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Abstract—Emerging wireless applications are requiring ever
more accurate location-positioning from sensor measurements.
In this paper, we develop sensor selection strategies for 3D
wireless positioning based on time of arrival (TOA) and received
signal strength (RSS) measurements to handle two distinct
scenarios: (i) known approximated target location, for which
we conduct dynamic sensor selection to minimize the positioning
error; and (ii) unknown approximated target location, in which
the worst-case positioning error is minimized via robust sensor
selection. We derive expressions for the Cramér-Rao lower bound
(CRLB) as a performance metric to quantify the positioning
accuracy resulted from selected sensors. For dynamic sensor
selection, two greedy selection strategies are proposed, each
of which exploits properties revealed in the derived CRLB
expressions. These selection strategies are shown to strike an
efficient balance between computational complexity and perfor-
mance suboptimality. For robust sensor selection, we show that
the conventional convex relaxation approach leads to instability,
and then develop three algorithms based on (i) iterative convex
optimization (ICO), (ii) difference of convex functions program-
ming (DCP), and (iii) discrete monotonic optimization (DMO).
Each of these strategies exhibits a different tradeoff between
computational complexity and optimality guarantee. Simulation
results show that the proposed sensor selection strategies provide
significant improvements in terms of accuracy and/or complexity
compared to existing sensor selection methods.

Index Terms—Wireless positioning, sensor selection, Cramér-
Rao lower bound, time of arrival, received signal strength.

I. INTRODUCTION

A. Wireless Positioning and Sensor Selection

Wireless positioning is employed in many applications across
the military [1], [2] and commercial [3], [4] sectors, e.g., for
target tracking, system security, and smart automation [5]. As
the efficacy of these applications depends on the accuracy of
location information and the speed at which it can be obtained,
it is critical to maximize the performance of wireless position-
ing while minimizing the associated algorithmic complexity.
In wireless positioning, a target location is often estimated
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using a collected set of location-dependent measurements
(e.g., received signal strength (RSS)) acquired from multiple
geo-distributed sensors [6]. In particular, with the advent of
ultra-wideband (UWB) communications with large bandwidth
signals, wireless positioning with time-sensitive measurements
(e.g., time of arrival (TOA) and time difference of arrival
(TDOA)) has become an active field of research [7]–[9].

Although it has been analytically demonstrated that using
more sensors results in improved positioning accuracy regard-
less of geographical placement [10], deploying a large number
of sensors is undesirable in practice. For example, TOA-
based positioning in general requires sensors to make isolated
measurements [11], which may result in extensively prolonged
positioning times with a large number of sensors. Other
practical considerations, like cost and packaging constraints,
also limit the number of sensors that can be deployed for
positioning. As a result, in many settings, only a portion/subset
of the placed sensors are actually selected for usage. Hence,
selecting the most efficient group of sensors for optimal
wireless positioning is a critical and yet challenging task [12].

In this paper, we study the problem of optimal sensor
selection for wireless positioning considering two distinct
scenarios: (i) an approximate target location is known via
prior prediction and (ii) target location is not approximated
and hence unknown. When the approximated target location is
given, the sensors should be selected such that the positioning
accuracy for the respective location is maximized. We refer to
this scenario as dynamic sensor selection because the optimal
set of sensors to be selected varies by the given approximated
location. On the other hand, when no information on the target
location is available, the selection of sensors should be carried
out to maximize the worst-case positioning accuracy. As a
result, we refer to this scenario as robust sensor selection.

In each scenario, we mathematically formulate an opti-
mization problem for sensor selection. In doing so, we adopt
the Cramér-Rao lower bound (CRLB) [13] as a performance
metric for quantifying the positioning accuracy. In our work,
the CRLB quantifies the lowest mean squared error (MSE)
achievable from a selected set of sensors, optimization of which
provides a natural solution to our sensor selection problem.
Based on the formulated optimization problems, we present
novel sensor selection strategies that improve performance in
accuracy and/or complexity of wireless positioning.
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B. Related Work

To perform effective sensor selection, it is critical to
understand the impact of sensor placement on the accuracy of
wireless positioning [10], [14]–[18]. In [10], the CRLBs on
wireless positioning were separately derived for line-of-sight
(LOS) TOA and RSS measurements, and it was shown that
the positioning accuracy strongly depends on the geometric
conditioning (i.e., the geometric arrangement with respect to
a target) of the sensors. The CRLB on TOA-based wireless
positioning over both LOS and non-LOS (NLOS) channels
was derived in [14], revealing that the bound is strictly a
function of the LOS channel unless the bias in the NLOS
channel is compensated. Recent works, e.g., [15]–[18], have
extended the analysis and derived the CRLB upon using
hybrid measurements. They showed that the target positioning
accuracy can be improved via joint consideration of different
measurement types. In addition to improving the theoretical
bound, the benefit of utilizing multiple measurement types
has been verified in state-of-the-art positioning schemes. For
example, a picocell-based joint TOA and direction of arrival
(DOA) estimation is proposed in [19], and a fingerprint
localization with RSS and channel state information (CSI)
measurement is considered in [20].

Sensor selection problems are in general NP-hard combinato-
rial optimizations, the exact solutions to which can be obtained
via exhaustive search. Since exhaustive search strategies suffer
from prohibitive computation burden as the number of sensors
increases, some works rely on convex relaxations and/or
heuristic strategies to find computationally efficient suboptimal
solutions [21]–[23]. Specifically, in [21], sensor selection was
formulated as a knapsack problem with its solution obtained via
greedy algorithms that aim to minimize the RSS-driven CRLB.
Both semidefinite relaxation (SDR) and heuristic methods for
sensor selection aiming to minimize the CRLB in TDOA-based
wireless positioning were proposed in [22]. The authors in [23]
solved a convex-relaxed CRLB-minimizing sensor selection
problem via semidefinite programming with randomization for
both TDOA-based and TOA-based wireless positioning.

Although these prior works provide useful insights on sensor
selection problems, their approaches rely on complete evalua-
tion of the CRLB. Even with greedy selection methods [21],
[22], the computational load from evaluating the bound, which
requires a matrix inverse operation of complexity O(n3), can
be burdensome if a system involves a large number of sensors.
Also, as all of these methods utilize the CRLB for non-Bayesian
estimation (i.e., the target location is assumed to be known
a priori), they are only applicable in scenarios where precise
information on the target location is initially available. In
this work, we first investigate dynamic sensor selection [21]–
[23], and propose low-complexity sensor selection strategies
that avoid computing the entire CRLB expression. Also, we
take one step further from the conventional sensor selection
literature and consider robust sensor selection, for which we
focus on minimizing the worst-case CRLB and propose sensor
selection strategies for unknown target locations.

C. Outline and Summary of Contributions

This paper focuses on sensor selection for wireless position-
ing with hybrid TOA/RSS measurements. We consider both
dynamic and robust sensor selection scenarios, and our major
contributions can be summarized as follows:
• We derive the CRLB expression into two different forms,

namely (i) trace and (ii) fractional forms. We use these
expressions to formulate optimization problems and develop
sensor selection strategies. Based on both forms derived, we
show that the CRLB can be optimized without evaluating the
entire expression, which we exploit to reduce the complexity
of our dynamic sensor selection algorithms.

• We develop low-complexity greedy selection strategies
for dynamic sensor selection. Based on our computation-
efficient metrics, the proposed strategies perform a sequen-
tial sensor selection where in each iteration, the sensor
minimizing the current CRLB is selected, one at a time.
Our numerical results demonstrate that, compared to the
benchmarks, the proposed strategies provide comparable
positioning performance with much less complexity.

• We propose and study the robust sensor selection problem,
where we reveal that the conventional convex optimization
approach provides unreliable binary solutions. We subse-
quently propose three sensor selection strategies based on
(i) iterative convex optimization (ICO), (ii) difference of
convex functions programming (DCP), and (iii) discrete
monotonic optimization (DMO), each of which has a differ-
ent tradeoff between complexity and optimality guarantee.
Our numerical results show that each finds solutions that are
stable and effective in the worst-case CRLB minimization.
The rest of this paper is organized as follows. Sec. II

describes our wireless positioning system and preliminaries on
sensor selection. Two different forms of the CRLB expression,
which are utilized in our sensor selection strategies, are derived
in Sec. III. In Sec. IV, two greedy algorithms based on unique
selection metrics are proposed for the dynamic sensor selection
problem. In Sec. V, three different strategies are developed to
address the robust sensor selection problem. Simulation results
are presented in Sec. VI, and Sec. VII concludes this paper.

II. SYSTEM MODEL AND PRELIMINARIES

We first describe our system configuration in Sec. II-A.
Then, our hybrid TOA/RSS measurement model is introduced
in Sec. II-B. The data collection and estimation steps are
explained in Sec. II-C. Finally, our dynamic and robust sensor
selection problems are formulated in Sec. II-D.

A. Sensor Geography Model

As shown in Fig. 1, we consider 3D wireless positioning
with sensors from a set Mmax = {1, . . . ,Mmax}, where
Mmax is set by practical system limitations. Each sensor
m ∈ Mmax is placed at a predetermined 3D location
`sm = [xsm, y

s
m, z

s
m]>. We denote the center point of these

sensors as `s
0 = 1

Mmax

∑Mmax
m=1 `

s
m and characterize the space in

which the sensors are located via a constant ds, the smallest
positive value satisfying ‖`sm − `s

0‖2 ≤ ds, ∀m ∈Mmax.
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Sensor Space

Target Space

Fig. 1: Geographical configuration of the sensors and candidate target locations
in our wireless positioning model.

