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in IRS-Assisted Secure Communications
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Abstract—In this article, physical layer security (PLS) in an in-
telligent reflecting surface (IRS) assisted multiple-input multiple-
output multiple antenna eavesdropper (MIMOME) system is
studied. In particular, we consider a practical scenario without in-
stantaneous channel state information (CSI) of the eavesdropper
and assume that the eavesdropping channel is a Rayleigh channel.
To reduce the complexity of currently available IRS-assisted PLS
schemes, we propose a low-complexity deep learning (DL) based
approach to design transmitter beamforming and IRS jointly,
where the precoding vector and phase shift matrix are designed
to minimize the secrecy outage probability. Simulation results
demonstrate that the proposed DL-based approach can achieve
a similar performance of that with conventional alternating
optimization (AO) algorithms for a significant reduction in the
computational complexity.

Index Terms—Intelligent reflecting surface; Physical layer
security; Joint beamforming design; Deep learning.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a 2-D electromagnetic
metasurface composed of a large number of low-cost passive
elements that can change wireless propagation environment to
improve the performance of wireless communication systems
[1]. Physical layer security (PLS) is a type of information
security technique that utilizes the randomness of wireless
channels to achieve confidential communications [2]. As IRS
can improve the quality of legitimate channels while mitigating
that of eavesdropped channels, the two techniques combined
have a complementary nature of advantages [3].

In [4] and [5], the authors investigated PLS of IRS-assisted
single-input single-output (SISO) and multiple-input single-
output (MISO) communication systems to maximize secrecy
rate of the system by alternating optimization (AO) algorithms.
In [6], the authors extended it to a multiple-user case that trans-
mits artificial noise (AN) to enhance the security performance.
Moreover, [7] focused on a novel idea of IRS-assisted PLS,
in which IRS was deployed to modulate received signal from
a transmitter as AN signals. However, the above works were
based largely on the assumption that eavesdropper’s instanta-
neous channel state information (CSI) is known. The authors
of [8] investigated the PLS by jointly optimizing precoding,
IRS phase shift matrix, and AN when the eavesdropper’s
CSI was unknown, but there was no appropriate metric to
evaluate the performance of PLS. The work in [9] used a
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large number of random samples instead of eavesdropper’s
statistical CSI, but the proposed optimization algorithm needs
to take into account all random samples, which consumes a lot
of computational resources. In [10], the authors investigated
the PLS based on eavesdropper’s statistical CSI and derived
a secrecy outage probability expression as a security metric.
However, the complexity of the proposed AO algorithm for
the optimization problem of minimizing secrecy outage prob-
ability is very high.

To address the CSI issue, we consider an IRS-assisted PLS
scenario based on the eavesdropper’s statistical CSI. Different
from [10], we think the large-scale fading to be non-negligible,
so we consider the large-scale fading in the calculation of the
secrecy outage probability. Motivated by the machine learning-
based research works [12]–[14], we propose a low-complexity
deep learning (DL) based approach to design transmitter beam-
forming and phase shift matrix to minimize the secrecy outage
probability, which works based on unsupervised learning and
does not need dataset labels.

II. SYSTEM MODEL

Let us consider an IRS-assisted multiple-input multiple-
output multipleantenna eavesdropper (MIMOME) system, as
shown in Fig. 1, where a transmitter (Alice) equipped with Nt
antennas serves an Nr-antenna legitimate user (Bob), assisted
by an IRS with Ns reflecting elements. Meanwhile, there is
an eavesdropper (Eve) with Ne antennas that receives signals
from Alice and IRS. The legitimate channels from Alice to
Bob, Alice to IRS, and IRS to Bob are denoted by Hb ∈
CNr×Nt , H ∈ CNs×Nt , and Gr ∈ CNr×Ns , respectively.
The wiretap channels from Alice to Eve and IRS to Eve are
denoted by He ∈ CNe×Nt and Ge ∈ CNe×Ns , respectively.
Assume that all channels follow the quasi-static flat-fading
channel model, and the legitimate channels Hb, Gr, and H can
be perfectly estimated at Alice [15], while the instantaneous
CSIs of wiretap channels He and Ge are unknown to Alice.
In addition, we further assume that the wiretap channels obey
Rayleigh fading without loss of generality.

