2) semi-active and
3) active. Passive suspension systems often include springs
in order to absorb impacts and dampers to dissipate energy
and control spring motion. More modern suspensions can also
rely on an external active or semi-active control mechanism
in order to improve road holding and ride comfort. Semi-
active suspensions can vary suspension parameters such as the
damping coefficient of the shock absorber in real-time (i.e. MR
dampers). Active suspensions include actuators that can move
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the vehicle body in order to suppress the vibrations generated
by road irregularities. Active and semi-active suspensions are
proven to be more versatile, adapting the vehicle behaviour
depending on the road and driving conditions; which is im-
possible with passive systems. These kinds of VSSs rely on
a control law to govern them, which aims to enhance both
road holding and ride comfort; for this purpose, different
control algorithms can be designed such as L2 − L∞, that
is committed to ensure the system stability given the worst
disturbance case [1], however, this can lead to very conser-
vative results; Linear Quadratic-Regulator (LQR), which is
concerned about finding the optimal solution for a dynamic
system [2], nevertheless, LQR requires extensive computation,
which is not always feasible to implement in real-time; fuzzy
logic, where the control output is generated under user-defined
rules [3], however, system stability is not always guaranteed;
or Active Disturbance Rejection Control (ADRC), which has
proven to be an effective method to deal with disturbances
and modeling uncertainties [4]. This control strategy requires
the knowledge of system states, which often implies designing
observers to estimate those that can not be measured. On the
other hand, recent works state that H∞ control theory has
superiority to deal with system uncertainties and disturbances
[5], [6], leading to a robust solution obtained offline, so it does
not require extensive computational resources, and which can
be applied for state-feedback or output-feedback controllers
[7].

Since the aforementioned algorithms generate a control
output depending on the state of the system, it is necessary to
install different sensors around the plant and then transmit
the data collected to the controllers in real-time. Different
communication network solutions can be defined according
to how each element in the control loop needs to be con-
nected. When a process has to send a message to a single
listener, this system is known as point-to-point integration
architecture; which is a common solution for systems with low
complexity [8], however, its simplicity can lead to undesired
communication drops when a node is disconnected or the
data synchronization fails. Over the years, Networked Control
Systems (NCSs) have been proposed as a feasible alternative
for connecting the different elements that work together in
the control loop [9]. The main characteristic of NCSs is that
every signal is exchanged among the system’s components
in the form of information packages through a network; this
feature not only allows the components to be placed further
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from each other, but to include new devices in the network or
even facilitate the user to know the state of the system and
modify its behaviour in real-time. Since the communication
between the different elements is not an instant process, there
is going to be a delay in every package sent. As the system
complexity increases, so may do the delays over the network,
which could lead to unstable behaviour in the control loop. In
order to assure system stability, many authors have researched
on how delays can affect output performance, bounding the
maximum possible delay that the control loop could tolerate
without becoming unstable [10]. As delays increase their
duration according to the amount and size of the packages sent,
the control loop can be designed under an event-triggering
law, which neglects irrelevant data packages, reducing the
Transmission Rate (TR) [11]–[14]. This data transmission law
is a variable-time-triggering alternative to fixed-time-triggering
[15]. The event-triggering condition has been an object of
study for several authors, [16] presented an output-based
discrete traditional event-triggering mechanism to choose only
necessary sampled-data packages to be transmitted through
a communication network for controller design, taking into
account delays and Lyapunov-Krasovskii stability conditions.
Traditional event-triggering can induce false positive triggering
instants, as it only compares the difference between the last
transmitted data and the current plant measurement. Recent
works have shown that the TR can be reduced if the triggering
condition is based on the integral of the measured signals
over a finite period of time [17]. The authors in [18], [19]
investigated the integral event-triggered PD control for systems
with network delays, where the controller is designed based
on a Lyapunov-Krasovskii functional. However, none of these
works considered system disturbances or actuator failures.

In [20], an event-triggering control for a quarter-car vehicle
model where the control signal is based on the current states
of the plant was presented. This control structure requires
full-state information for real-time implementation, which is
not suitable for many practical situations as it assumes the
tire deflection is measurable [21]. For cases when not all
the system states can be obtained through measuring the
plant, the control signal is generated based on the observed
measurements of the plant [22]. One possible solution to this
problem is the use of a Dynamic Output Feedback Controller
(DOFC) as presented in [23], [24]. In order to ensure the
system stability, different Lyapunov-Krasovskii functionals
can be followed [25]. In [26], the authors address the L2−L∞
Dynamic Output Feedback Control for a class of non-linear
fuzzy systems with stochastic delays. In [27], a reliable event-
triggered H∞ controller is addressed for networked control
systems.

The control loop depends on the control input sent to the
system, which is mainly provided by actuators. Since these
are physical, imperfect systems, failures will unavoidably be
present in them, which implies that their behaviour will differ
from the one desired. Consequently, it is necessary to consider
the possibility of system failure in order to deal with it.
In [28], a finite-frequency H∞ controller is designed in the
framework of linear matrix inequality optimization for the
active suspension to improve vehicle ride comfort, however,

it did not consider faults in the actuators. In [29], a robust
fault-tolerant H∞ output feedback control strategy with finite-
frequency constraint is proposed to synchronously control the
active suspension and dynamic vibration absorber (DVA) for
in-wheel-motor driven electric vehicles. Nevertheless, system
delays and data triggering were not considered for this work.
In [30], a Markov jump model is defined for the study of the
fault behaviour on a simple model which does not consider
the existence on delays through the system. The problems
with using a Markov model is that it requires prior knowledge
of the nature of the fault in the system as well as it also
complicates the study of the stability of the system using
Lyapunov-Krasovskii functionals on more complex systems
[27]. Since the failure can be bounded between a maximum
and minimum efficiency of the actuators, the behaviour of
the faulty system can be studied as a polytope in which the
vertexes depend on the efficiency limits of the actuators, which
simplifies the study [7], [22].

