
Computing-Aware Routing for LEO Satellite Networks:
A Transmission and Computation Integration Approach

Jiaqi Cao, Shengli Zhang, Senior Member, IEEE,
Qingxia Chen, Houtian Wang, Mingzhe Wang, Naijin Liu

Abstract—The advancements of remote sensing (RS) pose
increasingly high demands on computation and transmission
resources. Conventional ground-offloading techniques, which
transmit large amounts of raw data to the ground, suffer from
poor satellite-to-ground link quality. In addition, existing satellite-
offloading techniques, which offload computational tasks to low
earth orbit (LEO) satellites located within the visible range of
RS satellites for processing, cannot leverage the full computing
capability of the network because the computational resources
of visible LEO satellites are limited. This situation is even worse
in hotspot areas.

In this paper, for efficient offloading via LEO satellite net-
works, we propose a novel computing-aware routing scheme. It
fuses the transmission and computation processes and optimizes
the overall delay of both. Specifically, we first model the LEO
satellite network as a snapshot-free dynamic network, whose
nodes and edges both have time-varying weights. By utilizing
time-varying network parameters to characterize the network
dynamics, the proposed method establishes a continuous-time
model which scales well on large networks and improves the
accuracy. Next, we propose a computing-aware routing scheme
following the model. It processes tasks during the routing process
instead of offloading raw data to ground stations, reducing the
overall delay and avoiding network congestion consequently.
Finally, we formulate the computing-aware routing problem in
the dynamic network as a combination of multiple dynamic single
source shortest path (DSSSP) problems and propose a genetic
algorithm (GA) based method to approximate the results in a
reasonable time. Simulation results show that the computing-
aware routing scheme decreases the overall delay by 78.31%
compared with offloading raw data to the ground to process when
the computing capability is 100 Giga floating-point operations
per second (GFLOPS) which is a trivial computing capability
supported by most LEO satellites.

Index Terms—LEO satellite network, remote sensing,
computing-aware routing, dynamic network, genetic algorithm.

I. INTRODUCTION

REMOTE sensing (RS) is playing an increasingly impor-
tant role in Earth science, space science, and exploration

science, such as environmental studies, military applications,
hazard tracking and monitoring [1]. To complete such space
missions, resources in both computation and data transmission
are needed. On the one hand, the advancements in image
processing and target recognition techniques, especially the

Naijin Liu is the corresponding author.
Jiaqi Cao and Shengli Zhang are with Shenzhen University, Shenzhen,

518052, P.R. China (e-mail: jiaqicao@szu.edu.cn; zsl@szu.edu.cn).
Qingxia Chen, Houtian Wang and Naijin Liu are with Qian Xuesen

Laboratory of Space Technology, China Academy of Space Technology (e-
mail: chenqingxia@qxslab.cn; wanghoutian@qxslab.cn; liunaijin@qxslab.cn).

Mingzhe Wang is with Tsinghua University (e-mail: wmzhere@gmail.com).

application of machine learning techniques [2], have led to
a rapid increase in computational requirements [3], [4]. On
the other hand, sensing technology improvements, such as
hyperspectral image (HSI) [5], enable increased data precision
at the cost of a huge data volume of remote sensing images.
Conventionally, these images are offloaded to ground servers
for computation.

In the aforementioned ground-offloading approach, satellites
act as bent pipes to route massive raw data of RS tasks to
ground servers for processing. While the ground servers are
powerful in computing capability, the overall delay1 of the
ground-offloading approach is still hard to meet the require-
ments of most RS applications which require real-time or near
real-time processing capabilities [6]. It is because transmitting
raw data can be a significant bottleneck: perturbed by the
atmosphere frequently [7], the satellite-to-ground link (SGL)
can be as low as 20 Mbps in state-of-the-art satellites [8].
To overcome the limitations of the ground offloading scheme,
researchers have set their sights on onboard computing.

One promising target to offload computational tasks is low
earth orbit (LEO) satellites. Thanks to the development of LEO
satellite computation capabilities, high-performance onboard
computing provided by a large number of LEO satellites
could alleviate these challenges by processing data before
transmitting them to ground servers [9]. This scheme can
usually achieve impressive performance compared with ground
offloading for the following reasons. First, LEO satellites are
geographically closer to RS satellites than ground servers,
avoiding transmitting large amounts of raw data on SGLs
whose data rate are relatively low. Second, onboard processing
significantly reduces the resulting data’s volume (down to a
few bits sometimes), which lowers the transmission delay in
turn. Despite the promising future of LEO satellite networks
based offloading, major challenges need to be resolved first.

Challenge 1: Uneven Available-Resource Distribution.
More than three quarters of the Earth’s surface is covered by
oceans and glaciers with no frequent human activity; instead, a
large number of tasks generated by human activity are located
on land, especially in hot spots (such as cities and ports). As
the distribution of offloaded tasks are unbalanced, available
resources including computing and spectrum resources are
also unevenly distributed on the LEO satellite network [10],
[11]. In this condition, LEO satellites nearby may not have

1The overall delay refers to the moment from a task is generated to the
moment when the destination obtains the computing results of that task. For
a computation task, both transmission and computation processes affect the
overall delay.

1

ar
X

iv
:2

21
1.

08
82

0v
1

 [
cs

.N
I]

 1
6

N
ov

 2
02

2

2

sufficient computational resources. As a result, computational
tasks generated by remote sensing satellites need to be routed
to farther satellites with sufficient computational resources for
processing. Frequently, the distance can be long enough so that
multiple hops are required to reach LEO satellites. Therefore,
a routing strategy is needed to transmit the tasks generated in
hot spots to remote LEO satellites for computing.

Challenge 2: Inapplicable Terrestrial Routing Strategy. Ex-
isting terrestrial network routing strategies focus on static
networks and commonly employ shortest path algorithms such
as Dijkstra to find viable paths. However, such algorithms
cannot be applied to LEO satellite networks because contem-
poraneous paths sometimes do not exist between the source
and destination [12]. The phenomenon can be explained by the
physical nature of LEO satellites: the high-speed relative mo-
tions between adjacent-orbiting satellites combined with the
limited communication distance cause intermittent connectiv-
ity in LEO satellite networks. Consequently, a routing strategy
specific to LEO satellite networks is needed to accommodate
its innate physical characteristics.

Challenge 3: Unaccounted Computation Cost. Previous
routing strategies for LEO satellite networks focus on data
transmission only. However, the transmission process and the
computation process jointly determine the overall delay (i.e.,
the time from task generation to the arrival of computation
results at the destination) of a computational task. Existing
routing strategies can only find the shortest path from a remote
sensing satellite to a given LEO satellite used for computing,
but cannot evaluate and select appropriate LEO satellites to
conduct computation automatically. Therefore, the satellite to
be used for computation is still unanswered.

Our Solution. For efficient task offloading via LEO satel-
lite networks, we propose a novel computing-aware routing
scheme to minimize the overall delay. As shown in Fig. 1,
the computing-aware routing problem contains three sub-
processes: route raw data of tasks from the source to the
selected computing node; process tasks and generate com-
puting results at the computing node; route the computing
results from the computing node to the destination. Since
the above transmission and computation processes affect the
overall delay collaboratively, these processes are jointly op-
timized in the proposed computing-aware routing scheme.
For challenge 1, the introduction of routing extends the task
offloading targets, so that satellites beyond the visible range
can be scheduled for computation. For challenge 2, the scheme
models the network as a dynamic system, thus the proposed
routing algorithm can tolerate the fast change of available
resources and network topology by design. For challenge 3,
the joint optimization algorithm minimizes the overall delay of
both the transmission and computation stages; in other words,
it additionally considers the computation delay compared to
existing routing algorithms.

A. Main Contributions

1) A Snapshot-Free Dynamic Network Model: We propose
a snapshot-free dynamic network modeling method for LEO
satellite networks for cross-time pathfinding with low memory

Fig. 1. Example application of the computing-aware routing problem.
Remote sensing satellites continuously capture hyperspectral images of the
surveillance area. The institution on the ground needs to obtain the analysis
results of these images. scheme.

consumption. It can represent both resource dynamics and
topology dynamics. It utilizes time-varying edge weights and
node weights to represent the resource dynamics related to
the transmission and computation processes, respectively. In
addition, instead of shielding the dynamics, the proposed
model converts the topology dynamics into the association
dynamics between satellites and virtual nodes (VNs), which
represents self-loops, special edge and node weights.

2) A Computing-Aware Routing Scheme: We propose a
novel routing scheme for LEO satellite networks, which
processes tasks during the routing process. By performing
onboard computing, the proposed scheme can achieve signif-
icant bandwidth savings especially for satellite-ground links.
Because the slow process of offloading raw data to ground
servers is avoided, the proposed routing scheme can reduce
the overall delay. This scheme optimizes the computation
and transmission processes jointly, therefore, tasks can be
offloaded to the optimal satellite via the optimal path. Further-
more, any satellite with sufficient resources can be selected as
the offloading target. Since LEO constellations, especially for
giant LEO constellations, usually consist of a large number
of satellites, a large amount of computing resources could be
utilized for computing-aware routing.