Let s be the transmitted single-stream confidential signal
following E

[
|s|2
]

= 1. Then, the received signals at Bob and
Eve can be expressed as

y = (Hb + GrΘH) ws+ n, (1)
ye = (He + GeΘH) ws+ ne, (2)

where Θ = diag
(
ejθ1 , ejθ2 , · · · , ejθNs

)
denotes a phase

shift matrix and θn is the phase shift introduced by the nth
element of IRS. w ∈ CNt×1 is the precoding vector and
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Fig. 1. An IRS-assisted MIMOME system.

satisfies ‖w‖2 = Pt, where Pt is the transmit power of Alice.
n ∼ CN

(
0, σ2INt

)
and ne ∼ CN

(
0, σ2

eINe

)
are additive

white Gaussian noise (AWGN) at Bob and Eve, respectively.
To maximize the signal-noise-ratio (SNR) at

Bob, the corresponding received signal vector
wr = [(Hb + GrΘH) w]

H
/‖ (Hb + GrΘH) w‖ is

given with the maximum ratio combining (MRC) strategy
[2]. We consider a worst-case scenario that Eve has perfect
knowledge about He, Ge, H, Gr, Θ, and w within the
coherence time. Then, Eve can also maximize the SNR using
the MRC strategy. Accordingly, the channel capacities at Bob
and Eve are given by

Cm = log2

[
1 +

Pt
σ2
‖ (Hb + GrΘH) b‖2

]
, (3)

Cw = log2

[
1 +

Pt
σ2
e

‖ (He + GeΘH) b‖2
]
, (4)

where Cm and Cw are the main channel capacity and wiretap
channel capacity, respectively, and b = w/

√
Pt is the normal-

ized precoding vector.
However, due to the wiretap channels He and Ge which are

unknown, it is not possible to calculate the secrecy capacity
Cs, where Cs = [Cm − Cw]+. Therefore, we choose secrecy
outage probability as a security metric for PLS, which is
defined as the probability that the secrecy capacity Cs is
smaller than the target PLS coding rate Rs. The secrecy outage
probability is defined as

Pout (Rs) = P (Cs ≤ Rs | Transmission) (5a)

= P
(
‖ (He + GeΘH) b‖2 ≥ φ

)
, (5b)

where φ = σ2
e

(
2Cm−Rs − 1

)
/Pt.

Assume that wiretap channels He and Ge obey Rayleigh
fading in this work, i.e., He = βdZ and Ge =
βrC, where Z ∼ CNNe,Nt

(0, INe
⊗ INt

) and C ∼
CNNe,Ns

(0, INe
⊗ INs

). Note that ⊗, βd, and βr denote the
Kronecker products, large-scale fading factors of He and Ge,
respectively.

To derive an expression of the secrecy outage probability,
we introduce an auxiliary random variable X as follows.

X = ‖ (He + GeΘH) b‖2 (6a)

= ‖βdZb + βrCΘHb‖2. (6b)

The secrecy outage probability can be given by

Pout (Rs) = 1− FX (φ) , (7)

where FX(·) is the cumulative distribution function (CDF)
of X . With the help of a Gamma distribution [10], [11],
we can deduce an approximate expression of secrecy outage
probability as1

Pout (Rs) =
1

Γ (Ne)
Γ

(
Ne,

φ

β2
d + β2

r‖ΘHb‖2

)
, (8)

where Γ(m) =
∫∞
0
tm−1e−t dt is the Gamma function, and

Γ(m,n) =
∫∞
n
tm−1e−t dt is the upper incomplete Gamma

function.
In this work, we aim to design joint beamforming by

optimizing Θ and b at Alice and IRS to minimize the secrecy
outage probability. Moreover, the secrecy outage probability
Pout decreases as φ/

(
β2
d + β2

r‖ΘHb‖2
)

increases [10]. Thus,
the optimization problem can be formulated as

max
Θ,b

φ

β2
d + β2

r‖ΘHb‖2
, (9a)

s.t. bHb = 1, (9b)

|ejθn | = 1,∀n = 1, · · · , Ns. (9c)

It is worth noting that the optimal global solution of the
optimization problem with a non-convex unit modulus con-
straint Eq. (9c) is not available. Therefore, [10] proposed a
conventional AO algorithm to solve it, but the computational
complexity is very high. In the next section, we will propose
a DL-based approach that has a much lower computational
complexity.

