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Abstract—In this paper, we address the problem of direct
tracking of a wireless transmitter. That is, the inputs given to
the Bayesian filter are the received baseband signals instead of
pre-computed ranges or angles. We first propose to use the
Rao-Blackwellized Point Mass Filter (RBPMF) to solve such
a tracking problem. As such, the resulting tracking solution
is still computationally expensive. Therefore, we propose an
approach for reducing the computational cost of the RBPMF.
More precisely, we replace the prediction step by the one of
the Linear Kalman Filter (LKF). This combination helps to
avoid expensive operations such as the weight convolution in the
prediction step. In addition, it also allows complexity reductions
in the correction step. As a result, the complexity is reduced by
one order of magnitude compared to the original RBPMF. We
compare our approach to representative direct-tracking methods,
based on Iterative Extended Kalman Filter (IEKF) and Particle
Filter (PF). The proposed solution has lower and comparable
localization error compared to IEKF and PF, respectively. In
addition, the proposed solution is of slightly less complexity than
PF. However, the complexity reduction is significant compared to
the conventional RBPMF.

Index Terms—Tracking, Direct positioning, Rao-Blackwellized
Point Mass Filter, Bayesian Filter.

I. INTRODUCTION

WHEN a Mobile Terminal (MT) transmits a signal, the
corresponding received signal at the base station (BS)

contains information that can be used to localize the MT.
Such a localization challenge has been thoroughly studied for
many decades and used in many applications. As a result,
device localization has become an essential functionality
of 5G/6G networks [1], [2]. For instance, a positioning
reference signal (PRS) is included in the protocols to
support localization based on the estimation of time-of-arrival
(ToA) [3]. Tracking the evolution of the MT position over
time can be used afterwards for different applications, such as
smart cities [4], traffic flow control, autonomous driving [5],
[6], etc. Therefore, the tracking problem of a MT is a well
motivated topic and the focus herein.

On the one hand, the received signals are characterized
by the signal model which accounts mainly for the signal
propagation through the wireless channel. On the other
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hand, some intermediate parameters (IPs) can be estimated
from the received signals with the goal of squeezing the
useful information into a reduced number of parameters.
Nevertheless, part of the useful information is lost when
performing such estimation at each individual BS [7]. Either
the received signals or the estimated IPs can be passed
as measurements to the Bayesian filter. Consequently, the
tracking problem of a wireless transmitter can be categorized
as direct or indirect.

Direct approaches perform tracking using the received
signals; whereas, indirect approaches use IPs, such as ToA
or angle of arrival (AoA). Consequently, indirect approaches
result in a simpler sensor model compared to the direct case.
For instance, the sensor model for ToA involves quadratic
and squared-root functions; whereas in the direct case, it
also involves complex exponential functions. For such a
reason, indirect tracking is commonly chosen and even silently
assumed in several studies [8]. However, the estimation of
IPs becomes unreliable as the signal-to-noise-ratio (SNR)
decreases [9], [10]. Moreover as pointed out in [9], the
measurement noise is no longer Gaussian distributed which
leads to a greater degradation of tracking performance when
using indirect approaches. In summary, direct approaches
outperform indirect ones as shown in [11]–[13], and proven
in [7]. Nevertheless, there are just a few studies addressing
direct tracking in the literature from which we consider [9],
[11] and [14] as the most representative.

The approach in [9] is based on the Iterative Extended
Kalman Filter (KF) (KF) that relies on the iterative
Gauss-Newton method. First, it linearizes the system
around the current state vector at every single iteration.
Second, it numerically maximizes the linearized log-posterior
distribution, whose solution defines the new state vector
estimate. As seen in [10], the log-posterior distribution
presents several local maxima and minima, specially at low
SNR values. Therefore, not-sampled approaches, such as
IEKF, can lead to incorrect solutions causing the filter to
diverge. For this reason, we prefer to study sampled over
not-sampled filtering approaches.

The two main sampled-filtering methods are Point Mass
Filter (PMF) and Particle Filter (PF). PF relies on stochastic
sampling and PMF does it on deterministic sampling [15].
PMF requires a much higher computational effort than PF
due to the weight convolution problem, which is present at
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the prediction step1 [16]. Therefore, PF has been preferred
in the direct-tracking literature, e.g., [11] and [14]. In [11],
PF is directly applied to track a wireless emitter based on
the delay and Doppler information contained in the received
signal. In [14], PF is used to track multiple targets in a scene
based directly on the signals from multiple radars.

Setting aside the computational complexity, PF presents
some shortcomings like the degeneracy problem, sample
impoverishment, laborious tuning, etc., which requires special
care as shown in [17]; whereas PMF does not suffer
from those shortcomings due to the use of deterministic
sampling. Moreover, PMF has been well adopted for tracking
applications with highly nonlinear systems in the context of
Terrain Aided Navigation (TAN) [18]. Therefore, we choose to
study PMF with special focus on the reduction of complexity.
As first measure, we decide to study Rao-Blackwelllized
PMF (PMF), which is derived from PMF. It reduces the
sampling space by using a special factorization denoted
as Rao-blackwellization [19]. Since RBPMF requires less
samples, it also reduces the complexity compared to PMF [20].
RBPMF has been also broadly used in the context of TAN,
e.g., [16], [20], [21]. However, it has not yet been explored in
the context of direct tracking of a wireless transmitter.

To further motivate our choice, we mention two possible
improvements that are applicable to RBPMF but not to
PF. Both possible improvements are related to the fact that
RBPMF can work with a fixed grid of points (due to
deterministic sampling); whereas PF obtains new grid-points
at every iteration. First, the complexity can be further
reduced by considering the possibility of pre-computing
certain operations. For instance, the received signal model
must be computed at all grid points; and thus for a fixed
grid, such an operation could be done only once. Second, a
possible straightforward extension to the distributed scenario
is possible by using the method introduced in [22], such a
method makes it possible to gather the whole measurement
likelihood information at each BS. However, it requires a fixed
grid of samples. From the two possible improvements, only
the first one is discussed in this paper, since the second one
deviates significantly from the paper scope.

The contributions of this paper are threefold and can be
summarized as follows:

• We propose to use RBPMF for the tracking problem of
a wireless transmitter. The resulting tracking approach
is direct, i.e., based on the received baseband signals.
As a result, the tracking solution has better localization
performance compared to indirect approaches. The
localization gain is more evident specially at low SNR
values. In addition, it is more accurate than not-sampled
approaches such as IEKF and yields a comparable
performance to the PF.

• RBPMF as such is computationally expensive. Therefore,
we propose to replace the prediction step of RBPMF,
since it is the most costly step of the algorithm.
More precisely, we combine the prediction step of the

1PF avoids the weight convolution by tracking the state trajectories rather
than the state itself [15]-Section-III-A.

Linear KF (KF) with the correction step of RBPMF.
The resulting approach, denoted as Reduced-Complexity
(RC)-RBPMF, reduces the computational complexity of
the original RBPMF in such a way that its computational
complexity is comparable/competitive to the one of PF.

• Lastly, we compare the performance of our approach
against two representative direct-tracking solutions, IEKF
and PF. The comparison is done in terms of localization
error and complexity using Monte-Carlo simulations for
1000 realizations.

