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Abstract—As an enabling technique of cognitive radio (CR),
compressive spectrum sensing (CSS) based on compressive sens-
ing (CS) can detect the spectrum opportunities from wide
frequency bands efficiently and accurately by using sub-Nyquist
sampling rate. However, the sensing performance of most existing
CSS excessively relies on the prior information such as spectrum
sparsity or noise variance. Thus, a key challenge in practical CSS
is how to work effectively even in the absence of such information.
In this paper, we propose a blind orthogonal least squares based
CSS algorithm (B-OLS-CSS), which functions properly without
the requirement of prior information. Specifically, we develop
a novel blind stopping rule for the OLS algorithm based on
its probabilistic recovery condition. This innovative rule gets
rid of the need of the spectrum sparsity or noise information,
but only requires the computational-feasible mutual incoherence
property of the given measurement matrix. Our theoretical
analysis indicates that the signal-to-noise ratio required by the
proposed B-OLS-CSS for achieving a certain sensing accuracy
is relaxed than that by the benchmark CSS using the OMP
algorithm, which is verified by extensive simulation results.

Index Terms—Blind stopping rule, compressive spectrum sens-
ing, orthogonal least squares, sparse signal recovery.

I. INTRODUCTION

W ITH the rapid deployment of intelligent transport sys-
tems (ITSs), spectrum scarcity in vehicular commu-

nications is becoming the bottleneck, since the available
bandwidth turns to be insufficient to satisfy the requirement
for high-quality wireless services facing the high traffic levels
in vehicular applications [1]. To handle such a challenge,
cognitive radio (CR) emerges as a key technology by searching
for the unused spectrum resources and providing dynamic
spectrum access for secondary users (SUs). To detect as much
spectrum opportunities as possible from wide frequency bands
at sub-Nyquist sampling rate, compressive spectrum sensing
(CSS) methods have been developed based on compressive
sensing (CS) and well acknowledged as a promising wideband
spectrum sensing solution. Among various CSS algorithms,
the greedy search methods, e.g., orthogonal matching pursuit
(OMP) [2] and orthogonal least squares (OLS) [3], exhibit
satisfactory sensing performance with fast implementation.
The iterative atom selection mechanism of greedy algorithms,
however, relies on the spectrum sparsity or noise prior infor-
mation, which is not always available in practice and thus
hinders their applications.
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Blind greedy (BG) algorithms have been developed to solve
the aforementioned dilemma of requiring prior information [4].
In current literature, the blind OMP (B-OMP) algorithm, as
a representative BG algorithm, keeps detecting the effective
support atomic energy in the residuals blindly [2]. However,
the performance of OMP is sensitive to the mutual incoherence
property (MIP) [5], [6] of the measurement matrix, that is, MIP
should be small enough for effective atom separation, which
limits the applicability of B-OMP algorithms in practice.

By contrary, the OLS algorithm enjoys stronger capability
for correct atom exploration than OMP, resulting in compelling
spectrum recovery performance, even if the measurement
matrix exhibits unsatisfactory MIP [7]. Therefore, OLS is
capable to guarantee more stable spectrum access of SUs when
different measurement matrices are used in practice, which
motivates us to investigate blind OLS algorithm for reliable
CSS performance without prior information. To the best of our
knowledge, there is no study on developing blind stopping rule
for OLS. Accordingly, there is no OLS-related blind algorithm
design and performance analyses in the current literature of
both CS and CSS based CR.

To fill such a technical gap, this paper proposes a blind OLS-
based CSS (B-OLS-CSS) algorithm for CR. Specifically, we
formulate the bounds of a mapping factor in OLS, which is
tighter than the existing ones, by utilizing the probabilistic
norm bound and computational-friendly MIP metric. Then,
a blind stopping rule for the OLS algorithm is developed
via utilizing the MIP-based recovery conditions. To protect
primary users’ (PUs’) uninterrupted communications and fa-
cilitate SUs’ spectrum access, our stopping rule focuses on
the selection of all correct support atoms. Our work also
theoretically demonstrates that the signal-to-noise ratio (SNR)
required for reliable recovery of B-OLS-CSS is lower than
that required by the blind OMP-based CSS [2].