III. DL-BASED JOINT BEAMFORMING DESIGN

In this section, we propose a low complexity DL-based
joint beamforming network (JBFNet) to solve the problem (9).
The detailed JBFNet architecture is shown in Fig. 2, which
is divided into two parts. One part is named “PhaseNet” for
predicting the phase shift matrix Θ of IRS, and the other part
is named ”BeamNet” for predicting the precoding vector w. In
the following subsections, we discuss the issues on the design
of JBFNet in detail.

A. PhaseNet

PhaseNet adopts a multi-layer convolutional neural network
(CNN) structure as shown in Fig. 3, which is commonly used
in image processing problems and has been proven to be very
effective in communication problems like beamforming design
and channel estimation [12], [13]. In addition, compared with
the commonly used fully connected network (FCN), CNN has
a stronger feature extraction capability of 2-D data.

According to [16], the phase shift matrix Θ can be obtained
by training the channel data, such that we choose the legitimate
channels Hb, Gr, and H as the input to PhaseNet, which are
2-D matrices. In order to improve JBNet’s capability in feature

1For the detailed derivation of the Eq. (8), please refer to https://github.
com/MayeZhang/DL-IRSBF-PLS.

https://github.com/MayeZhang/DL-IRSBF-PLS.
https://github.com/MayeZhang/DL-IRSBF-PLS.
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Fig. 2. Proposed JBNet architecture for joint beamforming design, where
data is composed of Data1 and Data2.

extraction, the input Data1 = {Hb,Gr,H} needs to be pre-
processed. Define Fn = gr,nhHn , where gr,n is the nth column
of Gr, and hHn is the nth row of H. Specifically, Fn is also
the cascaded channel corresponding to the nth element of IRS.
Then the channel in Eq. (1) can be rewritten as

Hb + GrΘH = Hb +

Ns∑
n=1

ejθnFn. (10)

Specifically, the original data X ∈ CNr×Nt×(Ns+1) can be
viewed as a Nr × Nt image with Ns + 1 channels, i.e.,
X = [Hb; F1; F2; · · · ; FNs ]. The input data of the neural
network are required to take real values, but the original data
X consisting of CSI are the complex values. To deal with this
issue, the real part, imaginary part, and absolute value of each
element of X are extracted to form a new 3-D matrix, i.e.,
X = {<(X),=(X),Abs(X)}. Note that <(X), =(X), and
Abs(X) are combined according to the CNN channel dimen-
sion by default, i.e., X ∈ RNr×Nt×3(Ns+1). In addition, the
dimension can be flexibly selected for combination according
to the actual parameter settings. For instance, when the number
of receiving antennas Nr = 2, resulting in a small “image” that
is not conducive to the feature extraction, the combination can
be done by the first dimension, i.e., X ∈ R3Nr×Nt×(Ns+1).
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Fig. 3. PhaseNet framework for Θ based on CNN.

As shown in Fig. 3, the preprocessed data X passes through
two convolutional layers (CLs) and three fully connected lay-
ers (FCLs), and the results are finally outputted by the Lambda
layer. We design CL1 with 256 filters of size 2× 2, CL2 with
512 filters of size 2×2, FCL1 and FCL2 with 64Ns and 16Ns
neurons, respectively. In particular, the number of neurons of
FCL3 is set to Ns, which is the same as the number of IRS

reflecting elements. In order to prevent overfitting of the neural
network, a batch normalization (BN) layer is inserted between
every two layers, and we take rectified linear unit (ReLU) as
the activation function except for FCL3. Specifically, FCL3
adopts “Sigmoid” as the activation function, so that the value
of the output z can be compressed between (0, 1). Then, we
can get the IRS phase shift matrix as Θ = diag [exp(j · 2πz)]
through Lambda layer.