3) A Genetic Algorithm Based Approximation Method:
Since the LEO satellite network is highly dynamic and the
on-board resources (related to node weights) need to be
considered in the computing-aware routing, we formulate the
LEO satellite network computing-aware routing problem based
on the proposed edge-weighted and node-weighted dynamic
network and convert it to a set of dynamic single source
shortest path (DSSSP) problems. Due to the dynamics in
graphs, conventional shortest path algorithms such as the
static Dijkstra algorithm cannot be used to solve the problem;
thus, we propose a genetic algorithm (GA) based method to
approximate the results in reasonable time.

The rest of this paper is organized as follows. In Section II,
the related studies are summarized. Section III investigates
the state-of-the-art computing and transmission capabilities of
LEO satellites. Section IV presents the network model, traffic

3

model, and delay model adopted in this paper. Section III pro-
posed a snapshot-free dynamic network modeling method. The
computing-aware routing problem is formulated in Section VI.
In Section VII, a GA-based path finding algorithm is proposed.
Simulation results and analyses are given in Section VIII.
Conclusions are drawn in Section IX.

II. RELATED WORK

Due to the superiority in latency, cost, development cycle,
etc., the LEO satellite network is deemed as the most prospec-
tive satellite mobile communication system. Therefore, a lot of
studies on LEO satellites and LEO satellite networks have been
conducted in academia and industry. Several aspects relevant
to this paper are introduced below.

A. Routing Strategies for LEO Satellite Networks

The ever changing relative positions of satellites bring
constant changes in network topology; even worse, for specific
instants, no contemporaneous path exists between the source
and destination nodes [12]. Therefore, routing is a challenging
issue in LEO satellite networks.

Graph theory is an effective mathematical tool to model the
network, providing a basis for the routing design [21]. There-
fore, graph-based routing strategies for LEO satellite networks
have attracted widespread attention, which are summarized
in Table I. Contact graph routing (CGR) was proposed for
dynamic routing over the time-varying topology of satellite
networks by NASA [16]. The basic idea of CGR is to utilize
a scheduled contact graph for pathfinding. The contact graph
(CG) records the network dynamics with a “contact plan”
which is a time-ordered list of scheduled changes of network
topology [22]. However, they could not ensure the mission’s
demands and could not fully utilize the resources [20].

To deal with the dynamics in satellite networks, some
existing works proposed snapshot-based network modeling
methods, such as the temporal graph (TG), the virtual topol-
ogy (VT) model and the VN model, and the corresponding
routing strategies. The basic idea of TG [13] is to divide
the system period into a set of discrete slots. In this way,
the dynamic network can be represented as a set of static
topology graphs. Similarly, VT-based network models [14],
[23], [24], [25] are presented based on the determinism of
satellite movements, representing a satellite network as a time-
evolving and predictable network [26]. It considers a LEO
satellite network as a discrete-time network, and assumes a
fixed topology in each time interval [27], which is called a

snapshot. Routes are defined at each snapshot by using this
method. VN-based network models [15], [28] are composed
of different logical locations, which are static and disjoint
zones of Earth (i.e., latitude and longitude), associated with
the nearest satellites [29]. The assignment between the logical
locations and satellites changes due to satellite movements.
With this architecture, each change on the satellite assignment
represents a new snapshot [30]. Each snapshot could be con-
sidered as a mesh network presenting a static state of the net-
work topology. These methods split the dynamic network into
multiple snapshots, where each snapshot corresponded to a
constant network topology during a time slot [27]. Obviously,
these methods only look for paths within a single snapshot
and ignore the relationship between adjacent snapshots [17].
A snapshot is defunct if the duration of the generated route
exceeds the snapshot’s valid time. Transmitting tasks based on
defunct routes may cause routing failures, especially for highly
dynamic LEO satellite networks. Furthermore, as shown in
TableI, these snapshot-based models would consume massive
memory resources because a prohibitively large number of
snapshots would be generated as the time increases or the
network expands [31], [30].

To overcome the drawbacks of the snapshot-based routing
strategies, the time-expanded graph (TEG) [17], [18], [32],
[33], [34] was proposed to establish connections between
networks of adjacent slots. It duplicates the original network
for each time slot and builds edges connecting each node and
its copy at the next slot to represent the data storage. Indeed,
TEGs are essentially an expansion of static graphs, and hence
many standard flow maximization algorithms can be applied
to time-expanded graphs [31]. Although the TEG significantly
increases the connection of snapshots [35], it also incurs high
overhead in storage and algorithm [31].

The time aggregated graph (TAG) [19], [36] aggregates the
time-dependent attributes over edges and nodes. It represents
the time-variance of attributes by modeling them as time
series. To consider the buffer size constraint of each relay
node in TAG, authors in [20], [31], [37] proposed the storage
time aggregated graph (STAG). Although the TAG and STAG
models could capture the possibility of edges and nodes being
absent during certain instants of time [38], these methods still
face the problem of edge explosion when modeling highly
dynamic networks, such as giant LEO constellations. More
specifically, when the periods (altitudes) of the adjacent orbits
of the LEO constellation are different, any two satellites in
adjacent orbits may establish inter-satellite link (ISL) within
a certain period of time. In this condition, when constructing

TABLE I
COMPARISON OF GRAPH-BASED SATELLITE NETWORK ROUTING

Reference Network
Modeling

Classification Dynamics Representation Graph/Model Size Main Shortcomings
Topology Resource Snapshot Number Node Number Edge Number

[13] TG Snapshot
model

X ∝ N O(|S|) O(|S|) Isolated snapshots split the connectivity of the
whole network and consume massive memory[14] VT X ./ |S| O(|S|) O(|S|)

[15] VN X ./ (|S|, |Z|) O(|Z|) O(|Z|)
[16] CG

Non-snapshot
model

X N/A O(|S|) O(|S|) No assurance for task demands and low resource utilization
[17], [18] TEG X X N/A O(N × |S|) O(N × |S|) High storage overhead and computational complexity
[19], [20] TAG/STAG X X N/A O(|S|) O(|S|2) Excessive model size for highly dynamic networks
Our work SFDNM X X N/A O(|Z|) O(|Z|)

∝: Proportional to, ./: related to.
|S|: Satellite number, |Z|: zone (i.e., VN) number, N : slot number.

4

TAGs or STAGs, any two satellites in adjacent orbits should
be connected with an edge. Consequently, the edge numbers
in these graphs are quadratic to satellite numbers.

To overcome the shortcomings of these existing network
modeling methods and routing strategies for the LEO satellite
network, we propose a novel dynamic network model which
can represent both resource dynamics and topology dynamics
with low complexity and the corresponding computing-aware
routing scheme.

B. Computing and Transmission Joint Optimization
Some existing works investigated the computation and

transmission joint optimization for satellite networks. In these
works, satellites are not connected with each other. The work
in [39] and [40] investigated the joint computation assign-
ment and resource allocation problem in multi-tier computing
architectures composed of mobile devices, LEO satellites,
etc. Authors in [41] and [42] proposed hybrid computation
offloading architectures to solve the joint computation and
resource allocation problem, where computing tasks could be
offloaded to both ground servers and visible LEO satellites.

Some studies discussed the computation and transmission
integration problem in terrestrial networks. The work in [43]
discussed the joint communication and computing resource
allocation in a two-tier device–cloud network, where tasks
could be processed locally, in the edge cloud, or both. Authors
in [44] and [45] investigated the task offloading problem in
fog-enabled cellular networks where radio, caching, and com-
puting were jointly optimized. The work in [46] and [47] pro-
posed joint communication and computing resource schedul-
ing approaches for unmanned aerial vehicle (UAV)-assisted
local–edge/local–edge–cloud computing systems, where each
UAV worked as an edge computing devices to assist devices
within its communicable range. Authors in [48] developed a
cloud-fog-device computing architecture for internet of things
(IoT), where the offloading ratio, transmission power, and local
CPU computation speed were jointly optimized.

Although the studies mentioned above jointly optimize the
allocation of multiple resources, they still fail to achieve
network-wide computation offloading. This is because the
networks in the above studies are tree networks, where tasks
cannot be forwarded to other computing devices in the same
network tier. To overcome this limitation, LEO satellites in this
paper are connected with ISLs, which form a mesh network.
In this condition, computing tasks can be offloaded to any
satellite via routing, which makes it possible to extend the
offloading targets to the entire network. However, the network-
wide computation offloading for LEO satellites brings a novel
challenge: the transmission path needs to be optimized as
well. To address this challenge, we propose a computing-
aware routing scheme to jointly optimize the resources and
transmission paths.

III. STATE-OF-THE-ART LEO SATELLITE CAPABILITIES

As the computational requirements and data volume of
space missions increase, unprecedented interest and efforts
have been devoted to enhancing the computing and transmis-
sion capabilities of LEO satellites.

A. Computation Capability of LEO Satellites

For next-generation science and defense missions, space-
crafts such as LEO satellites must provide advanced processing
capability to support a variety of computationally intensive
tasks [49]. The desire for even more onboard processing
capacity has led to the development of onboard computing
systems. The computing capabilities of some typical ;onboard
computing systems are summarized in Table II.