We consider single-antenna sensors with no time-
synchronization, i.e., a hardware-limited positioning system
where sensors cannot jointly collect their measurements and
conduct parameter estimation. We aim to conduct wireless posi-
tioning on a single stationary target with location ` = [x, y, z]>

which is outside of the sensor space, i.e., ds < ‖`− `s
0‖2 ≤

dmax, where dmax is the maximum distance to which wireless
positioning can be conducted. We divide our target space into G
distinct regions and represent each of them via a representative
point (e.g., the center of the region) `tg = [xtg, y

t
g, z

t
g]
> that

satisfies ds < ‖`tg − `s
0‖2 ≤ dmax, ∀g = 1, 2, . . . , G, as shown

in Fig. 1. We define L = {`t1, . . . , `tG} as a set collecting these
G representative points/locations.

For sensor selection, we assume that M sensors must be
selected from the Mmax total. We define a set M ⊆ Mmax,
with size M = |M| ≤ Mmax, to be the index set of the
M sensors selected for positioning. We also define mM =
[m1,m2, . . . ,mM ]> to be a vector listing the elements of M
in ascending order. Once the selection is made, the system
executes a sequence of steps to conduct wireless positioning.
The overall procedure of wireless positioning using M sensors
selected from Mmax is illustrated in Figure 2, and details on
each step are provided in the following sections.

B. Hybrid TOA/RSS Measurement Model

We assume that the entire positioning procedure has a
duration Tp. At each positioning round, a predetermined
reference signal s(t) of duration Ts is transmitted from the
target and received by the sensors. If we define the distance
between sensor m and the target as dm = ‖`sm − `‖2 and
assume LOS propagation from the target to each sensor [14],
the received signal at sensor m can be expressed as

rm(t) = hms
(
t− dm/c

)
+ wm(t), (1)

where hm is the channel gain between the target and sensor
m such that |hm|2 ∝ d−ξm , with ξ being the pathloss exponent,
wm(t) is zero-mean Gaussian noise, and c is the speed of
light. We consider Tp to be long enough so that the reference
signal can be received by every sensor within a single period
of positioning procedure, i.e., maxm∈Mmax(Ts +

dm
c )� Tp.

Data Fusion 
Center

Sensors

Wireless Channel
Dataset

Target

Fig. 2: System model of 3D wireless positioning using multiple sensors.
Yellow boxes indicate selected sensors.

We assume both TOA and RSS are measured by all sensors1.
Each sensor m ∈M measures its TOA τ̂m and RSS P̂m as

τ̂m = dm/c+ nT,m (2)

and
P̂m = P0,m − 10ξ log10 (dm/d0,m) + nR,m, (3)

where nT,m and nR,m are zero-mean real Gaussian noises for
TOA and RSS measurements at sensor m, respectively. Noises
arise due to environmental (e.g., channel fading and shadowing)
and systematic (e.g., non-ideal correlator and packet latency)
factors [24]. In (3), P0,m and d0,m are the reference power
and reference distance of sensor m, respectively.

We assume maximum likelihood estimation (MLE) for
approximating dm from the acquired measurements. The
estimated distances d̂T,m and d̂R,m from the respective TOA
and RSS measurements are then expressed as [17], [25]–[27]

d̂T,m = dm + eT,m and ln d̂R,m = ln dm + eR,m,

where eT,m and eR,m are zero-mean real Gaussian error
distributions with variances σ2

T,m and σ2
R,m, respectively. As

a result, given the target location `, the probability density
functions (PDFs) of d̂T,m and d̂R,m are given by [16]

pT,m(d̂T,m|`) =
1√

2πσT,m
e
−

(d̂T,m−dm)2

2σ2T,m (4)

and

pR,m(d̂R,m|`) =
1

√
2πd̂R,mσR,m

e
−

(ln d̂R,m−ln dm)2

2σ2R,m , (5)

which are Gaussian and log-normal, respectively.
For sensor m ∈M, we define q̂m = [d̂T,m, ln d̂R,m]> and

qm=[dm, ln dm]>. We further define q̂M=[q̂>m1
, . . . , q̂>mM ]>

and qM = [q>m1
, . . . , q>mM ]> to be the vertical concatenations

of q̂m and qm, respectively, from the sensors m ∈ M. The
joint PDF of 2M distance estimates from the hybrid TOA/RSS
measurements across the sensor set M is then given by [28]

pH,M(q̂M|`) =
e−

1
2 (q̂M−qM)>R−1

M (q̂M−qM)

(2π)M (
∏
m∈M d̂R,m) det(RM)

1
2

, (6)

1Other potential parameters, e.g., TDOA and angle of arrival (AOA), are not
available in our single-antenna and time-asynchronous sensor system model.
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TABLE I
A list of variables describing our system model

Variable Description Variable Description
Mmax Set of entire sensors hm Channel gain between the target and sensor m
M Set of sensors selected for positioning wm(t) Noise on the received signal of sensor m
`sm 3D coordinates of sensor m ξ Pathloss exponent
`s
0 Center point of the sensors τ̂m (P̂m) TOA (RSS) measurement on sensor m
` 3D coordinates of the target nT,m (nR,m) Noise on TOA (RSS) measurement of sensor m
`tg Representative point for region g P0,m (d0,m) Reference power (distance) of sensor m
ds Radius of the sensor space d̂T,m (d̂R,m) Distance estimated from TOA (RSS) of sensor m
dmax Maximum distance for positioning eT,m (eR,m) Error on TOA-based (RSS-based) distance estimation of sensor m
dm Distance between the target and sensor m σ2

T,m (σ2
R,m) Variance of eT,m (eR,m)

Tp Entire duration of wireless positioning ρm,m′ (ηm,m′ ) Spatial (Hybrid) correlation coefficient between sensors m and m′

s(t) Reference signal `p Prior approximation of `
Ts Length of reference signal ̂̀M Estimation of ` using the sensor set M

rm(t) Received signal at sensor m σ2
M(`) The CRLB on ` obtained using the sensor set M

where RM is the 2M × 2M covariance matrix of q̂M, i.e.,
RM = E[(q̂M−E[q̂M])(q̂M−E[q̂M])>]. Correlation among
the measurement noises are captured by the entries of RM,
which we express as the following partitioned block matrix:

RM =


Rm1m1 Rm1m2 · · · Rm1mM

Rm2m1
Rm2m2

· · · Rm2mM
...

...
. . .

...
RmMm1 RmMm2 · · · RmMmM

 , (7)

where Rmimj is the 2×2 covariance matrix between q̂mi and
q̂mj , ∀i, j. The general expression for Rmimj is given by

Rmimj=ρmimj

[
σT,miσT,mj ηmimjσT,miσR,mj

ηmimjσR,miσT,mj σR,miσR,mj

]
, (8)

where ρmimj , ηmimj ∈ [0, 1) are the spatial and hybrid corr-
elation coefficients, respectively, between sensors mi and mj .

C. Data Collection and Location Estimation

Once sensor m ∈ M completes TOA and RSS measure-
ments from the received signal rm(t), it generates the data point
Dm = {q̂m} and transfers it to the central data fusion center in
Fig. 2. Subsequently, based on the M data points collected from
the sensors inM, the data fusion center computes the estimated
location of the target ̂̀M = [x̂, ŷ, ẑ] using a location estimation
function fest, i.e., fest : {Dm}m∈M → ̂̀M. The function fest
can be modeled using various localization algorithms, e.g.,
Taylor expansion [29] or weighted least squares [13]. We
make no specific assumption on fest so that our sensor selection
strategies are compatible with any estimation method.

D. Problem Formulation

We formally define the accuracy of wireless positioning
using a selected sensor set M via MSE, which is given by

MSEM(`) = E
[
(x̂− x)2 + (ŷ − y)2 + (ẑ − z)2

]
. (9)

If we define σ2
M(`) to be the CRLB obtained via sensor setM

for a target located at `, σ2
M(`) is a lower bound on MSEM(`)

satisfying the following relationship [15]:

σ2
M(`)≤E

[
‖ ̂̀M − `‖22

]
=E
[
(x̂−x)2+(ŷ −y)2+(ẑ −z)2

]
.

Based on the CRLB, we formulate two distinct sensor
selection problems:

1) Dynamic sensor selection: When an approximation of
the target location `p ≈ ` is available, where `p ∈ L, we aim to
select setM such that the CRLB obtained on `p is minimized.
We formulate the dynamic sensor selection problem as

(PD) : M?
D =argmin

M
σ2
M(`p) (10)

s.t. |M| =M, M⊆Mmax. (11)

2) Robust sensor selection: When prior information on
`p ∈ L is not available, we aim to minimize the worst-case
positioning error across the potential target locations in L. We
subsequently formulate the robust sensor selection problem as

(PR) : M?
R =argmin

M
max
`tg∈L

σ2
M(`tg) (12)

s.t. |M| =M, M⊆Mmax. (13)

The definition of our robust sensor selection problem in PR
resembles the existing formalization of robustness in selection-
based optimization problems [30]–[32].

Both sensor selection problems are combinatorial optimiza-
tions and can be solved in theory via exhaustive search
over their feasible spaces. In practice, however, this presents
scalability challenges. Particularly, the solution to PD can be
found with complexity of O

(
Mmax!

(Mmax−M)!M !

)
[22], which can

become prohibitive as Mmax increases. For PR, the complexity
is additionally impacted by the size of L because what we are
trying to minimize is the max function over `tg . This motivates
us to develop more computationally efficient approaches,
beginning with analysis of the CRLB in Sec. III.