B. BeamNet

For any given phase shift matrix Θ, the objective function
Eq. (9a) is transformed as

φ

β2
d + β2

r‖ΘHb‖2
= c

(
bH (tINt

+ Q1) b

bH (β2
dINt

+ Q2) b

)
, (11)

where c = σ2
e/(2

Rsσ2), t = σ2(1 − 2Rs)/Pt, Q1 =
(Hb + GrΘH)

H
(Hb + GrΘH), and Q2 = β2

rH
HH. Ac-

cording to the generalized Rayleigh quotient, the optimal b is
given by

b∗ = eigvec λmax

[(
β2
dINt

+ Q2

)−1
(tINt

+ Q1)
]
, (12)

where eigvecλmax
(X) is the eigenvector corresponding to

the largest eigenvalue of matrix X, and λmax is the largest
eigenvalue of X. Thus, the optimal beamforming vector can
be given by w∗ =

√
Ptb

∗.
In summary, BeamNet yields the optimal w∗ by computing

Eq. (12) on the basis of the predicted Θ of PhaseNet, Data1,
and Data2 = {Pt, Rs, σ2, σ2

e , βd, βr}.

C. Loss Function

Different from traditional supervised learning, JBNet adopts
unsupervised learning, which does not need additional labels
of Θ and b. In our design, the loss function is related directly
to the objective function Eq. (9a)

Loss = − 1

K

K∑
k=1

φk(
β2
d,k + β2

r,k‖ΘkHkbk‖2
) , (13)

where K is the number of the samples in each batch of the
training set. Note that the neural network is trained in the
direction of minimizing the loss function, which exactly cor-
responds to an increasing φ/

(
β2
d + β2

r‖ΘHb‖2
)

in Eq. (9a).

D. Network Training

According to PhaseNet and BeamNet, the entire input data
of JBNet is composed of Data1 and Data2, i.e., Data =
{Hb,Gr,H, Pt, Rs, σ

2, σ2
e , βd, βr}. To train JBFNet ade-

quately, we generated 8 × 105 and 2 × 105 data samples for
training and validation randomly, respectively. Furthermore,
we set the maximum training epochs as 2000 and the batch
size as 1000. The optimizer is set to perform adaptive moment
estimation (Adam) with an initial learning rate of 0.01. In
order to accelerate the convergence and prevent overfitting,
the learning rate decays by a factor of 0.3 when the loss on
the validation does not decrease for 15 consecutive epochs,
and an early stop with patience 20 is applied. All training
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processes are implemented with Python 3.8, Cuda 11.1, and
PyTorch 1.9.0 on a PC equipped with a GeForce GTX 1080
Ti GPU.

IV. SIMULATION RESULTS
In this section, we give the simulation results of the pro-

posed DL-based method. The simulations adopted the parame-
ters of Nt = 4, Nr = 2, Ne = 2, the noise variances σ2 = σ2

e

are normalized to one, and Pt is defined in dB with respect to
σ2. The legitimate channels Hb, H, and Gr are assumed to be
independent Rayleigh fading, and the large-scale fading factors
of the wiretap channels βd and βr were generated randomly
within (0, 1). All simulation results are averaged over 1000
channel realizations, and we compare the performance of the
proposed DL-based approach with the following schemes:
• Without IRS: The precoding vector w is given by

the maximum ratio transmission (MRT) strategy, i.e.,
w =

√
Pteigvecλmax

(
HH
b Hb

)
. According to Eq. (8), the

secrecy outage probability is calculated as Pout (Rs) =
Γ
(
Ne, φ/β

2
d

)
/Γ(Ne), where φ = σ2

e

(
2Cm−Rs − 1

)
/Pt

and Cm = log2

(
1 + Ptλmax/σ

2
)
.

• Random phase: The phase shift θn of each element is
generated randomly at [0, 2π], and then w is calculated
by the random Θ and Eq. (12).

• AO algorithm: The optimization problem Eq. (9) is
solved by AO-SDR algorithm and AO-Man algorithm,
which are proposed in [10].

Fig. 4 shows the secrecy outage probability in terms of
different numbers of IRS elements Ns. As we can observe, the
proposed JBNet and two AO algorithms (AO-SDR and AO-
Man) reduce the secrecy outage probability as Ns increases,
and there is a small gap between JBNet and the two AO
algorithms. Moreover, the secrecy outage probability of the
random phase scheme is slightly better than that without IRS.
Note that the performance of the random phase scheme does
not change significantly as Ns increases, because both Bob
and Eve get similar gains from IRS.