TABLE II
COMPUTING CAPABILITIES OF ONBOARD COMPUTING SYSTEMS (IN

GFLOPS)

Product Processor Computing
Capability Reference

Xiphos Q7S Xilinx Zynq 7020 180 [50]
Xiphos Q8S Xilinx Ultrascale+ 1800 [51]

BAE RAD5545 RAD5545 3.7 [52]

Innoflight CFC-500 Xilinx Kintex Ultrascale+,
NVIDIA TK1 1290 [53]

MOOG G-Series Steppe Eagle AMD G-Series compatible 75 [54]
MOOG V-Series Ryzen AMD V-Series compatible 1000 [54]

Unibap iX5-100 Microchip SmartFusion2,
AMD G-Series SOC 127 [55], [56]

Unibap iX10-100 Microchip PolarFire,
AMD V1605b (Ryzen) 3600 [57], [56]

SpaceCube v2.0 Xilinx Virtex 5 200 [58]

SpaceCube v3.0 Xilinx Kintex UltraScale,
Xilinx Zynq MPSoC 590 [49], [59]

It can be concluded from Table II that existing onboard
computing systems can provide thousands Giga floating-point
operations per second (GFLOPS) of computing capability. For
example, the national aeronautics and space administration
(NASA) Goddard Space Flight Center (GSFC) developed
SpaceCube v3.0 in 2019 [60]. It contains a Xilinx Kintex
UltraScale with a Xilinx Zynq MPSoC to provide 10–100x
or more performance over other flight single-board comput-
ers [49]. In specific, the computing capacities of these systems
on chips (SoCs) both exceed 100 GFLOPS. Although the
computing capability of LEO satellites is not yet comparable
to that of geosynchronous equatorial orbit (GEO) satellites and
ground servers, the prospect and importance of increasing the
computing capability of LEO satellites has been recognized
and a great deal of research has been invested, indicating a
promising future for onboard computing.

B. Data Rate of LEO Satellites

ISLs in free space are usually higher in data rate. For
instance, the data rate of optical ISLs can achieve 5 Gbps [61].
Mynaric’s laser terminal for LEO constellations is capable of
delivering 10 Gbps with a low SWaP unit over a wide range of
constellation configurations [62]. It can operate within densely
packed constellations with intra/inter-plane link distances up
to 7,800 km.

In contrast, the data rate of the satellite-to-ground link
cannot keep up with the speed of the inter-satellite link
due to the perturbation induced by the atmosphere [7]. The
downlink data rate for state-of-the-art satellites ranges from
20 Mbps to 1 Gbps [8]. For example, the CubeSat lasercom
module by Hyperion Technologies enables a bidirectional
space-to-ground communication link between a CubeSat and
an optical ground station, with a downlink speed up to 1 Gbps
and an uplink data rate of 200 Kbps [8]. The limited SGL

5

transmission capability further promotes the application of on-
board computing.

IV. SYSTEM MODEL

A. Network Model

As shown in Fig. 2 (a), the LEO satellites are uniformly
distributed over orbits at an altitude of h kilometers. The
satellites on the same orbit are uniformly distributed. The set
of satellites is denoted by S = {S1, S2, . . . , S|S|} and the set
of orbits is denoted by O = {O1, O2, . . . , O|O|}. The orbit
inclination i0 determines the latitude of coverage. The orbital

period is TO = 2 × π ×
√

(Re + h)
3
/(G×Me), where Re

and Me represent the radius and mass of the earth respectively,
and G is the gravitational constant.

Fig. 2. (a) LEO satellite network with various types of LEO satellites, (b)
Snapshot-free dynamic network model.

2

In Fig. 2 (a), the Earth is divided into multiple static
disjoint zones according to longitude and latitude. These zones
are stationary with respect to the ground. Each static zone
corresponds to a VN. A device in space (such as satellites)
associated with a VN implies that its sub-satellite point (on
the ground) is located in the zone corresponding to the VN.
The association between satellites and VNs is changing over
time. In this way, the topology dynamics of the LEO satellite
network are converted into the association dynamics between
satellites and VNs (addressed in Section V-C).

Fig. 2 (b) shows a part of the VN network shown in
Fig. 2 (a). The edges between each pair of VNs represent
the communication links between the associated satellites.
The inter-satellite and satellite-ground connection strategies
are stated as follows.
• Inter-satellite connections: each satellite has four inter-

satellite links with its neighbors where two are intra-plane
and two are inter-plane.

• Satellite-ground connections: a satellite can communi-
cate with a ground station only when the elevation angle
between them is greater than the minimum elevation
angle. For simplicity, in this paper we assume that a
satellite can communicate with ground stations in a zone
when its sub-satellite point is located in that zone.

In this VN network, the transmission resources are related
to edges; whereas, the computing resources are related to VNs.

The available resources decrease as they are occupied and
increase as they are released, which forms resource dynamics
(addressed in Section V-B).

We would like to emphasize that, although the proposed
dynamic network model generates zones and VNs in the
same way as existing VN network models, the abstraction of
dynamics is fundamentally different: the proposed model is a
continuous-time model rather than a discrete-time model; the
proposed model can represent the topology dynamics as well
as the resource dynamics.

B. Traffic Model

For simplicity, the following traffic model is adopted in this
paper without distinguishing applications. The task arrival is
assumed to be Poisson stochastic processes with parameter
λ because such processes have attractive theoretical prop-
erties [63]. The kth (k ∈ Z+) computational task arrives
at VN u and instant tu,k is denoted as Tu,k. It could be
divided into multiple independent subtasks, i.e., Tu,k =
{τ1
u,k, τ

2
u,k, . . . , τ

l
u,k, . . . , τ

nu,k

u,k } (l, nu,k ∈ Z+, l ≤ nu,k),
where τ lu,k is the lth subtask of Tu,k and nu,k is the total
number of subtasks of Tu,k. Subtasks are the smallest unit of
transmission and computation. Subtasks belonging to the same
task are routed to the same destination.

Generally, there are seven items used to depict subtask τ lu,k,

i.e., Λτ l
u,k

= (C̃lu,k, Ñ
l
u,k, S̃

l
u,k, ϑ

l
u,k, α

l
u,k, β

l
u,k, tu,k), where

C̃lu,k, Ñ l
u,k, S̃lu,k and ϑlu,k are the computation requirement

(i.e., necessary CPU cycles) of accomplishing subtask τ lu,k in
GFLOPS, the data volume of subtask τ lu,k in gigabytes (GB),
the amount of memory needed to complete the computation of
subtask τ lu,k in GB and the required delay threshold to process
subtask τ lu,k in seconds. αlu,k and βlu,k represent the longitude
and latitude of the destination, respectively.

In addition, nu,k, C̃lu,k, Ñ l
u,k and S̃lu,k follow the log-

normal distribution (i.e., ln(nu,k) ∼ N(µn, σ
2
n), ln(C̃lu,k) ∼

N(µC , σ
2
C), ln(Ñ l

u,k) ∼ N(µN , σ
2
N) and ln(S̃lu,k) ∼

N(µS , σ
2
S)). The delay threshold of subtask τ lu,k is randomly

chosen from {ϑ1, ϑ2}. The longitude αlu,k and latitude βlu,k
of the destination of τ lu,k are randomly generated and subject
to uniform distribution.

C. Delay Model

In this paper, the overall delay consists of the transmission
delay, the propagation delay, the computation delay and the
waiting delay.

In dynamic networks, the transmission delay Ttrans of
subtask τl on edge e(i, j) starting from instant t satisfies the
following equation: Ñl =

∫ t+Ttrans

t
Rri,j(t)dt, where Ñl is

the data volume of subtask τl and Rri,j(t) is the available
transmission rate of edge e = (i, j) at instant t.

Similarly, the computation delay Tcomp of τl at node i

starting from instant t satisfies the following equation: C̃l =∫ t+Tcomp

t
Cri (t)dt, where C̃l is the computational requirement

of subtask τl. Cri (t) is the amount of available computing
capability that node i can provide at instant t.

6

Ignoring the minor distance changes during transmissions,
the propagation delay Tprop on edge e(i, j) starting from
instant t is mathematically defined as Tprop(t) = Di,j(t)/c,
where Di,j(t) represents the distance between node i and node
j at instant t. c is the speed of light.

The waiting delay is the duration from the arrival of a sub-
task to the moment when the subtask starts being transmitted
or processed. In the following, the waiting delay before trans-
mission and computation are included in the corresponding
transmission delay and computation delay, respectively.

V. SNAPSHOT-FREE DYNAMIC NETWORK MODELING

To overcome the limitations of existing LEO satellite net-
work models stated in Section II-A, a snapshot-free dynamic
network modeling method is proposed in this section. In
this section, the resource dynamics are addressed first. Then
we propose a graph-based method to address the topology
dynamics. Finally, the advantages of the proposed network
modeling method are summarized.

A. Definition of Dynamic Network Model

The proposed dynamic network model generates zones
and VNs in the same way as existing VN network models.
However, they have some significant differences: the proposed
model is a continuous-time model rather than a discrete-
time model; the proposed model can represent the topology
dynamics as well as the resource dynamics.

The snapshot-free dynamic network model (SFDNM) could
be defined as GSFDNM (t) =

(
V,E(t),WE(t),WV(t)

)
,

where V = {v1, v2, . . . , vn}(n = |V|) is the set of VNs,
E(t) = {e1, e2, . . . , em(t)}(m(t) = |E(t)|) is the set of
edges. An edge could be represented as e = (i, j) if
i is the head of e and j is the tail of e. WE(t) =
{ωe1(t), ωe2(t), . . . , ωem(t)

(t)} is the weight set of edges and
WV(t) = {ωv1(t), ωv2(t), . . . , ωvn(t)} is the weight set of
node (i.e., VNs). Since both transmission and computing
resources have impact on computing-aware routing problem
stated in Section I, the proposed model have both edge weights
and node weights. These weights are task-related, which will
be elaborated in Section V-B2.

