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Dual-Mode Time Domain Multiplexed Chirp Spread Spectrum
Ali Waqar Azim, Ahmad Bazzi, Mahrukh Fatima, Raed Shubair, Marwa Chafii

Abstract—We propose a dual-mode (DM) time domain mul-
tiplexed (TDM) chirp spread spectrum (CSS) modulation for
spectral and energy-efficient low-power wide-area networks (LP-
WANs). DM-CSS modulation that uses both the even and odd
cyclic time shifts has been proposed for LPWANs to achieve
noteworthy performance improvement over classical counter-
parts. However, its spectral efficiency (SE) is half of the in-
phase and quadrature (IQ)-TDM-CSS scheme that employs IQ
components with both up and down chirps, resulting in a SE
that is four times relative to Long Range (LoRa) modulation.
Nevertheless, the IQ-TDM-CSS scheme only allows coherent
detection. Furthermore, it is also sensitive to carrier frequency
and phase offsets, making it less practical for low-cost battery-
powered LPWANs for Internet-of-Things (IoT) applications. DM-
CSS uses either an up-chirp or a down-chirp. DM-TDM-CSS
consists of two chirped symbols that are multiplexed in the
time domain. One of these symbols consisting of even and odd
frequency shifts (FSs) is chirped using an up-chirp. The second
chirped symbol also consists of even and odd FSs, but they
are chirped using a down-chirp. It shall be demonstrated that
DM-TDM-CSS attains a maximum achievable SE close to IQ-
TDM-CSS while also allowing both coherent and non-coherent
detection. Additionally, unlike IQ-TDM-CSS, DM-TDM-CSS is
robust against carrier frequency and phase offsets.

Index Terms—LoRa, chirp spread spectrum, IoT.

I. INTRODUCTION

THE rudimentary idea for Internet-of-Thing (IoT) ap-
plications is to communicate between battery-powered

devices/sensors by consuming low power to extend the battery
lifetime of the terminals. In this regard, low-power wide-
area networks (LPWANs) are of utmost significance. One of
the emerging technologies of LPWANs is the Long Range
(LoRa) wide-area network (LoRaWAN), which uses LoRa as
the physical layer modulation scheme.

LoRa is a proprietary derivative of chirp spread spectrum
(CSS) modulation, developed by the Semtech corporation, ca-
pable of trading off sensitivity with data rates for fixed channel
bandwidths [1], [2]. Even though the Semtech corporation
never published the details of LoRa modulation, Vangelista in
[3] has provided a comprehensive theoretical explanation with
an optimal low-complexity detection process based on discrete
Fourier transform (DFT). The scalable parameter of the LoRa
modulation is the spreading factor, λ, where λ = J6, 12K. λ
is, in fact, equal to the number of bits that a LoRa symbol can
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transmit. Moreover, LoRa symbols are defined using M cyclic
time shifts of the chirp, which are the information-bearing
elements. These cyclic time shifts correspond to frequency
shifts (FSs) of the complex conjugate of the chirp signal, i.e.,
down-chirp signal; thus, LoRa can be regarded as FS chirp
modulation, where λ = log2(M).

Besides the broad adoption and numerous benefits of LoRa,
one of the limiting factors is that it achieves low achievable
rates in all three bands it utilizes. Several recent studies pro-
posed spectral-efficient CSS modulation schemes as possible
alternatives to LoRa. The waveform design of these CSS alter-
natives is comprehensively elucidated in [4]. It is noteworthy
that these CSS variants can have different properties, e.g.,
some possess constant envelope properties and are single chirp,
whereas others use multiple chirps in the symbol structure and
do not retain constant envelope properties. Possessing a con-
stant envelope is desirable; however, the schemes possessing
a constant envelope generally have low spectral efficiencies,
which could be an influential limiting factor.

Another aspect to consider for the CSS alternatives to LoRa
is that they can achieve different maximum achievable spectral
efficiencies. Moreover, most LoRa alternatives aim to improve
spectral efficiency (SE), energy efficiency (EE), or both. Some
of the most promising recently proposed alternatives to LoRa
are in-phase and quadrature (IQ)-CSS [5], slope-shift keying
interleaved chirp spreading LoRa (SSK-ICS-LoRa) [6], dual-
mode CSS [7], and the time domain multiplexed (TDM)
schemes [8], such as TDM-CSS and in-phase and quadrature
(IQ)-TDM-CSS. It is accentuated that here we only mention
a subset of energy-efficient CSS modulations available in the
literature. Numerous other CSS schemes exist in the state-of-
the-art; interested readers are referred to [4] for more details.
IQ-CSS is another multiple chirp modulation that encodes
information bits on both in-phase and quadrature components
of the chirp signal. SSK-ICS-LoRa uses up chirps, down
chirps, interleaved up-chirps, and interleaved down chirps to
expand the symbol set and hence can carry two additional
bits per symbol relative to LoRa. DM-CSS simultaneously
multiplexes even and odd chirp symbols, use phase shifts (PSs)
of 0 and π radians for these even and odd chirp symbols, and
employs either up-chirp or down-chirp signal. In TDM-CSS,
two chirped symbols are multiplexed in the time domain, each
having a different chirp slope, i.e., one (chirped) symbol is
attained using an up-chirp, whereas the other one is attained
using a down-chirp. The fundamental idea of IQ-TDM-CSS is
similar to that of TDM-CSS; however, unlike TDM-CSS, IQ-
TDM-CSS uses both the IQ components of the un-chirped
symbols. It may be noticed that the SE of the DM-CSS
and TDM schemes is higher than that of SSK-ICS-LoRa and
classical LoRa. Note that if LoRa transmits λ bits per symbol,
then SSK-ICS-LoRa, IQ-CSS, TDM-CSS, DM-CSS, and IQ-
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TDM, respectively, transmit λ+ 2, 2λ, 2λ, 2λ+ 1 and 4λ bits
per symbol of the same duration.

