
1

Joint Rate Allocation and Power Control for
RSMA-Based Communication and Radar

Coexistence Systems
Trung Thanh Nguyen, Nguyen Cong Luong, Shaohan Feng, Tien Hoa Nguyen, Khaled Elbassioni, Dusit Niyato,

Fellow, IEEE, and Dong In Kim, Fellow, IEEE

Abstract—We consider a rate-splitting multiple access
(RSMA)-based communication and radar coexistence (CRC) sys-
tem. The proposed system allows an RSMA-based communication
system to share spectrum with multiple radars. Furthermore,
RSMA enables flexible and powerful interference management
by splitting messages into common parts and private parts to
partially decode interference and partially treat interference as
noise. The RSMA-based CRC system thus significantly improves
spectral efficiency, energy efficiency and quality of service (QoS)
of communication users (CUs). However, the RSMA-based CRC
system raises new challenges. Due to the spectrum sharing, the
communication network and the radars cause interference to
each other, which reduces the signal-to-interference-plus-noise
ratio (SINR) of the radars as well as the data rate of the CUs in
the communication network. Therefore, a major problem is to
maximize the sum rate of the CUs while guaranteeing their QoS
requirements of data transmissions and the SINR requirements
of multiple radars. To achieve these objectives, we formulate
a problem that optimizes i) the common rate allocation to the
CUs, transmit power of common message and transmit power of
private messages of the CUs, and ii) transmit power of the radars.
The problem is non-convex with multiple decision parameters,
which is challenging to be solved. We propose two algorithms.
The first sequential quadratic programming (SQP) can quickly
return a local optimal solution, and has been known to be the
state-of-the-art in nonlinear programming methods. The second
is an additive approximation scheme (AAS) which solves the
problem globally in a reasonable amount of time, based on
the technique of applying exhaustive enumeration to a modified
instance. The simulation results show the improvement of the
AAS compared with the SQP in terms of sum rate. Furthermore,
with the AAS, the sum rate of the CUs only slightly decreases
when the radars’ SINR is significantly increased. This implies
that the AAS supports the RSMA-based communication system
which allows to well coexist with the radars.

Index Terms—Rate-splitting multiple access, communication
and radar coexistence, rate and power allocation, additive ap-
proximation scheme.
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I. INTRODUCTION

With the rapid growth of multimedia applications, e.g., vir-
tual reality, and mobile devices, spectrum resource is becoming
increasingly congested. As a consequence, mobile network
operators seek to reuse spectrum of other systems [1] as well
as advanced wireless technologies. In particular, coexisting
radar and communication (CRC) systems have been recently
considered that allow an individual communication system to
share spectrum with radar systems [2]. Such a CRC system
can be found in many realistic scenarios. For example, the
air-surveillance radars and the 5G NR and FDD-LTE cellular
systems share the L-band, i.e., 1− 2 GHz [3]. As a different
example, the early warning radars share the S-band, i.e., 2−4
GHz, with the communication systems like 802.11b/g/n/ax/y
WLAN networks and 3.5 GHz TDD-LTE and 5G NR [4].
Meanwhile, for advanced wireless technologies, rate-splitting
multiple access (RSMA) [5], [6], [7] has emerged as a
promising solution for the next generation network that is
able to achieve high spectrum efficiency, robust, and high data
rate. With RSMA, a base station (BS) as a transmitter splits
each message intended for a user into a common part and
a private part. The common parts of all users are combined
into a common massage and can be decoded by all the users,
while the private part is encoded into a private message which
can be decoded by only its intended user. To receive the
common message, the user suffers the interference from all the
users’ private messages, and to receive the private message, the
user only considers the interference from other users’ private
messages to be noise. Each user then recovers its original
message from its common message and intended private
message with successive interference cancellation (SIC). By
splitting messages into common parts and private parts to
partially decode interference and partially treat interference
as noise, RSMA enables flexible and powerful interference
management, which enhance spectral efficiency, energy effi-
ciency, reliability, and quality of service (QoS) compared with
existing multiple access technologies such as space division
multiple access (SDMA) and non-orthogonal multiple access
(NOMA) [5], [8].

The benefits of CRC and RSMA motivate us to investigate a
novel system, namely RSMA-based CRC system. The system
allows a communication network to leverage RSMA to serve
multiple communication users (CUs) and share spectrum re-
sources with multiple radars. The RSMA-based CRC system is
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thus expected to significantly improve the spectrum efficiency.
However, the coexistence of the communication network and
multiple radars in the RSMA-based CRC system imposes
challenges of resource management. In particular, the major
problem is to properly adjust the common rates, transmit
power of the common message, and private messages for the
CUs as well as to control the transmit power of the radars
to maximize the sum rate of all the CUs, subject to the QoS
requirements of the CUs and the signal-to-interference-plus-
noise ratio (SINR) requirements of the radars. Like most of
the optimization problems in communication system design,
this problem belongs to the class of fractional programming
problems, which involves ratios of linear functions and is
known to be computationally NP-hard [9]. Furthermore, due
to the minimum requirement for the rate of CUs, checking
if there is a feasible solution is as difficult as the original
problem itself. Two methods have been well studied for finding
locally optimal solution to fractional programming problems
in the context of communication system such as Successive
Convex Approximation [10], [11], [12], [13] and iterative
algorithms based on Dinkelbach’s transformation (see [14] and
the references therein), but they both require an initial feasible
solution as input and thus are inapplicable to our problem. On
the other hand, existing global optimization algorithms have
been mainly based on the branch-and-bound technique [15],
and only applied to linear constraints. The cases of nonlinear
constraints are much more complicated and may require the
development of more general and sophisticated techniques.

To the best of the author’s knowledge, this is the first work
investigating the coexistence of the RSMA-based communi-
cation network and multiple radars. Indeed, there exist recent
works, i.e., [16], [17], [18], [19], [20], [21], [22], [23], [24],
and [25] related to CRC, but non of them considers the use
of RSMA for the communication networks. In particular, the
work in [16] considers a traditional communication system
coexisting with multiple radars. The work aims to minimize
the power consumption of each radar by optimizing the
transmission power allocation, subject to the radars’ SINR
requirements and a maximum interference tolerant limit for
communication network. The authors in [18] consider a CRC
system with a single communication user and a radar. The
objective is to maximize the radar’s SINR, subject to the
communication rate and power constraints. The works in
[19] and [20] extend the communication system in [18] to
scenarios with multiple downlink users. The work in [21]
aims to optimize the waveforms of the radar system and
the codebook of the communication system, subject to the
radar similarity with a radar reference waveform and the
data rate requirement of the communication system. Different
from [21], the work in [23] considers a collocated radar
and communication system, and thus the joint transmit and
receive beamformers for both the radar and communication
systems is optimized to maximize SINR of both the radar
and communication systems. Unlike [23], the work in [22]
leverages the interference existing already in radar and com-
munications systems to keep constructive and can contribute
to the power of the useful signal. Simulation results show that
the signal-to-noise ratio (SNR) can be enhanced by 7 dB. The

channels involved in the CRC systems can vary over time that
can reduce the effectiveness of the interference management
approaches. Consider this issue, the authors in [24] propose an
ergodic interference alignment, which allows to time-varying
and/or frequency selective channels for the CRC system. In
particular, this work designs a transmit beamforming, which
helps to find a pair of desired complementary channels easily
without long-time system delay, thus effectively eliminating
the interference in the CRC system. Another traditional solu-
tion for the interference elimination between the radar system
and communication system is to place the communication
system outside a guard zone of the radar. However, the CUs
in the guard zone have bad QoS experience since they are
out of the coverage of the communication system. To address
this issue, the work in [25] proposes to deploy intelligent
reflecting surface (IRS) in the guard zone to enhance the
network coverage and QoS of the users.