B. Time-Varying Resources Modeling

1) Impact Factors of Edges and VNs: Due to the high-
speed mobility and the limited on-board resources of LEO
satellites, the routing process is impacted by many factors,
including 1) the intermittent communications between LEO
satellites, 2) the bandwidths of ISLs, and 3) the available on-
board resources of computing, memory and energy. Among
these factors mentioned above, factor 1) and factor 2) are
related to the transmission process and form the impact factor
set of edges, whereas factor 3) is about the computing process
and forms the impact factor set of VNs. The definitions of the
impact factor set of VNs edges are given below.

The impact factor set of edges ΛE = {D,B}. The intermit-
tent communication between satellites is determined by the
variation of distance caused by the relative motion between

satellites. Here the inter-satellite distance matrix is represented
as D = {Di,j(t), i, j ∈ V, t ∈ [0, T]}, where Di,j(t)
is the distance between satellites associated with VN i and
VN j at instant t; T is the duration of simulation. B =
{Bri,j(t), i, j ∈ V, t ∈ [0, T]} presents the available spectrum
bandwidth matrix of inter-satellite links, where Bri,j(t) is
the available spectrum bandwidth of the communication link
between VN i and VN j at instant t. For inter-satellite links,
Rri,j(t) = σ×Bri,j(t) indicates that the data transmission rate
of edge e = (i, j) at instant t is proportional to the spectrum
bandwidth Bri,j(t).

The impact factor set of VNs ΛV = {C,S,E}. Here the
available computing capability matrix is denoted as C =
{Cri (t), i ∈ V, t ∈ [0, T]}, the available memory matrix
is defined as S = {Sri (t), i ∈ V, t ∈ [0, T]}, and the
available energy matrix is represented as E = {Eri (t), i ∈
V, t ∈ [0, T]}. Cri (t), Sri (t), and Eri (t) represent the available
computing capability in GFLOPS, memory resources in GB
and battery energy in W·h of VN i at instant t, respectively.

It is worth noting that the inter-satellite distance matrix
D is derived from the satellite orbit parameters. In addition,
the available bandwidth matrix B, the available computing
capability matrix C, the available memory matrix S, and the
available energy matrix E are updated when the resources of
the LEO satellite network change. Therefore, the proposed
dynamic network model is update-driven and snapshot-free.

2) Edge Weights and Node Weights: For computing-aware
routing, the routing process is composed of a transmission
process and a computing process. That is, not only the data
should be transmitted along the path, but also the tasks
should be computed at the selected computing VNs on the
path. Specifically, the weight of an edge is related to the
transmission process and is denoted as the sum of transmission
delay and propagation3 delay. The weight of a VN is related
to the computing process and is defined as its processing
delay. The equations for calculating the edge weights and node
weights are defined as follows.

The set of edge weights. WE(t) = {ωu,k,le (t) | e ∈
E(t), u ∈ V, t ∈ [0, T]} is the set of edge weights. ωu,k,le (t) is
the weight of edge e = (i, j) corresponding to subtask τ lu,k and
instant t. It is the sum of the transmission delay T e,u,k,ltrans (t) and
propagation delay T eprop(t) of subtask τ lu,k on edge e = (i, j)
starting from instant t, which can be mathematically defined
as follows.

wu,k,le (t) =

{
T e,u,k,ltrans (t) + T eprop(t), ζ ≤ T r

i,j(t),
∞, otherwise,

(1)

In equation (1), ζ = T e,u,k,ltrans (t) + T eprop(t). T r
i,j(t) de-

notes the visible duration between i and j at t reflecting
the intermittent communication of LEO satellite networks. It
can be concluded that wke (t) equals 0 when ζ > T r

i,j(t),
which indicates that task k cannot be transmitted through edge
e = (i, j) successfully at t because the visible duration is
shorter than the time required by the transmission process.

3Propagation delays should be accounted for in LEO satellite networks,
because the inter-satellite distance ranges from ten to thousands of kilometers.
The propagation delays at milliseconds levels are much larger than those in
terrestrial mobile networks [64].

7

The set of node weights. WV(t) = {ωu,k,li (t) | i, u ∈ V, t ∈
[0, T]} is the set of node weights. ωu,k,li (t) is the weight of
VN i corresponding to subtask τ lu,k and instant t. It is the
processing delay T i,u,k,lproc (t) of τ lu,k at VN i start from instant
t, which can be mathematically defined as follows.

wu,k,li (t) =

{
T i,u,k,lproc (t), Sri (t) ≥ S̃lu,k & Eri (t) ≥ f(C̃lu,k),

∞, otherwise,
(2)

In equation (2), Sri (t) and Eri (t) are the amount of available
memory and energy that VN i can provide at instant t, respec-
tively. S̃lu,k is the amount of memory required to complete

subtask τ lu,k. C̃lu,k is the computation requirement of subtask
τ lu,k. f(·) maps the amount of computation to the amount of
energy consumption. It can be concluded that wki (t) equals 0

when Sri (t) < S̃lu,k or Eri (t) < f(C̃lu,k), which means that the
computation requirement of subtask τ lu,k cannot be completed
by VN i at instant t if the VN’s available memory or energy
is insufficient.

Based on the statements above, it can be concluded that
the snapshot-free dynamic network model has two main dif-
ferences from the conventional static network models. First,
the edges and nodes of the proposed dynamic network model
are both weighted. For computing-aware routing, each subtask
should be computed in the computing VN selected on the
path. Since the processing delay is related to the available
on-board resources of the selected computing VN, the nodes
of the proposed dynamic network model should be weighted
to assist the computing VN selection. Second, both the edge
weights and the node weights are time-varying. Unlike static
terrestrial networks, LEO satellites are moving at high speed.
Therefore, what is changed is not limited to the network
topology; the inter-satellite distances, the available ISL data
rates, and the available on-board resources of satellites all
change in real-time. The dynamics stated above are closely
related to the routing path selection. It is necessary to model
the LEO satellite network as a dynamic network with time-
varying weights.

C. Dynamic Topology Modeling

After modeling the LEO satellite network with the VN
network model, the topology dynamics are converted into the
dynamics of the association between satellites and VNs. The
numbers of satellites associated with two adjacent VNs and
the positions of satellites located in the zones could lead
to different types of edges between these two VNs. Since
a complex scenario can be considered as a combination of
several basic scenarios, as Fig. 3 shows, we present five basic
scenarios observed from the whole dynamic network, where
two adjacent VN i and j are located in zone 1 and zone 2
respectively.

Scenario 1: at instant t, both VN i and VN j are associated
with a satellite and neither of the satellites has reached the
boundaries of their corresponding zones, then there is an edge
from j to i with attribute values Di,j(t) and Bri,j(t).

Scenario 2: at instant t, VN i is not associated with any
satellite. In other words, there is no satellite in zone 1 and

Fig. 3. Association between satellites and VNs. The left side of the figure
illustrates how the satellites move in each zone. The right side presents the
corresponding changes in node weights and edge weights.

communications cannot be established between i and j. In this
case, the attribute values of the edge from j to i are Bri,j(t) = 0
and Di,j(t) = ∞.The available computing capability Cri (t),
memory resources Sri (t) and energy storage Eri (t) of i all
equal to 0.

Scenario 3: at instant t, VN i is not associated with any
satellite; meanwhile, the satellite associated with VN j just
runs to the boundary between i and j, and a task needs to
be transmitted from j to i. Although the task is transmitted
from j to i, these two VNs are actually associated with the
same satellite, thereby the inter-satellite transmission is not
required. In this case, it can be considered that Di,j(t) = 0
and Bri,j(t) =∞. The transmission delay and the propagation
delay of transmitting the task from j to i are both 0.

Scenario 4: at instant t, satellite s1 is associated with VN
i and about to leave zone1. Satellite s2 is about to enter zone
1. If a task computed by s1 needs to be computed at VN i
after instant t, it needs to be transmitted from s1 to s2 at
instant t. During this process, although the satellites used for
computing the task are changed, the VN for task execution
remains the same. Therefore, VN i forms a loop at t: in this
condition, tasks scheduled to be computed by i after t must be
transmitted from VN i to itself through the loop to continue
the execution.

Scenario 5: at instant t, VN i is associated with multiple
satellites. In this case, VN i and its neighboring VN j are
connected by multiple links, forming a multi-graph thereby.

Based on the above five basic scenarios, the association
between satellites and VNs at any moment and the switching
of the association can be accurately represented graphically.

VI. PROBLEM FORMULATION

In this section, a typical DSSSP problem is introduced first,
then the computing-aware routing problem is formulated and
converted to a set of multiple DSSSP problems.

A. Dynamic Single Source Shortest Path Problem

Many problems can be solved by searching the path with the
minimum cost from the source node to the destination node.

8

The cost model varies in different problems, for example, it
can be time or the number of hops. The problem becomes a
DSSSP problem when the weight of each edge changes with
the evolution of time [65], [66], [67].

The DSSSP problems cannot be solved by traditional dy-
namic programming methods (such as the Dijkstra algorithm).
It has aroused wide interests among researchers .