Nevertheless, all these schemes also have some noteworthy
shortcomings.IQ-CSS is very sensitive to the carrier frequency
offset, and its maximum achievable SE is less than that of
DM-CSS and IQ-TDM-CSS. Besides being capable of both
coherent and non-coherent detection and providing improved
EE, SSK-ICS-LoRa does not significantly improve the SE
relative to LoRa and its other counterparts. TDM-CSS symbols
can also be detected coherently and non-coherently; however,
its maximum achievable SE is lesser than DM-CSS and IQ-
TDM-CSS. Besides being sensitive to carrier frequency offset,
for IQ-TDM-CSS, only highly complex coherent detection is
possible. DM-CSS offers improved EE relative to LoRa and
allows both coherent and non-coherent detection; however,
the use of PSs allows the non-coherent detection to be only
feasible if the channel phase rotation is less than π/2, making
it less practical. Furthermore, its maximum achievable SE is
less than that of IQ-TDM-CSS.

In this work, we propose the DM-TDM-CSS scheme that
can achieve almost the same maximum achievable SE as IQ-
TDM-CSS and eliminate its shortcomings. In other words,
both coherent and non-coherent detection can be applied for
DM-TDM-CSS and is more robust against carrier frequency
and phase offsets. In DM-TDM-CSS, we amalgamate the
precepts of a modified version of DM-CSS and TDM-CSS.
To be more precise, like DM-CSS, we use the even and the
odd FSs; however, unlike DM-CSS, we do not use any PSs for
the even and the odd FSs, allowing more practical coherent
detection. Moreover, like TDM-CSS, two chirped symbols are
multiplexed in the time domain. Both un-chirped symbols have
unique even and odd FSs; however, one is chirped using an up-
chirp and the other with a down-chirp. Unlike DM-CSS, which
uses either up-chirp or down-chirp symbols for chirping the
un-chirped symbol, DM-TDM-CSS uses both simultaneously.
The symbols structure of DM-TDM-CSS allows for achieving
a maximum SE, which is only 4 bits less than that of IQ-
TDM-CSS.

The contributions of this work can be summarized as
follows:

1) We propose the DM-TDM-CSS scheme as an alternative
to state-of-the-art CSS schemes (including LoRa). DM-
TDM-CSS inherits the advantageous properties of both
DM-CSS and TDM-CSS while avoiding the limitations
of both schemes. Thus, the resulting scheme is not only
energy and spectral-efficient but is also robust against
the carrier frequency and phase offsets.

2) We comprehensively explain the transceiver design of
the proposed DM-TDM-CSS. The waveform generation
and the coherent and non-coherent detection mecha-
nisms are elaborately presented.

3) We mathematically determine if the DM-TDM-CSS
symbols are orthogonal to each other or not. It shall be
demonstrated that the even and odd FSs in the up-chirp
symbol cause interference with the even and odd FSs in
the down-chirp symbol and vice versa. This interference
among the time domain multiplexed symbols results in
non-orthogonal DM-TDM-CSS symbols.

4) Through mathematical analysis, we estimate the inter-
ference caused by the two TDM chirped symbols at the
receiver. The results shall affirm the conclusions of the
orthogonality analysis that the two TDM symbols cause
interference among each other.

5) We evaluate the performance of DM-TDM-CSS con-
sidering different performance metrics: (i) SE versus
required signal-to-noise ratio (SNR) per bit for a tar-
get bit error rate (BER); (ii) BER performance in an
additive white Gaussian noise (AWGN) and a fading
channel; and (iii) BER performance considering phase
and frequency offsets.

6) We provide closed-form expressions on the interference
terms on both the up/down chirped symbols. We com-
pute the signal-to-interference ratio (SIR) expressions
thanks to the closed-form expressions. We show that the
interference vanishes by increasing λ.

II. PRELIMINARIES
A. Basic Definitions

In this section, we have provided brief definitions of these
parameters for the clarity of the readers.

1) Bandwidth: Bandwidth, B is the range of frequencies
in Hertz (Hz) occupied by a CSS symbol. B is divided into
M frequencies, where the separation between two adjacent
frequencies is ∆f Hz; therefore, B = M∆f Hz.

2) Symbol Period: Symbol period, Ts is the time in which
one CSS symbol, occupying bandwidth, B, can be transmitted.
Ts is linked to ∆f as ∆f = 1/Ts.

3) Bit Rate: Bit rate R in bits/s is the number of bits that
can be transmitted in Ts.

4) Spectral Efficiency: It is the achievable R per B and is
given as η = R/B.

5) Energy Efficiency: It is the required SNR for correct bit
detection at a given BER.
B. System Model

Without loss of generality, we consider a chirped symbol
in CSS modulation composed of two components: (i) an un-
chirped symbol and (ii) a spreading symbol that spreads the
information in the bandwidth, B. The un-chirped symbol is
a pure sinusoid when only one FS k is activated, or it can
be a combination of multiple sinusoids in case multiple FSs
are used. When the un-chirped symbol is spread, the FS(s)
have an injective mapping to cyclic time-shift(s). Moreover,
the spreading symbol can have different slope rates [9], [10].

We consider that the occupied bandwidth is B = M/Ts that
corresponds to the availability of M FSs implying that k ∈
[0,M − 1]. In the discrete time, we denote the CSS (chirped)
symbol consisting of M samples by s(n) = g(n)cγ(n),
for n = J0,M − 1K, where g(n) is the un-chirped sym-
bol, and cγ(n) is the spreading symbol given as cγ(n) =
exp

{
j πM γn2

}
, where j2 = −1 and γ is the slope rate.

Based on the type of CSS modulation, g(n) can have different
symbol structures. Moreover, when γ = 1, the spreading
symbol corresponds to up-chirp, i.e., cu(n) = exp

{
j πM n2

}
.

Conversely, if γ = −1, the spreading symbol is a down-
chirp denoted as cd(n) = exp

{
−j πM n2

}
. Typically, an up-

chirp symbol is used to spread the information in most CSS
modulations.
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λ1 bits
bi2de

ke,1

exp
{
j 2π
M
ke,1n

}fe,1(n)

λ2 bits
bi2de

ko,1

exp
{
j 2π
M
ko,1n

}
fo,1(n)
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M
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∑ ×
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∑

g1(n)

g2(n)
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cd(n)

s1(n)

s2(n)

s(n)

Fig. 1: DM-TDM-CSS transmitter architecture.