III. CRLB FOR WIRELESS POSITIONING

In this section, we obtain the CRLB expression in two different
forms. Unique properties observed in each form motivate
our development of sensor selection strategies that improve
accuracy and/or complexity. It is known that the CRLB can be
computed as σ2

M(`) = tr{I−1M (`)}, where IM(`) is the Fisher
information matrix (FIM) [13] for 3D wireless positioning
with hybrid TOA/RSS measurements on the target location `
using the sensors inM. Hence, we first derive the generalized
expression of IM(`) for our setting and then simplify the
expression to obtain two closed-form CRLB expressions.
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The FIM for our problem setup is given by [13]

IM(`) = −E


∂2lM(q̂M|`)

∂x2

∂2lM(q̂M|`)
∂x∂y

∂2lM(q̂M|`)
∂x∂z

∂2lM(q̂M|`)
∂y∂x

∂2lM(q̂M|`)
∂y2

∂2lM(q̂M|`)
∂y∂z

∂2lM(q̂M|`)
∂z∂x

∂2lM(q̂M|`)
∂z∂y

∂2lM(q̂M|`)
∂z2

, (14)

where

lM(q̂M|`) =− (1/2)(q̂M − qM)>R−1M (q̂M − qM)

− ln
(
(2π)M

( ∏
m∈M

d̂R,m

)
det(RM)

1
2

)
(15)

is the log-likelihood function derived from (6). Based on (14)
and (15), we write

IM(`) =

I
(xx)
M I(xy)M I(xz)M
I(yx)M I(yy)M I(yz)M
I(zx)M I(zy)M I(zz)M

 , (16)

where the elements can be expressed as

I(vw)
M =

∂q>M
∂v

R−1M
∂qM
∂w

, ∀v, w ∈ {x, y, z}. (17)

The derivation of (17) is provided in Appendix A.
We assume zero correlation on the noises among different

sensors [16], [17], [26], i.e., ρmimj = 1 and ηmimj ∈ [0, 1) if
i= j, and ρmimj = 0 and ηmimj = 0 if i 6= j. This makes
RM a block diagonal matrix, i.e., RM = diag(Rm1m1

,
Rm2m2

, . . . ,RmMmM ). The inverse of RM then becomes

R−1M = diag(R−1m1m1
,R−1m2m2

, . . . ,R−1mMmM ). (18)

Using (18) and dm= [(xsm− x)2 + (ysm− y)2 + (zsm− z)2]
1
2 ,

(17) can be rewritten as

I(vw)
M =

∑
m∈M

∂q>m
∂v

R−1mm
∂qm
∂w

=
∑
m∈M

− (vsm−v)
dm

− (vsm−v)
d2m

> σ−2
T,m

(1−η2mm)

−ηmmσ−1
T,m

(1−η2mm)σR,m

−ηmmσ−1
T,m

(1−η2mm)σR,m

σ−2
R,m

(1−η2mm)

− (ws
m−w)
dm

− (ws
m−w)
d2m


=
∑
m∈M

εm
(vsm − v)(ws

m − w)
d2m

, (19)

where

εm =
σ−2T,m

(1− η2mm)
+

σ−2R,m

(1− η2mm)d2m
−

2ηmmσ
−1
T,mσ

−1
R,m

(1− η2mm)dm
. (20)

Using (19), (16) can be expressed as

IM(`)=
∑
m∈M

εm


(xs
m−x)(x

s
m−x)

d2m

(xs
m−x)(y

s
m−y)

d2m

(xs
m−x)(z

s
m−z)

d2m
(ysm−y)(x

s
m−x)

d2m

(ysm−y)(y
s
m−y)

d2m

(ysm−y)(z
s
m−z)

d2m
(zsm−z)(x

s
m−x)

d2m

(zsm−z)(y
s
m−y)

d2m

(zsm−z)(z
s
m−z)

d2m


=
∑
m∈M

εmumu>m, (21)

where um = [(x
s
m−x)/dm, (y

s
m−y)/dm, (z

s
m−z)/dm]> is the nor-

malized LOS vector between sensor m and the target. Us-
ing (21) for expressing IM(`), the trace form of the CRLB
(T-CRLB) is obtained as

σ2
M(`) = tr

{( ∑
m∈M

εmumu>m

)−1}
. (22)

The T-CRLB reveals that the CRLB is a function of M rank-
one positive semidefinite matrices, each of which corresponds
to one of the sensors in M. With the CRLB taking this
form, optimizing the bound can be perceived as a standard
E-optimality experiment design problem [33], which is known
to be convex.

Without loss of generality, we can replace ` in (22) with
`tg to represent the CRLB for a discretized potential target
location `tg ∈ L. The expression of σ2

M(`tg) is obtained by
replacing all instances of dm in (22) with dmg = ‖`sm − `tg‖2.
The resulting expression is given by

σ2
M(`tg) = tr

{( ∑
m∈M

εmgumgu
>
mg

)−1}
, (23)

where umg =
[
(xs
m−x

t
g)/dmg, (y

s
m−y

t
g)/dmg, (z

s
m−z

t
g)/dmg

]>
and

εmg =
σ−2

T,m
(1−η2mm)+

σ−2
R,m

(1−η2mm)d2mg
− 2ηmmσ

−1
T,mσ

−1
R,m

(1−η2mm)dmg
. In Sec. V, we

will utilize (23) to formulate different versions of the robust
sensor selection problem that are equivalent to PR.

The T-CRLB allows us to evaluate the CRLB using um and
εm. However, the inverse operation prevents us from directly
observing the relationship between the selected sensors and
positioning accuracy. Therefore, from (22), we continue our
derivation and obtain the fractional form of CRLB (F-CRLB)
based on the following proposition proven in Appendix B.

Proposition 1. Given 2M distance estimates q̂M obtained
from the hybrid TOA/RSS measurements acquired by M sensors
in M following the PDF in (6), the F-CRLB is given by (24).

In (24), θm1m2
is the angle between the LOS vectors um1

and um2
, and φm1m2m3

is the angle between the vector um3

and the plane containing um1 and um2 . A visualization of
these angle parameters forM = {1, 2, 3} is provided in Fig. 3.
Compared to the T-CRLB, the F-CRLB offers interpretations
on the relationship between sensor placement and the resulting
CRLB. For example, the bound becomes undefined whenever
DM(`) yields zero, and this singularity occurs when the
selected sensors have a co-planar arrangement (i.e., the 3D
coordinates of M can be contained by a single plane). In
Sec. IV, where we focus on our dynamic sensor selection
problem PD, one of our sensor selection strategies will be
based on the unique characteristics found in the F-CRLB.

IV. DYNAMIC SENSOR SELECTION STRATEGIES

In this section, we focus on PD, where the sensor set M
is selected such that σ2

M(`), for a given `, is minimized.
Despite that SDR provides near-optimal performance to solve
the problem [22], [23], its complexity becomes prohibitive
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σ2
M(`) =

NM(`)

DM(`)
=

∑
m1∈M

∑
m2∈M
m2>m1

εm1εm2 sin2 θm1m2∑
m1∈M

∑
m2∈M
m2>m1

∑
m3∈M
m3>m2

εm1εm2εm3 sin2 θm1m2 sin2 φm1m2m3

(24)

Fig. 3: A visual illustration of θm1m2 and φm1m2m3 in the F-CRLB
expression for a given target and a sensor set M = {1, 2, 3}.

for a large number of sensors (e.g., O(M4.5
max) [23] from using

interior point methods [33]). To overcome this issue, greedy
selection strategies [21], [22] have been proposed for improved
complexity. For further reducing complexity, we propose two
selection metrics that do not fully compute the CRLB yet are
still effective for greedy selection. The metrics are designed
from the properties found in each of two forms: T-CRLB
and F-CRLB. We develop greedy selection algorithms based
on each proposed metric. Then, we present our complexity
analysis in Sec. IV-C. Note that our proposed sensor selection
algorithms can also be applied when only TOA or RSS is
available for the measurement since the resulting CRLB can
be derived to take the same form as T-CRLB or F-CRLB [10].
A. Sensor Selection based on the T-CRLB

Solving PD via greedy selection involves iterative selection
steps, in each of which the single most promising sensor for
minimizing the CRLB is added to the set. To optimize this
process, we first quantify the marginal CRLB reduction from
selecting a sensor. DefiningMi to be the set of sensors selected
by the first i steps in greedy selection, i.e., i ∈ {1, . . . ,M}
and |Mi| = i, we can write the marginal CRLB reduction
achieved by the selection step i as σ2

Mi−1
(`)−σ2

Mi
(`). Using

the T-CRLB in (22), we present a simplified expression for
the marginally reduced CRLB in the following proposition.

Proposition 2. For the greedy sensor selection step i, the
marginal CRLB reduction achieved by selecting sensor m ∈
Mmax\Mi−1 is expressed as

σ2
Mi−1

(`)−σ2
Mi

(`)= tr

{
εmI−1Mi−1

(`)umu>mI−1Mi−1
(`)

1 + εmu>mI−1Mi−1
(`)um

}
.(25)

Proof. Via (21), the FIM ofMi−1 is expressed as IMi−1
(`)=∑

m∈Mi−1
εmumu>m, which is the sum of i− 1 rank-one ma-

trices. Then, adding an additional sensor toMi−1 is equivalent
to applying a rank-one matrix update to IMi−1

. Since Mi =
Mi−1 ∪{m}, we can write IMi(`) = IMi−1(`)+ εmumu>m.
Using the relationship σ2

M(`) = tr{I−1M (`)},

σ2
Mi−1

(`)− σ2
Mi

(`) = tr{I−1Mi−1
(`)} − tr{I−1Mi

(`)}
= tr{I−1Mi−1

(`)− (IMi−1(`) + εmumu>m)−1}

= tr

{
εmI−1Mi−1

umu>mI−1Mi−1

1 + εmu>mI−1Mi−1
um

}
, (26)

where (26) is from the Sherman-Morrison formula [34]. �

We see from Proposition 2 that the marginal CRLB reduction
depends on (i) the FIM before making the selection and (ii)
the rank-one matrix corresponding to sensor m. It should be
noted that the inverse operation is not required to compute
I−1Mi

because it can be obtained from the Sherman-Morrison
formula and the previous iteration. One issue with this metric
is that IMi−1

must be always non-singular, i.e., the matrix
must be invertible. To ensure this, at least three sensors must
be included in Mi−1 for each i, which makes the greedy
selection based on (25) applicable only for i ≥ 4. The same
issue exists in the greedy selection algorithm [22] where the
complete CRLB expression is used as a selection metric. As
a result, we select the first three sensors, comprising M3,
heuristically (e.g., random selection) and conduct the rest of
greedy selection using the proposed metric.