The remainder of the paper is organized as follows.
Section II describes the preliminaries and system model.
Section III details RBPMF in the context of tracking of
a wireless transmitter. Section IV describes the complexity
reduction approach. Section V first presents simulation results
for the localization performance. Later, it discusses complexity
reduction results. Finally, Section VI concludes the paper.

Notation: Vectors and matrices are shown in bold lowercase
and uppercase letters, respectively. δ(.) is the Dirac delta
function. N (x; x̂,Σ) denotes a Normal distribution, with
mean x̂ and covariance Σ, evaluated at x. Superscript (.)(j)

denotes a grid-point-j. IP and 0P are the P×P -identity and
zero matrices, respectively. (||.||2) denotes the L-2 norm of a
vector.

II. SYSTEM MODEL AND PRELIMINARIES

For the sake of clarity, we start by formally defining the
system model considered in our study, i.e., the measurement
model followed by the process model. We also describe shortly
the Bayesian filtering that makes use of such models, as well
as the Rao-Blackwelllized (RB) factorization.

A. System Model

As usually done in the RBPMF literature [16], [19], [20],
[23], the considered system model is defined at time instant-k
as:

xk+1︷ ︸︸ ︷[
xn
k+1

xℓ
k+1

]
=

Fk︷ ︸︸ ︷[
Fn

k Fnℓ
k

Fℓn
k Fℓ

k

] xk︷ ︸︸ ︷[
xn
k

xℓ
k

]
+

wk︷ ︸︸ ︷[
wn

k

wℓ
k

]
(1)

zk = h(xn
k) +Hkx

ℓ
k + vk (2)

where Fk is the transition matrix, xk and zk are, respectively,
the state and measurement vectors, and wk and vk are
zero-mean additive noises with respective covariance matrices
Qw and Qv. The measurement linear matrix and nonlinear
function are denoted by Hk and h(.), respectively.

The state vector xk is split in two sub-vectors xn
k and xℓ

k,
that are respectively denoted as nonlinear and linear state
variables. Notice that (.)n and (.)ℓ denote the vectors and
matrices associated to nonlinear and linear parts, respectively.
Since such a model has been used in the TAN literature, we
proceed to detail the considerations for its use in the context
of tracking of a wireless transmitter.
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Measurement Model

At time instant-k, the location of a wireless transmitter
in Cartesian coordinates is (xk, yk). Such a transmitter
communicates with a fixed infrastructure of N single-antenna
BSs. The communication takes place using orthogonal
frequency-division multiplexing (OFDM) modulation which
divides the communication bandwidth in P equispaced pilots.
Consequently, BS-i receives the baseband signal zk,i,p defined
at pilot-p and time instant-k:

zk,i,p = hi,p(xk) + vk,i,p, (3)

where vk,i,p is the corrupting noise assumed to be
independent zero mean circular symmetric complex Gaussian
of variance σ2

vk,i
. Function hi,p(.) performs a mapping from

state space to measurement space which is defined as:

hi,p(xk) = aie
ϕispe

−jpζdi(xk,yk), (4)

where sp is the symbol transmitted on pilot-p and di(xk, yk)
is the transmitter-to-BS distance. Notice that the transmitter
is assumed to be time synchronized with the infrastructure.
ζ= 2π∆f

c is a constant with ∆f and c being respectively the
pilot spacing and the propagation velocity. ai and ϕi are
respectively the amplitude and remaining carrier frequency
offset (CFO). However, as shown in [24] and [13], one can
marginalize out the nuisance parameters (ai, ϕi) from the
likelihood of the received signal; therefore, we choose not to
take them into account to avoid over-complicating the analysis
herein.

The vectorized measurement model at time instant-k and
BS-i is:

zk,i = hi(xk) + vk,i, (5)

with: zk,i = [zk,i,1, ..., zk,i,P ]
T ; vk,i = [vk,i,1, ..., vk,i,P ]

T ,

hi(xk) = [hi,1(xk), ..., hi,P (xk)]
T .

Since CFO is assumed to be removed/compensated before
any processing, the received signals only carry position
information as shown in (4). Hence, the final measurement
model results from gathering the received signals of all BSs
as:

zk = h(xk, yk) + vk, (6)

with zk = [zk,1, ...zk,N ]T , vk = [vk,1, ...vk,N ]T and
h(xk, yk) = [h1(xk, yk), ...hN (xk, yk)]

T . By comparing (6)
to (2), we choose to define the nonlinear part as xn

k as the
transmitter position, i.e., xn

k = [xk, yk]
T and Hk = 0. This

also means that p(zk|xk) = p(zk|xn
k,x

ℓ
k) = p(zk|xn

k)
Lastly, the received signals at different BSs are assumed to

be uncorrelated. Therefore, the measurement likelihood is:

p(zk|xn
k) =

N∏
i=1

N
(
zk;hi(x

n
k), σ

2
vk,i

IP
)
, (7)

Notice that the measurement function hi(.) is highly
nonlinear; thus, the likelihood p(zk|xk) presents multiple local
maxima and minima that are more pronounced as the SNR
decreases [10].

Process Model

We focus on motion models that can be expressed in the
form shown in (1) such as linear and curvilinear models2.
Linear models, such as Constant Velocity (CV) and Constant
Acceleration (CA), are overly optimistic yet used broadly
in the tracking literature [8], [26]. Similarly, Curvilinear
Models, such as Constant Turn Rate and Velocity (CTRV),
are important for vehicle tracking as shown in [6], [25].

In the previous section, we defined the nonlinear part xn
k.

However, the definition of xℓ
k, Fk and Qw depends on the

chosen motion model. For instance, we present such vectors
and matrices in Appendix-A for the CV and CTRV model.
Lastly, it is possible to define the transition probability density
function (PDF) with (1) as:

p(xk+1|xk) = N (xk+1;Fxk,Qw) (8)

B. Bayesian Filtering

In short, the Bayesian filtering approach estimates the state
vector xk by recursively iterating between:

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (9)

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (10)

where Zk={z0, ...zk} is the set of measurements up to time
instant k. Such expressions are respectively denoted as the
prediction and correction steps. Notice that the transition
PDF p(xk|xk−1) and measurement PDF p(zk|xk) are defined
by (8) and (7), respectively. Besides, Fig. 1(a) illustrates the
Bayesian recursion.

Sampling methods are one of the approaches used to
solve (9) and (10). Such methods numerically compute
the desired PDFs trough the use of sampling. For
instance, PF uses stochastic sampling, whereas PMF uses
deterministic sampling. Both approaches perform sampling
in the state-vector space. However, in some cases the
measurement model might depend on a subset of the state
variables. In such cases, one could use RBPMF that reduces
the sampling space by using a special factorization described
in the next section.

C. Rao Blackwellization

It requires to split the state vector xk into a nonlinear part xn
k

and a linear part xℓ
k. Intuitively, such a splitting allows one to

reduce the sampling space to the one of xn
k, which is of lower

dimension than the state vector xk. Such reduction not only
decreases the computational cost, but also increases the filter
accuracy compared to PF or PMF [23].