The discrete-time baseband received symbol is:
y(n) = hs(n) + w(n), (1)

where h is the complex channel gain, and w(n) are the AWGN
samples having single-sided noise power spectral density of
N0, and noise variance of σ2

n = N0B. It may be noticed
that in LPWANs, CSS symbols maintain a narrow bandwidth
of 500 kHz or smaller. Therefore, a flat fading channel can
have a constant attenuation over the entire B. Thus, it can be
considered equal to unity if channel state information (CSI) is
known in the simplest of cases.

III. DUAL-MODE TIME DOMAIN MULTIPLEXED CHIRP
SPREAD SPECTRUM

A. Transmission

The transmitter architecture of DM-TDM-CSS is provided
in Fig. 1. In DM-TDM-CSS, two chirped symbols are mul-
tiplexed in the time domain; therefore, two different un-
chirped symbols are needed. For each un-chirped symbol,
one even and one odd frequency is activated. Consider that
for each un-chirped symbol, M frequencies are available.
Among these M frequencies, M/2 frequencies are even and
M/2 frequencies are odd. The even activated frequencies for
these un-chirped symbols are ke,1 and ke,2, whereas the odd
activated frequencies are ko,1 and ko,2. Note that the even
and odd frequencies are identified by indexes k̃e = 2ke and
k̃o = 2ko + 1, where ke ∈ [0,M/2− 1] and ko ∈ [0,M/2− 1].
ke,1 and ko,1 are determined after binary-to-decimal (bi2de)
conversion of bit sequences of lengths λ1 = λ − 1 and
λ2 = λ−1, respectively. On the other hand, ke,2 and ko,2 after
bi2de conversion of bit sequences having lengths λ3 = λ− 1
and λ4 = λ− 1, respectively.

The first un-chirped symbol, g1(n), is composed of two
sinusoids. The first sinusoid, fe,1(n), has an even activated
frequency, ke,1, whereas the second sinusoid, fo,1(n), has an
odd activated frequency, ko,1. Then, g1(n) is given as:

g1(n) = fe,1(n) + fo,1(n)

= exp

{
j

2π

M
ke,1n

}
+ exp

{
j

2π

M
ko,1n

}
.

(2)

Similarly, the second un-chirped symbol, g2(n), also con-
sists of even frequency, ke,2, and odd frequency, ko,2, activated

sinusoids, fe,2(n), and fo,2(n). g2(n) is given as:

g2(n) = fe,2(n) + fo,2(n)

= exp

{
j

2π

M
ke,2n

}
+ exp

{
j

2π

M
ko,2n

}
.

(3)

The next step is to spread the un-chirped symbols, g1(n),
and g2(n). g1(n) is then spread using an up-chirp, cu(n),
whereas g2(n) is spread using a down-chirp, cd(n) resulting
in s1(n) and s2(n), i.e.,

s1(n) = g1(n)cu(n)

= exp
{
j
π

M

(
2ke,1n+ n2

)}
+exp

{
j
π

M

(
2ko,1n+ n2

)}
,

(4)

and

s2(n) = g2(n)cd(n)

= exp
{
j
π

M

(
2ke,2n− n2

)}
+exp

{
j
π

M

(
2ko,2n− n2

)}
.

(5)

Afterward, these two chirped symbols, s1(n) and s2(n),
are multiplexed in the time domain resulting in s(n), which
is given as:

s(n) = s1(n) + s2(n)

= exp
{
j
π

M

(
2ke,1n+n2

)}
+exp

{
j
π

M

(
2ko,1n+n2

)}
+ exp

{
j
π

M

(
2ke,2n−n2

)}
+exp

{
j
π

M

(
2ko,2n−n2

)}
.

(6)

The symbol energy of the DM-TDM-CSS symbol is Es =
1/M

∑M−1
n=0 |s(n)|2.

B. Detection

This section presents coherent and non-coherent detection
mechanisms for DM-TDM-CSS received symbols, y(n). For
clarity of exposition, we consider the following vectorial
representations, y = [y(0), y(1), · · · , y(M − 1)]

T, and s =
[s(0), s(1), · · · , s(M − 1)]

T, where [·]T is the transpose op-
erator.

1) Coherent Detection: The coherent detector achitecture
for DM-TDM-CSS is illustrated in Fig. 2. The coherent
detection of DM-TDM-CSS symbols involves the estimation
of the FSs of the un-chirped symbols, ke,1, ke,2, ko,1, and ko,2.
Assuming that h is known at the receiver and the transmit
symbols are equiprobable, the coherent detection dictates to
maximize the probability of receiving y when s was sent given
h, i.e., prob (y|s, h). The likelihood function, prob (y|s, h) is
given as:

prob (y|s, h) =

(
1

2πσ2
n

)M
exp

{
‖y − hs‖2

2σ2
n

}
= ρ exp

{
<{〈y, hs〉}

σ2
n

}
,

(7)

where ‖ · ‖2 evaluates Euclidean norm, <{·} determines the
real component of a complex-valued argument, and

ρ =

(
1

2πσ2
n

)M
exp

{
−‖y‖

2 + ‖hs‖2

2σ2
n

}
.
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y(n)

×

×

exp
{
j π
M
n2

}
exp

{
−j π

M
n2

}
DFT

DFT

Even/Odd
Separator

Even/Odd

Separator

arg max
ke

ℜ{h∗R2(ke)}

arg max
ko

ℜ{h∗R2(ko)}

de2bi

de2bi

arg max
ke

ℜ{h∗R1(ke)}

arg max
ko

ℜ{h∗R1(ko)}de2bi

de2bi

r1(n)

r2(n)

cu(n)

cd(n)

R1(k)

R2(k)

R2(ko)

R2(ke)

R1(ko)

R1(ke)

k̂e,2

k̂o,2

k̂o,1

k̂e,1

λ̂3

λ̂4

λ̂1

λ̂2

Fig. 2: DM-TDM-CSS coherent detector architecture.