There also exist several works related to RSMA, and the
readers are referred to a comprehensive survey on RSMA
in [6]. However, the existing works do not investigate CRC. In
particular, the authors in [26] and [8] evaluate the performance
obtained by RSMA. These works demonstrate that RSMA
outperforms both NOMA and SDMA in terms of spectrum
efficiency, energy efficiency, QoS, and computational com-
plexity in different network loads and channel conditions. The
work in [27] aims to optimize the beamformers associated
with the common message and private messages to maximize
the sum rate of CUs in multi-user multiple input single output
(MISO) systems under imperfect channel state information.
The authors in [28] analyze the data rate obtained by RSMA
for two-receiver MISO broadcast channel with finite rate
feedback. Considering a multi-user single input single output
(SISO), the authors in [13] aim to allocate the common
rate, transmit power of the common message, and transmit
power of the private messages by accounting for successful
SIC power requirements. Different from [27], [28], and [13],
the works in [29] and [30] aim to achieve max-min fairness
among the users, i.e., maximizing the user capacity with the
minimum data rate, in the RSMA-based network. Recently,
RSMA can also be combined with enabling technologies in
6G. In particular, RSMA is shown to efficiently manage the
inter-beam interference for satellite communications [31].
RSMA can be combined with simultaneous wireless infor-
mation and power transfer (SWIPT). As presented in [32],
RSMA-based SWIPT can significantly improve the sum rate
of information receivers (IRs) compared with NOMA-based
SWIPT. The combination of RSMA and intelligent reflecting
surface (IRS) has emerged as a promising solution that can
improve the energy efficiency [33] and reduce the outage
probability [34]. Some recent works, e.g., [35] and [36],
investigate an integration of RSMA into a radar system on the
same hardware, namely RSMA-enabled dual-function radar
communication (DFRC). In the RSMA-enabled DFRC system,
an RSMA signal is designed to simultaneously perform both
the communication function and radar function. As such,
apart from achieving the high spectrum efficiency, the RSMA-
enabled DFRC system reduces the hardware size and cost.
However, sharing the hardware can impair the performance of
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each function. Moreover, it is costly or even impossible to de-
ploy such a system in existing radar system or communication
network.

In summary, the works related to CRC have not considered
RSMA as the communication system and leverage the effective
interference management of RSMA to handle the interference
from the radars. On the other hand, in the works related to
RSMA, none of them has considered that the RSMA can
effectively manage the co-channel interference between the
communication and radar systems so as to enhance their
performance simultaneously in the CRC scenario. To bridge
this gap, we investigate the RSMA-based CRC system. The
main contributions of this work are follows:

• We consider a novel communication and radar coexis-
tence system, namely RSMA-based CRC. In the RSMA-
based CRC system, a BS in the communication network
shares spectrum with multiple radars while leveraging the
RSMA scheme to serve its multiple CUs. The RSMA-
based CRC system thus achieves the advantages of both
RSMA and CRC, which particularly enhances the spec-
trum efficiency. Due to the spectrum sharing, the radar
and communication systems cause interference to each
other. Thus, the objective is to maximize the sum rate of
all the CUs in the communication network subject to the
requirements of the CUs’ QoS and the radars’ SINR as
well as the power budgets of the BS and the radars.

• To achieve the objective, we formulate a problem that
optimizes i) common rates of the CUs, ii) transmit power
of the common message of the CUs, iii) transmit power
of the private messages for the intended CUs, and iv)
transmit power of the radar systems.

• The optimization problem is non-convex, which is chal-
lenging to solve. To solve it, we first present a sequential
quadratic programming (SQP) algorithm [37] which iter-
atively converges to a local optimal solution.

• As a major contribution, we propose a more general tech-
nique for solving the problem globally. Particularly, we
design an additive approximation scheme AAS1, based
on the technique of applying exhaustive enumeration to
a modified instance. The algorithm runs in exponential
time in the number of users, and produces a solution
whose value is within an additive error controlled by a
parameter δ ∈ (0, 1).

• We provide the simulation results to evaluate the pro-
posed algorithms. The simulation results insightfully
show that the AAS significantly improves the perfor-
mance in terms of sum rate compared with the SQP. The
simulation results further show that the combination of
the AAS and RSMA is an effective solution that allows
the communication system to well coexist with the radars.
In addition, appropriate locations of the radars can be
suggested.

For the reader’s convenience, we summarize the mathemati-
cal notations used in this paper in Table I. Some other symbols

1AAS stands for Additive Approximation Scheme, which is a family of
algorithms that, for each δ > 0, return a solution with an absolute error in
the objective of at most δ · h for some suitable parameter h [38].

are given in Table II.

Table I: List of mathematical symbols used in this paper.

Notation Description
|V | The size of a set V
Q The set of CUs
K The set of radars
Q = |Q| The number of CUs
K = |K| The number of radars
B The total bandwidth
σ2
q The noise variance at CU q

σ2
k The noise variance at radar k
nC
q ∼ N (0, σ2

q ) The noise at the CU q

nR
k ∼ N (0, σ2

k) The noise at the radar k
p0 The transmit power of common message s0
pq The transmit power of private message sq
pRk The transmit power of radar k
hCq The channel gain between the BS and CU q

gRC
k,q The channel gain between radar k and CU q

hRk The round-trip channel gain of radar k
gRR
k′,k The channel gain of the direct link from the TX

of radar k′ to the RX of radar k
gRTR
k′,k The channel gain of the indirect link of the TX

of radar k′, the target and the RX of radar k
hCR
k The channel gain between the BS and radar k
fi, gi The radar and communication functions of user i
p The power vector of dimension Q+K + 1
a The common data rate vector of dimension Q
F(a, p) The multivariate function of variables (a, p)
L The Lagrange function
∇F The Gradient of function F
∇2F The Hessian matrix of function F
ε, δ The additive errors of algorithms

The rest of the paper is organized as follows. In Section II,
we present the RSMA-based CRC system and formulate the
optimization problem. Sections III and IV are devoted to pre-
senting the two proposed algorithms, SQP and AAS, respec-
tively. Section V provides simulation results to demonstrate
the effectiveness of the proposed algorithm. The conclusions
of this paper are given in Section VI.

II. SYSTEM MODEL

In this section a novel communication and radar coexistence
system, namely the RSMA-based CRC system is introduced
with details. We then describe the problem of maximizing the
sum rate of the CUs in the system under various constraints,
and give it a mathematical formulation.