Problem P0 [68]: Let G =
(
V,E(t), w(t)

)
be a simple

directed graph, where V = {V1, V2, . . . , Vn} (n = |V|) and
E(t) = {e1, e2, . . . , em(t)} (m(t) = |E(t)|) are the sets of
vertices and edges, respectively. Let e = (u, v) ∈ E(t);
then u is the head of e denoted as eh, and v is the tail
of e denoted as et. The edge weight function w(e, t) maps
e ∈ E(t), t ∈ [0, T] to non-negative real numbers. It gives
the weights of corresponding edges at instant t4. In other
words, the length of the path depends on time t: assuming that
there is a path Pu,v = {(u1, v1), (u2, v2), . . . , (up, vp)} (u1 =
u, vp = v, up = vp−1, p ∈ Z+ + 1) and the start time
is t1, then the length of path Pu,v is LPu,v

t1 = ψ(Pu,v, t1) =
w(e1, t1) + w(e2, t2) + · · · + w(ep, tp), where tp = tp−1 +
w(ep−1, tp−1) (p ∈ Z+ + 1), ψ(·) maps the path and its start
time to the path length. Then the DSSSP problem is defined
as finding the shortest path πu,v,t = φ(u, v, t) (φ(·) maps
the source node, the destination node and the start time to the
shortest path) and its length Lπu,v

t from a specific source node
u to each v ∈ V at time t.

It worth noting that πu,v,t = ∅ and Lπu,v

t = ∞ if v is not
accessible from u. Problem P0 is a non-convex optimization
problem. It has been proved to be NP-hard [69]. In other
words, it is computationally prohibitive to find an optimal
solution directly for the optimization problem P0.

B. Computing-Aware Routing Problem

In this paper, subtasks are the smallest unit of transmission
and computation; thus, subtasks are the unit of routing. Since
subtasks cannot be further partitioned, there is only one
computing node on each path in the proposed computing-
aware routing scheme.

1) Computing-Aware Routing Problem in GSFDNM (t):
As stated above, the multipath-single-computing-node routing
strategy is adopted in this paper. That is, multiple independent
subtasks that make up a task could be routed (i.e., transmitted
and computed) on different paths simultaneously. Each subtask
is the smallest unit of transmission and computation and
cannot be further partitioned.

The ultimate goal of this paper is to find the optimal path for
each subtask in the dynamic network GSFDNM (t) established
in Section V that could minimize the overall delay of each
subtask, which could be formulated as follows.

Problem P1: Let GSFDNM (t) =
(
V,E(t),WE(t),WV(t)

)
be a directed graph, where V = {v1, v2, . . . , vn} (n = |V|)
is the node set, E(t) = {e1, e2, . . . , em(t)} (m(t) = |E(t)|)
is the edge set. Assuming that Tu,k is the kth (k ∈ Z+)
computational task arrived at node u and its destination node
is v. For subtask τ lu,k ∈ Tu,k (l ∈ Z+), WE(t) = {ωu,k,le (t) |

4t is the instant when data is transmitted to the head of e (i.e., eh). It is
also called “the start time of w(e, t)”, or “the time of w(e, t)” for short.

e ∈ E(t), u ∈ V, t ∈ [0, T]} is the set of edge weights and
WV(t) = {ωu,k,li (t) | i, u ∈ V, t ∈ [0, T]} is the set of node
weights. Assuming that subtask τ lu,k is transmitted on path
Pu,v = {(u1, v1), (u2, v2), . . . , (uq, vq), . . . , (up, vp)} (u1 =
u, vp = v, up = vp−1, p, q ∈ Z+, p ≥ q) and processed by
uq which is the selected computing node on path Pu,v . If the
start time of Pu,v is t1, the length of path Pu,v is defined as
L
Pu,v,uq

t1 = Ψ(Pu,v, uq, t1) = ωu,k,le1 (t1) + ωu,k,le2 (t2) + · · · +
ωu,k,leq−1

(tq−1) + ωu,k,luq
(tq) + ωu,k,leq (t′q) + ωu,k,leq+1

(tq+1) + · · · +
ωu,k,lep (tp), where tq is the instant that τ lu,k arrives at node uq
(i.e., the head of edge eq = (uq, vq)), Ψ(·) maps the path,
the computing node and the start time to the path length. The
relations of {t1, t2, . . . , tq−1, tq, t

′
q, tq+1, . . . , tp} are stated as

follows,

t2 =t1 + ωu,k,le1 (t1), (3a)

t3 =t2 + ωu,k,le2 (t2), (3b)
. . .

tq−1 =tq−2 + ωu,k,leq−2
(tq−2), (3c)

tq =tq−1 + ωu,k,leq−1
(tq−1), (3d)

t′q =tq + ωu,k,luq
(tq), (3e)

tq+1 =t′q + ωu,k,leq (t′q), (3f)

. . .

tp =tp−1 + ωu,k,lep−1
(tp−1). (3g)

Then the computing-aware routing problem in GSFDNM (t)
(i.e., P1) is defined as finding a path πu,v,t from the source
node u to the destination node v at time t and a computing
node uq on the path that can obtain the minimum path length
LΠ
t (Π = {πu,v,t, uq} = Φ(u, v, t), Φ(·) maps the source

node, the destination node and the start time to the shortest
path) . Mathematically, the problem P1 is formulated as

(P1) : min
Π

(Ψ(Π, t)), Π = {πu,v,t, uq}, (4a)

s.t. u, v, uq ∈ V, (4b)
t ≥ 0. (4c)

It could be concluded from the definitions stated above
that there are some differences between P0 and P1. First,
both the edges and nodes in P1 are weighted. Second,
besides the edges for transmission, in problem P1, there is
a computing node on the path to execute the computation of
the corresponding subtask.

The shortest path of P1 contains multiple transmission
edges and a computing node. P1 can be converted to P0
when the computation is executed at the source node u or
the destination node v. Since P0 is NP-hard, problem P1 is
NP-hard as well.

The computing-aware routing process in GSFDNM (t) can
be divided into three stages: (1) finding the shortest path
from the source node u to the computing node uq to transmit
the raw data of subtask τ lu,k, (2) processing the computation
of τ lu,k on a specific computing node uq , (3) finding the
shortest path from uq to the destination node v to transmit
the computation result of subtask τ lu,k. It is worth noting

9

that stage (1) and stage (3) are both typical DSSSP problem
(i.e., P0) whose optimal results are πu,uq,t = φ(u, uq, t)
and πuq,v,t′q

= φ(uq, v, t
′
q), respectively. Assuming that the

path length of πu,uq,t and πuq,v,t′q are L
πu,uq

t = ψ(πu,uq,t, t)

and L
πuq,v

t′q
= ψ(πuq,v,t′q

, t′q). Then the problem P1 can be
rewritten as the following problem P2.

Problem P2: Let GSFDNM (t) =
(
V,E(t),WE(t),WV(t)

)
be a directed graph. (The definition of GSFDNM (t) here is the
same as that in P1.) For any subtask τ lu,k ∈ Tu,k (l ∈ Z+),
find a computing node uq (uq ∈ V), whose node weight is
ω(uq, tq) = ωu,k,luq

(tq), which could minimize the path length
LΠ
t (Π = {πu,v,t, uq} = {πu,uq,t∪πuq,v,t′q

, uq} = Φ(u, v, t)).
Mathematically, the problem P2 is formulated as

(P2) :

min
uq

(
ψ(φ(u, uq, t), t) + ω(uq, tq) + ψ(φ(uq, v, t

′
q), t

′
q)
)
,

(5a)
s.t. (4b), (4c) and

t ≤ tq < t′q. (5b)

For a specific subtask, u, v, t are known. The mapping of
ψ(·) is given in the definition of P0. The mapping of φ(·) can
be obtained by solving the DSSSP problem defined in P0. In
addition, tq and t+ q′ can be calculated by (3d) and (3e).

Given the above discussion, a computing-aware routing
process can be separated into the transmission process (i.e.,
stage (1) and stage (3)) and the computing process (i.e.,
stage (2)). In this way, the problem P1 can be converted
to problem P2 which divides the optimization procedure of
P1 into finding the shortest transmission path with a specific
computing node and finding the optimal computing node with
the corresponding shortest transmission path.

VII. COMPUTING-AWARE ROUTING BASED ON
SNAPSHOT-FREE DYNAMIC NETWORK MODEL

Section V provides an accurate model of the LEO satellite
network studied in this paper. In this section, we discuss how
to solve the computing-aware routing problem (presented in
Section VI-B1) in the established dynamic network model.

Since the computing-aware routing problem in dynamic net-
works is NP-hard; thus, we propose the following GA-based
algorithm to solve this problem as presented in Algorithm 1.
In summary, it outputs the set of the optimal routing path and
the computing node Π = {πt(u, v), uq} and the corresponding
path length L∗.

As Algorithm 1 shows, before running the algorithm,
the sets of VNs and edges should be generated based on
the dynamic network model construct method introduced in
Section II first. In addition, the impact factor set of edges
ΛE, the impact factor set of VNs ΛV and subtask τ lu,k’s
parameter set Λτ l

u,k
are the input data. Algorithm 1 outputs

the set of the optimal routing path and the computing node
Π = {πt(u, v), uq}, the corresponding minimum overall delay
L∗, the updated impact factor set of edges ΛE and the updated
impact factor set of VNs ΛV.