The rest of this paper is organized as follows. In Section II,
we introduce notations and system model. In Section III, we
present our proposed blind stopping rule, B-OLS-CSS algo-
rithm, and the theoretical analysis. In Section IV, simulation
results are given, followed by conclusions in Section V.

II. PRELIMINARIES

A. Notations
DSl is a submatrix of D that contains the column set

Sl selected at the l-th iteration. PSl = DSlD
†
Sl

denotes
the projection onto the span(DSl), where D†

Sl
represents

the pseudoinverse of DSl . P⊥Sl = I − PSl represents the
projection onto the orthogonal complement of the span(DSl).
The spectral norm of a matrix D is denoted by ρ(D). The
measurement matrix is normalized throughout the paper.
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Fig. 1. System model with B-OLS-CSS algorithm.

B. System Model

In CR, the received spectrum at a SU is denoted by s ∈ RN ,
which is sparse based on a certain basis Ψ ∈ RN×N . Let
s = Ψx, where x is a K-sparse spectrum that only contains
K nonzero spectrum support entries. Define Φ ∈ RM×N as
the sampling matrix, where M and N are the numbers of sub-
Nquist-rate and Nquist-rate samples, respectively. Denoting
the additive noise as ε ∼ N (0, σ2IM ), the compressed
measurement vector y ∈ RM is given by

y = Φs + ε = ΦΨx + ε = Dx + ε, (1)

where D = ΦΨ ∈ RM×N is the measurement matrix. Define
SNR =

E(||Dx||22)
E(||ε||22)

, SNRq =
||xqDq||22
Mσ2 and SNRmin as the

minimum value of SNRq (q = 1, 2, · · · , N) [2].
The objective of CSS is to recover the sparse spectrum

x from the compressed measurement signal y given the
measurement matrix D. The system model with our proposed
B-OLS-CSS algorithm is illustrated in Fig. 1. At a SU’s node,
the original sparse spectrum is recovered by our proposed B-
OLS-CSS algorithm with the required minimum probability
of recovery Pmin and the parameter ρ that guarantees more
opportunities of selecting correct atoms for the algorithm.
Pmin and ρ will be elaborated afterwards.

III. PROPOSED COMPRESSIVE SPECTRUM SENSING
ALGORITHM

In practical vehicular communications, the sparsity value
or the noise information is generally not known a priori.
Therefore, the conventional stopping rule of OLS is not
applicable any more, which indicates that OLS would stop
iteration if the preset number of iterations is larger than the
ground truth sparsity value K or if the residual is smaller
than a predefined threshold according to the noise variance.
In this section, to overcome these issues, we first develop a
blind stopping rule for OLS based on our analytical results of
sparse recovery condition which is independent to the signal
sparsity value and the noise statistical information. Then, the
B-OLS-CSS algorithm is developed based on the design of the
blind stopping rule.

A. Blind Stopping Rule and Theoretical Analysis for OLS

According to the iterative procedures of OLS, the residual
vector after l iterations (1 ≤ l ≤ K) is rl = P⊥Sl(Dx+ ε). As
proved in [2], ||D

T rl||∞
||rl||2 can be used to detect whether there

remains nonzero components in the residual vector. That is, if
||DT rl||∞
||rl||2 is smaller than a predefined threshold Q, i.e.,

||DT rl||∞
||rl||2

< Q, (2)

the residual vector only contains noise components and OLS
stops iteration. In the following, we develop this critical thresh-
old Q that needs to be predefined by utilizing the analytical
results for OLS. In doing so, we first present some useful
lemmas. In OLS, the tightness of the mapping factor, i.e.,
||P⊥SlDi||2 (i ∈ {1, 2, · · · , N}\Sl), determines the tightness
of theoretical recovery condition [8]. The following lemmas
present a tighter bound for the mapping factor than the existing
results [6], [9].

Lemma 1. For B ∈ RM×K , whose entries independently and
identically satisfy N (0, 1

M ), the smallest singular value ζmin

and the largest singular value ζmax with any ρ > 0 follow:

min

{
P
{
ζmin ≥ 1−

√
K/M − ρ

}
,

P
{
ζmax ≤ 1 +

√
K/M + ρ

}}
≥ 1− e−

Mρ2

2 .