A. Signal Model

The RSMA-based CRC is shown in Fig. 1. Each radar
is monostatic in which its transmitter (denoted by “TX”)and
receiver (denoted by “RX”) are co-located. The radars perform
tracking a common target or multiple targets. The set of the
radars is denoted by K and the set of CUs is defined as Q.
The cardinalities of K and Q are K and Q, respectively. By
using RSMA, the BS transmits a common message of all the
users and private messages to the intended users. In particular,
the transmit signal from the BS is given by [13]

x =
√
p0s0 +

∑Q

q=1

√
pqsq,
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Fig. 1: Illustration of the RSMA-based communication and radar coexistence (RSMA-based CRC) system.

where s0 is the common message, sq is the private message
intended for the q-th user, p0 is the transmit power of the
common message s0, and pq is the transmit power of private
message sq . The received signal at CU q consists of the signal
from the BS and the radar signals directly emitted from K
radars, which is given by [16]

yCq =
√
p0hCq s0+

∑Q

q=1

√
pqhCq sq+

∑K

k=1

√
pRk g

RC
k,q s

R
k +nCq ,

where hCq is the channel gain between the BS and CU q, gRC
k,q

is the channel gain between radar k and CU q, sRk is the radar
signal, pRk is the transmit power of radar k, and nCq ∼ N (0, σ2

q )
is the AWGN noise at the CU with σ2

q being the variance.
The received signal at RX of radar k consists of i) the radar

signals reflected by the target, ii) the radar signals directly
emitted by other radars, and iii) the RSMA signal from the
BS. Thus, the received signal at RX of radar k is expressed
by

yRk =
√
pRk h

R
k s

R
k +

∑K

k′=1,k′ 6=k

√
pRk′(g

RR
k′,k + gRTR

k′,k )sRk′

+
√
p0hCR

k s0 +
∑Q

q=1

√
pqhCR

k sq + nRk ,

where hRk is the round-trip channel gain of radar k, i.e., the
channel gain of the indirect link of the TX-target-RX of radar
k, gRR

k′,k is the channel gain of the direct link from the TX of
radar k′ to the RX of radar k, gRTR

k′,k is the channel gain of the
indirect link of the TX of radar k′, the target and the RX of
radar k, hCR

k is the channel gain between the BS and radar k,
and nRk ∼ N (0, σ2

k) is the noise at the radar.
The channels involved in the RSMA-based CRC system

are assumed to be quasi-static fading channel models that are

defined as follows [16], [39]:



hRk =
GR

k,tG
R
k,rσ

RCS
k λ2

c

(4π)3(dRk )4

hCR
k =

GC
t G

′R
k,rλ

2
c

(4π)2(dCR
k )2

ĥCR
k

hCq =
GC

t Gqλ
2
c

(4π)2(dq)2
ĥCq

gRTR
k′,k =

GR
k,tG

R
k′,rσ

RCS
k,k′ λ

2
c

(4π)3(dRk )2(dR
k′ )

2

gRR
k′,k =

G
′R
k′,tG

′R
k,rλ

2
c

(4π)2(dRR
k′,k)

2 ĝ
RR
k′,k

gRC
k,q =

G
′R
k,tGqλ

2
c

(4π)2(dRQ
k,q)

2
ĝRC
k,q

where ĥCR
k , ĥCq , ĝRR

k,′k, and ĝRC
k,q are the small-scale channels

between the BS and radar k, the BS and CU q, radar k′ and
radar k, and radar k and CU q, respectively, GR

k,t and GR
k,r

is the main-lobe antenna gains of the TX and RX of radar k,
respectively, G

′R
k,t and G

′R
k,r are the side-lobe antenna gain of

the TX and RX of radar k, respectively, GC
t is the transmitting

antenna gain of the BS, Gq is the receiving antenna gain of
CU q, σRCS

k is the radar cross section (RCS) of the target with
respect to radar k, σRCS

k,k′ is the RCS of the target from radar
k to radar k′, dRk , dRR

k′,k, dRQ
k,q , dq , dCR

k are the distances from
radar k to its tracking target, radar k to radar k′, radar k to
CU q, BS to CU q, BS to radar k, respectively.

B. Optimization Problem

We first determine the data rate achieved by each CU. With
the RSMA, the data rate achieved by each CU is the sum of
common data rate and private data rate. Given a power vector
p = (p0, p1, . . . , pQ, p

R
1 , . . . , p

R
K), the common data rate and
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the private data rate of user CU q are defined as functions of
p as follows 2

RC
q,0(p) = B log

(
1 +

hCq p0

hCq
∑Q
q′=1pq′ +

∑K
k=1g

RC
k,q p

R
k + σ2

q

)
,

and

RC
q (p) = B log

(
1 +

hCq pq

hCq
∑Q
q′=1,q′ 6=qpq′ +

∑K
k=1g

RC
k,q p

R
k + σ2

q

)
.

Denote aq as the common data rate allocated to CU q. Then,
we have the following constraint∑Q

q=1
aq ≤ min

q∈Q

{
RC
q,0(p)

}
. (2)

The total data rate, denoted by CC
q , achieved by CU q is given

by
CC
q = aq +RC

q (p). (3)

As the communication system shares spectrum with the
radar systems, there is a constraint on the interference caused
by the radar systems to the CUs, which can be expressed by
the data rate requirements of CUs as follows:

CC
q = aq +RC

q (p) ≥ CTH
q , ∀q ∈ Q, (4)

where CTH
q is the minimum rate requirement of CU q. It is

worth noting that, by taking these constraints into account,
a specific level of the desired quality of fairness could be
achieved, while maximizing the total data rate of users.

We denote ϑRk (p) as the SINR at the RX of radar k. Then,
ϑRk (p) is a function of the power vector p, and defined by [16],
[39]

hRk p
R
k∑K

k′=1,k′ 6=k

(
gRR
k′,k + ck′,kgRTR

k′,k

)
pRk′ + hCR

k

(∑Q
q=0 pq

)
+ σ2

k

.

To guarantee the tracking performance, the SINR at each radar
must be larger than a threshold, which is denoted by γR. Thus,
we have the condition for the radars as ϑRk (p) ≥ γR.

We then formulate an optimization problem, namely trans-
mission rate maximization problem (TRMP) for the commu-
nication system, subject to the data rate requirements of the
CUs and the SINR requirements of the radars as follows:

max
a,p

∑Q

q=1
aq +

∑Q

q=1
RC
q (p) (5)

s.t.
∑Q

q=1
aq ≤ min

q∈Q

{
RC
q,0(p)

}
, (5a)

aq +RC
q (p) ≥ CTH

q , ∀q ∈ Q, (5b)

p0 +
∑Q

q=1
pq ≤ p̄C, (5c)

ϑk(p) ≥ γR, ∀k ∈ K, (5d)

pRk ≤ p̄R, ∀k ∈ K, (5e)

aq, p0, pq, p
R
k ≥ 0, ∀q ∈ Q,∀k ∈ K, (5f)

where a = (aq)q∈Q and p = (p0,pU,pR) with pU = (pq)q∈Q,
pR = (pRk )k∈K, γR is the minimum performance requirement

2For ease of notation, we use the binary logarithm in log(·).

for the radars, p̄R is the power budget at the radars, and p̄C

is the power budget of the amplifiers of the BS.
Note that by denoting

g̃k′,k =
gRR
k′,k

hRk
+ ck′,k

gRTR
k′,k

hRk
, h̃k =

hCR
k

hRk
, σ̃k =

σ2
k

hRk
,

the constraint in (5d) can be written in the linear form as:

pRk
γR
−
∑K

k′=1,k′ 6=k
g̃k′,kp

R
k′ − h̃k

∑Q

q=0
pq ≥ σ̃k, ∀ k ∈ K.