Algorithm 1: GA-based computing-aware routing
Data: The VN set and edge set of the dynamic network

model V,E(t)
Data: Impact factor sets of edges and VNs ΛE = {D,R},

ΛV = {C, S,E}
Data: Subtask τ lu,k’s parameter set

Λτl
u,k

= (C̃lu,k, Ñ
l
u,k, S̃

l
u,k, ϑ

l
u,k, α

l
u,k, β

l
u,k, tu,k)

Result: The optimal path and computing node set
Π = {P ∗, u∗

q} and the minimum overall delay L∗

Result: The updated ΛE and ΛV

1 Initialize P ∗ ← ∅, u∗
q ← ∅, L∗ ←∞, the instant set

T∗ ← ∅ ;
2 Calculate WE(t), WV(t) based on ΛE, ΛV and Λτl

u,k

with Equ. (1) and (2);
3 Set GSFDNM (t)←

(
V,E(t),WE(t),WV(t)

)
;

4 Set Λ
′

τl
u,k

= (C̃lu,k, 0, S̃
l
u,k, ϑ

l
u,k, α

l
u,k, β

l
u,k, tu,k) ;

5 Calculate W
′
E(t) based on ΛE and Λ

′

τl
u,k

with Equ. (1);

6 Set G
′
SFDNM (t)←

(
V,E(t),W

′
E(t),WV(t)

)
;

7 foreach uq ∈ V do
8 (π1,T1)← GA(GSFDNM (t), u, uq, tu,k) ;
9 d1 ← L(π1, tu,k) ;

10 d2 ← wu,k,luq
(tu,k + d1) ;

11 (π2,T2)← GA(G
′
SFDNM (t), uq, v, tu,k + d1 + d2) ;

12 d3 ← L(π2, tu,k + d1 + d2) ;
13 Ltemp ← d1 + d2 + d3 ;
14 if Ltemp < L∗ then
15 Π = {P ∗, u∗

q} ← {π1 ∪ π2, uq} ;
16 L∗ ← Ltemp ;
17 π∗

1 ← π1 ;
18 T∗ ← T1 ;
19 T ∗

proces ← d2 ;
20 end
21 end
22 for i← 1, 2, . . . , |π∗

1 | − 1 do
23 Rri,j([T

∗(i),T∗(i+ 1)])← 0 ;
24 end
25 Cru∗q ([T∗(|π∗

1 |),T∗(|π∗
1 |) + T ∗

proces)← 0 ;

Except the initialization (line 1), Algorithm 1 contains three
parts. The first part is the graph generation (line 2 to line 6).
The algorithm prepares the key data structure GSFDNM and
assigns weight to it according to physical constraints. Inside
the algorithm, the sets of edge weights and node weights of
the dynamic network model GSFDNM (t) are calculated based
on ΛE, ΛV and Λτ l

u,k
with Equ. (1) and (2) (line 2 and line

3). Because the data volume of τ lu,k can be reduced to a
few bits after being computed, this paper only considers the
propagation delay and ignores the transmission delay in the
computing result transmission process. Therefore, a new edge
weight set is calculated and a new dynamic network model
G
′

SFDNM (t) is generated (line 4 to line 6).
The second part is the optimal path and computing node

finding. The main loop (line 7) iterates through all nodes. In
each iteration, uq is selected5 for computing the subtask, and

5Note that the complexity of the proposed computing-aware routing scheme
can be significantly reduced if the computing nodes are selected in an
appropriate range and order. This paper mainly focuses on evaluating how
much overall delay can be reduced by the proposed computing-aware routing
scheme compared with the ground-offloading approach. The computing node
selection strategy will be investigated in-depth in the following research.

10

the overall delay under this scenario is evaluated as Ltemp
which has three components (i.e., d1, d2 and d3). d1 is caused
by the transmission of raw data from the source node u to
the computing node uq . The time at which the subtask is
created is tu,k. The shortest path π1 and the instance set T1

(recording the instances when tu,k first arrived at each node
on π1) are first solved with GA (line 8), and the delay d1 is
calculated thereafter (line 9). d2 is caused by the processing
of the subtask. Since the subtask is arrived at tu,k + d1

which affects the computation delay, the delay is computed as
wu,k,luq

(tu,k +d1) (see line 10). d3 is caused by the computing
result transmission from the computing VN uq back to the
destination VN v. Similar to the calculation of the first part
of the delay, the shortest path is first solved with GA (line
11) and the delay is calculated next (line 12). In this step,
the transmission delay of each edge is ignored because the
computation results are usually only a few bits; therefore,
G
′

SFDNM (t) rather than GSFDNM (t) is adopted as the input
of GA. After calculating the delay under the assumption that
node uq is selected for computing, the global state is updated
to find the best node. Here the optimal path P ∗, the optimal
computing node u∗q and the minimum overall delay L∗ are
updated in line 15 and 16, respectively. Furthermore, for
updating ΛE and ΛV in the next part, the optimal path from
u to u∗q , the instance set T and the processing delay of the
optimal computing node are recorded in line 17–19.

The third part is impact factor sets update. After the second
part, the route for current subtask is resolved as Π ←
{P ∗, u∗q}. However, the offloading of the subtasks occupies
computation and transmission resources of the network. To
reflect these changes, line 23 to line 25 subtracts the resources
occupied by Π from the impact factor values of the time when
τ lu,k arrives at uq and each edge on π.

It is worth noting that the proposed computing-aware
scheme and the ground-offloading scheme are not mutually
exclusive, but complementary. If computing resources on
satellites are not sufficient, tasks can be offloaded to ground
servers for computing. By adding ground servers as nodes
of the dynamic network model, these ground servers will be
selected for computing if the delay of on-board computing is
larger than the delay of ground offloading.

VIII. SIMULATION RESULTS AND ANALYSES

In this section, we evaluate the GA-based computing-aware
routing scheme proposed in Section VII, and analyze the
simulation results. We aim to answer the following research
questions:

• RQ1: How much computing capability is required for
LEO satellites to enable the proposed scheme to effec-
tively reduce delay?

• RQ2: How does the transmission capability affect the
performance of the proposed scheme?

• RQ3: What kind of tasks can be accelerated by the
proposed scheme?

Furthermore, we would like to emphasize that the following
assumptions and settings are made in the simulations.

• Sufficient energy and storage resources. As shown in
Table II, existing onboard computing systems can provide
thousands of GFLOPS of computing capability. There-
fore, we assume that modern LEO satellites can afford
the energy consumption when the computation capability
is less or equal than 400 GFLOPS. The detailed influence
of energy consumption will be discussed and evaluated
in future work.

• Zero computation delay for ground-offloading routing
scheme. Ground servers (such as supercomputers) usually
have large amounts of computational resources. We round
the computation delay towards zero for a fair comparison.

• Platform-agnostic evaluation. A satellite platform con-
tains multiple components. For example, the onboard
computing system determines the computing capability,
whereas the signal transmitters and receivers determine
the transmission capability. Since the components can be
composed at will, a variety of configurations can be found
for LEO satellites. Rather than evaluating specific LEO
satellite configurations exhaustively, we reveal how the
factors affect the performance in general.

• Scheme-level comparison. Since the pathfinding algo-
rithm adopted in the ground-offloading scheme can also
be applied to the transmission process of the proposed
computing-aware scheme, for fairness, the pathfinding
algorithm for both schemes is set as the GA algorithm.
In other words, we focus on scheme-level rather than
algorithm-level comparison in this paper. Furthermore,
since task partitioning strategy also affects the routing
performance, for a fair comparison, subtask is assumed
to be the smallest unit of transmission and computation
in both schemes.

The simulation parameters are presented in Table III.

TABLE III
SIMULATION PARAMETERS

6

Parameter Value

Radius of the earth Re 6,371,393 m
Mass of the earth Me 5.965× 1024 kg

Earth rotation angular velocity ωe 7.29211510× 10−5

Gravitational G 6.67428× 10−11

Kepler constant K 3.9860× 1014

Velocity of light c 299, 792, 458 m/s
Number of orbits 10
Satellites per orbit [10,12,10,12,10,

12,10,12,10,12]
Orbit altitude h [200,300,400,500,600,

200,300,400,500,600] km
Orbit inclination i0 90◦

Max data rate of ISL 5 Gbps
Channel number per ISL 1

Max data rate of SGL 0.2 Gbps
Max computing capability

of satellites C 100 GFLOPS
The number of tasks arrived

at each VN per second λ 1/60
Distribution parameters of

subtask number per task (µn, σn) (3,1)
Distribution parameters of subtask’s
computation requirement (µC , σC) (50,2) GFLO

Distribution parameters of
sub-task’s data volume (µN , σN) (0.1,0.02) Gbps

11

A. Reduced Overall Delay (RQ1)

Fig. 4 and Fig. 5 shows how the computing capability of
LEO satellites affects the performance of computing-aware
routing schemes. The simulation covers computing capability
from 100 GFLOPS to 400 GFLOPS, and the remaining
parameters follow Table III. For each computing capability,
the delay of the computing-aware routing scheme is calculated,
and the result is normalized with the corresponding delay of
the benchmark routing scheme.