Motivated by the aforementioned reasons, the H∞ fault-
tolerant DOFC for NCSs with an integral event-triggering
condition for sampled plant measurements is studied through
this paper. The principal contributions in this research are: (1)
The integral event-triggering law is considered when designing
the controller, which improves the Transmission Rate (TR) and
enhances the system stability, (2) by assuming the maximum
and minimum time delays over the network, a retarded fault-
tolerant Dynamic Output Feedback Controller is designed so
that it can be robust towards the affections of the transmission
delay over the network, (3) an increased Lyapunov-Krasovskii
functional weights the variation in the system stability due to
the network delay and the triggering law, (4) H∞ criteria is
followed to guarantee the robustness of the solution and (5) a
polytope is considered to deal with the fault behaviour of the
actuators.

The remainder of this paper is organized as follows: The
problem formulation is presented in Section II. The controller
design is formulated and its stability is proved in Section III.
Simulation results are shown in Section IV. The conclusion of
this research is stated in Section V.

Notation. Superscripts ”*” and ”T” denote symmetry and
transposition, respectively. I and [0] are the identity and zero
matrices, with appropriate dimensions.

II. PROBLEM FORMULATION

The networked control system defined for this work is de-
picted in Figure 1. A quarter-car vehicle model is adopted for
the design of the controller, an integral event-triggering (IET)
mechanism decides when to send the plant measurements over
the network, a zero order hold (ZOH) generates a continuous
signal by holding the last received information from the
network, the fault-tolerant DOFC generates the control output
for the actuators.

A. A quarter-car vehicle model

For active suspension control design simplicity, a quarter-
vehicle model is generally used [31]–[34], and in this work,
it was utilized for the proposed fault-tolerant DOFC (Figure
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Fig. 1. General diagram of the network communication scheme

2). The parameters ms and mu are the vehicle sprung and
unsprung mass, respectively; ks and cs are the stiffness and
damping coefficients of the suspension system, respectively;
ks and cs are the stiffness and damping coefficients of the
pneumatic tyre, respectively. uf (t) is the actual force provided
by the faulty actuator in the suspension system; zs(t) and zu(t)
are the vertical displacements of the sprung and unsprung
mass, respectively, and zr(t) is the road profile.

Fig. 2. Quarter-vehicle model

The dynamic equations of motion for the sprung and un-
sprung mass of the quarter-car vehicle model are [30]

msz̈s(t) + cs[żs(t)− żu(t)] + ks[zs(t)− zu(t)] = uf (t)

muz̈u(t) + cs[żu(t)− żs(t)] + ks[zu(t)− zs(t)]

+ct[żu(t)− żr(t)] + kt[zu(t)− zr(t)] = −u(t)
(1)

where the state variables of the model are

x1(t) = zs(t)− zu(t)

x2(t) = zu(t)− zr(t)

x3(t) = żs(t)

x4(t) = żu(t)

x1(t), x2(t), x3(t) and x4(t) are the suspension deflection,
tyre deflection, vertical speed of the sprung mass and vertical
speed of the unsprung mass, respectively. Taking into account
that the vehicle is affected by the variation of the road profile,
the system disturbance is defined as ω(t) = żr(t). The control
variables are the sprung mass acceleration z1(t) = z̈s, since it
is related to ride comfort [35]; and the suspension deflection
z2(t) = zs(t) − zu(t), since it should be lessened in order
not to exceed the mechanical limitations of the suspension
system. The output measurement from the system is the
vertical acceleration of the vehicle y(t) = z̈s, which can
be measured by placing an Inertial Measurement Unit (IMU)

or an accelerometer [36], [37]. If the vehicle acceleration is
known, the system becomes fully observable, which is highly
practical as it reduces the complexity of the control loop and
the amount of information to transmit over the communication
network.

After defining the control outputs and plant measurements,
the state-space representation of the vehicular dynamics ex-
posed in (1) has the form

ẋ(t) = Ax(t) +Buf (t) +B1ω(t), x(0) = x0

y(t) = C1x(t) +D1uf (t)

z(t) = C2x(t) +D2uf (t)

(2)

with

A =


0 0 1 −1
0 0 0 1

− ks

ms
0 − cs

ms

cs
ms

ks

mu
− kt

mu

cs
mu

− cs+ct
mu

 , B =


0
0
1
ms

− 1
mu

 ,

B1 =


0
−1
0
ct
mu

 , C1 =
[
− ks

ms
0 − cs

ms

cs
ms

]
, D1 =

1

ms
,

C2 =

[
− ks

ms
0 − cs

ms

cs
ms

1 0 0 0

]
, D2 =

[
1
ms

0

]
Remark 1. The quarter car model (2), which is considered for
the design of the controller, implies the following assumptions:
the rotational motion in the vehicle body is neglected, the
behavior of spring and damper are linear and the tyre is
always in contact with the road surface.