The coherent detection problem in (7) is simplified as:

k̂e,1, k̂e,2, k̂o,1, k̂o,2 = arg max
ke,ko

prob (y|s, h)

= arg max
ke,ko

<{〈y, hs〉} .
(8)

Considering that (·) evaluates the complex conjugate,
〈y, hs〉 can be simplified as:

〈y, hs〉 = h

M−1∑
n=0

y(n)s(n)

= h

M−1∑
n=0

y(n)
(
g1(n)cd(n) + g2(n)cu(n)

)
= h

(
M−1∑
n=0

r1(n)g1(n) +

M−1∑
n=0

r2(n)g2(n)

)

= h

(
M−1∑
n=0

r1(n)f e,1(n) +
M−1∑
n=0

r1(n)fo,1(n)

+

M−1∑
n=0

r2(n)f e,2(n) +

M−1∑
n=0

r2(n)fo,2(n)

)
= h

(
R1(ke,1) +R1(ko,1) +R2(ke,2) +R2(ko,2)

)
,

(9)

where r1(n) = y(n)cd(n), and r2(n) = y(n)cu(n). R1(k)
and R2(k) is the DFT of r1(n) and r2(n), respectively.
Moreover, R1(ke) and R1(ko) is the DFT of r1(n) evaluated
at even and odd indexes, respectively, whereas R2(ke) and
R2(ko) is the DFT of r2(n) evaluated at even and odd indexes,
respectively. Taking into account the simplification of 〈y, hs〉
in (8), the detection problem in (8) becomes:

k̂e,1, k̂e,2, k̂o,1, k̂o,2 = arg max
ke,ko

<
{
h
(
R1(ke,1) +R1(ko,1)

+R2(ke,2) +R2(ko,2))
}
.

(10)

y(n)

×

×

exp
{
j π
M
n2

}
exp

{
−j π

M
n2

}
DFT

DFT

Even/Odd
Separator

Even/Odd

Separator

arg max
ke

|R2(ke)|

arg max
ko

|R2(ko)|

de2bi

de2bi

arg max
ke

|R1(ke)|

arg max
ko

|R1(ko)|de2bi

de2bi

r1(n)

r2(n)

cu(n)

cd(n)

R1(k)

R2(k)

R2(ko)

R2(ke)

R1(ko)

R1(ke)

k̂e,2

k̂o,2

k̂o,1

k̂e,1

λ̂3

λ̂4

λ̂1

λ̂2

Fig. 3: DM-TDM-CSS non-coherent detector architecture.

The FSs evaluated in (10) can also be dis-jointly estimated
as:

k̂e,1 = arg max
ke
<
{
hR1(ke,1)

}
,

k̂e,2 = arg max
ke
<
{
hR2(ke,2)

}
,

k̂o,1 = arg max
ko
<
{
hR1(ko,1)

}
,

k̂o,2 = arg max
ko
<
{
hR1(k0,2)

}
.

(11)

2) Non-Coherent Detection: When the CSI is unavailable,
the non-coherent detection mechanism can be used. It is more
practical because its computational complexity is considerably
lower than the coherent detection, which is better for low-
power consumption and low-cost components in LPWANs.
The non-coherent detector for DM-TDM-CSS is presented
in Fig. 3. For non-coherent detection of DM-TDM-CSS, the
FSs from the received symbols in a dis-joint fashion can be
identified as:

k̂e,1 = arg max
ke

|R1(ke,1)| ,

k̂e,2 = arg max
ke

|R2(ke,2)| ,

k̂o,1 = arg max
ko

|R1(ko,1)| ,

k̂o,2 = arg max
ko

|R2(k0,2)| .

(12)

From (13), it is observed that the DFT of r1(n) and r2(n) is
first evaluated, which yields R1(k) and R2(k). Subsequently,
the FS, k̂e,1 and k̂o,1 are determined usingR1(k) by separating
the even and odd frequency tones, respectively, whereas k̂e,2
and k̂o,2 are evaluated using R2(k) by isolating the even and
odd frequency tones.

C. Orthogonality Analysis

To analyze whether the DM-TDM-CSS symbols
are orthogonal, we evaluate the inner product of the
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two distinct DM-TDM-CSS symbols, i.e., s and s̃ =
[s̃(0), s̃(1), · · · , s̃(M − 1)]

T as 〈s, s̃〉 =
∑M−1
n=0 s(n)s̃(n).

The activated even, and odd FSs in the two chirped symbols
of s are ke,1, ke,2, ko,1, and ko,2. On the other hand, in s̃,
the even and odd FSs in the two chirped symbols are k̃e,1,
k̃e,2, k̃o,1, and k̃o,2. The following conditions must hold
to determine if the DM-TDM-CSS symbols are orthogonal
or not: (i) the even FS in the up-chirp and the down-chirp
symbols, k̂e,1, and ke,2 in s are different from the respective
FS in s̃, k̃e,1, k̃e,2, i.e., ke,1 6= k̃e,1, and ke,2 6= k̃e,2; (ii)
the same condition also holds for the odd FS of s and s̃,
i.e., ko,1 6= k̃o,1, and ko,2 6= k̃o,2. After some straightforward
manipulation, the inner product 〈s, s̃〉 yields:

〈s, s̃〉 =

M−1∑
n=0

exp
{
j
π

M

(
2k1n+ 2n2

)}
︸ ︷︷ ︸

:=τ1

+

M−1∑
n=0

exp
{
j
π

M

(
2k2n+ 2n2

)}
︸ ︷︷ ︸

:=τ2

+

M−1∑
n=0

exp
{
j
π

M

(
2k3n− 2n2

)}
︸ ︷︷ ︸

:=τ3

+

M−1∑
n=0

exp
{
j
π

M

(
2k4n− 2n2

)}
︸ ︷︷ ︸

:=τ4

,

(13)

where k1 = ke,1− k̃e,2, k2 = ko,1− k̃o,2, k3 = ke,2− k̃e,1, and
k4 = ko,2 − k̃o,1. The closed-form expressions for τ1, τ2, τ3,
and τ4 can be obtained using (43) as in Appendix A. Firstly,
consider τ1, for which a = 2, b = 2k1, and c = M . To this
end, we attain:

τ1 =

√∣∣∣∣M2
∣∣∣∣ exp

{
j
π

8M

(
|2M | − (2k1)2

)}
β1 (14)

where

β1 =

1∑
n=0

exp
{
−j π

2

(
2k1n+Mn2

)}
= 1 + exp

{
−j π

2
(M + 2k1)

} (15)

Since M and |k1| are always even; therefore, β1 = 2 that
leads to:

τ1 = α exp
{
−j π

2M
k21

}
= α exp

{
−j π

2M

(
ke,1 − k̃e,2

)2}
,

(16)

where

α = 2

√
M

2
exp

{
j
π

4

}
.