To simplify the presentation of the problem model later on,
let X denotes the set of all points p that are feasible to the
linear constraints of (5), and we can assume3 without loss of
generality that X 6= ∅.

In general, the transmission rate maximization problem
TRMP given in (5) is nonconvex due to the nonconcavity of
the objective function and the nonconvexity of the constraints
(5a) and (5b), which make the problem hard to solve. To
solve the problem, we propose two algorithms, i.e., an iterative
SQP algorithm and an additive approximation scheme (AAS),
which are presented in Sections III and IV, respectively.

III. A LOCAL OPTIMIZATION ALGORITHM

In section, we present the use of the SQP algorithm [37],
which is one of the most powerful algorithmic tools for
the numerical solution of large-scale nonlinear optimization
problems, to solve problem TRMP. In brief, SQP is an
iterative algorithm which models the problem for a given
iterate (a`,p`), ` ∈ N0, by a Quadratic Programming (QP)
subproblem, solves that QP subproblem, and then uses the
solution to construct a new iterate (a`+1,p`+1). This construc-
tion is implemented in a way that the sequence (a`,p`)`∈N0

converges to a local minimum (a∗,p∗) of the problem as `
approaches infinity. Note that a major advantage of SQP is that
the iterates (a`,p`) need not to be feasible points, since the
computation of feasible points in case of nonlinear nonconvex
constraint functions may be as difficult as the optimal solution
of the problem itself.

For ease of presentation, let us transform the problem given
in (5) into an equivalent minimization problem, in which we
aim to minimize the function

F(a,p) = −
∑Q

q=1
aq −

∑Q

q=1
RC
q (p),

where (a,p) ∈ R2Q+K+1
+ is a vector of nonnegative variables,

subject to the same set of constraints as in (5). Before going
to define the Lagrangian function for the problem, we replace
the constraint (5a) by the following constraints.

∑Q
q=1 aq ≤ Ω

Ω ≤ RC
q,0(p), ∀ q ∈ Q.

3Checking whether X is empty is equivalent to checking the feasibility of
a system of linear function, which can be done in polynomial time.
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The Lagrangian function L(a,p) is then defined as

L(a,p) = F(a,p)+θ

(
Q∑
q=1

aq − Ω

)
+

Q∑
q=1

σq
(
Ω−RC

q,0(p)
)

+
∑
q∈Q

λq
(
CTH
q − aq −RC

q (p)
)

+ µ

(
p̄C − p0 −

Q∑
q=1

pq

)
+ ξξξT (γγγ − ϑ(p)) + ζζζT (pR − p̄R)− κκκT a− ηηηTp,

where γγγ = (γR, . . . , γR), p̄R = (p̄R, . . . , p̄R) and ϑ(p) =
(ϑ1(p), . . . , ϑK(p)) are vectors of dimension K. In addition,
µ, θ, λq, σq, ξξξ, ζζζ,κκκ,ηηη for q ∈ Q, are Lagrange multipliers.

The QP subproblem, denoted as QP(`), we will solve in
iteration step ` is defined in such a way that it should reflect
the local properties of the problem with respect to the current
iterate (a`,p`). In fact, we replace the objective function F
by its local quadratic approximation:

F(s) = F(a`,p`) +∇F(a`,p`)T s +
1

2
sT∇2L(a`,p`)s,

and the nonlinear constraint in (5) by their local affine approx-
imations

gq(a`,p`) +∇gq(a`,p`)T s ≤ 0,

hq(a`,p`) +∇gq(a`,p`)T s ≤ 0,

where for all q ∈ Q,

gq(a,p) =
∑Q

q=1
aq −RC

q,0(p) ≤ 0,

hq(a,p) =CTH
q − aq −RC

q (p) ≤ 0.

Note that all the linear constraints in (5) remain unchanged.
Our goal is to find a feasible solution s ∈ R2Q+K+1

+ that
minimizes F(s).

The quadratic objective function F(s) of the QP subproblem
is nonconvex in general. Hence, the idea is to approximate the
Hessian ∇2L(a`,p`) by a positive definite matrix, and this can
be done using the standard Broyden-Fletcher-Goldfarb-Shanno
(BFGS) approximation [40]. The resulting objective function
is therefore convex and thus the QP subproblem can be
solved efficiently to attain the search direction (a`+1,p`+1) =
(a`,p`) + α`s`, where the step length parameter α` can be
evaluated by using, e.g line search algorithms, to perform the
following one-dimensional optimization.

α` = arg min
α>0
F((a`,p`) + αs`). (6)

Generally, a line search algorithm aims at solving the problem
locally, based on an iterative approach that seeks for a local
minimum solution (for example, gradient descent or Newton
method). Herein, we make use of the fractional programming
approach presented in [14], where it is showed that, in practice,
this approach has lower complexity than gradient descent and
Newton methods on per-iteration basis.

Since s` ∈ R2Q+K+1
+ , one can write it as

s` = (s`1, . . . , s
`
Q, s

`
0, s

`
Q+1, . . . , s

`
2Q, s

`
2Q+1, . . . , s

`
2Q+K).

Also, one can write (a`,p`) as

(a`,p`) = (a`1, . . . , a
`
Q, p

`
0, p

`
1, . . . , p

`
Q, p

`,R
1 , . . . , p`,RK ).

The function F((a`,p`) + αs`) is now written as a function
G of single variable α.

G(α) = −
∑Q

q=1

(
a`q + αs`q +B log

(
fq(α)

gq(α)

))
,

where fq(α) and gq(α) are respectively defined as

hCq

Q∑
q′=1

(p`q′ + αs`Q+q′) +

K∑
k=1

gRC
k,q (p`,Rk + αs`2Q+k) + σ2

q ,

and

hCq

Q∑
q′=1,q′ 6=q

(p`q′ + αs`Q+q′) +

K∑
k=1

gRC
k,q (p`,Rk + αs`2Q+k) + σ2

q ,

which are linear functions of α. We further write the functions
fq(α) and gq(α) respectively as

fq(α) = α · Vq +Wq, and gq(α) = α · V ′q +W ′q,

where

Vq = hCq
∑Q

q′=1
s`Q+q′ +

∑K

k=1
gRC
k,q s

`
2Q+k + σ2

q

Wq = hCq
∑Q

q′=1
p`q′ +

∑K

k=1
gRC
k,q p

`,R
k + σ2

q

V ′q = hCq
∑Q

q′=1,q′ 6=q
s`Q+q′ +

∑K

k=1
gRC
k,q s

`
2Q+k + σ2

q

W ′q = hCq
∑Q

q′=1,q′ 6=q
p`q′ +

∑K

k=1
gRC
k,q s

`
2Q+k + σ2

q ,

Now solving the problem (6) is equivalent to solving the
following problem

max
α>0

Q∑
q=1

(
a`q + αs`q +B log

(
αVq +Wq

αV ′q +W ′q

))
. (7)

The problem (7) can be transformed into an equivalent formu-
lation, which can be then amenable to iterative optimization.