B. Failure model

With the aim to consider the possibility of actuator failure,
the actuator fault behaviour is defined as

uf (t) = F (ρ)u(t) (3)

where u(t) is the control signal sent to the actuator and F (ρ) =
ρ(t) is the effectiveness of the actuator, with 0 ≤ F ≤ F (ρ) ≤
F , and F ≥ 1. Substituting (3) in (2) leads to a continuous-
time system


ẋ(t) = Ax(t) +BF (ρ)u(t) +B1ω(t), x(0) = x0

y(t) = C1x(t) +D1F (ρ)u(t)

z(t) = C2x(t) +D2F (ρ)u(t)

(4)

Remark 2. If ρ(t) = 0, then uf (t) = 0, which is a complete
failure in the actuator, therefore the behaviour is the same a
passive system would have.

Remark 3. Any malfunction will imply that ρ(t) ̸= 1. If there
is a loss of effectiveness on the actuator, then ρ(t) < 1; if there
is an increase of effectiveness on the actuator, the provided
force is higher than expected, leading to ρ(t) > 1 [27].
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C. Integral event-triggering mechanism

The output signal of the plant y(t) is measured by the
sensors after every period of h seconds; then, the sampled
signal y(lh), l ∈ N, is encapsulated and sent over the network
when it breaches the integral event-triggering condition.

The event-triggering mechanism is composed by a register
and a comparator. While the register keeps information from
the last released packet (ik, y(ikh)), ik ∈ N; the comparator
enables the packet to be sent over the network only if it
violates the following integral condition [18], [19]

∫ t

t−hM

eT (τ)Ωe(τ)dτ ≤
∫ t

t−hM

ε2yT ((ik+j)h)Ωy((ik+j)h)dτ

(5)
where j ∈ N, hM is the maximum difference between two
successive triggering instants, ε is a predefined constant that
satisfies 0 < ε < 1, Ω > 0 is a symmetric matrix to be
designed and e(t) is the error between the last transmitted
packet and the current measured data

e(t) = y(ikh)− y(lh) = y(ikh)− y((ik + j)h) (6)

Once the triggering condition in (5) is violated, the new
packet is sent over the network; otherwise, it will be discarded.
The transmission update time, ik+1h, is obtained as

ik+1h = ikh+min
j≥1

{
jh |

∫ t

t−hM

eT (τ)Ωe(τ)dτ (7)

>

∫ t

t−hM

ε2yT ((ik + j)h)Ωy((ik + j)h)dτ

}

D. The network communication

The network is assumed not to present any packet disorder
during the communication process. By the definition of the
event-triggering condition, neglectable packets will be dis-
carded, in order to reduce the TR. The network presented in
this work has each actuator together with its own controller,
while these are separated from the sensors by the communi-
cation network [16]. By choosing this network configuration,
the system measurements are available from any device that
is connected to the network, making it possible to study the
vehicle behaviour from anywhere. Since the data transmission
is not an instant process, delays will inevitably appear between
the sensors and the communication network, however, delays
between the controllers and actuators are neglected due to they
are located together. A diagram of the network communication
scheme that has been defined for this work is depicted in
Figure 3.

The data transmitted over the network is hold by a ZOH
before it is received by the DOFC. As soon as a new packet
arrives to the ZOH at time tk (k ∈ N), it is sent instantly to the
controller. Since packet disorders nor dropouts are not a matter
of this study, it is satisfied that t1 < t2 < · · · < tk. Every
packet (ik, y(ikh)) is going to be delayed by τk = tk − ikh
due to its transmission over the network. The network delay
limits are bounded in this work as τm = min{τk | k ∈ N}
and τM = max{τk | k ∈ N}.

Fig. 3. Network communication scheme used in this work

E. Dynamic Output Feedback Control

In order to enhance ride comfort and road holding, a DOFC
is to be designed. This controller receives the delayed triggered
output measurements from the plant and generates a control
signal which governs the actuators behaviour. The equations
of the proposed DOFC are

{
ẋc(t) = Afxc(t) +Bfxc(t− η(t)) + Cf ỹ(t)

u(t) = Dfxc(t)
(8)

where xc(t) contains the states of the controller; Af , Bf , Cf

and Df are the controller matrices to be designed; η(t) is the
time difference between the last triggering time and the actual
time and ỹ(t) is the delayed transmitted measurement from
the integral event-triggering mechanism to the controller

ỹ(t) = y(ikh), t ∈ [tk, tk+1) (9)

Since several sampling instants can happen before a new
triggered data reaches the controller, the time between the
previous and next data triggering can be divided into multiple
subintervals [16]

[tk, tk+1) =

ζk⋃
j=1

Ij (10)

where

ζk = min{j | tk + jh ≥ tk+1, j ∈ N}
Ij = [tk + (j − 1)h, tk + jh) (11)
Iζk = [tk + (ζk − 1)h, tk+1)

From the definition in (10), it is easy to study the delay η(t)
together with the error between the triggered data and new
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sampled measurements from the plant e(t) as

η(t) =


t− ikh, t ∈ I1

t− ikh− h, t ∈ I2
...

...
t− ikh− (ζk − 1)h, t ∈ Iζk

(12)

e(t) =


y(ikh)− y(ikh), t ∈ I1

y(ikh)− y(ikh+ h), t ∈ I2
...