Formally, for each selection step i, where 4 ≤ i ≤M , we
solve the optimization problem

m?
i = argmax

m∈Mmax\Mi−1

tr

{
εmI−1Mi−1

umu>mI−1Mi−1

1 + εmu>mI−1Mi−1
um

}
(27)

via exhaustive search and update Mi =Mi−1 ∪ {m?
i }. Once

all M sensors are selected,MM is declared as a solution. The
overall procedure is summarized in Algorithm 1.

Algorithm 1 Greedy Sensor Selection based on (27)
Require: εm and um, ∀m ∈Mmax

Generate M3 : 3 randomly selected sensors from Mmax

I−1
M3

=
(∑

m∈M3
εmumu>m

)−1

i = 4
while i ≤M do

Find m?
i from solving (27) via exhaustive search

Mi =Mi−1 ∪ {m?
i }

I−1
Mi

= I−1
Mi−1

−
εm?
i
I−1
Mi−1

um?
i
u>
m?
i
I−1
Mi−1

1+εm?
i
u>
m?
i
I−1
Mi−1

um?
i

i = i+ 1
end while
return MM

B. Sensor Selection based on the F-CRLB

According to the F-CRLB in (24), we can compute σ2
M(`)

by separately evaluating NM(`) and DM(`), which are the
sums of

(
M
2

)
pairs and

(
M
3

)
triplets, respectively, generated

out of M. We can exploit this pattern for our greedy sensor
selection strategy. Suppose an algorithm is in selection step i
and attempts to select a single sensor from the remaining set
Mmax\Mi−1 using the F-CRLB as its metric. If we define
Aab = εaεb sin

2 θab and Vabc = εaεbεc sin
2 θab sin

2 φabc for
a, b, c ∈Mmax, the optimization problem can be written as

m?
i = argmin

m∈Mmax\Mi−1

NMi−1
(`) +Asum

Mi−1,m
(`)

DMi−1
(`) + V sum

Mi−1,m
(`)

, (28)

where Asum
Mi−1,m

(`) =
∑
m1∈Mi−1

Am1m and V sum
Mi−1,m

(`) =∑
m1∈Mi−1

∑
m2∈Mi−1
m2>m1

Vm1m2m. Since both NMi−1
(`) and
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TABLE II
Complexity comparison of the two proposed dynamic sensor selection algorithms. While Algorithm 1 has lower asymptotic complexity,

it requires more arithmetic operations for small values of Mmax.
Algorithm Computation to Repeat Repetitions Total Arithmetic Operations Time Complexity

1 (25)
∑M
i=4(Mmax−i+1)

∑M
i=4 43(Mmax−i+1) O

(
M2

max
)

2 Am1m for i 6= 3
∑M
i=2(Mmax−i+1)(i−1)−2(Mmax−2) ∑M

i=2 3(Mmax−i+1)(i−1) O
(
M3

max
)

Vm1m2m for i = 3 for Am1m and (Mmax−2) for Vm1m2m

DMi−1(`) are available from the previous selection step i− 1,
instead of computing

(
i
2

)
+
(
i
3

)
summation terms, only (i−

1)+
(
i−1
2

)
terms are required to evaluate the objective function

of (28) for each value of m.
To further reduce the complexity of this sensor selection

strategy, we introduce the following proposition.

Proposition 3. Let λM,1, λM,2, and λM,3 denote the three
eigenvalues of IM(`). The CRLB σ2

M(`) is half the surface
to volume ratio (SVR) of a rectangular prism with dimension
λM,1 × λM,2 × λM,3.

The proof for Proposition 3 is given in Appendix C. The
key takeaway is how the CRLB can be characterized by the
geometry of the eigenvalues of IM(`). Particularly, the F-
CRLB in (24) can be paired with the SVR such that NM(`)
and DM(`) represent the surface area and volume, respectively.
In the following, we present a different method for minimizing
the CRLB based on this perspective.

According to Proposition 3, the solution to problem PD
(i.e., M?

D) should minimize the SVR of the rectangular prism
defined by the eigenvalues of IM(`). In other words, our
dynamic sensor selection problem is equivalent to finding
the set of sensors that minimizes the SVR of the resulting
rectangular prism. To decrease the SVR, we desire a rectangular
prism with (i) larger size (i.e., greater eigenvalues) and (ii)
more cubical shape (i.e., a smaller condition number). Note that
the range in which our eigenvalues can vary is fundamentally
limited since we only consider Mmax sensors placed within the
confined space. Therefore, we can focus on the first condition
(i.e., the size) to minimize the SVR. Note that a rectangular
prism with larger volume tends to yield a lower SVR: a higher
volume also implies a larger surface area, but volume has a
higher rate of change for a unit increase in dimension.

This discussion indicates that we can conduct our sensor
selection by relying on either NM(`) or DM(`). We thus
propose Asum

Mi−1,m
(`) and V sum

Mi−1,m
(`) as metrics that will

make our greedy sensor selection more computationally
efficient. For each greedy selection step i, the sensor to be
selected is determined by solving either of the following
optimization problems:

m?
i = argmax

m∈Mmax\Mi−1

Asum
Mi−1,m(`) (29)

or
m?
i = argmax

m∈Mmax\Mi−1

V sum
Mi−1,m(`). (30)

Using (29) for the selection criterion has lower computa-
tional complexity than (30). Also, with (29), one can start
conducting the greedy selection as early as i = 2, whereas
with (30), sensors must be selected heuristically until i = 3

due to the way in which the summations are formed. However,
solely relying on (29) can result in a low SVR when selected
sensors are in co-planar arrangement. Using (30) can prevent
this since V sum

Mi−1,m
(`) represents the increase in volume of

our rectangular prism. We thus aim to exploit both metrics for
complexity and stability advantages for CRLB minimization.

Our resulting greedy sensor selection algorithm is summa-
rized in Algorithm 2. The first sensor (i.e., M1) is randomly
selected from Mmax, and for the rest of selection steps except
for i = 3, in which we use (30), sensors are selected based
on (29) using exhaustive search. Note that we use (30) when
i = 3 to prevent the algorithm from selecting co-planar sensors.

Algorithm 2 Greedy Sensor Selection based on (29) and (30)
Require: εm and um, ∀m ∈Mmax

Generate M1 : a randomly selected sensor from Mmax
i = 2
while i ≤M do

if i = 3 then
Find m?

i from solving (30) via exhaustive search
else

Find m?
i from solving (29) via exhaustive search

end if
Mi =Mi−1 ∪ {m?

i }
i = i+ 1

end while
return MM

C. Computational Complexity Analysis
For each algorithm, we break down the complexity analysis

into two separate parts: (i) the number of arithmetic operations
required to compute the expressions, independent of M and
Mmax, that are repeatedly evaluated by the algorithm, and (ii)
the total number of times the algorithm evaluates each of
these expressions to complete the selection. The results are
summarized in Table II and discussed in the following.

For every selection step, Algorithm 1 repeatedly com-
putes (25) with 67 arithmetic operations and finds the sensor
that satisfies (27). To select M out of Mmax sensors, (25) is
computed

∑M
i=4(Mmax − i+ 1) times by the algorithm. As a

result, Algorithm 1 computes
∑M
i=4 67(Mmax−i+1) arithmetic

operations to select M out of Mmax sensors.
For Algorithm 2, which relies on (29) and (30) to conduct

greedy selection,
∑M
i=2(Mmax−i+1)(i−1)−2(Mmax−2) com-

putations of Am1m and (Mmax − 2) computations of Vm1m2m

are required to complete the selection of M sensors. Since
Am1m and Vm1m2m require 3 and 6 arithmetic operations,
respectively, we see that 3

[∑M
i=2(Mmax − i + 1)(i − 1) −

2(Mmax − 2)
]
+6(Mmax − 2) =

∑M
i=2 3(Mmax − i+1)(i− 1)

arithmetic operations are required by the algorithm.
For comparison, we introduce the best option filling (BOF)

algorithm [22], where the complete CRLB in (22) is evaluated
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to conduct greedy selection. In BOF algorithm, the first three
sensors are randomly selected, and for each selection step
4 ≤ i ≤ M , the algorithm computes εmumu>m in (22) for i
times and takes the inverse of their sum to evaluate the CRLB.
This results in a total of

∑M
i=4(12 + Ninv)(Mmax − i + 1)i

arithmetic operations from the BOF algorithm, where Ninv is
the number of arithmetic operations involved in the matrix
inverse. The complete process of BOF algorithm is summarized
in Algorithm 3.