THEOREM 1. The problem (7) is equivalent to the problem

max
α>0

Q∑
q=1

(
a`q + αs`q +B log

(
2βq
√
αVq +Wq − β2

q (αV
′
q +W ′

q)
))

.

(8)

over the domain {(α, β1, . . . , βq) ∈ R>0 × Rq}.

Since Theorem 1 directly follows from [14], the proof of
Theorem 1 is omitted.

We follow the iterative approach to find an optimal solution
α. First, it is observed that when α is fixed, the optimal
β1, . . . , βq can be determined in closed form as

β∗q =

√
αVq +Wq

αV ′q +W ′q
, ∀ q ∈ Q. (9)

On the other hand, when all β1, . . . , βq are fixed, the resulting
problem is convex in variable α and thus it can be solved
efficiently through numerical convex optimization (e.g., the
gradient decent method). As consequence, the complexity of
Algorithm 1 is O(D/ε), where ε is a given additive error for
solutions α found at every iteration, and D is the number of
iterations.



7

Algorithm 1 Fractional Programming (FP)

Require: an accuracy parameter ε > 0.
Ensure: a solution α

1: Initiate a solution α of (8)
2: repeat
3: Update β1, . . . , βq by (9)
4: Update α by solving the convex problem obtained

from (8) by fixing β1, . . . , βq achieved in the previous
step

5: until Convergence
6: return α

Using a similar argument as in [14], one can prove that
Algorithm 1 consists of a sequence of convex optimization
problems that converge to a stationary point of (7) with non-
decreasing objective value after every iteration.

The main steps of the SQP algorithm is outlined in Al-
gorithm 2 below. It it easy to see that the complexity of the
algorithm mainly depends on the execution time of the repeat-
loop. In particular, we need O((2Q + K + 1)7/2 · I2) times
to solve the convex relaxation of each QP subproblem using
primal interior point method [41], where I denotes the length
of the input data. In addition, finding a step length α takes
O(D/ε) times, while the updating the approximate Hessian
matrix costs O((2Q + K + 1)2). Overall, the complexity of
Algorithm 2 is

O((2Q+K + 1)7/2 · I2 +D/ε).

Algorithm 2 Sequential Quadratic Programming (SQP)

Require: an accuracy parameter ε > 0.
Ensure: a solution (a`,p`)

1: Initiate a solution (a0,p0)
2: Compute a positive definite matrix HHH0 as an approxima-

tion of the Hessian ∇2L(a0,p0)
3: `← 0
4: repeat
5: Solve a QP subproblem QP(`) to attain a solution s`
6: Find a step length α` using Algorithm 1

α` ← arg min
α>0
F((a`,p`) + αs`)

7: Update

(a`+1,p`+1)← (a`,p`) + α`s`

8: Update the approximate Hessian HHH`+1

u` ← (a`+1,p`+1)− (a`,p`)
v` ←∇F(a`+1,p`+1)−∇F(a`,p`)

HHH`+1 ←HHH` +
v`(v`)T

(v`)Tu`
− HHH`u`(u`)THHHT

`

(u`)THHH`u`

9: `← `+ 1
10: until Convergence or ` = 500
11: return (a`,p`)

IV. A GLOBAL OPTIMIZATION ALGORITHM

Like most local optimization algorithms, the SQP algorithm
as presented in Section III also has a drawback that it can
only locate a local optimum, which may be far from a
global optimum. In this section, we present an algorithm that
can solve problem TRMP globally. The following theorem
summarizes main properties of the algorithm.

THEOREM 2. For a given δ > 0, there is an algorithm that
can produce a near optimal solution to the problem TRMP
with an additive error of δ ·Q, where Q denotes the number
of users. The running time of the algorithm is exponential in
Q.

We prove Theorem 2 by presenting an additive approxima-
tion scheme (AAS), which is formally defined as Algorithm 3.
The main idea of the algorithm is to solve the problem (5)
approximately by transforming it into a sequence of subprob-
lems, whose solution can be efficiently found. Before giving
a formal description of the algorithm, we first study the case
where we know the optimal private data rate of all the users
in advance, and then show how the algorithm AAS works
without this assumption. Throughout this section we denote
by (a∗,p∗) an optimal solution to the problem (5). We also
call RC

q (p∗) the optimal private data rate of user q, for each
q ∈ Q.

A. Known Private Data Rates

In this section we present a polynomial-time algorithm to
find (a∗,p∗) given the optimal private data rates.

Lemma 1. Suppose that we are given optimal private data
rates RC

1 (p∗), . . . , RC
Q(p∗), but not p∗. Then, the optimal

solution (a∗,p∗) can be found in polynomial time in the input
size.

Proof. Suppose that we know in advance the optimal private
data rate ζq = RC

q (p∗), for every q ∈ Q. The problem (5) is
reduced to the following problem:

max
a,p∈X

∑Q

q=1
aq (10)

s.t.
∑Q

q=1
aq ≤ min

q∈Q

{
RC
q,0(p)

}
, (10a)

aq ≥ CTH
q − ζq, ∀q ∈ Q, (10b)

RC
q (p) = ζq, ∀q ∈ Q. (10c)

We prove that the problem (10) can be solved in polynomial
time. It is not hard to check, by contradiction, that the common
message constraint (10a) holds with equality at an optimal
solution of (10). Hence, solving (10) amounts to find first an
optimal solution p̂ to the following max-min problem

max
p∈X

min
q∈Q

{
RC
q,0(p)

}
(11)

s.t. RC
q (p) = ζq, ∀q ∈ Q, (11a)
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and then an optimal solution â to the following problem

max
a

∑Q

q=1
âq (12)

s.t.
∑Q

q=1
âq = min

q∈Q

{
RC
q,0(p̂)

}
, (12a)

âq ≥ CTH
q − ζq, ∀q ∈ Q. (12b)

The latter problem is a linear program whose optimal solution
â can be determined as

âq = CTH
q − ζq, ∀ q ∈ Q \ {q′},

âq′ = min
q∈Q
{RC

q,0(p̂)} −
∑Q
q=1,q 6=q′ âq,

for any arbitrary choice of user q′ ∈ Q. It remains to prove
that (11) is also polynomially solvable. Indeed, by introducing
a new variable T , it can be reformulated as

max
p∈X

T (14)

s.t. RC
q,0(p) ≥ T, ∀q ∈ Q, (14a)

RC
q (p) = ζq, ∀q ∈ Q. (14b)

Although problem (14) is nonlinear (due to the nonlinearity of
the constraints (14a)), it can be solved by using binary search
combined with the linear programming method. In fact, the
constraints (14a) can be rewritten as

hCq
∑Q

q′=1
pq′ +

∑K

k=1
gRC
k,q p

R
k + σ2

q ≤
hCq p0

2T/B − 1
, ∀q ∈ Q.