...
y(ikh)− y(ikh+ (ζk − 1)h), t ∈ Iζk

(13)

The expression of ỹ(t) is now equal to

ỹ(t) = y(ikh) = e(t) + y(t− η(t)), t ∈ [tk, tk+1) (14)

which makes the hold value in the ZOH dependent to e(t) and
η(t). Since delays over the network are bounded, so is η(t)

τm < τk ≤ η(t) < h+ τk ≤ h+ τM (15)

F. System feedback

By augmenting the state space model in (4), joining the
DOFC presented in (8), the closed-loop system now has the
form

θ̇(t) = A0(ρ)θ(t) +A1(ρ)θ(t− η(t)) + A2(ρ)e(t) + A3ω(t)

y(t) = C1x(t) +D1F (ρ)u(t)

z(t) = C2x(t) +D2F (ρ)u(t)
(16)

with

θ(t) =

[
x(t)
xc(t)

]
, A0(ρ) =

[
A BF (ρ)Df

0 Af

]
, A2 =

[
0
Cf

]
,

A1(ρ) =

[
0 0

CfC1 Bf + CfD1F (ρ)Df

]
, A3 =

[
B1

0

]
The integral event-triggering condition presented in (5) is
redefined to∫ t

t−hM

eT (τ)Ωe(τ)dτ ≤ ε2
∫ t

t−hM

ζT (τ)Ωζ(τ)dτ (17)

with

ζ(t) = e(t) + y(t− η) (18)

The expression of ζ in (18) has to be expanded by considering
(8) and (16), in order to see the affection of the augmented
system state θ

ζ(t) = e(t) + C1x(t− η) +D1F (ρ)Dfxc(t− η) (19)
= e(t) + Ξ(ρ)θ(t− η)

where Ξ(ρ) =
[
C1 D1F (ρ)Df

]
. After presenting the

closed-loop system and the integral event-triggering condition,
the control problem is addressed as follows:

For given h > 0, hM > kh, k ∈ N, τm and τM that
satisfy 0 ≤ τm ≤ τM and ε > 0, design Ω > 0 and
{Af , Bf , Cf , Df} so that the closed-loop system presented in
(16) is stochastically stable under the integral event-triggering
condition in (17).

Remark 4. For this work, the threshold ε has been given a
fixed constant value like in [38] however it can be defined as
a parameter to be designed as in [16], [39].

Since the closed-loop system introduced in (16) is linearly
dependent to the time-varying parameter ρ(t), the closed-loop
system can be rewritten in terms of a polytope formed by the
vertexes ρ and ρ


θ̇(t) =

∑2
j=1 aj(ρ)A0jθ(t) +

∑2
j=1 aj(ρ)A1jθ(t− η(t))

+
∑2

j=1 aj(ρ)A2je(t) + A3ω(t)

y(t) = C1x(t) +
∑2

j=1 aj(ρ)D1Fju(t)

z(t) = C2x(t) +
∑2

j=1 aj(ρ)D2Fju(t)
(20)

where the subscript j refers to each of the vertexes of the poly-
tope, aj(ρ) > 0 is the vertex coefficient and

∑2
j=1 aj(ρ) = 1.

The control matrices at each vertex of the polytope are Afj ,
Bfj , Cfj and Dfj , with

Af =
2∑

j=1

aj(ρ)Afj , Bf =
2∑

j=1

aj(ρ)Bfj

Cf =

2∑
j=1

aj(ρ)Cfj , Df =

2∑
j=1

aj(ρ)Dfj

The closed-loop system matrices at each vertex of the polytope
are

A0j =

[
A BFjDfj

0 Afj

]
, A2j =

[
0

Cfj

]
,

A1j =

[
0 0

CfjC1 Bfj + CfjD1FjDfj

]
, A3 =

[
B1

0

]
G. Active Suspension Control Objectives

This paper provides a method to design active suspension
controllers under the following requirements:

• The control has to be implemented through low-cost
sensors, or sensors already installed in series-production
vehicles, such as accelerometers, therefore not every state
is measurable.

• The control structure must be simple in order to ease its
application as well as to assure real-time functionality.

• The closed-loop stability has to be theoretically guar-
anteed considering communication delays and actuator
faults. Moreover, robustness against system disturbances
is assured under H∞ criteria.

• An event triggering mechanism must be defined in or-
der to reduce the amount of information sent over the
communication network.

In order to accomplish these control objectives, we propose a
method to design H∞ integral-based event-triggered Dynamic
Output Feedback Fault Tolerant Controllers while considering
a networked communication scheme with delays.

III. SYSTEM DESCRIPTION

Trough this section, a solution to the reliable integral event-
triggering H∞ control under a NCS scheme is provided.
Firstly, it is important to analyze the system stability for the
future design of the DOFC and the event-triggering mecha-
nism.
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A. System stability analisis

Lemma 1. [40] For a positive definite matrix R > 0, and a
differentiable function {v(u) | u ∈ [x, y]}

∫ b

a

ẇT (α)Rẇ(α)dα ≥ 1

b− a
[w(b)− w(a)]TR[w(b)− w(a)]

(21)

Theorem 1. For given scalars h > 0, τm ≥ 0, τM ≥ τm ≥ 0,
ε > 0, the closed-loop system (16) subject to the integral
event-triggering condition (17) is asymptotically stable with a
H∞ performance index γ > 0 if there exists a matrix S, real
symmetric matrices Ω > 0, P > 0, Qi > 0, Ri > 0, T > 0,
U > 0 for i = 1, 2, j = 1, 2 with appropriate dimensions such
that the following LMIs hold:

[
R2 S
∗ R2

]
≥ 0, Φj :=

[
Φ11j Φ12j

∗ Φ22j

]
< 0 (22)

where

Φ11j =


ϕ1 PA1j R1 0 PA2j PA3

∗ ϕ2 ϕ3 ϕT
3 0 0

∗ ∗ ϕ4 −ST 0 0
∗ ∗ ∗ ϕ5 0 0
∗ ∗ ∗ ∗ −T 0
∗ ∗ ∗ ∗ ∗ −γ2I



Φ12j =


0 0 ϕT

6 τmAT
0j (η − τm)AT

0j 0
0 0 0 τmAT

1j (η − τm)AT
1j 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 τmAT

2j (η − τm)AT
2j 0

0 0 0 τmAT
3 (η − τm)AT

3 0



Φ22j =



−U 0 0 0 0 ϕT
7

∗ − Ω
hM

0 0 0 I

∗ ∗ −I 0 0 0
∗ ∗ ∗ −R−1

1 0 0
∗ ∗ ∗ ∗ −R−1

2 0

∗ ∗ ∗ ∗ ∗ −( ε2

hM
Ω)−1


with η = h+τM , ϕ1 = sym(PA0j)+Q1−R1, ϕ2 = −2R2−
sym(S), ϕ3 = R2 + S, ϕ4 = Q2 − Q1 − R1 − R2, ϕ5 =
−Q2 −R2, ϕ6 =

[
C2 D2FjDfj

]
, ϕ7 =

[
C1 D1FjDfj

]
.

Proof. Choosing an augmented Lyapunov-Krasovskii func-
tional

V (t) =
5∑

i=1

Vi(t) (23)

where

V1(t) = θT (t)Pθ(t)

V2(t) =

∫ t

t−τm

θT (s)Q1θ(s)ds+

∫ t−τm

t−η

θT (s)Q2θ(s)ds

V3(t) = τm

∫ 0

−τm

∫ t

τ+β

θ̇T (s)R1θ̇(s)dsdβ

+ (η − τm)

∫ −τm

−η

∫ t

τ+β

θ̇T (s)R2θ̇(s)dsdβ

V4(t) = (η − η(t))e(t)TTe(t)

V5(t) = hM

∫ 0

−hM

∫ t

t+β

θT (s)Uθ(s)dsdβ

P , Q1, Q2, R1, R2, T and U are positive symmetric matrices.
The system stability can be guaranteed if the cost function
V (t) presented in (23) always decreases over time. This means
that its time derivative is always negative at each vertex of the
polytope

V̇ (t) =

5∑
i=1

V̇i(t) < 0 (24)

where

V̇1(t) = θ̇T (t)Pθ(t) + θT (t)P θ̇(t)

= sym
{
θ(t)TP

×(A0jθ(t) + A1jθ(t− η(t)) + A2je(t) + A3ω(t))}
V̇2(t) = θT (t)Q1θ(t)− θT (t− η)Q2θ(t− η)

+ θT (t− τm)(Q2 −Q1)θ(t− τm)

V̇3(t) = θ̇T (t)[τ2mR1 + (η − τm)2R2]θ̇(t)

− τm

∫ t

t−τm

θ̇T (s)R1θ̇(s)ds

− (η − τm)

∫ t−τm

t−η

θ̇T (s)R2θ̇(s)ds

V̇4(t) = (−1)eT (t)Te(t) + (η − η(t))ė(t)Te(t)

+ (η − η(t))e(t)T ė(t) = −e(t)Te(t)

V̇5(t) =
∂

∂t

{
hM

∫ 0

−hM

∫ t

t+β

θT (s)Uθ(s)dsdβ

}
= hM

∫ 0

−hM

∂

∂t

{∫ t

t+β

θT (s)Uθ(s)ds

}
dβ

By aplying Lemma 1 to V̇3(t) and V̇5(t),

−τm

∫ t

t−τm

θ̇T (s)R1θ̇(s)ds ≤ − (θ(t)− θ(t− τm))TR1

× (θ(t)− θ(t− τm))

now introduce a matrix S ∈ Rn, such that
[
R2 ST

S R2

]
≥ 0,
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allowing to perform the transformation

− (η − τm)

∫ t−τm

t−η

θ̇T (s)R2θ̇(s)ds

≤ −(θ(t− η(t))− θ(t− η))TR2(θ(t− η(t))− θ(t− η))

− (θ(t− τm)− θ(t− η(t)))TR2(θ(t− τm)− θ(t− η(t)))

+ (θ(t− η(t))− θ(t− η))TS(θ(t− τm)− θ(t− η(t)))

+ (θ(t− τm)− θ(t− η(t)))TST (θ(t− η(t))− θ(t− η))

after some modifications, V̇5(t) is now written as

V̇5(t) = − hM

∫ t

h−hM

θT (s− η(t))Uθ(s− η(t))ds

+ h2
MθT (t− η(t))Uθ(t− η(t))

≤ −hM
1

hM

[∫ t

t−hM

θT (s− η(t))ds

]
U

×
[∫ t

t−hM

θ(s− η(t))ds

]
+ h2

MθT (t− η(t))Uθ(t− η(t))

Now put together the Lyapunov-Krasovskii time derivative
functional (24) with the integral event-triggering condition
presented in (17)

V̇ (t) ≤ sym(θ̇T (t)Pθ(t)) + θT (t)Q1θ(t) (25)

− θT (t− η)Q2θ(t− η) + θT (t− τm)(Q2 −Q1)θ(t− τm)

+ θ̇T (t)[τ2mR1 + (η − τm)2R2]θ̇(t)

− (θ(t)− θ(t− τm))TR1(θ(t)− θ(t− τm))

− (θ(t− η(t))− θ(t− η))TR2(θ(t− η(t))− θ(t− η))

− (θ(t− τm)− θ(t− η(t)))TR2(θ(t− τm)− θ(t− η(t)))