(3)

The proof of Lemma 1 is omitted since it can be easily
derived from [10, Theorem 2.13].

Lemma 2. Suppose µ < 1
K−1 , then 1√

T ≤ ||P
⊥
SlDi||2 ≤ 1 for

i ∈ {1, 2, · · · , N}\Sl with the probability given in Lemma 1,

where T =
(
1− Kµ2(1+

√
K/m+ρ)

(1−
√
K/m−ρ)2

)−1
.

Proof: See Appendix A.
The closer the lower bound in Lemma 2 is to 1, the tighter

it is. The tightness of this bound depends on the parameter
ρ. Next, compared with two existing bounds of the mapping
factor, we discuss the bound in our derived Lemma 2 in terms
of the range of ρ which is tighter than the existing ones. In
[9] and [6], the authors provide that√

1−Kµ ≤ ||P⊥SlDi||2 ≤ 1 (4)

and √
1− (1 + (K − 1)µ)Kµ2

(1− (K − 1)µ)2
≤ ||P⊥SlDi||2 ≤ 1, (5)

respectively. The comparison between our result in Lemma 2
and those in (4) and (5) is presented in the following remark.

Remark 1. If ρ < (K − 1)µ−
√
K/M , (||P⊥SlDi||2)’s lower

bound in Lemma 2 is closer to 1 than those in (4) and (5).

Remark 1 reveals that the bound of the mapping factor is
tighter than the existing results [6], [9]. To derive the recovery
condition for standard OLS, we utilized the upper bound of
the reconstructible sparsity, which is the Theorem 2 in our
previous work [6]. It indicates that if the real sparsity K of the
spectrum is lower than a specific threshold C, OLS produces
reliable recovery. Note that the threshold C is only related
with the matrix coherence of the measurement matrix. Based
on the theoretical analysis related to the mapping factor and
the reconstructible sparsity, we present the reliable recovery
condition for OLS.

Theorem 1. Suppose K < C and ε ∼ N (0, σ2IM ). Define
P(ω) = 1 − CN

e0.5ω2µ2θ2
√

2πω2µ2θ2
− 2e−

Mρ2

2 − 1
M−C −

1
M ,
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where θ =
√
A1 −

√
A2, A1 = 4(M − C) − 2, A2 = M −

C + 2
√
(M − C) log(M − C) and ρ > 0.

For a given minimum probability of recovery Pmin, the OLS
algorithm using the stopping rule (3), i.e., ||D

T rl||∞
||rl||2 < Q,

can reconstruct the K-sparse spectrum with the probability
P > Pmin, if the minimum component SNRmin satisfies

SNRmin > max{ϕ1, ϕ2}, (6)

where ϕ1 = 4(2−(K−T )µ)2ω2µ2θ2

M(2−(K−T )µ−2KT µ)2(1−(K−1)µ)2 , ϕ2 =

ω2µ2(θ+
√
M+2

√
M logM)2

M(1−
√
K/M−ρ−ωµ(1+

√
K/M+ρ)

√
K)2

, Q = ωµ, ω =

P−1(Pmin), P−1(·) represents the inverse function of P(·).

Proof: See Appendix B.
It is observed that the right-hand-side of the stopping rule

Q = ωµ contains a constant ω = P−1(Pmin) and the
computable matrix coherence µ. It indicates that Theorem 1 is
operational with an input target probability of recovery Pmin

and the calculated µ. That is, the stopping rule in Theorem 1
can work blindly since it is independent to the sparsity level
or the noise prior information. Thus, it is suitable for practical
CSS scenario where this information is unavailable.