For a fixed value of T , the above constraints are linear and
thus the problem (14) comes down to checking if a linear
program is feasible, which can be done in polynomial time.
Consequently, to find an optimal value T ∗ of (14), one can
make use of the binary search over the range [0,T], where T
is some upper bound on the possible maximum value of T ∗.
We will discuss in Section IV-C how to compute such an upper
bound T. The complexity of solving (14) is O((Q + K)2.5 ·
log(T)), since there are totally Q + K variables, excluding
variable T .

B. Unknown Private Data Rates

We now consider the case where the algorithm does not
know the users’ optimal private data rates as part of its input.
Lemma 1 paves the way for dealing with such a case. In
fact, instead of using the exact value of the private rates
RC

1 (p∗), . . . , RC
Q(p∗), the idea is to work with their approxi-

mate value, which can be computed with a multiplicative error
of 1+ε, where ε = 2δ−1. This can be done via an enumeration
technique, which we call “a partition space procedure", as
described below. By the error 1 + ε, it means that the closer
the value of ε is to zero, the closer the approximate value of
RC
q (p∗) approaches its exact value. The approximation values

can be then used instead of the exact values when solving (5)
(as shown in the proof of Lemma 1), leading to an approximate
solution. This solution can be arbitrarily close to the optimal
solution (a∗,p∗) as long as ε (or δ) is sufficiently small.

In the following, we give a detailed description of the
“partition space procedure". The purpose of this procedure is

to enumerate a small number of possible values that could be
considered as approximate values of RC

q (p∗). To this end, we
first need to estimate an upper bound on the value of RC

q (p∗).
Equivalently, by the definition of RC

q (p), the estimation can
be done by computing an upper bound on the value of

R̄C
q (p) = 1 +

hCq pq

hCq
∑Q
q′=1,q′ 6=qpq′ +

∑K
k=1g

RC
k,q p

R
k + σ2

q

,

which is denoted as UBq . We will show later on in Sec-
tion IV-C how this bound can be obtained. We consider
the range of the function R̄C

q (p) as [1,UBq], where UBq is
maximum value of R̄C

q (p). Note that the range of the function
RC
q (p) should be [0, B log(UBq)].

a) Partition Space Procedure: For each q ∈ Q, we
partition the interval [1,UBq] into Tq+1 consecutive intervals
as

∆q =
⋃Tq+1

tq=1
∆tq
q ,

where Tq = blog1+ε UBqc and

∆tq
q = [(1 + ε)tq−1, (1 + ε)tq ), for tq ∈ {1, . . . , Tq} ,

and
∆Tq+1
q = [(1 + ε)Tq ,UBq].

The values (1 + ε)tq−1 for all tq ∈ {1, . . . , Tq + 1} represent
approximate values of R̄C

q (p).
Geometrically, for each p′ ∈ X , the vector RC(p′) =[
R̄C

1 (p′), . . . , R̄C
Q(p′)

]
corresponds to some point lying inside

the hypercube H = ∆1 × · · · × ∆Q. This hypercube can be
seen as a partition into sub-cubes of the form

H(t1, . . . , tQ) = ∆t1
1 × · · · ×∆

tQ
Q ⊆ H, (15)

where (t1, . . . , tQ) ∈ {1, . . . , T1 + 1}×· · ·×{1, . . . , TQ + 1}.
Note that the number of such sub-cubes is n =

∏
q∈Q(Tq +

1) ≤
∏
q∈Q(log1+ε UBq + 1).

Given H and its partition constructed as above, we define a
subproblem of (5) as follows. Given a sub-cubeH(t1, . . . , tQ),
(i) check if there any feasible solution p′ ∈ X for which
RC(p′) ∈ H(t1, . . . , tQ); and (ii) if yes, return one, among
such solutions, along with a vector a′ such that the sum of
common rates

∑
q∈Q aq is maximized subject to the constraint

(5b). Formally, the subproblem can be formulated as

max
a,p∈X

∑
q∈Q

aq (16)

s.t.
∑

q∈Q
aq ≤ min

q∈Q

{
RC
q,0(p)

}
, (16a)

aq +RC
q (p) ≥ CTH

q , ∀q ∈ Q, (16b)

R̄C
q (p) ∈ ∆tq

q , ∀q ∈ Q. (16c)

While the constraints (16c) can be expressed in linear forms

(tq − 1) log(1 + ε) ≤ R̄C
q (p) ≤ tq log(1 + ε), (17)

the non-convexity of the constraints (16a) and (16b) makes
problem (16) difficult to solve exactly. Taking the constraints
(16c) into account, it is natural to approximate (16b) by the
linear constraints

aq + tq log(1 + ε) ≥ CTH
q , ∀q ∈ Q, (18)
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with the price that the total rate of each user may decrease
by an additive error of δ = log(1 + ε), as shown in the
lemma below. We consider the problem obtained from (16)
by replacing (16b) by (18) as its approximate problem.

Lemma 2. If (16) is feasible, its approximated problem is also
feasible and has an optimal solution whose value is within an
additive error of δ ·Q from the optimum of (16).

Proof. Suppose that (16) has an optimal solution (a,p). By
the feasibility of this solution to the constraints (16b), it holds
that

CTH
q ≤

∑
q∈Q

(
aq +RC

q (p)
)
≤
∑

q∈Q
(aq + tq log(1 + ε)) ,

where the second inequality is due to (17). This implies the
feasibility of the approximated problem of (16), and let (a′,p′)
be its optimal solution. Then, we must have that

∑
q∈Q a

′
q ≥∑

q∈Q aq , and∑
q∈Q

RC
q (p′) ≥

∑
q∈Q

log(1 + ε)tq−1

=
∑

q∈Q

(
log(1 + ε)tq − log(1 + ε)

)
≥
∑

q∈Q
RC
q (p)− δ ·Q.

Therefore,∑
q∈Q

(
a′q +RC

q (p′)
)
≥
∑

q∈Q

(
aq +RC

q (p)
)
− δ ·Q,

and this completes the proof of the lemma.

Lemma 2 hints that an optimal solution to the approximated
problem of (16) can be seen as a good approximated solution
to (16). By using the similar proof of Lemma 1, one can prove
that the approximated problem can be solved in polynomial
time.

Algorithm 3 Additive Approximation Scheme (AAS)

Require: a parameter δ ∈ (0, 1).
Ensure: a solution with an additive error of δ ·Q

1: P ← ∅.
2: RC(p)← (R̄C

1 (p), . . . , R̄C
Q(p))

3: Compute upper bounds on the optimal private data rate of
users

4: Define the range of RC(p) as a hypercube H
5: Partition H into sub-cubes H(t1, . . . , tQ)
6: for each sub-cube H(t1, . . . , tQ) do
7: Find (if any) an optimal solution (a′,p′) to the ap-

proximated problem of (16)
8: P ← P ∪ (a′,p′)
9: end for

10: (ã, p̃)← arg max(a,p)∈P
∑Q
q=1(aq +RC

q (p))
11: return (ã, p̃)

b) Correctness of Algorithm 3: We are now ready to
prove Theorem 2. Suppose that the problem (5) is feasible
and has an optimal solution (a∗,p∗). Let (ã, p̃) be the solution
returned by Algorithm 2. It holds that RC(p∗) must belong to
the hypercube H. In particular, there must be (t1, . . . , tQ) ∈
{1, . . . , T1 + 1} × · · · × {1, . . . , TQ + 1} such that