+ (θ(t− η(t))− θ(t− η))TS(θ(t− τm)− θ(t− η(t)))

+ (θ(t− τm)− θ(t− η(t)))TST (θ(t− η(t))− θ(t− η))

−
∫ t

t−hM

eT (τ)Ωe(τ)dτ + ε2
∫ t

t−hM

ζT (τ)Ωζ(τ)dτ ≤ 0

The H∞ performance of the system under zero initial condi-
tion is ∫ σ

0

(zT (τ)z(τ)− γ2ωT (τ)ω(τ))dτ < 0 (26)

which combined with the aforementioned expression (25),
merges into inequation

V̇ (t)−
∫ t

t−hM

eT (τ)Ωe(τ)dτ + ε2
∫ t

t−hM

ζT (τ)Ωζ(τ)dτ

+ zT (t)z(t)− γ2ωT (t)ω(t) < 0 (27)

Now define an augmented state vector

ξ(t) =
[
θT (t) θT (t− η(t)) θT (t− τm) θT (t− η)

eT (t) ωT (t)
∫ t

t−hM
θT (s− η(t))ds

∫ t

t−hM
eT (t)ds

]T
(28)

according to this definition, the expression in (27) is hereby
represented as a quadratic form

ξT (t)Θjξ(t) < 0 (29)

where

Θj = Φ11j − Φ12jΦ
−1
22jΦ

T
12j < 0 (30)

and by terms of the Schur complement, the expression in
(27) becomes the second LMI shown in (22), so the proof
is complete.

B. Dynamic Output Feedback Controller design

The controller gain matrices Afj , Bfj , Cfj and Dfj , j =
1, 2 are assumed to be known in Theorem 1. Since these terms
are multiplying the Lyapunov matrix P inside Φ11j as seen in
(22), it is needed to apply a separation method to maintain the
problem linearity and decouple Afj , Bfj , Cfj and Dfj from
P.

Lemma 2. [27], [41] For real matrices X,Y and Z with
appropriate dimensions with Z > 0

XY + (XY )T ≤ XZXT + Y TZ−1Y (31)

Theorem 2. For given scalars h > 0, τm ≥ 0, τM ≥ τm ≥ 0,
the closed-loop system (16) subject to the integral event-
triggering condition (17) is asymptotically stable with a H∞
performance index γ > 0 if there exists a scalar ε̃ > 0,
matrices S̃ and Wij , for i = 1, . . . , 4, j = 1, 2, real symmetric
matrices Ω̃ > 0, X > 0, Y > 0, T > 0, Ũ > 0, Q̃1 > 0,
Q̃2 > 0, R̃1 > 0, R̃2 > 0, with appropriate dimensions such
that the following LMIs hold:[

R̃2 S̃

∗ R̃2

]
≥ 0, Z :=

[
X I
∗ Y

]
> 0 (32)

Ψj :=

[
Ψ11j Ψ12j

∗ Ψ22j

]
< 0

where

Ψ11j =


Ψ1 Ψ2 R̃1 0 Ψ3 Ψ4

∗ Ψ5 Ψ6 ΨT
6 0 0

∗ ∗ Ψ7 −ST 0 0
∗ ∗ ∗ Ψ8 0 0
∗ ∗ ∗ ∗ −T 0
∗ ∗ ∗ ∗ ∗ −γ2I



Ψ12j =


0 0 Ψ9 τmΨT

0 (η − τm)ΨT
0 0

0 0 0 τmΨT
2 (η − τm)ΨT

2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 τmΨT

3 (η − τm)ΨT
3 0

0 0 0 τmΨT
4 (η − τm)ΨT

4 0



Ψ22j =



Ũ 0 0 0 0 Ψ10

∗ − Ω̃
hM

0 0 0 Ω̃

∗ ∗ −I 0 0 0

∗ ∗ ∗ R̃1 − Z 0 0

∗ ∗ ∗ ∗ R̃2 − Z 0

∗ ∗ ∗ ∗ ∗ −( ε2

hM
)−1Ω̃


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with η = h+ τM , Ψ1 = sym(Ψ0)+ Q̃1 − R̃1, Ψ5 = −2R̃2 −
sym(S̃) + h2

M Ũ , Ψ6 = R̃2 + S̃, Ψ7 = Q̃2 − Q̃1 − R̃1 − R̃2,
Ψ8 = −Q̃2 − R̃2 and

Ψ0 =

[
AX +BFjW1j A

W4j Y A

]
,Ψ2 =

[
0 0

W3j W2jC1

]
Ψ3 =

[
0

W2j

]
,Ψ4 =

[
B1

Y B1

]
Ψ9 =

[
XCT

2 +WT
1jF

T
j DT

2

CT
2

]
,Ψ10 =

[
XCT

1 +WT
1jF

T
j DT

1

CT
1

]
Proof. In order to separate the Lyapunov matrix P from the
controller matrices Af , Bf , Cf and Df , split P into

P =

[
Y N
NT Y1

]
> 0 (33)

then P has become a block matrix with matrices Y , N ,
Y1 ∈ Rn. Y > 0, Y1 > 0 and N ̸= 0. Define a symmetric
matrix X > 0 that verifies Y1 = NT (Y − X−1)−1N > 0,
then the inequation Y −X−1 > 0 is obtained after applying
the Schur complement, which becomes Z in (32) if the
Schur complement is applied again. With the separation of
the Lyapunov matrix P in (33), it is possible to find that[