B. B-OLS-CSS Algorithm

In this subsection, we utilize Theorem 1 to develop the B-
OLS-CSS algorithm. The proposed B-OLS-CSS algorithm is
given in Algorithm 1. Note that the greedy algorithms may not
select the exactly correct K support atoms within K iterations
due to the presence of noise. The B-OLS-CSS algorithm is
designed to address this problem by appropriately reducing
the right-hand-side of the blind stopping rule in Theorem 1
and hence the algorithm runs more than K iterations for more
opportunities to choose all the K correct support atoms to
the best effort. Based on these arguments, the blind stopping
rule in the B-OLS-CSS algorithm is set as ||D

T rl||∞
||rl||2 ≤ ω∗µ,

where ω∗ = ω − ρ. According to Remark 1 and Theorem 1,
ρ satisfies 0 < ρ < (C − 1)µ −

√
C/M . A large ρ induces

a loose bound of ||P⊥SlDi||2, while a small one reduces the
expected probability exponentially. Hence, a moderate scale
of ρ is able to effectively balance the required SNRmin and
the expected recovery probability in Theorem 1. The trade-off
ensures that B-OLS-CSS iterates slightly more than K times.

IV. SIMULATION RESULTS

A. Simulations for Theoretical Results

In this subsection, we perform simulations to compare
Lemma 2 and Theorem 1 with (4), (5) and [2, Theorem 1].

We generate two M×N normalized measurement matrices
(where M = 1024, N = 8192 and M = 2048, N = 8192),
which are the same as those in [2]. The matrix coherences µ of
these matrices are about 0.135 and 0.109 respectively. For fair
comparison, we fix ϑ as 0.15 in the simulations. The results of
the comparison among the lower bounds in Lemma 2, (4) and
(5) are presented in Fig. 2(a). It is observed that our derived
bound is generally much closer to 1 than those in (4) and (5),
which verifies that our result is tighter. When matrix coherence
µ is smaller, the lower bound of ||P⊥SlDi||2 becomes tighter.

Algorithm 1 B-OLS-CSS Algorithm
Input: The measurement matrix D, compressed measure-

ments y, minimum target probability of recovery Pmin,
and parameter ρ.

Output: The recovered spectrum x ∈ RN , and recovered
index set of nonzero entries S ⊆ {1, 2, · · · , N}.

1: Initialization : l = 0, r0 = y, S0 = ∅, x0 = 0.
2: Calculate ω = P−1(Pmin) and set ω∗ = ω − ρ, where
P−1(·) is given in Theorem 1.

3: Calculate the matrix coherence µ of D, where µ =
max
i,j 6=i
|DT

i Dj |.

4: while ||D
T rt||∞
||rt||2 > ω∗µ do

5: Set il+1 = argmin
j∈{1,··· ,N}\Sl

||P⊥Sl∪{j}y||
2
2,

where P⊥Sl∪{j} = DSl∪{j}(D
T
Sl∪{j}DSl∪{j})

−1DT
Sl∪{j};

6: Augment Sl+1 = Sl ∪ {il+1};
7: Estimate xl+1 = argmin

x: supp(x)=Sl+1

‖y −Dx‖22;

8: Update rl+1 = y −Dxl+1;
9: l = l + 1;

10: end while
11: return S = Sl and x = xl.
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Fig. 2. Lower bounds of (a) ||P⊥
Sl

Di||2; (b) SNRmin with K = 4.

The lower bounds of SNRmin for high probability of recov-
ery in Theorem 1 and [2, Theorem 1] are presented in Fig.
2(b). The recovery probabilities are set to be 0.9 : 0.01 : 0.99.
As the matrix coherence decreases, the lower bounds of
SNRmin is reduced. The results indicate that our derived bound
of SNRmin for OLS is lower than that of OMP, which implies
that OLS is more suitable for CSS in noisy scenarios.

B. Simulations for CSS

In this subsection, we present simulations to demonstrate
the superiority of our proposed B-OLS-CSS algorithm beyond
the existing benchmarks. The spectrum is regarded to be
successfully recovered if the recovered spectrum is within
a certain small Euclidean distance of the ground truth. The
locations of the sparse nonzero atoms are selected uniformly
at random. The nonzero entries in the spectrum are set to
be independently and identically distributed as N (1, 0.01) for
illustration. We set Pmin = 0.95 and ρ = 0.175. All CSS
algorithms run over 1, 000 Monte Carlo trials.
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Fig. 3. (a) Probability of recovery versus SNR (dB) using Gaussian measure-
ment matrix with M = 1024 and N = 2048; (b) MSE versus SNR (dB)
using Gaussian measurement matrix with M = 1024 and N = 2048.
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Fig. 4. (a) Probability of recovery versus ω using Gaussian measurement
matrix with M = 1024, N = 2048 and K = 4; (b) MSE versus ω using
Gaussian measurement matrix with M = 1024, N = 2048 and K = 4.

