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OMPL-SBL Algorithm for Intelligent Reflecting

Surface-Aided mmWave Channel Estimation
Wuqiong Zhao, You You, Member, IEEE, Li Zhang, Senior Member, IEEE,

Xiaohu You, Fellow, IEEE, and Chuan Zhang, Senior Member, IEEE

Abstract—Channel estimation (CE) is critical for intelligent re-
flecting surface (IRS) aided millimeter wave (mmWave) multiple
input multiple output (MIMO) systems. In this paper, we propose
the orthogonal matching pursuit list-sparse Bayesian learning
(OMPL-SBL) algorithm which divides the cascaded channel
estimation into two stages. The first stage calculates the prior
for sparse Bayesian learning (SBL) using orthogonal matching
pursuit list (OMPL) exploiting the grid sparsity of the cascaded
channel, and the second stage employs the prior to obtain the
accurate estimation using SBL. The proposed algorithm is able
to achieve high estimation accuracy with low computational com-
plexity compared to ℓ1-minimization and Bayesian algorithms.
In simulation, we show the proposed algorithm not only cuts
down time complexity by more than 95% of the SBL algorithm,
but also achieves a higher estimation accuracy.

Index Terms—Sparse Bayesian learning (SBL), intelligent
reflecting surface (IRS), channel estimation (CE), compressed
sensing (CS).

I. INTRODUCTION

R
ECENTLY the scheme of intelligent reflecting surface

(IRS) has attracted more attention with the development

of 6G. In millimeter wave (mmWave) communications, the

IRS is capable of reflecting signal from the transmitter (Tx) to

the receiver (Rx) whose direct connection to the Tx is blocked.

The IRS scheme stands out even more because of its passive

reflecting nature, which is easy to implement and maintain in

practice as detailed in [1].

Channel estimation plays an indispensable role in wireless

communication as the channel state information (CSI) is es-

sential in precoding and beamforming. But this has been espe-

cially difficult for the IRS due to the large number of reflecting

units as well as antennas in multiple input multiple output
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(MIMO) systems. Many compressed sensing (CS) algorithms

can be employed to perform IRS channel estimation efficiently

by exploiting the sparsity in the angular domain. The widely

adopted orthogonal matching pursuit (OMP) algorithms [2],

[3] can estimate the cascaded channel (Tx–IRS–Rx) with low

computational complexity. However, in many scenarios, its

accuracy is far from satisfactory. The sparse Bayesian learning

(SBL) algorithm in [4] offers significantly better estimation

accuracy especially in high signal-to-noise ratio (SNR) range.

But the conventional SBL algorithm has one shortcoming that

hinders it from real implementation. The complexity of the

SBL algorithm is unacceptable which can be thousands of

that of the OMP algorithm. Attempts have been made to solve

the problem in literature [5]–[7]. The Laplace prior is given

in [5] which results in improvement in both accuracy and

efficiency. The block sparsity in mmWave MIMO systems

for quasi-static and time-selective channels are considered in

[6] to improve CE performance. Support knowledge can also

be employed in the prior as is shown in [7]. However, these

methods still have high complexity, and cannot be applied to

exploit the unique channel structure exhibited in IRS-aided

mmWave MIMO systems.

This paper proposes a novel two-stage cascaded channel

estimation scheme for IRS-aided mmWave MIMO systems

based on compressed sensing. The main contributions are

summarized as followings:

1) Extending greedy algorithm OMP, the proposed OMPL

provides efficient prior for SBL by considering the grid-

sparsity channel structure that is unique in IRS-aided

mmWave MIMO systems;

2) The proposed algorithm is able to achieve higher

accuracy than ℓ1-minimization based algorithms and

Bayesian algorithms, and the computational complexity

is remarkably reduced (by more than 95%) in compari-

son with the traditional SBL algorithm;

3) Parameters in OMPL-SBL can be adjusted for different

system requirements as a tradeoff between estimation

accuracy and computational complexity.

II. SYSTEM MODEL

A. Cascaded Channel

We consider an IRS-assisted MIMO system, where the Nt-

antenna Tx and the Nr-antenna Rx are equipped with the

uniform linear array (ULA), and the IRS has a uniform planar

array (UPA) with M = Mx × My reflecting units. Similar
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to [3], [8], a narrowband geometric channel model is used to

characterize the IRS–Rx channel G and Tx–IRS channel R

as1
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where L1 and L2 are the numbers of IRS–Rx and Tx–IRS

paths, respectively. αl1 and αl2 are the corresponding complex

gain consisting of path loss. θRl1 is the angle of arrival (AoA)

at the Rx and θTl2 is the angle of departure (AoD) at the Tx.