Following the same steps as in (13) and (14), τ2, τ3, and

τ4 are obtained as:

τ2 = α exp
{
−j π

2M
k22

}
= α exp

{
−j π

2M

(
ko,1 − k̃o,2

)2}
,

(17)

τ3 = α exp
{
j
π

2M
k23

}
= α exp

{
j
π

2M

(
ke,2 − k̃e,1

)2}
,

(18)
and

τ4 = α exp
{
j
π

2M
k24

}
= α exp

{
j
π

2M

(
ko,2 − k̃o,1

)2}
,

(19)
respectively. Finally, the closed-form of (13), i.e., 〈s, s̃〉 is
given as:

〈s, s̃〉 = α (θ1 + θ2) + α (θ3 + θ4) (20)

where
θ1 = exp

{
−j π

2M

(
ke,1 − k̃e,2

)2}
, (21)

θ2 = exp

{
−j π

2M

(
ko,1 − k̃o,2

)2}
, (22)

θ3 = exp

{
j
π

2M

(
ke,2 − k̃e,1

)2}
, (23)

and
θ4 = exp

{
j
π

2M

(
ko,2 − k̃o,1

)2}
, (24)

respectively.

(20) implies that simultaneously activating even and the
odd FSs in the two multiplexed chirped symbols cause a loss
of orthogonality between the two DM-TDM-CSS symbols.
Precisely, the even FS of one chirped symbol induces inter-
ference for the even FS of the other chirped symbol and vice
versa. The same is the case for the odd FSs, where the odd
FS of one chirped symbol causes interference for the other
chirped symbol. In the following section, we shall evaluate
this interference quantitatively.

D. Interference Analysis

The interference in the DM-TDM-CSS symbols can be
determined by analyzing r1(n) and r2(n). In order to do so, we
consider that y(n) = s(n) + w(n). In the following analysis,
we shall treat r1(n) and r2(n) to determine the interference.
Firstly, let us consider r1(n), which is given as:

r1(n) = y(n)cd(n)

= s(n)cd(n) + w̃(n)

=
(
g1(n)cu(n) + g2(n)cd(n)

)
cd(n) + w̃(n)

= g1(n) + g2(n)c2d(n) + w̃(n),

(25)
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where w̃(n) = w(n)cd(n) and cu(n)cd(n) = 1. r1(n) in (25)
can be re-written as:

r1(n) = exp

{
j

2π

M
ke,1n

}
+ exp

{
j

2π

M
ko,1n

}
+ exp

{
−j 2π

M
n2
}

exp

{
j

2π

M
ke,2n

}
+ exp

{
−j 2π

M
n2
}

exp

{
j

2π

M
ko,2n

}
+ w̃(n).

(26)

Taking M -order DFT of r1(n) yields R1(k), i.e.,

R1(k) =

M−1∑
n=0

exp

{
j

2π

M
k̃1n

}
︸ ︷︷ ︸

:=κ1

+

M−1∑
n=0

exp

{
j

2π

M
k̃2n

}
︸ ︷︷ ︸

:=κ2

+

M−1∑
n=0

exp
{
j
π

M

(
2k̃3n− 2n2

)}
︸ ︷︷ ︸

:=κ3

+

M−1∑
n=0

exp
{
j
π

M

(
2k̃4n− 2n2

)}
︸ ︷︷ ︸

:=κ4

+W̃ (k),

(27)

where k̃1 = ke,1 − k, k̃2 = ko,1 − k, k̃3 = ke,2 − k, and
k̃4 = ko,2 − k.

Now considering k ∈ k̃e for (27), we ascertain that κ1 = M
when k̃1 = ke,1, κ2 = 0 because k̃2 6= 0. Moreover, using the
generalized quadratic Gauss sum as given in (43) of Appendix
A, κ3 is given as:

κ3 =
α

2
exp

{
j
π

2M
k̃23

}(
1 + exp

{
j
π

2

(
M + 2k̃3

)})
.

(28)
If M is a power of 2 (which in general it is) and if k ∈ k̃e,

then exp
{
j π2

(
M + 2k̃3

)}
= 1, which leads to

κ3 = α exp
{
j
π

2M
k̃23

}
. (29)

Solving κ4 using (43) yields:

κ4 =
α

2
exp

{
j
π

2M
k̃24

}(
1 + exp

{
j
π

2

(
M + 2k̃4

)})
.

(30)
Since k̃4 is always odd; therefore, exp

{
j π2

(
M + 2k̃4

)}
=

−1 resulting in κ4 = 0. It is important to note that κ2 = κ4 =
0 implies that the odd FS of one chirped symbol does not
cause any interference with the even FS of the other. Thus,
for k ∈ k̃e, the output of the DFT when k̃e = ke,1 results in

R1(ke,1) = M︸︷︷︸
signal

+α exp
{
j
π

2M
(ke,2 − ke,1)2

}
︸ ︷︷ ︸

Interference

+W̃ (ke,1).

(31)

Performing similar analysis as done for (31) considering
k ∈ k̃o and k̃o = ko,1 yields

R1(ko,1) = M︸︷︷︸
signal

+α exp
{
j
π

2M
(ko,2 − ko,1)2

}
︸ ︷︷ ︸

Interference

+W̃ (ko,1).

(32)
Note that while evaluating (32), it is observed that κ1 =

κ3 = 0, implying that even FSs of one chirped symbol does
not interfere with the odd FS of the other chirped symbol.

r2(n) is attained as

r2(n) = g1(n)c2u(n) + g2(n) + ˆ̄w(n)

= exp

{
j

2π

M
n2
}

exp

{
j

2π

M
ke,1n

}
+ exp

{
j

2π

M
n2
}

exp

{
j

2π

M
ko,1n

}
+ exp

{
j

2π

M
ke,2n

}
+ exp

{
j

2π

M
ko,2n

}
+ ˆ̄w(n),

(33)

where ˆ̄w(n)(n) = w(n)cu(n). M -order DFT of r2(n) results
in:

R2(k) =

M−1∑
n=0

exp
{
j
π

M

(
2k̃1n+ 2n2

)}
︸ ︷︷ ︸

:=κ5

+

M−1∑
n=0

exp
{
j
π

M

(
2k̃2n+ 2n2

)}
︸ ︷︷ ︸

:=κ6

+

M−1∑
n=0

exp
{
j
π

M
2k̃3n

}
︸ ︷︷ ︸

:=κ7

+

M−1∑
n=0

exp
{
j
π

M
2k̃4n

}
︸ ︷︷ ︸

:=κ8

+ ˆ̄W (k).
(34)

For k ∈ k̃e when k̃e = ke,2, then using (43), we attain

κ5 = α exp

{
−j π

2M

(
ke,1 − k̃e

)2}
, κ6 = 0, κ7 = M , and

κ8 = 0 that leads to

R2(ke,2) = M︸︷︷︸
signal

+α exp
{
−j π

2M
(ke,1 − ke,2)2

}
︸ ︷︷ ︸

Interference

+ ˆ̄W (ke,2).