Algorithm 3 Best option filling (BOF) sensor selection [22]
Require: εm and um, ∀m ∈Mmax

Generate M3 : 3 randomly selected sensors from Mmax
i = 4
while i ≤M do

Find m?
i = argminm∈Mmax\Mi−1

σ2
Mi−1∪{m}(`) using the

expression of σ2
M(`) in (22) via exhaustive search

Mi =Mi−1 ∪ {m?
i }

i = i+ 1
end while
return MM

Obtaining the polynomial expression for each algorithm’s
complexity, the leading terms are found to be 67MMmax −
33.5M2 and 1.5M2Mmax − M3 for Algorithms 1 and 2,
respectively. We see that Algorithm 2 has a higher degree
but much smaller coefficients than Algorithm 1. This implies
that Algorithm 2 maintains lower complexity for small values
of Mmax but surpasses Algorithm 1 as Mmax increases. With
M = Mmax, we find the asymptotic complexities become
O(M2

max) and O(M3
max) for Algorithm 1 and 2, respectively.

Note that the asymptotic complexity of BOF algorithm is
O(M3

max), which is same as Algorithm 2. Considering that
sensor selection via SDR and exhaustive search have asymp-
totic complexities of O(M4.5

max) and O(Mmax!), respectively,
both algorithms we propose show the computational advantage
for large-scale systems having a large number of sensors.

V. ROBUST SENSOR SELECTION STRATEGIES

In this section, we turn to the robust sensor selection problem
PR which aims to select a group of sensors such that the worst-
case CRLB is minimized. After discussing the unreliability
issue stemming from directly applying the conventional convex
relaxation technique (Sec. V-A), we present three new sensor
selection strategies (Sec. V-B,V-C,V-D) that provide reliable
solutions to the robust sensor selection problem.

A. Sensor Selection via Convex Relaxation

We first adopt convex relaxation [35]. Using (23) and a
binary selection vector b = [b1, b2, . . . , bMmax ]

>, where bm ∈
{0, 1}, problem PR can be rewritten as

b?R =argmin
b

max
g∈{1,...,G}

tr
{
(UgEgBU>g )

−1} (31)

s.t. 1>b =M, (32)
bm ∈ {0, 1} for m = 1, . . . ,Mmax, (33)

where B = diag(b), Ug = [u1g,u2g, . . . ,uMmaxg], and Eg =
diag([ε1g, ε2g, . . . , εMmaxg]

>) for each location g. Relaxing the

4 5 6 7 8 9 10
Num. of Sensors Used, M

5

10

15

20

25
Select largest M from c

R
* (binary)

b
R

* via exhaustive search (binary)

c
R

* via SDR (continuous)

Fig. 4: 3D visual representation of 14 sensors in a prism shape with ds = 4
(left) and robust sensor selection performance comparison between binary and
continuous selection cases (right).

binary constraint (33) to a continuous selection vector c =
[c1, . . . , cMmax ]

>, 0 ≤ cm ≤ 1, we rewrite the problem as

(P̃R) : c?R =argmin
c

max
g∈{1,...,G}

tr
{
(UgEgCU>g )

−1} (34)

s.t. 1>c =M, (35)
0 ≤ cm ≤ 1 for m = 1, . . . ,Mmax, (36)

where C = diag(c). Still, the above problem cannot be
solved directly using convex optimization because of the max
operation over the target location `tg for g ∈ {1, . . . , G}.

We subsequently transform the min-max problem P̃R into
an equivalent convex minimization problem by introducing a
threshold variable γ to represent the maximum CRLB allowed
out of the G locations in L. The problem is formulated as

(P̂R) : c?R = argmin
c,γ

γ (37)

s.t. 1>c =M, (38)
0 ≤ cm ≤ 1 for m = 1, . . . ,Mmax, (39)

tr
{
(UgEgCU>g )

−1} ≤ γ for g = 1, . . . , G. (40)

The formulation of P̂R allows us to use convex optimization
techniques, e.g., interior-point methods [36], to find the solution.
However, in contrast to the convex-relaxed dynamic sensor
selection problem [22], G additional constraints are imposed
in (40), which adds additional complexity for solving P̂R.

The convex relaxation approach in P̂R requires an extra
step of determining the binary selection vector b̂?R whenever
the solution of P̂R assigns non-zero values to more than M
sensors, i.e., ‖c?R‖0 > M . A simple heuristic [35] to determine
b̂?R would be selecting the M sensors with the largest cm values.
However, this can result in a poor selection result if any of
the essential sensors are discarded. In particular, some sensors
assigned with lower cm could be as important as the sensors
with higher cm for avoiding ill-conditioned FIMs, which lead
to extremely large CRLBs.

To illustrate this phenomenon, we directly compare the
CRLBs obtained by (i) b?R found via exhaustive search and (ii)
b̂?R found by picking the largest M sensors from c?R in (37). We
consider a sensor selection scenario with Mmax = 14 sensors
arranged as shown in the left plot of Fig. 4. The target location
set L is generated to cover the space defined by ds = 4 m and
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dmax = 14 m. For each sensor m, we assume the TOA and
RSS measurement noises with variances of σ2

T,m and σ2
R,m,

respectively, the values of which are selected the same as
those described in Sec. VI-A. The right plot of Figure 4 shows
the result obtained over different values of M . A significant
performance gap exists between b?R (red) and b̂?R (blue), which
indicates the latter approach is discarding important sensors.
The solution c?R itself (black) indeed provides the lowest CRLB
because, without the binary constraint, c?R is allowed to be
non-sparse and select as many sensors as needed. However,
we see that the effectiveness of c?R does not guarantee that the
largest M sensors chosen based on it will be close to optimal.

Such difference between these two binary solutions implies
that relying on the convex relaxation technique and naively
manipulating c?R is a poor strategy for robust sensor selection.
In the following, we propose three distinct approaches to
conduct robust sensor selection.

B. Sensor Selection via Iterative Convex Optimization

Our first strategy, iterative convex optimization (ICO), is
a greedy selection based on consecutive iterations of convex
optimization. In each optimization iteration, a sensor that is
found to be the most beneficial for minimizing the worst-case
CRLB is selected. Defining Msel to be the set of sensors
selected by the algorithm, initially Msel = ∅, for every
iteration step, the algorithm solves the following convex
optimization problem:

(P̂R1) : c?R1 = min
c,γ

γ (41)

s.t. 1>c =M, (42)
0 ≤ cm ≤ 1 for m ∈Mmax\Msel, (43)
cm = 1 for m ∈Msel, (44)

tr
{
(UgEgCU>g )

−1} ≤ γ for g = 1, . . . , G. (45)

In each step, the optimization is performed over the Mmax −
|Msel| sensors that have not yet been selected. Among the
sensors inMmax\Msel, the one with the largest cm is added to
Msel. The iterations continue until all M sensors are selected.
The overall procedure is summarized in Algorithm 4.

Algorithm 4 Robust Sensor Selection based on ICO
Require: εmg and umg , ∀m ∈Mmax and ∀g ∈ L

Initialize Msel = ∅, b = 0
i = 1
while i ≤M do

Acquire c?R1 from solving P̂R1 via convex optimization
m? = argmaxm∈Mmax\Msel

c?R1[m]
bm? = 1
Msel =Msel ∪ {m?}
i = i+ 1

end while
return b

This greedy selection strategy promotes robustness because
each sensor is sequentially and individually selected such that
Msel focuses on maximizing performance without relying on
any unselected sensors. In particular, the convex optimization

of each selection step reflects the selections from earlier steps
via (44). Conducting greedy selection based on these per-step
solutions provides us with a stable and yet effective sensor
selection in the end. Note that the mechanism of our strategy is
similar to matching pursuit [37], a widely adopted solution for
NP-hard sparse approximation problems, in the sense that the
algorithm primarily looks for the sensors that have the biggest
impact on the worst-case CRLB minimization. Nevertheless,
the suboptimality of greedy selection can limit the effectiveness
of Algorithm 4. In the following strategy, we propose a strategy
that does not employ the greedy selection framework.

C. Sensor Selection via Difference of Convex Functions
Programming

Instead of finding the entries of b?R one at a time, here
we formulate an optimization problem such that elements of
c?R are forced to be binary. We can achieve this in theory
by adding the constraint 1>c − c>c ≤ 0 to P̂R, which,
together with (39), constrains cm ∈ {0, 1}. However, this
would make our optimization problem non-convex. We thus
impose this by adding a penalty term to the objective function
for penalizing non-binary solutions. We formally reformulate
our robust sensor selection problem as

(P̂R2) : c?R2 = argmin
c,γ

γ + λ(1>c− c>c) (46)

s.t. 1>c =M, (47)
0 ≤ cm ≤ 1 for m = 1, . . . ,Mmax, (48)

tr
{
(UgEgCU>g )

−1} ≤ γ for g = 1, . . . , G, (49)

where λ ≥ 0 is the penalty factor. Within the range set by (48),
each cm would take binary entries to have the quadratic penalty
term added to the objective function decreased. However, intro-
ducing this concave penalty term still makes our problem non-
convex. To circumvent this issue, we exploit an optimization
technique called difference of convex functions programming
(DCP) [38] to solve P̂R2.

For DCP, we write the objective function in (46) as

f(c)− g(c), (50)

where f(c) = γ+λ1>c and g(c) = λc>c. Note that f(c) and
g(c) are both convex functions with respect to the optimization
variables. Our objective function is thus the difference of two
convex functions of c, as DCP requires. Then, to make g(c)
affine, we apply a linear approximation to g(c) [38] as

g̃(c; ck) = g(ck) +∇g(ck)>(c− ck) (51)

= λc>k ck + 2λc>k (c− ck), (52)

where ck is a feasible point to P̂R2. By the first order condition
of a convex function g(c) at c, i.e., g(c) ≥ g̃(c; ck), DCP
operates as follows. At iteration step k, the objective function
of P̂R2, i.e., (50), is replaced by f(c)− g̃(c; ck), and we use
convex optimization, e.g., an interior-point method [36], to find
the solution, denoted by c?k. For the next iteration step k + 1,
the same objective function is replaced by f(c)− g̃(c; ck+1),
where we set ck+1 = c?k, and the solution c?k+1 is once again
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obtained via convex optimization. The steps are repeated until
the solution converges, i.e., ‖c?k+1 − c?k‖ < ε.