(ϑS1

l1
, φS1

l1
) and (ϑS2

l2
, φS2

l2
) represent the (azimuth and eleva-

tion) AoD and AoA at the IRS, respectively. at(θ
T
l2
) ∈ C

Nt×1,

ar(θ
R
l1
) ∈ C

Nr×1 and as(ϑ, φ) ∈ C
M×1 represent the normal-

ized array steering vectors at the Tx, Rx and IRS, which can

be formulated according to [8]. Therefore, G and R can be

decomposed as ®
G = UNr

ΓUH

M ,

R = UMΣUH

Nt
,

(2)

where beamspace channels Γ and Σ are sparse matrices,

UNr
∈ C

Nr×NG

r , UM ∈ C
M×MG

and UNt
∈ C

Nt×NG

t are

dictionary matrices consisting of NG
r , MG = MG

x ×MG
y and

NG
t steering vectors of predetermined grids at the Rx, IRS

and Tx, respectively. For simplicity, we assume that all spatial

angles are on the uniform grid from −1 to 1. Therefore, the

cascaded channel is defined as

H ≜ Gdiag(Ψ)R, (3)

where Ψ ∈ C
M×1 is the phase shift vector at the IRS.

B. Compressed Sensing Formulation

During channel estimation, T pilot blocks are transmitted.

For the t-th pilot block (t = 1, 2, · · · , T ), the IRS has

reflection vector Ψt. N
B
t and NB

r beams are formed at the

Tx and Rx, respectively (NB
t < Nt, NB

r < Nr), so that

NB
t pilots are transmitted in one pilot block. Therefore, the

received signal yt,p considering the p-th (p = 1, 2, · · · , NB
t )

transmitted beam with precoding vector ft,p can be written as

yt,p = WH

t Htft,pst,p +WH

t nt,p, (4)

where Wt is the combining matrix at the Rx, st,p is the trans-

mitted symbol satisfying |st,p| = 1, nt,p ∼ CN (0, σ2
nINB

r
) is

the additive white Gaussian noise (AWGN), and Ht is the

1Notations: Lower-case and upper-case boldface letter x and X denote a
vector and a matrix respectively. XT, XH, X∗ and X† denote the transpose,
the conjugate transpose, the conjugate and the pseudoinverse. ∥x∥2 and
∥X∥F denote the ℓ2-norm of vector x and the Frobenius norm of matrix X.
diag(x) denotes the diagonal matrix with vector x on its diagonal. vec(X)
denotes the vectorization of matrix X. vec−1

M,N
(x) reshapes the vector x into

an M ×N matrix. sum(X) calculates the sum of all elements in matrix X.
abs(x) returns a vector with all elements being its absolute value. A ⊗ B

denotes the Kronecker product and A ⊚ B denotes the Khatri-Rao product.
a ⊘ b denotes the element-wise division. IM is the identity matrix of size
M ×M and OM×N is an M ×N matrix with all elements being zero. 1N

is a vector of size N with all elements being one. E[a] is the expected value
of a. |S| stands for the number of elements in set S. Finally, CN (µ, σ2) is
the complex-valued Gaussian distribution with mean µ and variance σ2.

channel with IRS phase shift vector Ψt. Collecting all NB
t

transmitted symbols, the received signal can be formulated in

a matrix form as

Yt = WH

t HtFt +Nt, (5)

where Yt ≜ [yt,1, · · · ,yt,NB
t
], Ft ≜ [ft,1, · · · , ft,NB

t
], and

the noise matrix Nt ≜ [WH

t nt,1, · · · ,W
H

t nt,NB
t
]. Therefore,

Eq. (5) can be vectorized as

yt

(a)
= vec(WH

t Gdiag(Ψt)RFt) + nt

(b)
= (FT

t R
T ⊚WH

t G)Ψt + nt

(c)
= (FT

t ⊗WH)(RT ⊚G)Ψt + nt

(d)
= (FT

t ⊗WH)(U∗
Nt

⊗UNr
)JDΨt + nt

(6)

where in (a) the cascaded channel in (3) is substituted and

yt ≜ vec(Yt) ∈ C
NB

t
NB

r
×1, nt ≜ vec(Nt). In (b), the

property of Khatri-Rao product is exploited as in [9]. In (c) and

(d), G and R channels are decomposed according to Eq. (2),

the property (AB⊚CD) = (A⊗C)(B⊚D) is applied, and

J ≜ ΣT ⊗Γ and D ≜ UT

M ⊚UH

M . Let ‹D = D(1 : MG, :) be

the first MG rows of D and Λ is a merged version of J as

shown in [8]:

Λ(:, i) =
∑

n∈Si

J(:, n), (7)

where Si is the set of indices in D that have the identical row

as the i-th row. Therefore, the received signal in Eq. (6) can

be simplified as

yt = (FT

t ⊗WH

t )(U
∗
Nt

⊗UNr
)Λ‹DΨt + nt

= Qtλ+ nt,
(8)

where the mixed-product property of Kronecker product is

employed with Qt ≜ (‹DΨt)
T⊗

(
(FT

t ⊗WH

t )(U
∗
Nt

⊗UNr
)
)
.

After T pilot blocks, we obtain

y = Qλ+ n, (9)

where y ≜ [yT

1 , · · · ,y
T

T ], Q ≜ [QT

1 , · · · ,Q
T

T ]. The dimen-

sion of y is the number of measurement m ≜ TNB
t NB

r .

Considering the sparsity of λ, CS based algorithms can be

employed. For an arbitrary reflection vector Ψ used in data

transformation, the cascaded channel H can be calculated as

H = vec−1
Nr,Nt

Ä
(U∗

Nt
⊗UNr

)Λ‹DΨ
ä
. (10)

The SBL framework aims to find the most likely cascaded

channel whose probability is defined as

p(λ;Γ) =

G∏

i=1

1

πγi
exp

Å
−
∥λ(i)∥22

γi

ã
, (11)

where G = NG
t NG

r MG, hyperparameter γ = [γ1, γ2, · · · , γG]
and Γ = diag(γ). Different approaches such as expectation

maximization (EM) used in [4] can be employed to update

hyperparameter and estimate the sparse vector λ. However,

these approaches have extremely high complexity and thus

not practical in channel estimation.
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III. PROPOSED OMPL-SBL ALGORITHM

We propose the OMPL-SBL algorithm based on the

Bayesian framework with an optimized prior for hyperpa-

rameter. The proposed algorithm consists of two stages: the

OMPL stage that generates a prior considering the grid-

sparsity channel property, and the SBL stage that estimates

the channel.

A. The OMPL Stage

Alg. 1 shows the process of the OMPL stage. The maximum

iteration number kmax is usually selected to be larger than the

number of non-zero elements in λ which is L ≜ L1L2.

1) List Update (Steps 2~15): In Alg. 1 from steps 2 to

15, different from the traditional OMP algorithm which is a

greedy algorithm choosing only one column support in one

iteration, the OMPL algorithm chooses a list of n column

supports. A column support is one column of the sensing

matrix Q that corresponds to an element in the sparse vector

λ. The list update in the OMPL stage can be performed as

iterations repeating BRANCH and MERGE updating column

supports indices (indices of columns of sensing matrix Q).

Let Θ(k) denote the list of n different sets of selected column

supports indices in the k-th iteration. It can be represented as

Θ(k) =
¶
Ξ

(k)
1 ,Ξ

(k)
2 , · · · ,Ξ(k)

n

©
, (12)

where Ξ
(k)
i for i = 1, 2, · · · , n has k distinct column supports

indices selected during the k iterations.

The BRANCH operation is summarized as follows. In the

first iteration (step 4), BRANCH calculates the G residu-

als the same way as the conventional OMP algorithm and

chooses n column supports indices with the least residuals as

ζ
(1)
1 , ζ

(1)
2 , · · · , ζ

(1)
n . Therefore, the list after the first iteration

Θ(1) = {{ζ
(1)
1 }, {ζ

(1)
2 }, · · · , {ζ

(1)
n }}. In the k-th (k > 1)

iteration (step 6), with Θ(k−1) from the previous iteration,

each column supports indices set Ξ
(k−1)
i branches into n

sets. For the set Ξ
(k−1)
i , residuals ∥ri,j∥2 are calculated for

j = 1, 2, · · · , G − k + 1 from new sets by adding one

more column support index ξ
(k)
i,j . The residual vector ri,j =

y − D
(k)
i,j ((D

(k)
i,j )