(35)

Similarly, for k ∈ k̃e, we have κ5 = 0, κ6 =

α exp

{
−j π

2M

(
ko,1 − k̃o

)2}
, κ7 = 0, and κ8 = M resulting

in

R2(ko,2) = M︸︷︷︸
signal

+α exp
{
−j π

2M
(ko,1 − ko,2)2

}
︸ ︷︷ ︸

Interference

+ ˆ̄W (ko,2).

(36)

From (31) and (32), we can observe that the activated
FSs of the second chirped symbol, i.e., ke,2 and ko,2, cause
interference when the activated FSs of the first chirp symbol,
i.e., ke,1 and ko,1 are to be determined. We can draw similar
conclusions from (35) and (36) that the FSs of the first chirped
symbol, ke,1 and ko,1, cause interference when we need to
determine the FSs of the second chirped symbol, ke,2 and
ko,2.

In addition, we can also explicitly obtain the expression for
SIR, γ as we have both the signal power and the interference
power. Since, the interference power for R1(k̃e), R1(k̃o),
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R2(k̃e), and R2(k̃o) is the same, γ is evaluated as:

γ =
M2∣∣∣α3 exp

{
j πM (ke,2 − k̃e)2

}∣∣∣2 =
M2

2M
=
M

2
. (37)

Notice that for the evaluation of γ, we have used the
interference power of R1(k̃e); however, as aforementioned,
the interference power forR1(k̃o),R2(k̃e), andR2(k̃o) is also
the same. Consequently, we will always obtain the same result
for γ. Furthermore, from (37), we gather that the interference
vanishes away with increasing M , i.e., for higher λ.

We can also define signal-to-interference plus noise (SINR),
Γ as:

Γ =
M2

2M + σ2
n

=
M

2 +
σ2
n

M

. (38)

Again we observe that Γ also increases with an increase in
M , i.e., for higher λ.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we compare the performance of the proposed
DM-TDM-CSS with other classical counterparts in the state-
of-the-art. We consider all the approaches in the literature
that can transmit nearly 2λ or higher number of bits per
symbol of duration Ts. The schemes include IQ-CSS, TDM-
CSS, and IQ-TDM-CSS. In addition, LoRa has also been
considered a benchmark for comparison. To compare the
proposed DM-TDM-CSS with other schemes, we consider the
SE versus EE performance, BER performance in an AWGN
and fading channels, and BER performance considering phase
and frequency offsets. It is highlighted that we consider the
non-coherent detection for IQ-CSS as proposed in [11].

A. Spectral Efficiency of DM-TDM-CSS

In DM-TDM-CSS, four different bit sequences of length
λ − 1 are used per symbol; therefore, the total number of
bits transmitted per symbol of duration Ts is 4λ−4. Note that
the number of bits transmitted per DM-TDM-CSS symbol is 4
bits less than that of IQ-TDM-CSS; however, the advantages of
DM-TDM-CSS will become evident in the following sections.
With the given number of bits transmitted per symbol, the
data rate SE of DM-TDM-CSS is given by R = (4λ− 4)/Ts

bits/s/Hz. Moreover, considering that B = M/Ts, the SE of
DM-TDM-CSS is

η =
R

B
=

4λ− 4

M
. (39)

The spectral efficiencies of other schemes considered in this
article are presented in Table I.

B. Spectral Efficiency versus Energy Efficiency Performance

In this section, we evaluate and compare the SE versus EE
performance of the proposed DM-TDM-CSS with other state-
of-the-art schemes. In order to evaluate the performance at
a given SE, we attain the EE by evaluating Eb/N0 = EsTs

ηN0

required to reach a BER of 10−3. On the other hand, the SE is
changed by varying λ = J6, 12K. This performance metric is

TABLE I: Spectral efficiencies of different CSS schemes

CSS Scheme SE (bits/s/Hz)

LoRa λ
M

IQ-CSS 2λ
M

TDM-CSS 2λ
M

IQ-TDM-CSS 4λ
M

DM-CSS 2λ+1
M

2 3 4 5 6 710−3

10−2

10−1

100

Eb/N0 (dB)
S
E
(b
it
s/
s/
H
z)

Coherent LoRa
Coherent IQ-CSS
Coherent TDM-CSS
Coherent IQ-TDM-CSS
Coherent DM-CSS
Coherent DM-TDM-CSS

Fig. 4: SE versus EE performance considering coherent detection and target
BER of 10−3 in the AWGN channel.

evaluated for all the considered schemes in the AWGN chan-
nel. Moreover, the performance is considered separately for
coherent and non-coherent detection mechanisms. From Fig.
4, which illustrates SE versus EE performance considering co-
herent detection mechanism, we observe that the performance
of DM-CSS is best among all the approaches. Another aspect
that can be observed is that IQ-TDM-CSS can achieve the
maximum achievable SE, whereas the maximum achievable
SE of DM-TDM-CSS is marginally less than that of IQ-
TDM-CSS. For λ > 9, the SE versus EE performance of IQ-
TDM-CSS approaches that of DM-CSS, making it a desirable
alternative to other approaches when coherent detection is
employed. On the other hand, the performance of DM-TDM-
CSS is close to that of TDM-CSS. IQ-CSS also performs better
than the proposed DM-TDM-CSS. From Fig. 4, it seems that
the proposed approach may not be an acceptable alternative to
already proposed approaches in the literature. However, when
we consider the performance of the same schemes considering

2 3 4 5 6 7 810−3

10−2

10−1

100

Eb/N0 (dB)

S
E
(b
it
s/
s/
H
z)

Non-Coherent LoRa
Non-Coherent IQ-CSS (β = 2.4)
Non-Coherent TDM-CSS
Semi-Coherent DM-CSS
Non-Coherent DM-TDM-CSS

Fig. 5: SE versus EE performance considering non-coherent detection and
target BER of 10−3 in the AWGN channel.
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Coherent IQ-CSS
Coherent TDM-CSS
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Fig. 6: BER performance considering coherent detection in AWGN channel
for λ = 8.