50 100 150 200 250 300 350 400

The maximum computing capability of each LEO satellite (GFLOPS)

0

0.2

0.4

0.6

0.8

1

T
h

e
 r

a
ti
o

 o
f

th
e

 c
o

m
p

u
ti
n

g
-a

w
a

re

 d
e

la
y
 t

o
 t

h
e

 g
ro

u
n

d
-o

ff
lo

a
d

in
g

 d
e

la
y

(a)

0 50 100 150 200 250 300 350 400

The maximum computing capability of each LEO satellite (GFLOPS)

0

2

4

6

T
h

e
 o

v
e

ra
ll

d
e

la
y
 (

s
)

(b)

Computing-aware routing

Ground-offloading routing

x=100,y=0.2169

x=11,y=0.9867

Fig. 4. (a) The ratio of the computing-aware delay to the ground-offloading
delay versus the maximum computing capability of each LEO satellite C.
A ratio of 1.0 means that two methods have the same performance. The
lower the ratio, the better the proposed method. (b) The overall delays of the
computing-aware routing scheme and the ground-offloading routing scheme

Fig. 4 (a) demonstrates shortened delays from the proposed
computing-aware routing scheme. It can be concluded that
the proposed computing-aware routing scheme can reduce
the overall delay at most computing capabilities (C > 11
GFLOPS). Especially when the maximum computing capa-
bility is set to 100 GFLOPS, the overall delay is reduced
to 21.69% compared to the benchmark scheme (i.e., 3.61×
speedup). Since existing onboard computing systems can
already provide these computing capabilities, the proposed
scheme is not only effective but also feasible.

Furthermore, we notice that when C < 11 GFLOPS, the
performance of the ground-offloading scheme is better, which
indicates that the time saved by reducing the amount of
data transmitted is less than the increased computation delay
due to insufficient computing capability. In this condition,
tasks can be offloaded to ground servers for computing. In
other words, the proposed computing-aware scheme and the
ground-offloading scheme are not mutually exclusive, but
complementary. By adding ground servers as nodes of the
dynamic network model, these ground servers will be selected
for computing if the delay of on-board computing is larger than
the delay of ground-offloading.

In addition, the curve in Fig. 4 (a) shows that the stronger
the computing capability, the greater the reduction. It flattens

out as more computing capability is added to satellites. This
is because the computation delay of the proposed scheme
converges to 0 after the computing capability is increased to
a certain value. Meanwhile, the other part (i.e., transmission
delay) of the overall delay remains constant. In this way,
the overall delay of the proposed scheme converges to a
constant value and the curve flattens out. The diminishing
return indicates the cost-effectiveness of the computing-aware
routing scheme. The most cost-saving hardware configuration
is allocated to each satellite with 100 GFLOPS of computing
capability. It is less than 10% of the most powerful existing
onboard computing systems listed in Table II. In other words,
not only can computing-aware routing achieve significant
performance boost with advanced hardware, the advantage also
persists with budget hardware with minimum costs.

The reasons for the change in ratio in Fig. 4 (a) can be
explained by Figure 4 (b): as the computing capability of
LEO satellites grows, the proposed approach can leverage
more onboard resources to complete the tasks without trans-
mitting them back to the ground. Therefore, the delay of the
computing-aware routing gradually decreases, while the delay
of ground-offloading routing stays still.

To further explain why computing-aware routing decreases
the delay, Fig. 5 presents a delay decomposition of both the
computing-aware routing scheme and the ground-offloading
routing scheme.

0 50 100 150 200 250 300 350 400

The max computing capability of each LEO satellite (GFLOPS)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
h
e
 d

e
la

y
 c

o
m

p
o
s
it
io

n
s
 o

f
ro

u
ti
n
g
 p

ro
c
e
s
s
 (

s
)

#1 Computing-aware: transmission delay on ISL

#2 Computing-aware: computing delay

#3 Ground-offloading: transmission delay on ISL

#4 Ground-offloading: transmission delay on SGL

Fig. 5. Delay decomposition of computing-aware routing scheme v.s. ground-
offloading routing scheme. The overall delay of computing-aware routing
mainly consists of the transmission delay on ISL (#1), and the processing
delay (#2). Similarly, the overall delay of ground-offloading routing mainly
consists of the transmission delay on ISL (#3), and the transmission delay on
SGL (#4).

Fig. 5 shows that the processing delay of the computing-
aware routing scheme decreases when the computing capabil-
ity of LEO satellites increases, whereas other delays remain
unchanged. Furthermore, it can be concluded that the trans-
mission delay of the computing-aware routing scheme is much
lower than that of the benchmark scheme. It demonstrates
that the proposed computing-aware routing scheme decreases
delay successfully by transmitting computation results instead

12

of raw data. When the computing capability is greater than
11 GFLOPS, the delay reduced by transmitting computing
results is larger than the increased computation delay; the ratio
in Fig. 4 decreases when the computing capability of LEO
satellites increases.

The proposed scheme can accelerate the offloading with
a computing capability as low as 11 GFLOPS under
the provided settings. When the computing capability is
increased to 100 GFLOPS, a trivial computing capability
supported by most LEO satellites, a 3.61× speedup can
be observed. In general, the reduction becomes more
significant as computing capability grows.

B. Impact from Transmission Capability (RQ2)

Fig. 6 and Fig. 7 show how the transmission rates of
SGL and ISL affect the performance of the computing-aware
routing scheme. The simulation covers transmission rate of
SGL from 0.2 Gbps to 10 Gbps and transmission rate of ISL
from 0.25 Gbps to 20 Gbps. The remaining parameters follow
Table III.

0 1 2 3 4 5 6 7 8 9 10

The maximum transmission rate of each SGL (Gbps)

0

0.2

0.4

0.6

0.8

1

1.2

T
h
e
 r

a
ti
o
 o

f
th

e
 c

o
m

p
u
ti
n
g
-a

w
a
re

d
e
la

y
 t
o
 t
h
e
 g

ro
u
n
d
-o

ff
lo

a
d
in

g
 d

e
la

y

Max satellite computing capability = 100 GFLOPS

Max satellite computing capability = 1000 GFLOPS

Fig. 6. Delay of the computing-aware routing scheme under different SGL
transmission rates, normalized to the ground-offloading scheme.

In Fig. 6, the leftmost points presents the situation of the
most common cases at the moment, where the transmission
rate of SGL is assumed to be 0.2 Gbps. Similarly, the rightmost
points present the ideal scenarios where the transmission rate
of SGL is set to 10 Gbps. It could be concluded that, with the
most practical SGL transmission rate setting at present, i.e.,
0.2 Gbps, satellites with 100 GFLOPS and 1000 GFLOPS
of computing capability can save 84.43% and 93.86% of
the overall delay, respectively. Moreover, in Fig. 6, the ratio
increases with the increase of SGL transmission rate. This is
because the ground-offloading scheme transmits a much larger
amount of data over the SGL than the proposed computing-
aware scheme; therefore, as the SGL transmission capacity
increases, the reduction in transmission delay over the SGL
is much greater for the ground-offloading scheme than for the
proposed computing-aware scheme. Although the advantage

of computing-aware routing scheme diminishes with a higher
quality SGL, it is still significant: when the bandwidth is
boosted to 10 Gbps, the satellite with 100 GFLOPS achieves
a speedup of 11.07% nevertheless.

0 5 10 15 20

The maximum transmission rate of each ISL (Gbps)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
h
e
 r

a
ti
o
 o

f
th

e
 c

o
m

p
u
ti
n
g
-a

w
a
re

 d
e
la

y
 t
o
 t
h
e
 g

ro
u
n
d
-o

ff
lo

a
d
 d

e
la

y

Max satellite computing capability = 20 GFLOPS

Max satellite computing capability = 100 GFLOPS

Max satellite computing capability = 500 GFLOPS

Fig. 7. Delay of computing-aware routing under different ISL transmission
rates, normalized to the ground-offloading delay.

Fig. 7 shows the performance at different ISL rates.
The ratio can be approximated with (Tcomp + x ×
∆ISL)/(Ttrans,SGL + y × ∆ISL), where Tcomp is the com-
putation delay of the proposed scheme, Ttrans,SGL is the
transmission delay on SGL of the ground-offloading scheme.
∆ISL is the average delay on each ISL (i.e., one hop). x and y
are the average hop number of transmitting raw data on ISL for
the proposed scheme and the benchmark scheme, respectively.
Since the proposed scheme performs onboard computing,
x < y. After deducing the above equations, the following
conclusion can be obtained: when Tcomp/Ttrans,SGL = x/y,
the ratio constantly equals x/y; when Tcomp/Ttrans,SGL >
x/y, the ratio is larger than x/y and vice versa. In addition,
when increasing the transmission capability of ISL, ∆ISL will
decrease and converge to 0; therefore, the three curves all
converge to Tcomp/Ttrans,SGL. With this conclusion, we can
determine whether to perform the proposed scheme (onboard
computing) or perform the ground-offloading scheme instead
by estimating Tcomp/Ttrans,SGL.

The proposed scheme outperforms the ground-offloading
scheme for all the realistic ISL/SGL configurations used
in simulations. For the worst case of SGL (C = 20
GFLOPS, RISL = 20 Gbps), the proposed scheme still
reduces 37.12% of the baseline delay. For the worst case
of ISL (C = 100 GFLOPS, RSGL = 10 Gbps), the
proposed scheme still reduces 11.07% of the baseline
delay.