†y), where D
(k)
i,j ≜ Q(:,Ξ

(k−1)
i ∪ {ξ

(k)
i,j })

for 1 ≤ i ≤ n, 1 ≤ j ≤ G − k + 1. The newly chosen

column supports indices corresponding to the least n residuals

are ζ
(k)
1 , ζ

(k)
2 , · · · , ζ

(k)
n . Therefore, the n sets branched from

Ξ
(k−1)
i can be represented as

“Θ(k)
i =

¶
Ξ

(k−1)
i ∪ {ζ

(k)
1 }, · · · ,Ξ

(k−1)
i ∪ {ζ(k)n }

©
. (13)

The MERGE operation in step 7 merges the n branched

results from Eq. (13) into a new list as

“Θ(k) = “Θ(k)
1 ∪ “Θ(k)

2 ∪ · · · ∪ “Θ(k)
n . (14)

Since there may exist repetition among “Θ(k)
1 ,“Θ(k)

2 , · · · ,“Θ(k)
n ,

the size of “Θ(k) can be smaller than n2. In step 8, the n
sets with the least residuals in “Θ(k) will form the updated

list Θ(k). In step 10, with the knowledge of column supports

indices “Θ(k), estimations for each set of column supports can

be calculated as M(k)(:, i) = (D
(k)
i )†y in the k-th iteration

with the i-th set of column supports, where i = 1, 2, · · · , n.

Algorithm 1 OMPL Stage

Input: y,Q.

Initialization: µ̂ = OG×1.

1: r = y;

2: for k = 1, 2, · · · , kmax do

3: if k = 1 then

4: BRANCH: Initialize Ξ(1) with indices of n col-

umn supports that have the least residual ∥r∥2;
5: else

6: BRANCH: Calculate residuals ri,j for 1 ≤ i ≤
n, 1 ≤ j ≤ G− k + 1;

7: MERGE: Update “Θ(k) with Eq. (14);

8: MERGE: Θ(k) ⊆ “Θ(k) with n smallest ∥ri,j∥2;

9: end if

10: All estimations using Θ(k) form M ∈ C
G×n;

11: All ℓ2-norms of residuals of M form w ∈ R
1×n;

12: if min(w) < rth then ▷ Prior is accurate enough.

13: break;

14: end if

15: end for

16: k = ∥w∥2(1n ⊘w); ▷ Normalized likelihood.

17: Structure check on M · kT as µ̂; ▷ Combine estimations.

18: α = ∥y∥2/min(w); ▷ Residual coefficient.

Output: Estimated prior µ̂, residual coefficient α.

2) Estimation (Steps 16~18): The iteration of BRANCH

and MERGE terminates when it reaches maximum iterations

kmax or becomes accurate enough in step 12 measured by

the residual threshold rth. The likelihood for each set of

column supports is related to the residuals in step 16. The

estimated prior combines the n estimations by likelihood in

step 17. The channel structure check is then applied, because

it can be easily proved that the beam space cascaded channel

UH

Nr
HUNt

exhibits grid sparsity, i.e. non-zero elements lie on

certain rows and columns. Consider the summed up version

of “Λ = vec−1
NG

r
,NG

t

(λ̂) as HS , which also has grid sparsity,

formulated as

HS(i, j) = ∥“Λ(jNG
r +NG

t , :)∥22, (15)

for i = 1, 2, · · · , NG
r and j = 1, 2, · · · , NG

t . The estimated

grid structure indices set Î and “J are chosen by

Î ⊆ {1, 2, · · · , NG
r }, “J ⊆ {1, 2, · · · , NG

t }, s.t.




max
|Î|=L1

∑

i∈Î

∥HS(i, :)∥
2
2,

max
| “J |=L2

∑

j∈ “J
∥HS(:, j)∥

2
2.