We derive the RB factorization of a generic distribution
p(xk) that can be factorized as:

p(xk) = p(xℓ
k,x

n
k) = p(xℓ

k|xn
k)p(x

n
k). (11)

2Since Curvilinear Models are nonlinear, they need to be first linearized
around the current state vector as shown in [25].
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p(x0)

w
(j)
k|k

x̂
ℓ,(j)
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ℓ,(j)
k|k

x̂k|k

w
(j)
k+1|k

x̂
ℓ,(j)
k+1|k

P
ℓ,(j)
k+1|k

k = 0; w
(j)
k|k−1

x̂
ℓ,(j)
k|k−1

,P
ℓ,(j)
k|k−1
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Correction
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p(x0)

w
(j)
k|k

x̂k|k
Pk|k

w
(j)
k|k−1

x̂k|k−1
Pk|k−1

(c)

Fig. 1. Block Diagrams of the considered Filters for the problem of tracking of a single transmitter a) Bayesian Filtering b)RBPMF c) RC-RBPMF.

The marginal PDF p(xn
k) is approximated through

deterministic sampling as:

p(xn
k) ≈

Ns∑
j=1

w
(j)
k δ(xn

k − x
n,(j)
k ), (12)

where Ns is the number of grid points located at x
n,(j)
k .

Notice that the sampling is done only on the nonlinear part.
In addition, w(j)

k =p(x
n,(j)
k ). Replacing (12) into (11) results

in (13) which herein will be referred to as RB factorization.

p(xk) =

Ns∑
j=1

p(xℓ
k|x

n,(j)
k )w

(j)
k δ(xn

k − x
n,(j)
k ). (13)

Second, the distribution of the linear part associated to grid
point-j is usually assumed Gaussian distributed [20], i.e.,

p(xℓ
k|x

n,(j)
k ) = N (xℓ

k; x̂
ℓ,(j)
k ,P

ℓ,(j)
k ), (14)

where x̂
ℓ,(j)
k and P

ℓ,(j)
k are, respectively, the mean vector and

covariance matrix of the linear part. In summary, the RB
factorization of p(xk), shown in (13), is completely defined at
each grid point-j by the three parameters (w(j)

k , x̂
ℓ,(j)
k ,P

ℓ,(j)
k ).

Consequently, the procedure explained in (11)-(14) can be
applied to any distribution dependent of xk. Moreover, notice
that the predicted and posterior PDFs used in the following
sections are expressed in the RB factorization.

III. RBPMF FOR DIRECT TRACKING OF A WIRELESS
TRANSMITTER

With the definition of the process and measurement models
in (8) and (7), RBPMF can be applied directly to our study
case3. Therefore, rather than presenting an RBPMF derivation,
we provide a short and intuitive explanation for each step
highlighting the necessary considerations regarding our system
model. RBPMF expresses all PDFs using RB factorization.
Therefore it is enough to define (w

(j)
k|k−1, x̂

ℓ,(j)
k|k−1,P

ℓ,(j)
k|k−1) and

(w
(j)
k|k, x̂

ℓ,(j)
k|k ,P

ℓ,(j)
k|k ) to represent, respectively, the predicted

and corrected PDFs. An illustration of the RBPMF recursion
is shown in Fig. 1(b) and summarized in Algorithm-1. Notice
that the letters in Fig. 1 indicate the execution order being (A)
the first step to be executed.

3RBPMF was derived in the context of TAN systems considering general
nonlinear process and measurement models in [16], [20].

Algorithm 1 : RBPMF for Direct Tracking

A. Initialization:
with k=0 and p(xk|Zk−1)=N (xk; x̂0,P0), with (x̂0,P0)
defined in (27), initialize:

Non-linear part:

w
(j)
0|−1 = N (x

n,(j)
0 ; x̂n

0,P
n
0) (15)

Linear part:

x̂
ℓ,(j)
0|−1 = x̂ℓ

0 −Pℓn
0 (Pn

0)
−1

(x
n,(j)
0 − x̂n

0) (16a)

P
ℓ,(j)
0|−1 = Pℓ

0 −Pℓn
0 (Pn

0)
−1

Pnℓ
0 . (16b)

B. Correction Step: with the new measurement zk.
Non-linear part:

w
(j)
k|k =

w
(j)
k|k−1ξ

(j)
k∑

i w
(i)
k|k−1ξ

(i)
k

; ξ
(i)
k = p(zk|xn

k = x
n,(i)
k ) (17)

Linear part:

x̂
ℓ,(j)
k|k = x̂

ℓ,(j)
k|k−1 ; P

ℓ,(j)
k|k = P

ℓ,(j)
k|k−1 (18)

C. Moment Computation:
First order moments:

x̂n
k|k =

∑
j

w
(j)
k|kx

n,(j)
k (19a)

x̂ℓ
k|k =

∑
j

w
(j)
k|kx̂

ℓ,(j)
k|k , (19b)

Second order moments:

Pn
k|k =

∑
j

w
(j)
k|k∆

n,(j)
k|k (∆

n,(j)
k|k )T (20a)

Pℓ
k|k =

∑
j

w
(j)
k|k

(
P

ℓ,(j)
k|k +∆

ℓ,(j)
k|k (∆

ℓ,(j)
k|k )T

)
(20b)

Pℓn
k|k = Pnℓ

k|k =
∑
j

w
(j)
k|k(∆

ℓ,(j)
k|k )(∆

n,(j)
k|k )T , (20c)

with: ∆n,(j)
k|k = x

n,(j)
k|k − x̂n

k|k ; ∆ℓ,(j)
k|k = x̂

ℓ,(j)
k|k − x̂ℓ

k|k.
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D. Prediction Step: with the process model defined in (1).
Non-linear part:

w
(m,j)
k+1|k = w

(j)
k|kN (x

n,(m)
k+1 ; x̄

n,(j)
k+1 ,N

(j)
k ) (21)

with : x̄
n,(j)
k+1 = Fn

kx
n,(j)
k + Fnℓ

k x̂
ℓ,(j)
k|k (22a)

N
(j)
k = Fnℓ

k P
ℓ,(j)
k|k (Fnℓ

k )T +Qn
w (22b)

Linear part:

x̂
ℓ,(m,j)
k+1|k = Fℓn

k x
n,(j)
k + Fℓ

kx̂
ℓ,(m,j)
k|k (23a)

P
ℓ,(m,j)
k+1|k = Fℓ

kP
ℓ,(m,j)
k|k (Fℓ

k)
T +Qℓ

w (23b)

with: x̂
ℓ,(m,j)
k|k = x̂

ℓ,(j)
k|k + L

(j)
k

(
x

n,(m)
k+1 − x̄

n,(j)
k+1

)
(24a)

P
ℓ,(m,j)
k|k = P

ℓ,(j)
k|k − L

(j)
k N

(j)
k (L

(j)
k )T (24b)

L
(j)
k = P

ℓ,(j)
k|k (Fk

nℓ)
T

(N
(j)
k )

−1

(24c)

Gaussian Mixture (GM) reduction:

w
(m)
k+1|k =

∑
j

w
(m,j)
k+1|k (25a)

x̂
ℓ,(m)
k+1|k =

∑
j

α
(m,j)
k+1|kx̂

ℓ,(m,j)
k+1|k (25b)

P
ℓ,(m)
k+1|k =

∑
j

α
(m,j)
k+1|k

(
P

ℓ,(m,j)
k+1|k + P̄

ℓ,(m,j)
k+1|k

)
(25c)

with: α
(m,j)
k+1|k =

w
(m,j)
k+1|k

w
(m)
k+1|k

(26a)

P̄
ℓ,(m,j)
k+1|k = ∆

ℓ,(m,j)
k+1|k (∆

ℓ,(m,j)
k+1|k )T (26b)