I Y
0 NT

]
= P

[
X I

N−1(I − Y X) 0

]
(34)

and performing two changes of variable

J1 =

[
X I

N−1(I − Y X) 0

]
, J2 =

[
I Y
0 NT

]
(35)

P can be rewritten as P = J2J
−1
1 , where {J1, J2} ̸= 0. Trans-

form the variables S,Q1, Q2, R1, R2, U into S̃ = JT
1 SJ1,

Q̃1 = JT
1 Q1J1, Q̃2 = JT

1 Q2J1, R̃1 = JT
1 R1J1, R̃2 =

JT
1 R2J1, Ũ = JT

1 UJ1, Ω̃ = Ω−1, ε̃ = ε−1 and define

Wj :=


W1j = D̃fj(I − Y X)

W2j = C̃fj

W3j = W2jC1X + B̃fj(I − Y X) +W2jD1FjW1j

W4j = Y AX + Y BFjW1j + Ãfj(I − Y X)
(36)

with 
Ãfj = NAfjN

−1

B̃fj = NBfjN
−1

C̃fj = NCfj

D̃fj = DfjN
−1

(37)

Now perform a congruence transform to the LMI Φj in (22)
with Υ = diag{J1, J1, J1, J1, I, I, J1,Ω−1, I, J2, J2, I} such
as

ΥTΦjΥ = Ψ̃j < 0 (38)

the terms −JT
2 R−1

1 J2 and −JT
2 R−1

2 J2 are studied by applying
Lemma 2

− ZR̃1Z ≤ R̃1 − 2Z (39)

− ZR̃2Z ≤ R̃2 − 2Z

which leads to Ψ in (32) and completes the proof.

Remark 5. In this work, ε is an user-defined con-
stant. It is also possible to turn it into a design pa-
rameter by modifying the congruent transformation matrix
Υ = diag{J1, J1, J1, J1, I, I, J1, I, I, J2, J2, I}, and apply-
ing Lemma 2 in a way that −(ε2Ω)−1 ≤ Ω−2ε̃I and ε̃ = ε−1.

After a feasible solution is found, the controller gain matri-
ces are calculated as
Ãfj = (W4j − Y AX − Y BFjW1j)(I − Y X)−1

B̃fj = (W3j −W2jC1X −W2jD1FjW1j)(I − Y X)−1

C̃fj = W2j

D̃fj = W1j(I − Y X)−1

(40)
Since the matrix N is unknown, [16] proposes a change of
the state variables to return an equivalent DOFC

x̂c(t) = Nxc(t) (41)

leading the state space system to{
˙̂xc(t) = Ãf x̂c(t) + B̃f x̂c(t− η(t)) + C̃f ỹ(t)

u(t) = D̃f x̂c(t)
(42)

with

Ãf =
2∑

j=1

aj(ρ)Ãfj , B̃f =
2∑

j=1

aj(ρ)B̃fj

C̃f =
2∑

j=1

aj(ρ)C̃fj , D̃f =
2∑

j=1

aj(ρ)D̃fj

Remark 6. Even if a feasible solution is found, high values of
the H∞ index γ can imply that the affection of the disturbance
ω(t) to the control output z(t) has not been lowered with
the designed controller, therefore a better solution should be
sought.

IV. SIMULATION RESULTS

To prove the effectiveness of the proposed algorithm,
simulations were carried out using the commercial vehicle
dynamics software CarSim®, which has a good reputation
amongst researchers that need a reliable non-linear vehicle
model to validate their work before performing experimental
tests [37], [42]. An experimental-validated buggy Goka 650
Carsim model is used in the numerical simulations with four
decoupled fault-tolerant DOFCs based on a quarter-vehicle
model for each suspension of the vehicle. An actuator is
mounted on the suspension of each wheel. Four accelerometers
are supposed to be placed on the sprung mass, along the
extension line of the king pin axis of each wheel [34]. The
parameter values for the quarter-vehicle model of Goka 650
are listed at Table I.

TABLE I
QUARTER-CAR MODEL PARAMETERS

ms mu ks kt cs ct
162.5 kg 20.75 kg 15 kN/m 200 kN/m 3 kNs/m 14.6 Ns/m

The sampling rate of the sensor measurements (vehicle
vertical acceleration) is 50 Hz, while the controller works at
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a frequency of 400 Hz. There are other works which propose
control systems with even lower sampling rates for the sensor
measurements such as [16]. The maximum and minimum
network delays are assumed as τm = 10 ms and τM = 50 ms.
The integral event-triggering mechanism is designed under the
considerations of a maximum elapsed time between two data
transmissions of hM = 1 s and a threshold ε2 = 0.1. These
considerations are summarised at Table II.

TABLE II
DATA TRANSMISSION PARAMETERS

h τm τM hM ε2

20 ms 10 ms 50 ms 1 s 0.1

In order to obtain a feasible controller, the MATLAB
LMI solver which is included in the Robust Control Toolbox
evaluates the Theorem 2 conditions for the model with the
parameters listed through Tables I-II. The LMI conditions
involve over 6000 independent variables to design, which
are part of the matrices to be determined. The polytope
vertexes are defined as ρ = 1 and ρ = 0.2. During the
simulations, it is assumed that the four actuators mounted
on the vehicle suspension system fail with the same behavior
over time. The fault behaviour for each actuator is simulated
as a sinusoidal wave ρ(t) = 0.6 + 0.3sin(0.2t), where ρ(t)
denotes the effectiveness of every actuator. It is desired to
find an H∞ performance index γ as small as possible for the
purpose of control design, as it implies that the value of the
controlled output z(t) will be smaller over time in regard to
the system disturbance ω(t). A viable solution is found for
γmin = 10 , with the corresponding matrices of the controller
and triggering mechanism