We first perform simulations to compare the sensing perfor-
mance of the B-OLS-CSS with the OLS-CSS that stops exactly
at the K-th iteration. As shown in Fig. 3, the performance of
the B-OLS-CSS is almost the same as that of the OLS-CSS
given perfectly known prior knowledge on K and σ. This
shows that even if the sparsity level or the noise information
is unavailable, the sensing performance achieved by B-OLS-
CSS algorithm is still competitive.

The sensing performance versus ω is given in Fig. 4. It is
observed that the performance of B-OLS-CSS is competitive to
that of OLS-CSS in a wide range of ω, which is [1.175, 2.575].
Such phenomenon indicates that B-OLS-CSS is insensitive to
the value of the parameter ω. Based on the settings in Fig. 4,
the ω presented in Theorem 1 is approximately equal to 1.3,
falling into the range [1.175, 2.575]. This reveals the guideline
role of our derived theoretical results.

Then, we investigate the sensing performance of the OMP-
CSS, CoSaMP-CSS, CSS with the blind OMP in [2] (we call it
B-OMP-CSS), OLS-CSS, MOLS-CSS [11] and B-OLS-CSS.
We adopt the hybrid measurement matrix D given in [7],
whose columns satisfy Di = ni + ci1, where ni ∼ N (0, 1)
and ci obeys the uniform distribution on [0, 10]. Compared
with the Gaussian measurement matrix, the MIP of the hybrid
measurement matrix is extremely unsatisfactory. The following
simulations indicate that our proposed B-OLS-CSS always has
desired performance even for unsatisfactory MIP cases.

As shown in Fig. 5, when K = 8, the performance of
B-OLS-CSS is competitive with that of the CoSaMP and
MOLS algorithms, and is even better than the OLS-CSS
algorithm, which reveals that our proposed blind stopping
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Fig. 5. Probability of recovery versus SNR (dB) using hybrid measurement
matrix with M = 256 and N = 512.
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Fig. 6. MSE versus SNR (dB) using hybrid measurement matrix with M =
256, N = 512 and (a) K = 8; (b) K = 12.

rule works better than the methods implementing exact K
iterations in OLS-CSS. Meanwhile, OMP-CSS behaves the
worst, which is consistent with the theoretical statement in
[7] that OMP performs poorly in dealing with high coherence
measurement matrices. We further conduct the simulations of
these algorithms with K = 12. The performance of OMP-
CSS, B-OMP-CSS and OLS-CSS degrades rapidly, and they
end up unable to perform reliable recovery. In this case, the
performance of our proposed B-OLS-CSS still approaches to
that of the CoSaMP and MOLS, which indicates that B-OLS-
CSS is more suitable for the practical CR when the prior
information is unavailable.

In Figs. 7(a) and 8(a), we set the number of measurements
M to be half of that in Fig. 5. It is observed that the
performance of all the algorithms decrease compared with that
in Fig. 5, while our proposed B-OLS-CSS still approaches to
CoSaMP-CSS and MOLS-CSS. In Figs. 7(b) and 8(b), the
number of columns N of the measurement matrix is further
set to be half of that in Figs. 7(a) and 8(a), which leads
to a smaller matrix coherence. In this case, the performance
of OMP-CSS, B-OMP-CSS, OLS-CSS and B-OLS-CSS im-
proves significantly. Note that the performance of our proposed
B-OLS-CSS is closer to that of the CoSaMP-CSS and MOLS-
CSS compared with the results in Figs. 7(a) and 8(a).

V. CONCLUSION

This work is motivated by the challenge in practical CR
that the prior information such as the spectrum sparsity and
noise variance is usually unavailable for CSS techniques.
To address this issue, we propose a B-OLS-CSS algorithm,
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Fig. 7. Probability of recovery versus SNR (dB) using hybrid measurement
matrix with K = 8 and (a) M = 128, N = 512; (b) M = 128, N = 256.