∆
ℓ,(m,j)
k+1|k = x̂

ℓ,(m,j)
k+1|k − x̂

ℓ,(m)
k+1|k (26c)

A. Initialization

This step initializes the predicted PDF p(xk|Zk−1)
based on an initially known Gaussian distribution
p(x0)=N (x0; x̂0,P0). x̂0 and P0 can be expressed in
terms of the linear and nonlinear parts as:

x̂0 =

[
x̂n
0

x̂ℓ
0

]
; P0 =

[
Pn

0P
nℓ
0

Pℓn
0 Pℓ

0

]
. (27)

Notice that Pℓn
0 =(Pnℓ

0 )T , since they are the initial
cross-covariance matrices between the linear and nonlinear
parts. The expressions to initialize the predicted-PDF
parameters at grid point-j, i.e., (w

(j)
k|k−1, x̂

ℓ,(j)
k|k−1,P

ℓ,(j)
k|k−1),

from the terms in (27) are given in (15)-(16) of Algorithm-1.
Notice that w(j)

k|k−1 are associated to the marginal distribution

of xn
0. Whereas, (x̂

ℓ,(j)
k|k−1,P

ℓ,(j)
k|k−1) are associated to the

conditional distribution of xℓ
0 given xn

0; hence xℓ
0 parameters

depend on xn
0 as shown in (16). The derivation of such

expressions is detailed in [20]-Section-IV-B.

B. Correction

This step computes the corrected-PDF based on both
the predicted-PDF and the new available measurement.
Therefore, the corrected-PDF parameters at grid point-j, i.e.,
(w

(j)
k|k, x̂

ℓ,(j)
k|k ,P

ℓ,(j)
k|k ), are computed using (17) and (18) of

Algorithm-1. Those expressions are slightly different from the
ones derived in [20]-Section-IV-C. However, it is easy to prove
that both are equivalent considering that the measurement
model only depends on xn. Such a consideration is true for
the considered system model described in Section II-A.

On the one hand, in Bayesian filtering, the covariance of the
state-vector is increased at the prediction step, and reduced
at the correction step. Such a reduction is a consequence
of adding the new measurement information. On the other
hand, as shown in (18), the linear part is not modified at the
correction step. Consequently, one could incorrectly assume
that the variance of the linear part increases indefinitely,
which is not the case. As shown in (11), the nonlinear and
linear parts are jointly distributed. Moreover, x̂ℓ,(j)

k|k and P
ℓ,(j)
k|k

are parameters of the conditional distribution p(xℓ
k|k|x

n
k|k) at

grid point-j. Therefore, the nonlinear part will incorporate
measurement information to the linear part at the prediction
step, thus reducing its covariance. This effect will be better
explained in Section III-D and III-C.

C. Moment Computation

As shown in Figure 1(b), the final RBPMF estimates of the
state-vector are computed as the first two order moments of
the corrected PDF. As detailed in [20]-Section IV-C-3, the first
and second order moments can be computed as shown in (19)
and (20). Notice that each of those expressions require a sum
over all grid points.

D. Prediction

This step computes the predicted-PDF based on the
corrected-PDF and the process model shown in (1). Such
an operation requires to work with two grids of points4,
i.e., a first grid at time instant k with associated index j
and a second grid at time instant k+1 with associated
index m. The predicted-PDF is defined on the second grid;
thus, the final expressions for its parameters at grid point-m,
i.e., (w

(m)
k+1|k, x̂

ℓ,(m)
k+1|k,P

ℓ,(m)
k+1|k) are given in (25). As shown

in Algorithm-1, the prediction step is composed of three
sub-steps as:

1) Prediction of nonlinear part: Intuitively, only xn
k is

considered as state vector; whereas xℓ
k is taken as an additional

source of noise [16]. As a result, for a grid point-j, the process
model (1) associated to the non-linear part is rearranged as:

x
n,(j)
k+1 = Fn

kx
n,(j)
k + w̄n

k, (28)

where w̄n
k is an artificial noise with mean Fnℓ

k x̂
ℓ,(j)
k and

covariance matrix N
(j)
k defined in (22b).

4Notice that the number of new grid points x
n,(m)
k+1 could be different from

the grid points x
n,(j)
k , and located at different locations [16]. Nevertheless in

this paper we consider fixed locations and constant number of grid points.
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Following the procedure in [20]-Section-IV-D, the nonlinear
marginal PDF p(xn

k+1|Zk) can be computed using such a
modified process model, resulting in:

p(xn
k+1|Zk) =

Ns∑
m=1

Ns∑
j=1

w
(m,j)
k+1|k δ(x

n
k+1 − x

n,(m)
k+1 ), (29)

where w
(m,j)
k+1|k is defined in (21). We would like to highlight

three important characteristics of such a distribution.
• The internal summation means that the PDF is in fact a

mixture distribution. As can be easily seen in (21), the
PDF has one Gaussian component per grid point-j.

• Due to the sampling operation, the computation of the
weight at grid point-m will require to evaluate Ns

Gaussian mixture (GM) components. Such computation
is repeated Ns times, one per grid point-m. Hence, the
complexity of the prediction step is quadratic on the
number of grid points. This drawback is known in the
literature as weight convolution that has huge impact over
the computational complexity [16].

• The number of GM components grows after each
iteration, which is solved using moment matching as
explained in Section III-D3.

2) Prediction of linear part: Similarly to the previous step,
only xℓ

k is considered as state vector; whereas xn
k+1 and xn

k

are considered fixed values. Therefore, the process model (1)
is rearranged to update xℓ

k at grid point-j as:

x
ℓ,(j)
k+1 = Fℓ

kx
ℓ,(j)
k + w̄ℓ

k, (30a)

y
(m,j)
k = Fnℓ

k x
ℓ,(j)
k +wn

k, (30b)

where w̄ℓ
k is an artificial noise with mean Fℓn

k x
n,(j)
k and

covariance matrix Qℓ
w. Additionally, y(m,j)

k =x
n,(m)
k+1 −Fn

kx
n,(j)
k

is referred to as virtual measurement. With such a system5, the
final linear estimates are computed as in (23) of Algorithm-1,
which were derived in [20]-Section-IV-D. It is important to
notice that (30) has a linear structure, based on which we
highlight the following key points:

• Intuitively, (23) is found in two stages. First, a correction
step is done using the virtual measurement y(m,j)

k . This
can be seen clearly in (24), where L

(j)
k plays the role of

Kalman gain. Second, the corrected (x̂
ℓ,(m,j)
k|k ,P

ℓ,(m,j)
k|k )

are propagated in time using the process model (30a).
Such an operation can be seen clearly in (23).

• The virtual measurement y
(m,j)
k depends on the future

and current grids. Therefore, for each new grid point-m
the operations described by (23) and (24) are performed
Ns times, i.e., one operation per grid point-j. Thus,
similar to the weight convolution problem, it also has
an impact over the computational complexity.

• It is at this step where the nonlinear part incorporates
virtual measurement information to the linear part.
Moreover, it can be seen in (24b) how the matrix
covariance of the linear part is reduced by the nonlinear
part.

5Such a system silently assumes that wn and wℓ are not correlated. When
the system does not satisfy such a condition, the Gram-Schimidt procedure
can be used to fulfill such a requirement [19].