(16)

Define the prior for the SBL stage as µ̂ ∈ R
NG

t
NG

r
MG×1, and

it is initialized as µ̂ = abs(M · kT). We perform the check

µ̂(kNG
t NG

r + jNG
r + i) =

√
sum
Ä
HS(Î, “J )

ä

L1L2MG
,

if HS(i, j) < β ·
sum
Ä
HS(Î, “J )

ä

L1L2
,

(17)
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for i = 1, 2, · · · , NG
r , j = 1, 2, · · · , NG

t , k = 1, 2, · · · ,MG,

and β ∈ [0, 1) is the structure coefficient to control the degree

of structure check. A large β results in a greater chance that

the non-zero elements are marked as non-zero. Specially, when

β = 0, no structure check is performed. In addition to the

estimated prior µ̂, a residual coefficient α is calculated in

step 18 by dividing the ℓ2-norm of the received signal by the

least residual min(w). This coefficient will be used in Eq. (18)

of the SBL stage to initialize its hyperparameter.

3) Summary: The core of the OMPL stage is iterating to

update the list of column supports indices by first extending

Θ(k−1) (k > 1) to “Θ(k) and then choosing the optimal n sets

from “Θ(k) to form Θ(k). After this, prior for the SBL stage

is calculated, with channel structure check. It can be derived

that the conventional OMP algorithm is the special case for

OMPL with n = 1.

B. The SBL Stage

The OMPL-SBL algorithm is depicted in Alg. 2 with a focus

on the SBL stage.

Algorithm 2 OMPL-SBL

Input: y,Q.

Initialization: λ̂ = OG×1.

1: Calculate µ̂, α using Algorithm 1;

2: Initialize hyperparameter γ̂(1) with Eq. (18);

3: for k = 1, 2, · · · , kmax do

4: Prune hyperparameter γ(k);

5: SBL iteration with updated µ̂(k), “Σ(k) and γ̂(k+1)

using Eq. (19);

6: if max abs(γ̂(k+1) − γ̂(k)) < ε then

7: break; ▷ Reach termination condition.

8: end if

9: end for

10: for i = 1, 2, · · · , G do

11: if |µ̂(k)(i)| < µth then

12: λ̂(i) = 0;

13: else

14: λ̂(i) = µ̂(k)(i);
15: end if

16: end for

17: Estimate “H with Eq. (10) where Λ = vec−1
NG

r
,NG

t

(λ̂);

Output: Estimated channel “H.

Step 1 uses the estimation result of Alg. 1. Then in step 2,

the i-th element of hyperparameter prior γ̂(1) is calculated by

γ̂(1)(i) =

®
1 + α(µ̂(i)−A)/B, if µ̂(i) > 0,

0, if µ̂(i) = 0,
(18)

for i = 1, 2, · · · , G, where A = min(µ̂∩R
+) is the minimum

positive element in µ̂ and B = max µ̂. The residual coefficient

α indicates the reliability of the OMPL prior, since a larger

α corresponding to a smaller final residual indicates that the

support selection tends to be more accurate. As a result,

the hyperparameter prior can be set with a larger variance

to encourage faster convergence. Steps 3 to 9 follow the

traditional SBL algorithm. The EM method for parameter

update of step 5 used in [4] can be expressed as




µ̂(k) =
1

σ2
n

“Σ(k)QH

r y,

“Σ(k) =
(
σ−2
n QH

rQr +
Ä
Γ̂(k)
ä−1

)−1

= Γ̂(k) − Γ̂(k)QH

r
“Σ−1

y QrΓ̂
(k),

(19)

where Qr is the effective (pruned) sensing matrix, “Σy =

σ2
nIm +QrΓ̂

(k)QH

r ∈ C
m×m. Hyperparameter is updated as

γ̂(k+1)(i) = “Σ(k)(i, i)+|µ̂(k)(i)|2 for i = 1, 2, · · · , G. During

the process, the hyperparameter γ̂(k) becomes more sparse

and noise estimation σ
(k)
n is also updated [10]. At the same

time, the size of γ̂(k) can be reduced by setting a pruning

threshold and prune γ̂(k) in each iteration by eliminating all

entries whose magnitude is smaller than the pruning threshold.

This is of great significance to the proposed algorithm as the

prior µ̂ given in the OMPL stage is already sparse compared

to the non-informative prior that initializes all hyperparameter

with non-zero values. As a result, the dimension of hyperpa-

rameter is much smaller so not only is each iteration more

efficient, but also it cuts down the total iteration numbers.

The complexity comparisons will be discussed later in III-C.

The normal iteration termination condition is set as the largest

hyperparameter change being smaller than a chosen threshold

ε in step 6 or the number of iterations reaches kmax. Steps 10

to 16 finally give the estimation of λ̂ using hyperparameter.