We next show that a solution obtained by DCP is indeed a
stationary point in P̂R2 through the following proposition.

Proposition 4. If there exists a feasible point c? to which
DCP converges (i.e., c?k → c? as k →∞), c? is a stationary
point to P̂R2.

Proof. First, note that c?k obtained by DCP is feasible to P̂R2
for all k since there are no approximations made to any of
the constraints in P̂R2.

We next show that the objective function of P̂R2 at c?k,
i.e., f(c?k)− g(c?k), is bounded by the objective functions of
DCP from two consecutive steps k and k+1. The relationship
between the objective values of DCP evaluated at c?k and c?k+1,
obtained from iteration steps k and k + 1, is given by [38]

f(c?k)− g̃(c?k; ck) ≥ f(c?k)− g(c?k) (53)
= f(ck+1)− g(ck+1) (54)
= f(ck+1)− g̃(ck+1; ck+1) (55)
≥ f(c?k+1)− g̃(c?k+1; ck+1). (56)

The equality in (54) holds from the operation of DCP, and the
equality in (55) is true since g̃(c; ck+1) is the linear approxima-
tion of g(c). The fact that c?k+1 minimizes f(c)− g̃(c; ck+1)
establishes the last inequality. By the relationship derived above,
f(c?k)− g(c?k) is lower-bounded by f(c?k+1)− g̃(c?k+1; ck+1)
and also upper-bounded by f(c?k)− g̃(c?k; ck).

If DCP converges to a point c?, it implies that c?k = c?k+1 =

c? as k →∞. As a result, the objective function of P̂R2, which
is both lower and upper bounded by the same function f(c?)−
g̃(c?; c?), converges to a stationary point f(c?)− g(c?). �

With the penalty term introduced to force binary solutions
for P̂R2, multiple locally optimal points can exist in the feasible
space. Therefore, despite the effectiveness of DCP in finding
stationary points of P̂R2, no guarantee is given on c?R2 = b?R.

Instead, the ability of DCP to find the closest c?R2 to b?R
depends on the choice of initial point, i.e., c0 [38]. One
heuristic to find such solution is therefore to run DCP multiple
times with different c0 values and select the solution with the
lowest objective value. The required number of runs for this
method, however, depends on the magnitude of λ in P̂R2. On
the one hand, with λ = 0, DCP finds the same non-binary
solution regardless of c0, so only a single run of DCP is
required. On the other hand, with λ = ∞, the solution is
strictly determined by c0, so the required number of runs may
increase up to

(
Mmax
M

)
, which is equivalent to the exhaustive

search case. Therefore, both λ and the number of runs, which
we denote as NDCP, must be carefully selected.

We propose setting λ = κγ0, where γ0 is the optimized γ
from solving P̂R2 with λ = 0, and κ ≥ 0 is a scaling factor.
By setting λ to be proportional to γ0, we can balance our
penalty term based on the worst-case CRLB (i.e, γ in P̂R2)
and effectively force our optimization to find a desired binary
solution. The overall procedure of DCP-based robust sensor
selection is summarized in Algorithm 5.

Algorithm 5 Robust Sensor Selection based on DCP
Require: NDCP, κ, ε, εm and um, ∀m ∈Mmax

Initialize C = ∅, λ = 0 and generate a random feasible point c0
Acquire c?R2 from solving P̂R2 via convex optimization
λ = κγ and n = 1
while n ≤ NDCP do
k = 0 and generate a random feasible point ck
while true do

Update the objective function of P̂R2 to f(c)− g̃(c; ck)
Acquire c?R2 from solving P̂R2 via convex optimization
ck+1 = c?R2
if ‖ck+1 − ck‖ < ε then

Break
end if
k = k + 1

end while
C = C ∪ {c?R2} and n = n+ 1

end while
c??R2 = argminc∈C f(c)− g(c)
return c??R2

Fig. 5: Worst-case CRLBs and zero-penalty rates over different values of κ.

To illustrate the impact of λ on our proposed algorithm, we
conduct a simulation to evaluate both the worst-case CRLB
and zero-penalty rate (i.e., the rate with which our algorithm
converges to a binary solution and yields zero penalty) over
different values of κ. For the simulation, we used the same
system setup for generating Fig. 4 except that sensors are
randomly placed. With the DCP-related parameters set as
NDCP = 20, κ ∈ [0.2, 5], and ε = 0.05, the obtained result is
shown in Fig. 5. We see that higher κ results in higher rate of
finding binary solutions as greater penalty further ensures that
DCP converges to a binary solution. However, the worst-case
CRLB performance also moves further away from the optimal
exhaustive search case; imposing too much penalty on the
optimization is less likely to provide a desired solution due to
the increased chance of DCP finding one of the locally optimal
points. It is therefore important to determine the proper value
of λ so that the best performance is achieved from a given
sensor selection scenario. For example, from the upper plot of
Fig. 5, we find that our algorithm obtains the best performance
with κ = 0.5 for M = 4 but κ = 0.2 for M = 5, 6.
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Our DCP-based strategy does not rely on greedy selection,
but the necessity of finding a proper value for λ and uncertainty
of acquiring optimal solutions render this strategy less effective.
Therefore, in the following, we introduce a more extreme
strategy that is guaranteed to find the optimal set of sensors.

D. Sensor Selection via Discrete Monotonic Optimization

Our final strategy is based on discrete monotonic opti-
mization (DMO) [39], an optimization method for when the
objective function and constraints are in the form of a difference
of two monotonic functions. In other words, DMO can be
exploited for problems of the form

max
c

f+(c)− f−(c) (57)

s.t. gq(c)− hq(c) ≤ 0 for q = 1, . . . , Q, (58)
c ∈ [v,w], (59)

where f+(c), f−(c), gq(c), and hq(c) are all monotonically
increasing2 functions in c. The Branch-Reduce-and-Bound
(BRB) technique [39]–[41] can be applied to solve DMO
problems. DMO is known to solve combinatorial optimization
problems optimally because, unlike convex optimization meth-
ods, it handles the binary constraint without any relaxation [39].

We propose the following re-formulation of (34)-(36) for
robust sensor selection:

(P̃R3) : c?R3 =argmax
c

min
g∈{1,...,G}

−tr
{
(UgEgCU>g )

−1}
− µmax(0,1>c−M) (60)

s.t. 1>c− c>c ≤ 0, (61)
c ∈ [0,1], (62)

from which we can make the following list of mapping
from (60)-(62) to (57)-(59):

f+(c) = min
g∈{1,...,G}

−tr
{
(UgEgCU>g )

−1} , (63)

f−(c) = µmax(0,1>c−M), (64)

g1(c) = 1>c, h1(c) = c>c, [v,w] = [0,1]. (65)

In P̃R3, we have converted the constraint (35) to a penalty
function µmax(0,1>c−M) where the max operation with
zero is applied to ensure 1>c = M . Note that the two
constraints (61) and (62) enforce c to be binary. Clearly, f−(c),
g1(c), and h1(c) are increasing functions in c ∈ [0,1]. This
behavior holds for f+(c) as well:

Proposition 5. f+(c) in (63) is an increasing function in
c ∈ [0,1].

Proof. Consider two selection vectors c(1), c(2) ∈ [0,1] such
that c(2) ≥ c(1). Also define M(1) = {m|m ∈ Mmax, c

(1)
m >

0} and M(2) = {m|m ∈ Mmax, c
(2)
m > 0} to be the sets of

sensors selected by c(1) and c(2), respectively. We identify
two distinct cases of c(2) ≥ c(1) that can appear in sensor

2We consider a function f to be increasing in c if f(c(2)) ≥ f(c(1)) for
c(2) ≥ c(1), where c(2) ≥ c(1) implies c(2)m ≥ c(1)m , ∀m.

selection: (i) M(1) =M(2) and (ii) M(1) ⊂M(2). For both
cases, we show that f+(c(2)) ≥ f+(c(1)) if c(2) ≥ c(1).

(i) M(1) = M(2): Since the same sensors have been
selected by both c(1) and c(2), the geometric condition-
ings [10] of M(1) and M(2) are the same for each g.
Since g(1)? = argming −tr

{
(UgEgC

(1)Ug)
−1} and g

(2)
? =

argming −tr
{
(UgEgC

(2)Ug)
−1} are equal, i.e., g? = g

(1)
?

= g
(2)
? , we directly compare −tr

{
(Ug?Eg?C

(1)Ug?)
−1} with

−tr
{
(Ug?Eg?C

(2)Ug?)
−1}. Define A = Ug?Eg?C

(1)Ug?

and B = Ug?Eg?(C
(2) − C(1))Ug? so that A + B =

Ug?Eg?C
(2)Ug? . Then, from the Woodbury identity, we

have −tr{(A + B)−1} = −tr{A−1} + tr{A−1(B−1 +
A−1)−1A−1}. Since both A and B are positive semidefinite,
tr{A−1(B−1+A−1)−1A−1} must be non-negative. Therefore,
−tr
{
(Ug?Eg?C

(2)Ug?)
−1} ≥ −tr

{
(Ug?Eg?C

(1)Ug?)
−1}.

(ii) M(1) ⊂ M(2): Let m′ be the index of sensors only
selected by M(2), i.e., m′ ∈ M(2)\M(1). The relationship
between the worst-case CRLBs resulting from c(1) and c(2)

is given by

−tr
{
(U

g
(2)
?

E
g
(2)
?

C(2)U
g
(2)
?

)−1
}

≥ lim
cm′→0,∀m′

−tr
{
(U

g
(2)
?

E
g
(2)
?