3) Gaussian Mixture components reduction: The resulting
distribution is GM with Ns components represented by
(w

(m,j)
k+1|k, x̂

ℓ,(m,j)
k+1|k ,P

ℓ,(m,j)
k+1|k ). Therefore, Moment Matching is

used to reduce the number of GM components as shown in
(25). Notice that the virtual measurements used in the previous
step were not linked directly to the real measurement zk.
However, such information is carried in the associated weights
w

(m,j)
k+1|k, as defined in (21). Consequently, the weights are

used to select the appropriate virtual-measurement set that
represents the true measurement information, as it is seen
in (25).

IV. REDUCED COMPLEXITY - RBPMF

A heuristic approach to reduce the complexity of the
conventional RBPMF is described in this section. On the one
hand, as discussed in Section-III-D, the conventional RBPMF
is computationally very expensive. The most costly operation
is the weight convolution which takes place at the prediction
step [16], [19], [20]. On the other hand, we restrict the
posterior-PDF to be Gaussian distributed. Such a condition
will be justified in Sections IV-A and IV-D. Therefore, we
propose to replace the RBPMF prediction step by the LKF
prediction step.

Such replacement also helps reducing the complexity at
the correction step, as detailed in Section IV-B. The resulting
tracking algorithm is presented in Algorithm-2 and shown in
Fig. 1(c). Similar to the conventional RBPMF, the resulting
approach is also composed of four functional steps. However,
the interaction between them is different. Each functional
block is explained as follows.

A. Prediction

In general, the prediction step makes use of the
Chapman-Kolmogorov equation, given in (9). This equation
has a closed form solution whenever two requirements are
met: 1. The process model is linear, and 2. the posterior PDF
is Gaussian distributed [27].

We fulfill the first requirement by considering a low-level
maneuvering target, i.e., whose motion is constrained to a
reduced set of trajectories. A clear example of such a target
is a car moving in an urban environment. Cars maneuvers are
reduced, since they are physically constrained to follow the
road, roundabouts, etc. [28]. Consequently, it is reasonable to
consider that a linear process model (1) captures the target
motion well enough.

The second requirement is met by ensuring the
corrected PDF to be Gaussian distributed, which we do
as follows:

• At k=0, the corrected PDF is initialized with a Gaussian
distribution [20], i.e., p(x0|Z0)=N (x0; x̂0,P0). This
initialization is different from the one of the conventional
RBPMF, in which rather the grid parameters of the
predicted PDF are initialized.

• Since we track a single target, it is reasonable to think that
the filter will concentrate the distribution around a single
location over time. Therefore at k>0, we approximate the
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corrected PDF as a Gaussian distribution using moment
matching, i.e.,

p(xk|Zk) ≈ N (xk|k; x̂k|k,Pk|k), (38)

where x̂k|k and Pk|k are computed in Section IV-D. We
are aware that this approximation reduces the filter use
to specific scenarios. However, it leads to a considerable
reduction in complexity as seen in Section-V-C2. We
discuss the impact of this approximation in the same
Section-V-C1.

With both requirements being met, we propose to replace
completely the prediction step detailed in Section III-D, by the
closed-form solution given by the LKF prediction step. As a
result, the predicted PDF is defined as:

p(xk|Zk−1) = N
(
xk|k−1; x̂k|k−1,Pk|k−1

)
, (39)

where (x̂k|k−1,Pk|k−1) are defined in (31). Such parameters
are computed based on (x̂k−1|k−1,Pk−1|k−1), which are
the parameters of the approximated corrected-PDF at time
instant k−1. Notice that on the one hand, the conventional
RBPMF-prediction step has a quadratic complexity on the

Algorithm 2 :Reduced Complexity RBPMF for Direct
Tracking

Initialization: p(xk−1|Zk−1)=N (x0; x̂0,P0).

A. Prediction: Compute p(xk|Zk−1) using:

x̂k|k−1 = Fkx̂k−1|k−1 (31a)

Pk|k−1 = FkPk−1|k−1F
T
k +Qw (31b)

B. Grid Re-initialization: Expressing (x̂k|k−1,Pk|k−1) as
in (40), compute the weights:

w
(j)
k|k−1 = N (x

n,(j)
k ; x̂n

k|k−1,P
n
k|k−1) (32)

C. Correction: nonlinear part only

w
(j)
k|k =

w
(j)
k|k−1ξ

(j)
k∑

i w
(i)
k|k−1ξ

(i)
k

; ξ
(i)
k = p(zk|xn

k = x
n,(i)
k )

(33)

D. Moment Computation:
Nonlinear moments:

x̂n
k|k =

∑
j

w
(j)
k|kx

n,(j)
k (34)

Pn
k|k =

∑
j

w
(j)
k|k∆

n,(j)
k|k (∆

n,(j)
k|k )T (35)

Linear moments:

x̂ℓ
k|k = x̂ℓ

k|k−1 −Kk|k−1(x̂
n
k|k − x̂n

k|k−1) (36a)

Pℓ
k|k = Pℓ

k|k−1 −Kk|k−1(P
nℓ
k|k−1 −Pn

k|kK
T
k|k−1) (36b)

Pℓn
k|k = Kk|k−1P

n
k|k (36c)

with: Kk|k−1 = Pℓn
k|k−1(P

n
k|k−1)

−1

. (37)

number of grid points. On the other hand, the LKF-prediction
step does not depend on the grid points (See Table-I).
Therefore, by replacing the RBPMF-prediction step by the one
of the LKF, we avoid such a quadratic complexity.

B. Grid Re-initialization
Up to this point, the predicted PDF is given by

(x̂k|k−1,Pk|k−1) computed in the previous step. However,
in order to use RBPMF in the correction step, we need to
express such PDF into its RB factorization form, i.e., we
need (w

(j)
k|k−1, x̂

ℓ,(j)
k|k−1,P

ℓ,(j)
k|k−1) in terms of (x̂k|k−1,Pk|k−1).

Therefore, we reinitialize the grid at every iteration using
the method described in Section III-A applied to the
predicted PDF. Hence, the predicted mean vector and
covariance matrix must be divided into nonlinear and linear
parts as

x̂k|k−1 =

[
x̂n
k|k−1

x̂ℓ
k|k−1

]
; Pk|k−1 =

[
Pn

k|k−1P
nℓ
k|k−1

Pℓn
k|k−1P

ℓ
k|k−1

]
. (40)

The set of parameters (w(j)
k|k−1, x̂

ℓ,(j)
k|k−1,P

ℓ,(j)
k|k−1) are initialized

at every iteration as:

w
(j)
k|k−1 = N (x

n,(j)
k ; x̂n

k|k−1,P
n
k|k−1) (41a)

x̂
ℓ,(j)
k|k−1 = x̂ℓ

k|k−1 −Kk|k−1(x
n,(j)
k − x̂n

k|k−1) (41b)

P
ℓ,(j)
k|k−1 = Pℓ

k|k−1 −Kk|k−1P
nℓ
k|k−1, (41c)

with Kk|k−1 = Pℓn
k|k−1(P

n
k|k−1)

−1

. Finally, notice that (41b)
and (41c) will no longer be needed in the final algorithm, due
to the complexity reduction explained in Section IV-D.

C. Correction
There are no changes applied to this step compared to

the conventional RBPMF. That is, only the nonlinear part
is directly updated from the measurement, as can be shown
in (33).