15 20 25 30 35 40
SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

M
SE

OMP-CSS
CoSaMP-CSS
B-OMP-CSS
OLS-CSS
MOLS-CSS
B-OLS-CSS

(a)

15 20 25 30 35 40
SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

M
SE

OMP-CSS
CoSaMP-CSS
B-OMP-CSS
OLS-CSS
MOLS-CSS
B-OLS-CSS

(b)

Fig. 8. MSE versus SNR (dB) using hybrid measurement matrix with K = 8
and (a) M = 128, N = 512; (b) M = 128, N = 256.

which works properly even without such prior information.
The theoretical analysis demonstrates that the SNR required
for reliable recovery of our B-OLS-CSS is lower than the
existing blind algorithm, leading to theoretical guarantee for
the algorithm robustness under the low SNR environments.
Simulation results verify that the proposed B-OLS-CSS algo-
rithm can provide comparable performance to the one using
sparsity and noise information, and it outperforms the other
existing blind CSS techniques in terms of better CSS accuracy.

APPENDIX A
PROOF OF LEMMA 2

Proof: Due to submultiplicativity, we have ||PSlDi||2 ≤
ρ(DSl)ρ((D

T
SlDSl)

−1)||DSlDi||2. Based on Lemma 1, we

obtain ρ(DSl) =
√
λmax(DT

Sl
DSl) ≤

√
1 +

√
K/M + ρ.

Then, similar to the proof procedures in [6], we have
ρ((DT

SlDSl)
−1) ≤ 1

1−
√
K/M−ρ

. Since ||DSlDi||2 ≤
√
Kµ2,

||PSlDi||2 ≤
√
Kµ2(1+

√
K/M+ρ)

1−
√
K/M−ρ

. Finally, the proof is com-

pleted because ||P⊥SlDi||2 =
√
1− ||PSlDi||22.

APPENDIX B
PROOF OF THEOREM 1

Proof: The proof of Theorem 1 contains three parts: 1)
Developing the condition for choosing a correct entry in each
iteration; 2) Proving that the OLS algorithm does not stop at
the l-th iteration (l < K); 3) Proving that the OLS algorithm
stops after K iterations.

We now prove the first point. According to [2, Lemma 4]
and [6, Theorem 5], we obtain that if

||x0\S||2 >
2
√
K − l(2− (K − T )µ)ωµσθ

(2− (K − T )µ− 2KT µ)(1− (K − 1)µ)
, (7)

OLS selects a correct atom with the probability
P{||DTP⊥Slε||∞ ≤ ωµθσ}. Since 1

σ ||x0\S||2 =√∑
q∈0\SM × SNRq , (7) becomes SNRmin > ϕ1.

Next, based on [12, Lemma 5.1], for l < K, we obtain

||DT rl||∞
||rl||2

≥
1√
K−l ||D

T
0\SP⊥SlD0\Sx0\S||2 − ωµθσ

||P⊥
Sl

D0\Sx0\S||2 +
√
M + 2

√
M logMσ

≥
1−
√
K/M−ϑ√
K−l ||x0\S||2 − ωµθσ

(1 +
√
K/M + ϑ)||x0\S||2 +

√
M + 2

√
M logMσ

(8)

with the probability P
{ K⋂
l=1

||DTP⊥Slε||∞ ≤ ωµθσ, ζmin ≥

1 −
√
K/M − ϑ, ζmax ≤ 1 +

√
K/M + ϑ, ||ε||2 ≤√

M + 2
√
M logMσ

}
. Then, if SNRmin > ϕ2, we have

||DT rl||∞
||rl||2 > ωµ. Thus, OLS does not stop at the l-th iteration.
Now it remains to prove that OLS stops exactly at the

K-th iteration. By using [2, Lemma 3], with the probability
Pr{||DTP⊥SK ε||∞ ≤ ωµθσ, ||P

⊥
SK ε||2 ≥ θσ}, we have

||DT rK ||∞
||rK ||2

=
||DTP⊥SK ε||∞
||P⊥

SK
ε||2

≤ ωµ, (9)

which means that OLS stops at the K-th iteration. Finally,
based on the aforementioned analysis and due to K < C, the
proof is completed by writing out the above probability.
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