Af1 =


−10.050 52.921 315.408 −4925.839
−44.124 −464.887 −627.323 31790.596
−0.521 11.139 39.090 −831.577
0.262 −6.929 −21.589 434.948



Af2 =


−14.396 11.952 212.405 −1345.980
−18.343 −221.839 −16.257 10553.087
−1.325 3.566 20.050 −169.850
0.683 −2.957 −11.602 87.865



Bf1 =


0.009 −0.001 −0.126 −0.060
0.012 −0.001 −0.175 −0.099
0.000 −0.000 −0.006 −0.002
−0.000 0.000 0.001 0.001



Bf2 =


−0.004 −0.125 −0.436 10.725
−0.001 −0.131 −0.500 11.203
−0.001 −0.013 −0.040 1.160
0.001 0.013 0.033 −1.116



Cf1 =


1.028
1.078
0.111
−0.106

 , Cf2 =


1.028
1.078
0.111
−0.106


Df1 =

[
−3.235 −30.498 −76.678 2664.939

]
Df2 =

[
−3.235 −30.498 −76.678 2664.939

]
Ω =

[
0.482

]

The vehicle behaviour has been studied under three different
road conditions as seen in [43]:

1) Road bump
2) Sine road profile
3) B-Grade random road profile [44], [45]

In order to determine the effectiveness of the active-suspension
vehicle, the vehicle is tested for five different suspension cases:

• Case 1. Passive-suspension. (Passive).
• Case 2. Active-suspension networked Non Fault-Tolerant

control under a traditional event-triggering scheme, as
defined in [7]. (TET NFT).

• Case 3. Active-suspension networked Fault-Tolerant con-
trol under a traditional event-triggering scheme, as de-
fined in [7]. (TET FT).

• Case 4. Active-suspension networked Non Fault-Tolerant
control under an integral event-triggering scheme. (IET
NFT).

• Case 5. Active-suspension networked Fault-Tolerant con-
trol under an integral event-triggering scheme. (IET FT).
This is the proposed methodology.

Figures 4-6 present the comparison of the vertical (z̈s), pitch
(θ̈) and roll (ϕ̈) accelerations of the vehicle’s Center of Gravity
(COG), TR and suspension deflection for the front and rear
wheels under the different controllers. The Root Mean Square
(RMS) of the different accelerations are presented in order
to quantify the performance of each controller. The proposed
controller achieves the best performance overall, since the
vehicle accelerations are lowered for the bump and sine road
cases, and are not compromised for the random road case.
The proposed integral event-triggering fault-tolerant controller
improves the dynamic response of the system compared to
the system without control. Additionally, the integral event-
triggering mechanism presents an average 40% TR reduction
compared to the traditional one, which implies that the burden
on the communications network is alleviated, without compro-
mising the closed-loop behavior of the system. The suspension
is not compromised, as the maximum deflection values do not
exceed their boundaries (60 mm max) at any case. Since the
bump is a high energy disturbance, the vehicle can be severely
affected by it, leading to extreme conditions where the tyres no
longer hold on to the road. Figure 7 depicts the vertical force
on the front tyres during the bump simulation. As long as this
force is positive, tyres will remain in contact with the road.
It can be seen that road holding is assured for the controlled
vehicle, while passive vehicle’s tyres lift off the ground under
this case. Figures 8-9 present the vertical forces on the front
tyres for the sine and random road simulation, where road
holding is assured for both the controlled and passive vehicle.
Figures 10-12 show the different spectral components of the
vehicle accelerations for each suspension type. The power
spectral density (PSD) of the signal describes the power
present in the signal as a function of frequency, per unit
frequency. Peaks on the PSD depend on the natural frequencies
of the system and the vibration mode of disturbances that
affect it. Low frequency vibrations are due to the car body
(up to 5 Hz) while medium frequency vibrations (5-25 Hz)
involve the unsprung mass of the vehicle. While seated, the
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human body becomes most sensitive to vibrations from 4 to
10 Hz in the vertical direction [46] therefore, in order to
enhance comfort; the energy component over these frequencies
must be reduced. Since the proposed controller reduces the
energy of each frequency component over the different vehicle
accelerations, it follows that the system is less affected by the
road disturbances.

Fig. 4. Bump Simulation Results

Fig. 5. Sine Road Simulation Results

Fig. 6. Random Road Simulation Results

V. CONCLUSION

An integral event-triggering H∞ fault-tolerant Dynamic
Output Feedback Controller that simultaneously enhances
vehicle comfort and road holding involving network delays
and actuator faults was proposed in this paper. Considering a
high order Lyapunov-Krasovskii functional, an integral event-
triggering condition and H∞ criteria, sufficient conditions
on designing the controller and the event-triggering matrices
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Fig. 7. Vertical load of the front tyres during the bump Simulation
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Fig. 8. Vertical load of the front tyres during the sine road Simulation

are considered to achieve the global asymptotically stabil-
ity through a LMI problem. The fault behaviour is mod-
elled through a polytope. The performance of the proposed
controller has been tested with a non-linear vehicle model
(CarSim®), where the active suspension system presents a
better behaviour than the passive system under medium fre-
quency [0-5 hz] disturbances. Fault-tolerant controllers prove
to be more reliable than non-fault-tolerant controllers. Results
confirm that the data transmission rate can be reduced from a
traditional event-triggering mechanism up to an average 40%
over the network.
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