D. Moment Computation
One could use the same Moment-computation-step

described in Section III-C using (19) and (20). However, it is
possible to simplify the computation of the linear moments.
In summary, the final linear moments shown in (36) imply
that the complexity reduction of this step is twofold. First, we
can compute the linear moments easily based on the current
and previous nonlinear moments. Second, we can avoid to
compute (x̂

ℓ,(j)
k|k−1,P

ℓ,(j)
k|k−1), since they are no longer used by

the final algorithm. We reduce the computation of the linear
moments as follows.

1) Mean vector x̂ℓ
k|k: Replacing (18) and (41b)

into (19b) yields:

x̂ℓ
k|k =

Ns∑
j=1

w
(j)
k|k

(
x̂ℓ
k|k−1 −Kk|k−1(x

n,(j)
k − x̂n

k|k−1)
)
. (42)

Such an expression can be finally reduced to (36a) in three
stages. First, distribute the summation to all the terms. Second,
replace the nonlinear covariance matrix using (19a); and third,
notice that

∑
j w

(j)
k|k=1 as shown in (17). Notice that the final

expression (36a) does not involve the use of grid points.
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2) Covariance matrix Pℓ
k|k: We start by computing

the difference ∆x̂
ℓ,(j)
k|k =x̂

ℓ,(j)
k|k −x̂ℓ

k|k; thus subtracting (36a)
from (41b) results in:

∆x̂
ℓ,(j)
k|k = Kk|k−1∆x̂

n,(j)
k|k , (43)

where ∆x̂
n,(j)
k|k =x̂

n,(j)
k|k −x̂n

k|k. Using (43), the linear covariance
matrix, defined in (20b), is rewritten as:

Pℓ
k|k =

Ns∑
j

w
(j)
k|k

(
P

ℓ,(j)
k|k +Kk|k−1∆x̂

n,(j)
k|k ∆x̂

n,(j)
k|k

T
KT

k|k−1

)
.

(44)
Finally, such an expression can be reduced to (36b) in three
stages. First, distribute the summation. Second, replace the
nonlinear covariance matrix using (20a). Third, notice that
P

ℓ,(j)
k|k does not depend on j, as shown in (41c).
3) Crosscovariance matrix Pℓn

k|k: Using (43), (20c) is
rewritten as:

Pℓn
k|k = Kk|k−1

Ns∑
j

w
(j)
k|k∆x̂

n,(j)
k|k ∆x̂

n,(j)
k|k

T
. (45)

The final expression given in (36c) is easily obtained by
replacing the nonlinear covariance matrix using (20a). Finally,
we use moment matching to represent the corrected PDF as
Gaussian distribution, i.e.,

p(xk|Zk) ≈ N
(
xk;

[
x̂n
k|k

x̂ℓ
k|k

]
,

[
Pn

k|kP
nℓ
k|k

Pℓn
k|kP

ℓ
k|k

])
. (46)

Such distribution is passed to the prediction-step of the next
RC-RBPMF iteration.

V. PERFORMANCE AND COMPLEXITY ANALYSIS

A. Considered Scenario and performance metric

We consider a scene consisting of N=4
time-synchronized BSs. Such BSs are located on the
corners of a 50m-sided square that encloses a roundabout.
We assume a target, such as an automobile, equipped with
a radio transmitter which is also time-synchronized with the
BSs. The true target trajectory reassembles a car making a
left turn following the roundabout. A graphical representation
of the target trajectory, as well as of the scenario is presented
in Fig. 5.

For convenience, we use a CV model, since the target
trajectory is constrained by the shape of the roundabout.
Hence, xn

k and xℓ
k are respectively, the position and velocities

in Cartesian coordinates. Moreover, the matrices of the process
model are given in Appendix-A. The target is initially located
at x0=37 m and y0=3 m with initial velocities ẋ=0 m/s
and ẏ=15 m/s. The total target velocity at any point of
the trajectory is constant, i.e., ||xℓ

k||2=15m/s. We choose
∆vmax=2 m/s as maximum change in velocity expected
during one time interval T=100 ms. Consequently, we choose
σw=∆vmax/T , i.e., σw=20m/s2.

Regarding the target-to-infrastructure communication,
OFDM modulation is used over a bandwidth of 40 MHz.
Each OFDM symbol contains P=64 equispaced pilots
with ∆f=625 kHz. It is assumed that the BSs communicate

the received pilot symbols to a localization center where the
processing takes place.

Similarly to [12], the SNR is defined as
SNR= 1

Pσ2
w

∑
p |sp|2. For convenience, we fix a SNRref

value at a particular reference distance dref=20m. In
addition, we assume that the higher or lower SNR at the BSs
is only due to the increment or reduction of signal power due
to free-space propagation. Hence, similar to [29] the SNR
values at each BS-i can be computed as:

SNRk,i = SNRref

( dref
di(xn

k)

)α

, (47)

where α = 2 is the path loss exponent. Notice that the resulting
SNR is different at each BS. Moreover, the closer the target
is to BS-i the higher the SNRk,i.

In this paper, the localization performance is considered as
the first performance metric. Similar to [9], it is defined as the
localization-Root Mean Squared Error (RMSE) for the whole
trajectory as:

RMSE =

√√√√ 1

NrNk

Nr∑
r=1

Nk∑
k=1

||xn
k − x̂n

k,r||22, (48)

where Nr and Nk are, respectively, the number of realizations
and filtering iterations. The vectors xn

k and x̂n
k,r are the

true and estimated transmitter positions respectively for
realization r at time instant k.

The second performance metric is the computational
complexity. Similar to [30], we choose to take the number
of Floating point operation (Flop)s required for a single
filtering iteration. Notice that a Flop is defined as one addition,
subtraction, multiplication or division of two floating-point
numbers. This metric is not dependent on SNR; hence, it is
analyzed in terms of number grid points.

B. Direct vs Indirect Tracking

To better show the advantage of direct tracking compared
to indirect ones, we analyze the localization performance of
sampled approaches. As a reminder, direct-tracking considers
the received signals as input to the filter. That is, they
consider the measurement model detailed in (4). Conversely,
indirect-tracking take some IPs, which are estimated from
the received signals. In this paper, the considered IPs are
the ToA-estimates. Consequently, the mean ToA τ and its
associated variance σ2

τ are estimated from the received signals
as explained in [12]. Since the IPs are used as input for
tracking, the filter employs a different measurement model.
Similar to [8], such a model can be defined for BSs-i as:

zk,i = τk,i =
1

c
di(x

n
k) + vi, (49)

where vi is a zero-mean Gaussian additive noise with
variance σ2

τ .
We start by comparing the sampled approaches, i.e., PF

and RBPMF. Fig. 2 shows the localization-RMSE for both
approaches applied to direct and indirect tracking. The
IPs-estimation is reliable for high SNR-values (SNR>−3dB),
and thus both direct and indirect tracking approaches have
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Fig. 2. Localization error for the whole trajectory for Direct and Indirect
sampled methods. The bars express 95-percent confidence intervals.

similar performance. As the SNR decreases, the IPs estimation
becomes unreliable. As a result, Direct PF and RBPMF
have lower localization error compared to their indirect
counterparts. Notice that both PF and RBPMF show similar
behaviors for the whole range of SNR-values. Due to
the reduction of the sampling space, the same number
of samples yield a better PDF-approximation when using
RB-factorization; however, the difference in localization error
is small in this case. Lastly, even though the localization errors
are very similar for both PF and RBPMF, there is still a huge
computational complexity gap between them which is the topic
addressed in the next section.