C(2)U
g
(2)
?

)−1
}

(66)

≥ −tr
{
(U

g
(2)
?

E
g
(2)
?

C(1)U
g
(2)
?

)−1
}

(67)

≥ −tr
{
(U

g
(1)
?

E
g
(1)
?

C(1)U
g
(1)
?

)−1
}
, (68)

where (66)-(67) are due to c(2) ≥ limcm′→0,∀m′ c
(2) ≥ c(1).

The last inequality follows from the fact that the CRLB with
c(1) achieves its maximum at the g(1)? location. �

With P̃R3 formulated, our DMO-based robust sensor selec-
tion algorithm has the following branch and reduce steps:

• Branch: A box B = [v,w] is partitioned into two boxes
B1 and B2 such that B1 = {c ∈ B|cm? ≤ b(vm? +
wm?)/2c} and B2 = {c ∈ B|cm? ≥ d(vm? + wm?)/2e},
where m? = argmaxm∈Mmax

(wm − vm).
• Reduce: A box B = [v,w] is reduced to B′ = [v′,w′]

such that v′ = w−
∑Mmax
m=1 αm(wm− vm)em and w′ =

v′+
∑Mmax
m=1 βm(wm−v′m)em, where αm=sup{α|α∈ [0, 1],

g1(v) − h1(w − α(wm − vm)em) ≤ 0, f+(w − α(wm −
vm)em) − f−(v) ≥ ν(B)} and βm = sup{β|β ∈ [0, 1],
g1(v

′ − β(wm − v′m)em)− h1(w) ≤ 0, f+(w)− f−(v′ +
β(wm − v′m)em) ≥ ν(B)}. Here ν(B) = maxc∈B
(f+(c)− f−(c)), and em is the m-th column of IMmax .

The overall procedure is summarized in Algorithm 6. Starting
from the box [0,1], smaller boxes are generated using the
Branch (i.e., cutting the box in half) and Reduce (i.e., cutting
down the edges of each box) steps. Then, by keeping the boxes
that satisfy the boundary condition (e.g., f+(w′)− f−(v′) <
ν? in Algorithm 6) and discarding the rest, the solution range
is narrowed down by the algorithm. This step is repeated until
(i) there is no more box satisfying the boundary condition or
(ii) a box whose f+(w′)− f−(v′) is δ-accurate to the bound.
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Algorithm 6 Robust Sensor Selection based on DMO
Require: µ, δ, εm and um, ∀m ∈Mmax

Initialize i = 1, B = [0,1], Bi = {B}, Ri = ∅, and ν? = −∞
while TRUE do

Reduce each box B ∈ Bi into B′ and Ri = Ri ∪B′
Find c(i) = argmax

c=
⌈
(v′+w′)

2

⌉
,∀B′∈Ri

(f+(c)− f−(c)) > ν?

if c(i) exists then
ν? = f+(c(i))− f−(c(i))

else
c(i) = c(i−1)

end if
Delete every B′ ∈ Ri satisfying f+(w′)− f−(v′) < ν?

Ri+1 = Ri
if Ri+1 = ∅ then

return c?R3 = c(i)

else
B(i) = argmaxB′∈Ri+1

f+(w′)− f−(v′)
if ν? ≥ δ(f+(w(i))− f−(v(i))) then

return c?R3 = c(i)

else
Branch B(i) into B(i)

1 and B(i)
2

Ri+1 = Ri+1\B(i) and Bi+1 = {B(i)
1 , B

(i)
2 }

end if
end if
i = i+ 1

end while
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Fig. 6: Comparison between the CRLB and a MLE method (Taylor expansion)
over different values of M .

VI. NUMERICAL SIMULATIONS

A. Simulation Setup and Metrics

Unless stated otherwise, we use Mmax = 14 sensors
placed inside the sensor space confined by ds = 4m with
target space covering dmax = 14m. The location of sensor
m, i.e., `sm, ∀m ∈ Mmax, is randomly generated for each
experiment. According to conventional signal modeling, TOA
and RSS measurement noises for sensor m are assumed
to have σ2

T,m = c2

8πSNRmW 2 [27] with SNRm = d−ξm and
σ2

R,m =
(
log 10
10ξ

)2
σ2

S,m [15], where W is the signal bandwidth
and σ2

S,m is the shadowing variance [16]. We set ξ = 2,
W = 500 MHz, and σ2

S,m = 0.83. To obtain CRLB plots,
an average was taken across 10 different experiments, each
of which had either 152 randomly generated ` for dynamic
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Fig. 7: Comparison of the CRLB obtained from different dynamic sensor
selection algorithms over M when Mmax = 14.

sensor selection or 152 evenly distributed `tg for robust
sensor selection inside the target space. We measure the
complexity of algorithms in terms of their runtime computed
in the implementation software MATLAB R2021a. The results
present the average of 10,000 independent runs/executions of
each algorithm.

We employ the CRLB expression σ2
M(`) in (22) as our posi-

tioning accuracy metric for sensor selection. To demonstrate its
appropriateness, we implement fest, which utilizes the Taylor
expansion [29], and compare its positioning performance to
the CRLB. The result across different values of M and dmax
is shown in Fig. 6. To generate the plot, the solution to PD
was found via exhaustive search for each value of M and
used to compute both MSEM(`) of fest (dashed) and σ2

M(`)
(solid). As seen in Fig. 6, for all values of M and dmax,
the CRLB is just slightly lower than the MSE performance
of fest. We thus conclude that the CRLB is a valid metric
to quantify the selection-dependent accuracy performance of
wireless positioning.

B. Dynamic Sensor Selection

We evaluate the performance of our dynamic sensor selection
algorithms from Sec. IV. We refer to Algorithms 1 and 2 as
greedy sensor selection using T-CRLB (GSS-T) and greedy
sensor selection using F-CRLB (GSS-F), respectively.

We first consider the average CRLBs obtained by our
algorithms and three benchmarks: (i) exhaustive search, (ii)
SDR [23], and (iii) BOF greedy selection [22]. According to
the results shown in Fig. 7, we see that exhaustive search and
SDR provide the best performance in CRLB minimization.
Note that greedy sensor selection algorithms often converge
to a suboptimal solution of problem PD since the successive
decisions made for each sensor selection may not always lead
to a globally optimal decision. Out of the greedy selection
algorithms, GSS-F shows the most comparable performance to
the optimal case. We also see that GSS-T has its performance
equivalent to BOF, which implies that our proposed sensor
selection metric matches the efficacy of completely evaluating
the CRLB expression. Additionally, we see that both GSS-T
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Fig. 8: Comparison between running time from different dynamic sensor
selection algorithms over M when Mmax = 14.

and BOF have inferior performance compared to GSS-F. This
is since more sensors must be heuristically selected for GSS-
T and BOF, emphasizing the importance of early stages in
greedy selection. For each algorithm, the improvement in the
CRLB diminishes upon increasing M , and the performance
becomes close to the case of M =Mmax (dashed line) when
M approaches 10. Moreover, the performance gap among
the algorithms becomes almost negligible at M = 10. This
implies a stable positioning performance (i.e., a consistent
CRLB regardless of the algorithm) can be achieved once
the number of used/selected sensors in the sensor space is
large enough. It is worth mentioning that these numbers are
application-specific and depend on the sensor space volume
and the region occupied by the target candidate locations.

Overall, comparing GSS-T and GSS-F to the benchmarks
verifies that our proposed selection strategies only marginally
degrade positioning accuracy performance compared to the
computationally intensive SDR and exhaustive search. We
move now to quantify the improvement in complexity that
they provide. In Fig. 8, the running times of different sensor
selection algorithms are shown. We see that GSS-F takes the
shortest time to complete the sensor selection compared to
other greedy selection algorithms. This supports our analysis
in Sec. IV-C, which expects GSS-F to be the quickest from
having low leading coefficients. We also see that the GSS-T
algorithm only requires about half the running time taken by
BOF. Therefore, we can consider GSS-T and GSS-F to be
superior to BOF in the sense that they provide similar or better
accuracy performance in much less time. Note that SDR, which
is not included in Fig. 8, shows the worst runtime performance
with 0.56 seconds in average. The fast execution times of our
proposed algorithms allow near real-time sensor selection for
moving targets as well. In particular, their fast sensor selection
times allow the target to only move a short distance before
the actual positioning step is carried by the system.

Next, we evaluate the asymptotic complexity results from
Sec. IV-C by considering large numbers for Mmax. In Fig. 9,
two plots comparing the average running times of BOF, GSS-T,
and GSS-F over different values of Mmax for M = b0.5Mmaxc
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Fig. 9: Comparison of the running time of different dynamic sensor selection
algorithms over Mmax when M=b0.5Mmaxc (left) and M=Mmax (right).
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(left) and M =Mmax (right) are shown. We see that both of our
algorithms take less time than BOF as Mmax increases. As we
discussed in Sec. IV-C, GSS-T and GSS-F have complexities
O(M2

max) and O(M3
max), respectively, in terms of the number

of arithmetic operations involved. Since GSS-F has less leading
coefficients than GSS-T, we see that GSS-F has faster running
time for smaller Mmax but eventually surpasses GSS-T, when
Mmax ≥ 75 for M = b0.5Mmaxc and Mmax ≥ 50 for M =
Mmax. Note that the BOF algorithm of complexity O(M3

max)
having the same asymptotic behavior as GSS-F is verified by
their slope being similar for large Mmax.