For those entries that correspond to a very small value smaller

than the threshold µth, we can set it as zero in λ̂ shown in

step 12. Otherwise, the entry in λ̂ is set as the corresponding

mean value shown in step 14. The estimation result of the

cascaded channel is calculated in step 17.

C. Complexity Comparisons

The computational complexity and run time comparisons

are shown in Table I. The simulation is run on macOS with

Apple M1 chip, and the system parameters used in run time

evaluation are shown in Table II. Table I clearly shows the

complexity of the above algorithms can be ranked as

OMP < OMPL-SBL < BP-ADMM ≪ SBL-EM.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISONS.

Algorithm Complexity Order Run Time [s]

OMP O(mLG) 0.070 (1.00×)

BP-ADMM O(KG2) 3.825 (54.6×)

SBL-EM O(Qm2G) 150.0 (2143×)

OMPL stage* O(nmLG) 1.216 (17.4×)

OMPL-SBL O(m(nLG+ qmg)) 1.780 (25.4×)

1 K is the average number of iterations in BP-ADMM.
2 q and Q are the number of iterations in SBL-EM and the SBL stage of

OMPL-SBL, respectively, and q ≪ Q.
3 g ≪ G = NG

t NG
r MG is the effective size in the SBL stage.

D. Algorithm Analysis

The prior calculated by OMPL plays a key role in the

channel estimation. The informative prior should be accurate
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enough for the SBL algorithm to function well. Note that the

informative prior produced by the OMPL does not necessarily

distinguish all zero-value entries but set most zero-value

entries to zero and carefully not to miss non-zero elements. If

the value is set to zero, it is pruned out in the SBL stage.

Setting most zero-value entries to zero will accelerate the

convergence of SBL remarkably.

The performance of OMPL alone is not worse than the OMP

algorithm, since the introduction of list ensures the residual is

smaller than that of OMP, mitigating the problem of OMP’s

greedy selection of support. Moreover, OMPL can achieve a

relatively satisfactory performance in support selection even

at low SNRs, making OMPL-SBL stable at low SNRs.

A key feature of the proposed algorithm is that it is universal

for almost all SBL algorithms. In section IV the EM-based

SBL is tested, and other parameter update methods should

also work under the proposed SBL stage framework.

One important flexibility of the proposed OMPL-SBL al-

gorithm is that the parameters can be adjusted according

to different requirements. The OMPL list size n and the

channel structure check coefficient β are involved in the

tradeoff between estimation accuracy and the computational

complexity. It is evident that a larger OMPL list size n and/or

channel structure check coefficient β will contribute to more

non-zero elements in the SBL prior, i.e. a larger g. Thus,

the complexity increases with n and β, as is discussed in

III-C. Here we mainly consider the estimation performance

concerning n and β.

The prerequisite of an accurate estimation is that all supports

are selected without miss during the OMPL stage. It is already

shown in III-D that OMPL offers a non-greedy estimation with

support selection, and that a larger n results in better support

selection. The upper bound of probability of missing support

error Pe after channel structure check with b original misses

can be approximated as

Pe ≈
b(b+ n− 1)

NG
t NG

r

Å
1− β

Å
1 + n

L+ n
+

2L2 − 3L

6(L+ n)2

ãã2
, (20)

for β > 0. It is worth noting that Pe increases with n for a

fixed value of b, but E[b] can be much smaller with a larger n.

Overall, a larger β and a larger but not too large n contributes

to better support selection.

From the perspective of the SBL stage, the prior provided by

OMPL should satisfy certain requirements. Intuitively, a larger

n makes OMPL less greedy, while n = 1 falls back on the

conventional OMP which is greedy and therefore not reliable

enough for support selection. When the number of non-zero

elements in the prior g is large enough and the corresponding

effective sensing matrix Qr (columns of Q that correspond

to non-zero elements in hyperparameter) satisfies the unique

representation property (URP), the upper bound for the number

of SBL local minima in an ideal scenario without noise is

given as [11] Å
g
m

ã
=

g!

m!(g −m)!
, (21)

which is increasing with g. Thus, the upper bound for the

number of SBL local minima is smaller in the proposed

method than the traditional SBL algorithm. According to

[12], smaller number of local minima contributes to less

convergence error. Therefore, if no support is missed in the

OMPL stage, the performance is enhanced with our proposed

method. But in order to ensure a reliable support and URP for

Qr, g should not be too small, thus requiring n and β to be

large enough.