RC(p∗) ∈ H(t1, . . . , tQ),

or, equivalently,

R̄C
q (p∗) ∈ ∆tq

q , for all q ∈ Q. (19)

By Lemma 2, the approximated problem (16) w.r.t
H(t1, . . . , tQ) is feasible as it has (a∗,p∗) as a feasible
solution. Moreover,∑

q∈Q

(
a′q +RC

q (p′)
)
≥
∑

q∈Q

(
a∗q +RC

q (p∗)
)
− δ ·Q,

where (a′,p′) is an optimal solution returned by Step 6 of
Algorithm 3. By definition of (ã, p̃), we must have that∑

q∈Q

(
ãq +RC

q (p̃)
)
≥
∑

q∈Q

(
a′q +RC

q (p′)
)

≥
∑

q∈Q

(
a∗q +RC

q (p∗)
)
− δ ·Q.

c) Complexity of Algorithm 3: For the complexity of
Algorithm 3, it is dominated by the for-loop in step 6, where
we need to solve the relaxed version of a subproblem within a
sub-cube H(t1, . . . , tQ). Note that the number of sub-cubes is∏
q∈Q(log1+ε UBq + 1), and the time needed for solving the

relaxed problem, which is a linear program with 2Q+K + 1
variables, is O((2Q + K + 1)2.5 · I) (see, e.g [42]), where
I denotes the input size. In addition, we will show later that
the amount of time needed for computing UBq for q ∈ Q is
O(Q(K + 1)2.5 · I). Hence, the complexity of the algorithm
is

O((2Q+K + 1)2.5 · logQ1+ε UB +Q(K + 1)2.5 · I),

where UB = maxq∈Q {UBq}.

C. Bounding the optimal common and private data rates

This section is devoted to finding upper bounds on the value
of RC

q (p∗) and of RC
q,0(p∗). We consider the case of RC

q (p∗)
only, since the case of RC

q,0(p∗) can be treated similarly. As
argued earlier, it suffice to upper bound the value of R̄C

q (p∗).
For each q ∈ Q, let UBq = 1 + ξCq , where ξCq is an optimal
value to the following single-ratio fractional program

max
p

hCq pq

hCq
∑Q
q′=1,q′ 6=qpq′ +

∑K
k=1g

RC
k,q p

R
k + σ2

q

(20)

s.t. (5c), (5d), (5e), (20a)
p0, pq ≥ 0, ∀q ∈ Q, (20b)

The problem (20) is transformable into a linear program, using
a variable transformation (as known as the Charnes-Cooper
transformation [43]) as follows.

Let y0 = hCq pq, and

t =
1

hCq
∑Q
q′=1,q′ 6=qpq′ +

∑K
k=1g

RC
k,q p

R
k + σ2

q

,

yk =
pRk∑K

k′=1g̃
RC
k′,qp

R
k′ + σ̃k

,

(21)
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Fig. 2: Coordination of RSMA-based CRC system.

for all k ∈ K. Then, (20) is reduced to

max
t,y

y0

s.t. y0 −
yk

h̃kγR
+

K∑
k′=1
k′ 6=k

g̃k′,k

h̃k
yk′ ≤ −

σ̃k

h̃k
t, ∀ k ∈ K,

∑K

k=1
g̃RC
k,q yk + σ2

q t = 1,

yk ≥ 0, ∀ k ∈ K ∪ {0}.

(22)

The problem (22) is a linear program and thus can be solved
in polynomial time. Given an optimal solution (t∗, y∗) to (22),
one can easily recover the corresponding optimal solution to
(20) by using transformation (21).

We conclude this section by giving a complexity of
O(Q(K + 1)2.5 · I) on the finding upper bounds on the value
of RC

q (p∗) and of RC
q,0(p∗), for all q ∈ Q. Indeed, for each

q ∈ Q, we first need to transform the fractional program
(20) into the linear program (22), and this step takes O(K)
times. We need the same amount of time to convert an optimal
solution of the latter problem to an optimal solution of the
former one. Finally, solving (22), which is a linear program
with K+1 variables, takes O((K+1)2.5 ·I), where I denotes
the input size.

V. PERFORMANCE EVALUATION

In this section, we present experimental results to evaluate
the two proposed algorithms, i.e., the AAS and SQP. We
implement these algorithms using Python on an INTEL Core
i7, 2.9 GHz, with 8 GB of RAM. We consider an RSMA-
based CRC system in which the coordination of the CUs, BS,
and radars are shown in Fig. 2. The number of CUs varies
in the range {2, 3, 4, 5, 6}, which are randomly distributed
in a square of 400 m × 400 m on the ground. The BS is
at the center of the square with the location of [0, 0, 0] m.
There are two radars, i.e., Radars 1 and 2, and their locations
are [−1000, 0, 0] m and [1000, 0, 0] m, respectively. The two
radars perform tracking a common target, whose coordination
is [0, 0, 10000] m. Note that the distance between any two
entities in the network is measured by using the Euclidean
norm, i.e., d1,2 =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

for entities 1 and 2 located at [x1, y1, z1] and [x2, y2, z2],
respectively. Other simulation parameters are listed in Table II.

It is important to properly select the accuracy parameter of ε
of the AAS algorithm. The reason can be explained as follows.
As presented in Section IV, there is a trade-off between the

Table II: Simulation Parameters

Parameters Value
Wave length (λc) 0.1 m
Maximum power of BS (p̄C) 30 dBm
Maximum power of radar (p̄R) 1000 W
Transmitting antenna gain of BS (GC

t ) 17 dBi
Receiving antenna gain of CU (Gq) 0 dBi (1)
Radar antenna gain (GR

k,t, G
R
k,r) 30 dBi

G
′R
k,t −27 dBi [16]

G
′R
k,r −27 dBi [16]

σRCS
k , σRCS

k,k′ 1 m2 [16]
σ2
q , σ

2
k −150 dBm/Hz

γR 10 dB
Bandwidth B 1 MHz
CTH
q 0.1 Mbs/s

Fig. 3: Run-time versus value of ε (Q = 4 users).

accuracy in the objective value and execution time of AAS.
In particular, the proposed algorithm obtains a higher accurate
solution as ε is set smaller. However, the algorithm requires
more execution time to achieve the accuracy. However, as
shown in Fig. 3, the execution time is low at ε = 0.2 and
keeps constant as ε ≥ 0.4. In this work, to limit the execution
time of AAS algorithm with an acceptable accuracy, we set
ε = 0.2 at which the execution time is around 2 seconds (see
Fig. 3).

1) Execution time of AAS and SQP: Figure 4 shows the
time that the AAS and SQP algorithms execute in our com-
puting environment. As observed from the figure, given the
value of ε = 0.2 and the number of CUs, the AAS algorithm
requires more time than the SQP algorithm. Moreover, as the
number of CUs increases, i.e., Q ≥ 5, the execution time of
the AAS algorithm increases rapidly along with the increase
of number of CUs. This is due to that the complexity of AAS
is an exponential function with respect to the number of CUs
as proved in Section IV. In contrast, the execution time of
SQP slightly changes and always less than half of second.