0 1 2 3 4 5 6 7 8
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E
R

Non-Coherent LoRa
Non-Coherent IQ-CSS (β = 2.4)
Non-Coherent TDM-CSS
Semi-Coherent DM-CSS
Non-Coherent DM-TDM-CSS

Fig. 7: BER performance considering coherent detection in AWGN channel
for λ = 8.

non-coherent detection, as illustrated in Fig. 5, it is evident
that DM-TDM-CSS is one of the best approaches regarding
SE versus EE performance. The reasons are (i) DM-CSS only
offers semi-coherent detection because the evaluation of PSs
needs a coherent maximum likelihood detection mechanism
at the receiver; therefore, the overall detection complexity in
DM-CSS is high; and (ii) IQ-TDM-CSS symbols cannot be
detected using non-coherent detection, which is a significant
limitation.

C. BER Performance in AWGN Channel

Fig. 6 and Fig. 7 illustrate the BER performance of the
proposed DM-TDM-CSS scheme and compare it with other
alternatives considering coherent and non-coherent detection,
respectively. The BER performance is obtained considering
an AWGN for λ = 8. For λ = 8, the spectral efficiencies of
the considered schemes are LoRa: 0.0312 bits/s/Hz, IQ-CSS:
0.0625 bits/s/Hz, TDM-CSS: 0.0625 bits/s/Hz, IQ-TDM-CSS:
0.125 bits/s/Hz, DM-CSS: 0.0664 bits/s/Hz, and DM-TDM-
CSS: 0.1093 bits/s/Hz. With the given spectral efficiencies,
DM-TDM-CSS offers approximately 250% increase in SE

0 1 2 3 4 5 6 7 8 9 10
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E
R

Coherent LoRa
Coherent IQ-CSS
Coherent TDM-CSS
Coherent IQ-TDM-CSS
Coherent DM-CSS
Coherent DM-TDM-CSS

Fig. 8: BER performance considering coherent detection in fading channel
for λ = 8.

over LoRa, 75% increase in SE over IQ-CSS and TDM-CSS,
and 65% over DM-CSS. However, the SE of DM-TDM-CSS
is approximately 14% less relative to IQ-TDM-CSS.

The BER performance coherent detection (cf. Fig. 6) il-
lustrates that the BER of DM-TDM-CSS is marginally higher
relative to IQ-TDM-CSS, i.e., DM-TDM-CSS requires approx-
imately 0.2 dB higher Eb/N0 to attain a BER of 10−3. As
expected, both DM-TDM-CSS and IQ-TDM-CSS would have
a higher BER because they offer higher spectral efficiencies
relative to other schemes. It can also be observed that the
performance of DM-CSS performs the best for coherent de-
tection.

The added value of DM-TDM-CSS becomes evident when
we analyze the BER performance considering non-coherent
detection (cf. Fig. 7). IQ-TDM-CSS does not allow non-
coherent detection, which makes it less advantageous. On the
other hand, DM-TDM-CSS allows non-coherent detection. It
can be observed that the DM-TDM-CSS requires approxi-
mately 0.5 dB higher Eb/N0 to attain a BER of 10−3 relative
to IQ-CSS and TDM-CSS. However, considering that the SE
increase is 65%, the increase is insignificant, which makes
DM-TDM-CSS a solid alternative to the classical approaches.

D. BER Performance in Fading Channel

In this section, we consider a frequency-selective 2-tap
fading channel having an impulse response of h(n) =√

1− ρδ(nT ) +
√
ρδ(nT − T ), where T is the sampling

duration and 0 ≤ ρ ≤ 1. The results are also depicted in Fig.
2, where ρ = 0.2. The BER performance of the considered
approaches considering coherent and non-coherent detection
is illustrated in Fig. 7 and Fig. 8.

From the BER performance considering coherent detection
(cf. Fig. 8), we can observe that, unlike the BER performance
in the AWGN channel, the BER performance of DM-TDM-
CSS is reasonably better than that of IQ-TDM-CSS. The rea-
son is that DM-TDM-CSS does not transmit any information
in the in-phase and quadrature components like IQ-TDM-CSS,
which makes the latter approach more susceptible to frequency
selective fading. On the other hand, the performance of DM-
TDM-CSS is almost similar to that of IQ-CSS. It is essential
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Fig. 9: BER performance considering non-coherent detection in fading channel
for λ = 8.
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Fig. 10: BER performance for different schemes considering coherent detec-
tion, ψ = π/4 radians, AWGN channel, and λ = 8.

to highlight that for a similar performance, the SE of DM-
TDM-CSS is 65% higher than IQ-CSS.

The BER performance in fading channel considering non-
coherent detection, as depicted in Fig. 9, illustrates that the
performance of DM-TDM-CSS is better than IQ-CSS. It is
recalled that IQ-TDM-CSS cannot be detected non-coherently.
On the other hand, DM-TDM-CSS requires 1 dB higher
Eb/N0 to attain a BER of 10−3 relative to TDM-CSS;
however, the former approach’s SE is 65% higher than that
of the latter approach. Moreover, DM-CSS only offers a semi-
coherent detection; therefore, its performance is better than the
remaining counterparts.

E. BER Performance Considering Phase Offset

In this section, we analyze the performance of all the
schemes considering PO, which is expected to exist in low-
cost devices. To this end, the received symbol corrupted by
PO and AWGN is given as:

y(n) = exp{jψ}s(n) + w(n), (40)

0 1 2 3 4 5 6 7 8
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E
R

Non-Coherent LoRa, ψ = π/4
Non-Coherent IQ-CSS ({β,ψ} = {2.4,π/4})
Non-Coherent TDM-CSS, ψ = π/4
Semi-Coherent DM-CSS, ψ = π/4
Non-Coherent DM-TDM-CSS, ψ = π/4

Fig. 11: BER performance for different schemes considering non-coherent
detection, ψ = π/4 radians, AWGN channel, and λ = 8.

where ψ is the PO. We evaluate the performance of the
considered schemes for coherent and non-coherent detection
and consider a PO of ψ = π/4 radians and λ = 8.