The simulated tradeoff at SNR = 10dB with pilot overhead

TNB
t = 256 is depicted in Fig. 1, which shows the existence

of Pareto front with different n and β values. Specially, the

yellow dots show that the NMSE performance deteriorates

severely when no channel structure check is applied (β = 0).
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Fig. 1. NMSE performance and run time tradeoff in relation to parameters
with Pareto front.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the OMPL-

SBL algorithm by C++ simulation with Armadillo library [15]

for efficient linear algebra computation. System parameters

used in simulation are shown in Table II. We choose appro-

priate parameters in OMPL-SBL based on the Pareto front in

Fig. 1 as n = 16 and β = 0.5.

TABLE II
SYSTEM PARAMETERS IN SIMULATIONS.

Parameters Values

(Nt, Nr), (NG
t , NG

r ), (NB
t , NB

r ) (4, 16), (4, 16), (2, 2)

M = Mx ×My , MG = MG
x ×MG

y 64 = 8× 8, 64 = 8× 8

(L1, L2) (4, 3)

OMP algorithm [2] is a widely adopted channel estima-

tion scheme with low complexity for IRS-assisted mmWave

systems. [8], [9] adopt the OMP algorithm due to its low

complexity. Since the second stage of the OMPL-SBL al-

gorithm is SBL, we also compare it with the SBL [4] with

EM update. It has been proven that SBL is equivalent to

iterative reweighted ℓ1-minimization [16]. Therefore, a popular

ℓ1-minimization based algorithm basis pursuit (BP) [13] with

alternating direction method of multipliers (ADMM) solver

[14] is also compared. The channel estimation performance is

measured by the normalized mean square error (NMSE) which

is formulated as E[∥“H−H∥2F /∥H∥2F ].
Fig. 2(a) compares the proposed OMPL-SBL algorithm

with the conventional SBL, BP-ADMM and OMP methods
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(a) NMSE vs. SNR, with 256 pilots.
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(b) NMSE vs. pilot overhead, with SNR = 10dB.
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Fig. 2. Simulation results. Tests use C++ with Armadillo library [15] for efficient linear algebra computation.

in terms of NMSE vs. SNR. The performance of the proposed

OMPL-SBL algorithm with OMPL list size n = 16 is better

than conventional SBL algorithm by about 10 dB at high

SNRs (> 10 dB) and is also close to the Cramér-Rao bound

specified by Oracle LS. By contrast, OMP, BP-ADMM and

SBL-EM cannot achieve a high estimation accuracy. The

relationship between NMSE performance and pilot overhead

number TNB
t is shown in Fig. 2(b). The NMSE performance

of the proposed algorithm stands out even with a small number

of pilot overhead. We also evaluate the bit error rate (BER)

performance in relation to SNR in Fig. 2(c). The minimum

mean square error (MMSE) MIMO detector is applied for the

16-QAM signal. It demonstrates that the proposed OMPL-SBL

algorithm can achieve low BER close to that of Oracle LS and

that with perfect CSI.

Simulation also shows the convergence of the algorithm is

much faster in the SBL stage, with approximately 8 to 16
iterations in total. By contrast, it takes the conventional SBL

algorithm much longer to converge, owing to a larger total

iteration number and longer calculation time in each iteration.

V. CONCLUSION

In this paper, we propose the OMPL-SBL algorithm for

IRS-aided mmWave channel estimation that is not only accu-

rate and stable, but also more efficient than the conventional

SBL algorithm. The proposed algorithm can be readily adapted

for orthogonal frequency-division multiplexing (OFDM) sys-

tems and the common sparsity among subcarriers can be

exploited to further reduce the estimation complexity. In the

presence of wideband beam squint effect, subcarrier grouping

[17] can be employed to mitigate the influences. The simu-

lation results show that the algorithm remarkably improves

the performance with significantly lower time complexity.

The proposed algorithm is able to provide precise CSI for

beamforming design and IRS passive reflection design, which

are of great significance in mmWave MIMO systems due to

the high gain requirement. Moreover, OMPL list size n and

channel structure coefficient β can be selected to adapt to

different scenarios or changing circumstances, providing more

flexibility and application potentials.
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