C. Reduced Complexity-RBPMF

Before assessing the performance of the proposed
RC-RBPMF, we discuss the validity of the approximation
done in Section-IV-A. That is, we analyze, qualitatively, if
the matched Gaussian distribution is a good approximation or
not for the posterior distribution. To measure the difference
between a given distribution and its matched Gaussian
distribution, we define the mean Kullback–Leibler (KL)
divergence as

DKL(p̂||p) =
1

NrNk

Nr∑
r=1

Nk∑
k=1

(∑
S

p̂r,k log (
p̂r,k
pr,k

)
)
, (50)

where S is the support of the distributions, and pr,k and p̂r,k
are respectively the given distribution and its moment-matched
Gaussian approximation at time instant k and realization r.
Since the KL divergence is not bounded, we normalize it as

D̄KL = 1− e−|DKL|. (51)

As a result, D̄KL is zero when there is no difference at all, and
one for a huge difference between the considered distributions.

The approximation of the posterior-PDF takes place at the
output of the correction step (10). Therefore in Fig 3, we show
the D̄KL values for the posterior p(xk|Zk) and measurement
likelihood p(zk|xk). The measurement likelihood is more
different from its matched normal distribution, as the SNR
decreases. Such behavior agrees with the fact that the
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Fig. 3. KL-divergence for the Posterior and Likelihood PDFs compared to
their moment-matched Gaussian distribution, respectively.

-14 -12 -10 -8 -6 -4

SNR
ref

[dB]

0

1

2

3

4

5

6

7

8

9

10

R
o

o
t 

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

[m
]

PF-Direct

RBPMF-Direct

RC-RBPMF-Direct

IEKF-Direct

Fig. 4. Localization error for the whole trajectory for the considered
Direct-tracking methods. The bars express the 95-percent confidence intervals.

measurement likelihood presents multiple local maximas at
low SNR-values [10]-Section-IV.

The approximation error for the posterior-PDF, p(xk|Zk),
is low at high SNR values. That is, the posterior-PDF
is well represented by the matched-distribution (46). Such
behavior supports our choice of replacing the posterior
distribution by a moment-matched Gaussian distribution as
stated in Section IV-A. Notice that mean KL-divergence of the
approximated distribution also increases as the SNR decreases.
However, it increases at a lower degree compared to the
measurement likelihood.

We now proceed to compare the RC-RBPMF, proposed
in Section-IV, to the conventional RBPMF. We discuss first
the localization performance, followed by the reduction in
computational complexity.

1) Localization Performance:
As it will be seen in the next sub-Section, the reduction

of complexity is substantial. Nonetheless, it comes with a
cost. As shown in Fig. 4, we compare the RC-RBPMF
localization-error to the other direct-approaches.

At high-SNR values, the RC and all other considered
direct-tracking approaches present very similar localization
performance. Intuitively, this means that the approximation
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(a) (b) (c) (d)

Fig. 5. Track realizations at SNRref=−10 dB for: a) Direct RBPMF b) Direct IEKF c) Indirect (ToA) RBPMF d) Direct PF. The ellipses represent the
1-Standard deviation at the specific time across the realizations

to the posterior-PDF does not introduce significant errors.
In addition, this is also supported by the results shown in
Fig. 3, which shows a low mean KL-divergence for the
posterior distribution. Conversely, the localization-RMSE of
the proposed RC-RBPMF increases as the SNR decreases.
Moreover, the localization-RMSE is slightly larger than the
ones for PF and conventional-RBPMF at low SNR. Such
larger error implies that the matched-Gaussian does not
represent the posterior-PDF completely well, as it can be seen
in Fig. 3. Although, the resulting direct RC-RBPMF has larger
localization-RMSE than the conventional RBPMF, it presents
a significant reduction in complexity as it will be detailed in
the Section-V-C2.

Aside from PF and RBPMF, we show in Fig.-4 the
direct-IEKF proposed in [9]. It is interesting to see
that for SNR<−6dB, IEKF has a very high localization
error. The reason for that is twofold. First, direct-IEKF
solves the correction step by maximizing, iteratively, the
linearized version of the received-signal log-likelihood.
Second, as explained in [10]-Section-IV, the received-signal
log-likelihood presents several local maxima and minima,
which becomes more problematic as the SNR decreases.
Therefore, the iterative maximization used by the direct-IEKF
might choose a local maxima different from the right solution.
This wrong decision leads the filter to diverge, and thus to high
localization errors. To have a better understanding of such
phenomenon, we present all track realizations in Fig. 5 for
SNRref=-10 dB. We show the mean trajectory as well as the
1-Standard Deviation (SD) ellipses every 800 ms. Such mean
trajectory and SD ellipses are computed across the realizations
at the same time instant k. Fig. 5b shows clearly how the
direct-IEKF diverges from the right trajectory at unpredictable
times. Conversely, Fig. 5a and Fig. 5d shows, respectively, the
track realizations for the RBPMF and PF, which do not present
such an issue. Moreover, as interpreted from Fig.-2, PF and
RBPMF have the similar performance at SNRref=-10 dB.

2) Computational Complexity:
For the sake of clarity, we provide the final complexity
expressions for each step in Table-I and we provide the
expressions grouped by multiplications and additions in
Appendix B. Such expressions were derived following the
procedure detailed in [30].

Notice that in Table-I, p and n are, respectively, the
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Fig. 6. Computational Complexity as a function of number of samples.

TABLE I
COMPLEXITY PER STEP

STEP COMPLEXITY
RBPMF-Grid Init. (4n3 + 3n2 + 2n+ ke)Ns + n3

RBPMF Correction (3 + km + ka + ke + hm + ha)Ns − 1
RBPMF Moment Comp. (9n2 + 6n)Ns − (3n2 + 2n)

RBPMF Prediction a1N2
s + a2Ns + a3

with:
a1 = 8n2 + 3n+ 1
a2 = 19n3 − n2 − 2n+ 2 + ke
a3 = 12n3 − 3n2 − 1

PF Prediction (4p3 + p2 − p+ kr)Ns

PF Correction (2p+ 4 + kz + hm + ha)Ns

with: kz = km + ka + ke + kr

LKF Prediction (16n2 + 2n− 1)2n

dimension of xk and xn
k, Ns is the number of samples, km and

ka are the flops related to multiplication and addition, required
to evaluate the log-likelihood defined in (7) for one grid point.
Notice that km and ka do not consider the evaluation of
hi(.), and thus we define hm and ha as the flops needed
to evaluate hi(.) for one grid point. Lastly, ke>0 and kr>0
are, respectively, the average values of effective flops in the
exponentiation and sampling operations.

Figure 6 shows the total complexity as a function of
the number of samples Ns. It is considered that km=2P
and ka=2P−1 are required as described in [13]; as well
as hm=5P and ha=P for the oversimplified measurement
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model. Two main remarks can be done based on Figure 6.
First, the complexity gain between the conventional RBPMF
and RC-RBPMF is noticeable. Second, the RC-RBPMF is
slightly less complex than PF, due to the fact that RC-RBPMF
does not make the prediction per sample, as the PF does.