2) Impact of the number of CUs: Next, we discuss the
major objective, i.e., the sum rate of the CUs, obtained by
the AAS and SQP algorithms and show how the number of
CUs Q affects the sum rate. As shown in Fig. 5, given any
the number of CUs, the AAS algorithm always achieves a
better performance than SQP. The reason is that the SQP
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Fig. 4: Run-time versus number of users.

Fig. 5: Sum rate versus number of users.

algorithm only produces the suboptimal solution to the TRMP
problem, while the AAS algorithm is able to find an almost
exact optimal solution, as long as the accuracy ε is chosen to
be small enough. Note that ε can be set such that the sum
rate obtained by the AAS algorithm is further higher at the
cost of execution time (as discussed in Section V-1). Figure 5
further shows that the sum rate of the CUs obtained by both
the AAS and SQP algorithms rapidly increases as the number
of CUs increases. This is due to the multiuser gain of the
RSMA scheme [13], compared with conventional NOMA.

3) Impact of the SINR requirement of radars: Our work
aims to maximize the sum rate of the CUs, subject to the
radars’ SINR requirements, i.e., γR. Therefore, it is necessary
to discuss how the sum rate of the CUs changes as the SINR
requirements of the radars change. As illustrated in Fig. 6,
given the number of users of Q = 4, as γR increases, the
sum rate of the CUs in the RSMA-based communication
system decreases. This is explained based on the constraint
given in (5d) in which the total transmit power of of the
CUs is inversely proportional to γR. Thus, the increase of γR

decreases the sum rate of the CUs. It is worth noting that with
the AAS, the sum rate of the CUs slightly decreases with the
increase of γR, while with the the SQP algorithm, the sum
rate of the CUs dramatically decreases with the increase of

Fig. 6: Sum rate versus the SINR threshold γR (Q = 4 users).

γR. This result shows the effectiveness of the AAS algorithm
compared with the SQP algorithm. We can say that with
the AAS algorithm, the RSMA-based communication network
better coexists with the radars.

Fig. 7: Sum rate versus minimum rate demand of each user (Q = 4 users).

4) Impact of rate requirement of CUs: Figure 7 shows
the sum rate of the CUs obtained by the AAS and SQP
algorithms versus the minimum rate requirement of the CUs.
Here, the minimum rate requirement of the CUs varies in
the range of [0.2; 1.0] Mbs/s. As seen, the AAS algorithm
always outperforms the SQP algorithm at every minimum rate
requirement. On the other hand, it is observed from the figure
that a high minimum rate requirement results in a low sum
rate, especially when the minimum rate requirement goes up
from 0.8 to 1. This is due to the fact that one may have to
increase the transmit power p0 of the common massage to
obtain a higher common data rate, leading to a high common
rate allocated to users. This, however, consequently degrades
the sum rate of all users in the network.

5) Impact of the power budget of the BS: Figure 8 shows
the sum rate of the CUs versus the power budget of the BS.
As seen, the higher the power budget is, the higher the sum
rate is. This is obvious since the higher power budget allows
the BS to allocate more power resources to the CUs, which
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Fig. 8: Sum rate versus maximum transmit power of the BS (Q = 4 users).

leads to the higher sum rate. In addition, it is seen that the
AAS algorithm can achieve up to 26% gain in terms of sum
rate compared with the SQP algorithm. Again, the reason is
that the SQP algorithm only produces the suboptimal solution
to the TRMP problem, while the AAS algorithm is able to
find an almost exact optimal solution.

Fig. 9: Sum rate versus maximum transmit power of the radars (Q = 4
users).

6) Impact of the power budget of the radars: Figure 9
illustrates the sum rate of the CUs obtained by the AAS and
SQP algorithms when the power budget of the radars varies,
i.e., in the range {30W, . . . , 120W}. As seen, the sum rate
obtained by the SQP algorithm seems to be unvarying and
around 3.7 Mbits/s, while the sum rate achieved by AAS is
much higher and increases from 4.4 Mbits/s to nearly 4.6
Mbits/s. Also, it is observed that the sum rate by AAS reaches
the highest value at pR ≈ 80W and keeps unchanged when
the power budget of radars goes beyond. This is because the
optimal solution of the problem is attained when the power
of every radar is around 80W . To explain the reason that the
sum rate increases as pR increases, we reformulate the radars’
SINR constraints in the following form∑Q

q=0
pq ≤ min

k∈K

{
pRk
γRh̃k

−
∑

k′ 6=k

g̃k′,k

h̃k
pRk′ −

σ̃k

h̃k

}
.

Theoretically, we would like to find a power allocation of
radars, given the range of pk ∈ [0, pR], so as to maximize the
left-hand side of the equation above, which is a piece-wise
linear function in pk, k ∈ K. Moreover, the left-hand side is
concave over [0, pR]K , and thus has a unique global optimum
in this domain. This explains why the sum rate objective,
which is directly proportional to

∑Q
q=0 pq , has the shape of a

concave function over the range [30; 120]. We can explain the
results shown in Fig. 9 in a different way as follows. As the
power budget of the radars increases, the radar transmission
power increases. With the effective interference management,
the RSMA scheme enables the BS to significantly increase
the transmission power of the BS, compared with the increase
of the radar transmission power. This results in the increase
of the sum rate. However, the increase in sum rate becomes
marginal when the radar transmission power reaches 80W
due to the fact that the interference from radar is out of
the interference management capability of RSMA. In this
case, although the transmission power of BS keeps increasing
as the radar transmission power increases, there will be no
improvement in the sum rate.

Fig. 10: Sum rate versus distance (in km) between Radar 2 and BS (Q = 4
users).

7) Impact of distance between the radars and BS: Finally,
it is interesting to discuss how the distances between the radars
and BS impact on the sum rate of the CUs, which helps to
find appropriate locations for the radars. Figure 10 illustrates
the sum rate versus the distance between Radar 2 and BS (we
fix the location of Radar 1). For both the algorithms AAS and
SQP, the sum rate increases when the distance between Radar
2 and the BS increases. This is because when the radar is
located far from the BS and users’ positions, the channel gain
between the radar and users significantly decreases, leading
to a higher data rate for the users. It is also observed from
Fig. 10 that at the distance larger than 700m, the sum rate
seems to be unchanged. This implies that the radars should be
deployed at least 700m away from the BS so as not to affect
the performance of the communication systems.

VI. CONCLUSION

In this paper, we have investigated the coexistence of the
RSMA-based communication network and multiple radars,
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i.e., the RSMA-based CRC system. In particular, we have
formulated an optimization problem that optimize the common
rates of the CUs, the transmit power of the common and
private messages, and the transmit power of radars. The
objective is to maximize the sum rate of all the CUs subject
to the requirements of their data rates and those of the
radars’ SINR. To solve the optimization problem, we proposed
two algorithms, i.e., SQP and AAS, for solving the problem
locally and globally, respectively. We have provided simulation
results to demonstrate the improvement and effectiveness of
the proposed algorithms. In particular, it has been shown
that, although AAS is theoretically of high complexity, it
significantly outperforms SQP in terms of objective value in
all the considered cases. Furthermore, for the case of less than
5 users, AAS can return a solution within a reasonable amount
of time. In addition, through the simulation results, the best
locations for the radars can be also determined.
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