C. Robust Sensor Selection

We evaluate the performance of our robust sensor selection
algorithms. We refer to Algorithms 4, 5, and 6 as robust sensor
selections using ICO (RSS-ICO), DCP (RSS-DCP), and DMO
(RSS-DMO), respectively. We set ε = 0.05 for RSS-DCP and
µ = 100, δ = 0.05 for RSS-DMO. A plot comparing the
average worst-case CRLBs of our selection algorithms and the
benchmarks: (i) exhaustive search and (ii) SDR, is shown in
Fig. 10. As discussed in Sec. V-D, RSS-DMO does not rely on
convex relaxation and provides optimal performance (i.e., same
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TABLE III
Runtime measurements in seconds of robust sensor selection algorithms over

different values of M , Mmax, and G.
Mmax = 10 Mmax = 15

G = 20 G = 40 G = 20 G = 40
M 4 6 4 6 4 6 4 6

RSS-ICO 3.59 6.21 6.65 10.21 5.00 7.46 7.27 11.19
RSS-DCP 4.96 4.16 8.23 7.30 5.87 5.44 9.21 7.35
RSS-DMO 2.38 1.34 2.81 1.49 19.82 14.65 27.92 21.72

performance as exhaustive search) in the worst-case CRLB
minimization. Despite being suboptimal, both RSS-ICO and
RSS-DCP show significant improvement compared to SDR.

To evaluate the impact of penalty term on RSS-DCP, results
with different κ values are included in Fig. 10. For small
M , greater penalties are needed to force ‖c?R2‖0 = M since
‖c?R‖0 is typically far greater than M . This is verified by our
result in which RSS-DCP shows near-optimal performance
with κ = 0.5 but degraded performance with κ = 0.2 for small
M . Note that the opposite behavior is observed for larger M ,
i.e., RSS-DCP with κ = 0.2 shows better performance. This
is since ‖c?R‖0 is already close to M , and too much penalty
prevents RSS-DCP from finding more robust solutions.

We now evaluate the runtime performance of our robust
sensor selection algorithms. To focus on comparative analysis,
we measure runtimes with M , G, and Mmax varying over two
different values. The results are shown in Table III. Both RSS-
ICO and RSS-DCP provide the runtimes strictly proportional
to G as the algorithms conduct convex optimization over at
least G distinct constraints. For RSS-ICO, since M iterations
are required to complete its selection, we see that the runtime
also increases with M . In contrast, the runtime of RSS-DCP
decreases for increased M because the algorithm is likely
to find converged solutions quicker over the feasible space
defined by a larger M . Regarding our optimal algorithm RSS-
DMO, we see a significant increase in the runtime for an
increased Mmax. As RSS-DMO adopts the BRB technique to
find solutions, Mmax strictly determines the dimension of the
boxes, which directly impacts the algorithm complexity.

Different runtime behaviors shown by our robust sensor se-
lection algorithms indicate that no single algorithm claims both
computation and accuracy advantages over the others, which
lead to a pareto solution in the complexity/accuracy space. For
example, RSS-DMO guarantees the optimal performance in
the worst-case CRLB minimization, but is not always the best
option if we must consider computational complexity. Thus,
tradeoffs between the accuracy and complexity performance
should be well considered regarding our algorithms.

VII. CONCLUSION

We have considered both dynamic and robust sensor selection
problems in 3D wireless positioning with TOA/RSS hybrid
measurements. After formulating the optimization problems
using the CRLB as a performance metric, trace and fractional
forms of CRLB were derived and used for developing sensor
selection strategies. To address the dynamic sensor selection,
two greedy selection algorithms were proposed, one based
on each CRLB form, and shown to achieve substantial

reductions in computational complexity, both in theory and
experimentally, for comparable positioning accuracy. Three
different strategies were developed for the robust sensor
selection, each having different tradeoffs between complexity
and optimality guarantee in minimizing the worst-case CRLB.
Developing a joint dynamic and robust sensor selection strategy
that is adaptable to various system conditions is left as our
potential future work.

APPENDIX A
STEPS FOR DERIVING (17)

Using (14) and (15), the element of IM(`) is evaluated as

I(vw)
M = −E [∂/∂w {∂/∂v lM(q̂M|`)}] (69)

= E
[
∂/∂w

(
∂(q̂M − qM)>/∂vR−1M (q̂M − qM)

)]
(70)

= E
[
∂(q̂M − qM)>/∂vR−1M∂(q̂M − qM)/∂w

+ ∂2(q̂M − qM)>/∂v∂wR−1M (q̂M−qM)
]

= E
[
∂q>M/∂vR

−1
M∂qM/∂w−∂2q>M/∂v∂wR−1M(q̂M−qM)

]
(71)

= ∂q>M/∂vR
−1
M∂qM/∂w, (72)

for v, w ∈ {x, y, z}. Equality in (71) holds because the
derivatives of q̂M are zero. Note that, with MLE, q̂M is
simply treated as an observation vector. The last equality is
true as the expectation only applies to q̂M, and E[q̂M] = qM
makes the last term in (71) zero.

APPENDIX B
PROOF OF PROPOSITION 1

We begin the proof by considering (22). Let us define UM =[
{√εmum}m∈M

]
to be a 3×M matrix having M columns

of
√
εmum for m ∈M. Then, (22) can be rewritten as

σ2
M(`) = tr

{(
UMU>M

)−1}
=

tr{adj
(
UMU>M

)
}

det(UMU>M)
. (73)

The denominator of (73) can be derived as

det(UMU>M)

=
∑

m1∈M

∑
m2∈M
m2>m1

∑
m3∈M
m3>m2

det([ε
1/2
m1

um1
, ε

1/2
m2

um2
, ε

1/2
m3

um3
])2

=
∑

m1∈M

∑
m2∈M
m2>m1

∑
m3∈M
m3>m2

εm1εm2εm3

(
(um1× um2) · um3

)2
=
∑

m1∈M

∑
m2∈M
m2>m1

∑
m3∈M
m3>m2

εm1
εm2

εm3

×
(
‖um1× um2‖‖um3‖ cos

(
π/2− φm1m2m3

))2
(74)

=
∑

m1∈M

∑
m2∈M
m2>m1

∑
m3∈M
m3>m2

εm1
εm2

εm3

×
(
‖um1

‖‖um2
‖ sin θm1m2

‖um3
‖ sinφm1m2m3

)2
(75)

=
∑

m1∈M

∑
m2∈M
m2>m1

∑
m3∈M
m3>m2

εm1εm2εm3 sin
2 θm1m2 sin

2 φm1m2m3 ,

(76)
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where the operations × and · between two vectors indicate
cross-product and inner-product, respectively. The first equality
is from the Cauchy-Binet formula and property that |A||A>|=
|A|2 for any square matrix A. The second equality holds as
the determinant of a matrix is equal to the volume created by
column vectors. Equalities in (74) and (75) hold due to ua ·
ub = ‖ua‖‖ub‖ cos θab and ‖ua × ub‖ = ‖ua‖‖ub‖ sin θab,
respectively. The last equality holds since ‖um‖ = 1, ∀m.

The numerator of (73) is derived as follows. Since we are
only interested in the diagonal terms, each of which is equal
to the determinant of 2 × 2 matrix obtained after removing
the corresponding row and column,

tr{adj
(
UMU>M

)
}

=
∑

m1∈M

∑
m2∈M
m2>m1

εm1
εm2

(∣∣∣∣(xs
m1
−x)/dm1

(xs
m2
−x)/dm2

(ysm1
−y)/dm1

(ysm2
−y)/dm2

∣∣∣∣2

+

∣∣∣∣(xs
m1
−x)/dm1

(xs
m2
−x)/dm2

(zsm1
−z)/dm1

(zsm2
−z)/dm2

∣∣∣∣2+∣∣∣∣(ysm1
−y)/dm1

(ysm2
−y)/dm2

(zsm1
−z)/dm1

(zsm2
−z)/dm2

∣∣∣∣2
)

=
∑

m1∈M

∑
m2∈M
m2>m1

εm1
εm2

(
‖um1

‖2‖um2
‖2−(um1

· um2
)2
)

(77)

=
∑

m1∈M

∑
m2∈M
m2>m1

εm1
εm2

(
1−‖um1

‖2‖um2
‖2 cos2 θm1m2

)
(78)

=
∑

m1∈M

∑
m2∈M
m2>m1

εm1εm2 sin
2 θm1m2 . (79)

The first equality holds from applying the Cauchy-Binet
formula to each diagonal term. Equality in (78) is due to
ua · ub = ‖ua‖‖ub‖ cos θab and ‖um‖ = 1, ∀m. The last
equality holds from cos2 θ + sin2 θ = 1. Rewriting (73)
using (76) and (79) completes the derivation of the F-CRLB.

APPENDIX C
PROOF OF PROPOSITION 3

We begin the proof by considering (73). Letting λM,1, λM,2,
and λM,3 be the eigenvalues of UMU>M, we can express the
determinant as

det(UMU>M) =
∏3

d=1
λM,d. (80)

Using the property tr
{(

UMU>M
)−1}

=
∑3
d=1

1/λM,d, we
express the trace of the adjugate matrix of UMU>M as

tr
{

adj
(
UMU>M

)}
= tr

{(
UMU>M

)−1}
det
(
UMU>M

)
=
∑3

d=1

1

λM,d

(∏3

j=1
λM,j

)
=
∑3

d=1

(∏3

j 6=d
λM,j

)
. (81)

Using
∑3
d=1

1/λM,d and (81), σ2
M(`) can be expressed as

σ2
M(`) =

∑3
d=1

(∏3
j 6=d λM,j

)∏3
d=1 λM,d

. (82)

Perceiving {λM,d}3d=1 as the magnitudes of the eigenvectors
of UMU>M, we find that (80) and (81) correspond to the
volume and half of the surface area, respectively, of a

rectangular prism whose dimension is defined by {λM,d}3d=1.
Therefore, σ2

M(`) is half the ratio of surface are to volume.
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