Fig. 10 depicts the BER performance of the considered
schemes using coherent detection and a PO of ψ = π/4 radians.
The performance of IQ-CSS and IQ-TDM-CSS is severely
affected due to the PO because these schemes incorporate
additional information in the IQ components. On the other
hand, the performance of DM-TDM-CSS remains essentially
robust against the PO. It can also be seen that the BER
performance of IQ-CSS and IQ-TDM-CSS was better than
the proposed DM-TDM-CSS in the AWGN channel (cf. Fig.
6); however, in the presence of distortions, the performance
degrades severely. It is also accentuated that apart from DM-
TDM-CSS, no other scheme can transmit 4λ − 4 bits per
symbol and is also robust against the PO.

Fig. 11 portrays the BER performance of schemes that
employ non-coherent detection and a PO of ψ = π/4 radians.
It may be noticed that the semi-coherently detected DM-CSS
that was performing the best in the AWGN and fading channels
is severely influenced by the PO. Moreover, the performance
of non-coherently detected TDM-CSS and IQ-CSS remains
better than DM-TDM-CSS; however, these schemes possess
half of the SE of DM-TDM-CSS. Consequently, DM-TDM-
CSS is the only approach that transmits 4λ−4 bits per symbol
while also employing non-coherent detection.

F. BER Performance Considering Frequency Offset

In this section, we investigate the BER performance in the
presence of FO. The carrier FO linearly accumulates phase
rotations from one symbol to another. In this case, the received
symbol incorporating the impact of FO is

y(n) = exp

{
j2π∆fn

M

}
s(n) + w(n), (41)
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Fig. 12: BER performance for different schemes considering coherent detec-
tion, ∆f = 0.2 Hz, AWGN channel, and λ = 8.
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Fig. 13: BER performance for different schemes considering non-coherent
detection, ∆f = 0.2 Hz, AWGN channel, and λ = 8.

where ∆f is the FO in Hz1. To evaluate the BER performance,
we consider FO of ∆f = 0.2 Hz, λ = 8, and AWGN channel
for the considered schemes.

Fig. 12 shows the BER performance of coherently detected
schemes considering FO of ∆f = 0.2 Hz in the AWGN chan-
nel for λ = 8. Again, we can observe that the performance of
the schemes which transmit information in the IQ components
is considerably affected by the FO. It can also be observed that
DM-TDM-CSS requires 1 dB higher Eb/N0 to attain a BER of
10−3 while yielding almost double SE. The BER performance
of the proposed DM-TDM-CSS is reasonably robust against
the FO, making it a more practical alternative to other schemes,
particularly IQ-TDM-CSS.

From Fig. 13, which depicts the BER performance of non-
coherent detection for the considered approaches, we gather
that DM-TDM-CSS performs well relative to the other coun-
terparts. To be more precise, it nearly needs an additional 0.8

1∆f could also be seen as residual FO because IoT modems (for example,
Bluetooth) normally implement a carrier frequency offset compensator before
demodulation, thus, after compensation, ∆f will reflect the residual FO.

dB Eb/N0 to attain a BER of 10−3 relative to DM-CSS, and
0.9 dB higher Eb/N0 compared to TDM-CSS and IQ-CSS.
However, it is highlighted that in addition to being capable of
achieving lower SE, the performance of DM-CSS and IQ-CSS
is severely affected by the PO.

G. Advantages and Disadvantages of DM-TDM-CSS

From the results in the previous section, DM-TDM-CSS
has some apparent advantages. Firstly, we observe that it
can achieve a higher SE than other alternatives, apart from
IQ-TDM-CSS, which transmits only four additional bits per
symbol. Secondly, enhanced resilience against the PO and
FO compared to other counterparts. It is noticeable that IQ-
CSS, IQ-TDM-CSS, and non-coherently detected DM-CSS
are very much affected by the PO. The performance of IQ-
CSS and IQ-TDM-CSS also degrades due to FO. Thirdly,
it manifests a robust performance in the frequency selective
channel compared to other counterparts, such as IQ-CSS and
IQ-TDM-CSS. Lastly, there is no other CSS approach capable
of both coherent and non-coherent detection, and yields a SE
of (4λ− 4)/M at the same time.

The most significant disadvantage of DM-TDM-CSS is that
it does not possess a constant envelop, which could be a
concerning point in its practical realization. However, it can
also be gathered from the literature that most CSS schemes
capable of achieving higher SE than classical LoRa do not
possess a constant envelop because these schemes either use
a PS or additional FS to attain a higher SE.

V. CONCLUSIONS

In this work, we have proposed DM-TDM-CSS as an
alternative to the state-of-the-art schemes available in the
literature. DM-TDM-CSS has some definite advantages over
other counterparts. Besides offering the possibility of coherent
and non-coherent detection, it can attain higher maximum
achievable SE. Moreover, DM-TDM-CSS is robust against
both the PO and the carrier FO. It is shown that the BER
performance of the proposed approach is better than schemes
offering similar spectral efficiencies in frequency selective fad-
ing channels. It is also shown through mathematical analysis
that DM-TDM-CSS symbols are not orthogonal. Additionally,
the interference caused by the chirp symbols is mathematically
evaluated, showing that the simultaneous activation of two
chirp symbols having different chirp rates causes interference
with each other. It is foreseen that the advantages of DM-
TDM-CSS pointed out in this work could encourage further
research into the scheme.
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APPENDIX A
GENERALIZED QUADRATIC GAUSS SUM

Any equation like

I± =

|c|−1∑
n=0

exp
{
j
π

c

(
bn± an2

)}
(42)

takes the form of generalized quadratic Gauss sum. Let a,
b, and c be integers with ac 6= 0 and ac + b even, then one
has the following analog of the quadratic reciprocity law for
Gauss sum [12]
|c|−1∑
n=0

exp
{
j
π

c

(
bn+ an2

)}
=

√∣∣∣ c
a

∣∣∣ exp
{
j
π

4ac

(
|ac| − b2

)}
|a|−1∑
n=0

exp
{
−j π

a

(
bn+ cn2

)}
(43)
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