16 24 32 40 48
0

0.2

0.4

0.6

0.8

1

32 40

0.1

0.15

Fig. 4. Secrecy outage probability in terms of Ns when SNR = 10 dB and
Rs = 3.5 bit/s/Hz.

Fig. 5 illustrates the impact of SNR on the secrecy outage
probability. It is interesting to note that the performance

of JBNet, AO-SDR algorithm, and AO-Man algorithm vary
insignificantly in terms of SNR. However, this does not mean
that increasing SNR is useless. As SNR increases, slightly
increasing secrecy rate can be achieved with a low secrecy
outage probability. Moreover, the performance of JBNet is
very close to the two AO algorithms and much better than that
without IRS when Ns = 48. In particular, there is a lower
bound without IRS when Pt/σ

2
e → ∞, where the proof is

given in Appendix.
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-4 -2 0

0.06

0.07

Fig. 5. Secrecy outage probability in terms of SNR when Rs = 3.5 bit/s/Hz.

Fig. 6 depicts the impact of the PLS coding rate Rs on
the secrecy outage probability. As we can see from the figure,
the secrecy outage probability of all schemes rises with an
increasing Rs. In this case, some methods can be adopted to
improve the PLS coding rate, such as increasing the number
of IRS elements Ns, or increasing the numbers of antennas
Nt and Nr. For example, Fig. 6 also gives the comparison of
simulation curves for Ns = 24 and Ns = 48.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Fig. 6. Secrecy outage probability in terms of Rs when SNR = 10 dB.

Fig. 7 shows the running time of total 20 simulations with
different numbers of IRS elements Ns. For a fair comparison,
all schemes are executed on the same hardware platform with
Intel i5-8259U 2.3GHz CPU. It can be seen that the running



5

time of the two AO algorithms increases significantly as Ns
increases, while the running time of JBNet remains almost
unchanged. Note that Ns = 16 has a longer running time than
Ns = 24, because Ns = 16 is the first round of the simulation
and the program takes some extra time at startup. According
to [10], the computational complexities of AO-SDR algorithm
and AO-Man algorithm are O(Kmax(N4.5

s + N2
sNt + N3

t ))
and O(Kmax(N4

s +N2
sNt+N

3
t )), respectively, where Kmax is

the maximum number of iterations. When the neural network
has been trained, the parameters are fixed, so that solving the
optimization problem Eq. (9) becomes some simple matrix
computation, and the computational complexity of the DL-
based approach is approximated asO(N2

s+NtNrNs) [14]. So,
the proposed JBFNet has a lower computational complexity.

16 24 32 40 48
0

10

20

30

40

50

16 24 32 40 48
4.3

5
10-4

Fig. 7. Running time when SNR = 10 dB and Rs = 3.5 bit/s/Hz.

V. CONCLUSION

We derived the expression of secrecy outage probability
and proposed a low-complexity DL-based approach for joint
beamforming design in an IRS-aided MIMOME system. To
reduce the complexity in solving the optimization problem,
the data pre-processing method, network structure, and loss
function of the neural network have been designed. Simu-
lation results showed that the secrecy performance of the
proposed DL-based approach is close to that of the traditional
AO algorithms, and the computational complexity is reduced
significantly. In the future, we will extend the proposed model
to more practical and challenging scenarios, such as IRS with
a discrete phase shift, the amplitude and phase coupling, etc.

APPENDIX

In the case of PLS without IRS and Pt/σ2
e →∞, φ in Eq.

(5a) can be rewritten as

φ =
σ2
e

(
2Cm−Rs − 1

)
Pt

(14a)

=
σ2
e‖Hbb‖2

σ22Rs
+
σ2
e

Pt

( 1

2Rs
− 1
)
≤ σ2

eλmax

σ22Rs
, (14b)

where λmax is the largest eigenvalue of Hb. Therefore, the
secrecy outage probability satisfies

Pout (Rs) =
1

Γ (Ne)
Γ
(
Ne, φ/β

2
d

)
(15a)

≥ 1

Γ (Ne)
Γ
(
Ne,

σ2
eλmax

σ22Rsβ2
d

)
. (15b)

Note that Eq. (15b) is a lower bound of the secrecy outage
probability without IRS as shown in Fig. 5.
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