It should be mentioned that this complexity reduction
strategy can be also applied to the PF. However, the
reduction in complexity would not be as noticeable as in the
RBPMF case, since the PF prediction step is of much less
complexity than the one of the conventional RBPMF. Lastly,
the complexity reduction strategy can be pushed further by
considering a fixed grid of samples (as the one considered
in this paper). In such a scenario, some operations can
be removed from the iterative process and computed only
once. For instance, the measurement function hi(xk) could
be evaluated in advance, since it requires the value of the
sample x

(j)
k that is fixed though out the iterations. As a result,

the RC-RBPMF reaches even lower computational complexity
as shown in Fig. 6.

VI. CONCLUSION

In this work, we have addressed the tracking problem of a
wireless transmitter, considering a system model composed of
a linear process model and a highly nonlinear measurement
model. First, we used a low complexity version of PMF,
such as RBPMF. Second, we reduced the complexity even
further by replacing the prediction-step of RBPMF by the
one of LKF. As a result, the proposed approach is able to
track the target for a broader range of SNR values as well
as having a reduced complexity compared to the common
sampling approaches. To illustrate the benefits of our approach,
we have compared the proposed tracking algorithm to two
other representative direct-tracking approaches, the direct-PF
and direct-IEKF. Further studies will follow, for example, in
extending the proposed algorithm to a distributed scenario.

APPENDIX A
LINEAR AND CURVILINEAR MOTION MODELS

A. CV model

Since this model is trivial, we directly provide the final
vectors and matrices as:

xn
k = [xk, yk]

T ; xℓ
k = [ẋk, ẏk]

T (52a)

Qw =

[
Qn

w Qnℓ
w

Qℓn
w Qℓ

w

]
;

Fn
k

Fℓn
k

=
=
I2 ; Fnℓ

k = T I2
02 ; Fℓ

k = I2
(52b)

where (xk, yk) and (ẋk, ẏk) are, respectively, the target
Cartesian position and velocities. Qn

w=
σ2
wT 4

4 I2, Qℓ
w=σ2

wT 2I2

and Qnℓ
w=Qℓn

w=
σ2
wT 3

2 I2. T is the sampling interval, and σ2
w is

computed based on the amount of expected velocity error [26].

B. CTRV model

This model is defined as [6], [31]:


x
y
v
θ
ω


k+1

=


fx
fy
v

θ + ωT
ω


k

+wk, (53a)

with: fx = x+
2v

ω
sin (

ωT

2
) cos (θ +

ωT

2
) (53b)

fy = y +
2v

ω
sin (

ωT

2
) sin (θ +

ωT

2
) (53c)

where v is the magnitude of velocity and (θ, ω) are respectively
the yaw angle and rate. Such a model is first linearized and
then rearranged into the form (1) as:

xn
k = [xk, yk]

T ; xℓ
k = [vk, θk, ωk]

T (54)

Fn
k = I2 ;Fℓn

k = 03×2 (55)

Fnℓ
k =

[∂fx
∂v

∂fx
∂θ

∂fx
∂ω

∂fy
∂v

∂fy
∂θ

∂fy
∂ω

]
;Fℓ

k =

1 0 0
0 1 T
0 0 1

 (56)

In addition, the process covariance matrix is given by:
Qn

w=02, Qnℓ
w=02×3, Qℓn

w=(Qnℓ
w)T , and:

Qℓ
w = diag{T 2σ2

v̇ , T
2σ2

ω̇

[
T/3 1/2
1/2 1

]
}, (57)

where σ2
v̇ and σ2

ω̇ are maximum expected changes in v and ω,
respectively [31].

APPENDIX B
COMPLEXITY OF ALGORITHMS

The number of Flops due to multiplications per step is given
in Table II. Similarly, the number of Flops due to additions is
presented in Table III. We derived such expressions following
the procedure proposed in [30]. Therefore, we kindly refer the
reader to the original paper.

TABLE II
MULTIPLICATION-RELATED COMPLEXITY PER STEP

Step Multiplication
Grid Init (2n2 + 1)(n+ 1)Ns

Correction (km + hm + 2)Ns

Moment Comp. 2n(3n+ 1)Ns

Prediction (2n2)N2
s + (9n3 + 3n2 + n+ 2)Ns + 5n3

GM reduction (2n2 + n+ 1)N2
s

LKF-Pred 4n2(4n+ 1)

TABLE III
ADDITION-RELATED COMPLEXITY PER STEP

Step Additions
Grid Init. (2n− 1)(n2 + n+ 1)Ns

Correction (1 + ka + ha)Ns − 1
Moment Comp. (3n2 + 4n)Ns − (3n2 + 2n)

Prediction 2n2N2
s + (9n3 − 3n2 − 2n)Ns + 5n3 − 3n2 − 1

GM reduction 2(n2 + n)N2
s − n(n+ 1) ∗Ns

LKF-Pred. 2n(8n2 − 1)
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and the Université Catholique de Louvain,
Louvain-La-Neuve, Belgium, in 2011. He is an
Assistant Professor with ULB. From 2011 to
2013, he was a Postdoctoral Researcher with
the University of California, Santa Barbara,
and from 2013 to 2015, he was a Postdoctoral
Research Fellow with Nanyang Technological
University, Singapore. His research interests include

experimental and prototyping aspects in wireless communications, taking
advanced theoretical ideas all the way to practice. He was the recipient of
the Alcatel-Lucent Bell Scientific Award in 2012.

Luc Vandendorpe (Fellow, IEEE) was born
in Mouscron, Belgium, in 1962. He received the
degree (summa cum laude) in electrical engineering
and the Ph.D. degree in applied science from
the Catholic University of Louvain (UCLouvain),
Louvain La Neuve, Belgium, in 1985 and 1991,
respectively.,Since 1985, he has been with the
Communications and Remote Sensing Laboratory,
UCL, where he first worked in the field of bit
rate reduction techniques for video coding. In 1992,
he was a Visiting Scientist and a Research Fellow

with the Telecommunications and Traffic Control Systems Group, Delft
Technical University, The Netherlands, where he worked on spread spectrum
techniques for personal communications systems. From October 1992 to
August 1997, he was a Senior Research Associate with the Belgian
NSF, UCL, and an invited Assistant Professor. He is currently a Full
Professor with the Institute for Information and Communication Technologies,
Electronics, and Applied Mathematics, UCLouvain. His research interests
include digital communication systems and more precisely resource allocation
for OFDM(A)-based multicell systems, MIMO and distributed MIMO, sensor
networks, UWB-based positioning, and wireless power transfer. He was the
Chair of the IEEE Benelux Joint Chapter on Communications and Vehicular
Technology from 1999 to 2003. He was a Co-Technical Chair for IEEE
ICASSP 2006. He served as an Editor for Synchronization and Equalization
of IEEE Transactions on Communications from 2000 to 2002, and as an
Associate Editor for IEEE Transactions on Wireless Communications from
2003 to 2005, and IEEE Transactions on Signal Processing from 2004 to
2006. He is or has been a TPC Member for numerous IEEE conferences
(VTC, GLOBECOM, SPAWC, ICC, PIMRC, and WCNC). He was an Elected
Member of the Signal Processing for Communications Committee from 2000
to 2005, and the Sensor Array and Multichannel Signal Processing Committee
of the Signal Processing Society from 2006 to 2008 and from 2009 to 2011.

Philippe De Doncker received the M.Sc. degree
in physics engineering and the Ph.D. degree in
science engineering from the Université Libre de
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