C. Impact from Task Properties (RQ3)

Fig. 8, Fig. 9, and Fig. 10 show how the data volume and
computing requirement of subtasks affects the performance of

13

the computing-aware routing scheme, respectively. The simu-
lation covers data volumes from 1 MB to 1 GB, and computing
requirements from 50 Giga floating-point operations (GFLO)
to 800 GFLO. The remaining parameters follow Table III. In
Fig. 8, Fig. 9, and Fig. 10, the delay of the computing-aware
routing is calculated, and the result is normalized with the
corresponding delay of ground-offloading.

0 100 200 300 400 500 600 700 800 900 1000

The data volume of each subtask (MB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
h

e
 r

a
ti
o

 o
f

th
e

 c
o

m
p

u
ti
n

g
-a

w
a

re

d
e

la
y
 t

o
 t

h
e

 g
ro

u
n

d
-o

ff
lo

a
d

in
g

 d
e

la
y

X 1024

Y 0.0536

X 512

Y 0.0729

X 256

Y 0.1104

X 1

Y 1.1762

X 4

Y 1.0238

X 64

Y 0.304

Fig. 8. Performance impact from subtasks’ data volumes. The delay of the
computing-aware routing scheme is normalized with the delay of the ground-
offloading scheme. In other words, a ratio lower than 1.0 means that the
proposed method is better.

From Figure 8 we can conclude that the proposed
computing-aware routing scheme could reduce the overall
delay over a wide range of data volume (> 4 MB) with
current network settings. The superiority of the computing-
aware routing becomes more and more significant when the
data volume of each subtask increases. Since the computing-
aware routing replaces transmissions of large-scale raw data
with final results, the amount of data to transfer is greatly
reduced. The reduced demand also opens up opportunities in
future data-intensive applications: for example, for applica-
tions transferring 1GB of data, the task execution efficiency
can be boosted by 17.66x with computing-aware routing.

Figure 9 shows how the computing requirement of subtasks
affects the performance of the proposed computing-aware
routing. The simulation covers computing requirements from
50 GFLO to 800 GFLO, and the remaining parameters follow
Table III.

From Figure 9 we can conclude that the computing-aware
routing scheme has linear scalability concerning the computing
requirement of each subtask. Because the onboard computing
resources are limited in nature, computing-aware routing is not
intuitively suitable for tasks with extreme computing demands.
Despite this, for most tasks (400 GFLO or less), the proposed
computing-aware routing scheme still handles them well; for
corner cases where computing-aware routing is not the best
approach, its performance downgrades gracefully in a linear
way as the computing requirements grow.

0 100 200 300 400 500 600 700 800

The computing requirement of each subtask (Giga floating-point operations)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
h

e
 r

a
ti
o

 o
f

th
e

 c
o

m
p

u
ti
n

g
-a

w
a

re

d
e

la
y
 t

o
 t

h
e

 g
ro

u
n

d
-o

ff
lo

a
d

in
g

 d
e

la
y

X 50

Y 0.2166

X 800

Y 1.6135

X 400

Y 0.891

X 200

Y 0.4993

X 100

Y 0.3266

Fig. 9. Performance impact from subtasks’ computing requirements. the delay
of the computing-aware routing is normalized with the ground-offloading
delay. In other words, a ratio lower than 1.0 means that the proposed method
is better.

Figure 10 presents a comprehensive view of the delay of
the computing-aware routing scheme, encompassing both the
variables of subtasks’ data volumes and computing require-
ments. It provides a method for compensating the limitations
of computing-aware routing on tasks with high computation
costs. Specifically, the strategy to determine whether to use
the computing-aware routing scheme or fallback to the con-
ventional ground-offloading routing for a specific task can be
pre-computed by the ground station or GEO satellites.

Fig. 10. The impact of subtasks’ data volume and computing requirements
on the delay of the computing-aware routing scheme (normalized to the
ground-offloading delay). A ratio of 1.0 means two methods have equally
good performance. The lower the ratio, the better the proposed method is.

When the deployment of a satellite network has completed,
the parameters of onboard resources (e.g. computing capa-
bility) and the data rate of ISLs and SGLs are known in

14

advance. Therefore, the ground station can predict the overall
performance of computing-aware routing for a specific task
by considering its computing requirement and data volume.
The evaluation results (as Figure 10 shows) can be uploaded
to the satellite network in advance, and all newly generated
tasks follow the predetermined threshold accordingly.

The proposed scheme is applicable to most kinds of
tasks. Unless the task has minimal data volume (less than
4MB) or extremely high computation requirements (more
than 400 GFLO), the proposed scheme can be used for
improving offloading performance.

IX. CONCLUSION

This paper investigates the LEO satellite network routing
to fulfill new requirements of space missions. It first analyzes
the challenges in LEO satellite networks, including the highly
dynamic network topology, limited onboard resources, and
intensive computational demands.

Aiming at tackling the challenges, this paper proposes a
computing-aware routing scheme for LEO satellite networks.
The paper first models the dynamic set of satellites as a
snapshot-free network with time-varying weights. Then the
computing-aware routing problem in the dynamic network is
formulated as a combination of multiple DSSSP problem. In
addition, a GA-based method is proposed to approximate the
results in reasonable time. Simulation results demonstrate the
applicability of the proposed approach, where the overall delay
can be reduced in a wide range of network settings.

In the future, we will study how to further optimize
the proposed computing-aware routing scheme to reduce its
complexity. Furthermore, we will work on the task splitting
mechanism in computing-aware routing.

REFERENCES

[1] A. J. Plaza and C.-I. Chang, High performance computing in remote
sensing. CRC Press, 2007.

[2] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing
data: A technical tutorial on the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40, 2016.

[3] A. Plaza, Q. Du, Y.-L. Chang, and R. L. King, “High performance
computing for hyperspectral remote sensing,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 4, no. 3,
pp. 528–544, 2011.

[4] C.-I. Chang, H. Ren, and S.-S. Chiang, “Real-time processing algorithms
for target detection and classification in hyperspectral imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 39, no. 4, pp.
760–768, 2001.

[5] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and
A. Plaza, “Advances in hyperspectral image and signal processing: A
comprehensive overview of the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 5, no. 4, pp. 37–78, 2017.

[6] A. J. Plaza, “Special issue on architectures and techniques for real-time
processing of remotely sensed images,” Journal of Real-Time Image
Processing, vol. 4, no. 3, pp. 191–193, 2009.

[7] A. Alonso, M. Reyes, and Z. Sodnik, “Performance of satellite-to-ground
communications link between artemis and the optical ground station,”
in Optics in Atmospheric Propagation and Adaptive Systems VII, vol.
5572, 2004, pp. 372–383.

[8] B. Yost, S. Weston, G. Benavides, F. Krage, J. Hines, S. Mauro,
S. Etchey, K. O’Neill, and B. Braun, “State-of-the-art small spacecraft
technology,” 2021.

[9] T. M. Lovelly and A. D. George, “Comparative analysis of present and
future space-grade processors with device metrics,” Journal of Aerospace
Information Systems, vol. 14, no. 3, pp. 1–14, 2017.

[10] X. Pan, R. Liu, and X. Lv, “Low-complexity compression method
for hyperspectral images based on distributed source coding,” IEEE
Geoscience and Remote Sensing Letters, vol. 9, no. 2, pp. 224–227,
2012.

[11] P. Liu, H. Chen, S. Wei, L. Li, and Z. Zhu, “Hybrid-traffic-detour based
load balancing for onboard routing in LEO satellite networks,” China
Communications, vol. 15, no. 6, pp. 28–41, 2018.

[12] M. Madni, S. Iranmanesh, and R. Raad, “DTN and Non-DTN routing
protocols for inter-cubesat communications: A comprehensive survey,”
Electronics, vol. 9, no. 3, p. 482, 2020.

[13] S. El Alaoui, “Routing optimization in interplanetary networks,” 2015.
[14] X. Zhang, Y. Yang, M. Xu, and J. Luo, “ASER: Scalable distributed

routing protocol for LEO satellite networks,” in Proc. IEEE LCN, 2021,
pp. 65–72.

[15] Y. Lu, F. Sun, and Y. Zhao, “Virtual topology for LEO satellite networks
based on earth-fixed footprint mode,” IEEE Communications Letters,
vol. 17, no. 2, pp. 357–360, 2013.

[16] S. C. Burleigh, “Contact graph routing,” Tech. Rep., 2011.
[17] T. Zhang, J. Li, H. Li, S. Zhang, P. Wang, and H. Shen, “Application of

time-varying graph theory over the space information networks,” IEEE
Network, vol. 34, no. 2, pp. 179–185, 2020.

[18] C. Jiang and X. Zhu, “Reinforcement learning based capacity manage-
ment in multi-layer satellite networks,” IEEE Transactions on Wireless
Communications, vol. 19, no. 7, pp. 4685–4699, 2020.

[19] E. Köhler, K. Langkau, and M. Skutella, “Time-expanded graphs for
flow-dependent transit times,” in European symposium on algorithms.
Springer, 2002, pp. 599–611.

[20] T. Zhang, H. Li, S. Zhang, J. Li, and H. Shen, “Stag-based QoS support
routing strategy for multiple missions over the satellite networks,” IEEE
Transactions on Communications, vol. 67, no. 10, pp. 6912–6924, 2019.

[21] J. Whitbeck, M. D. de Amorim, V. Conan, and J. Guillaume, “Temporal
reachability graphs,” in Proc. ACM Mobicom, August 2012, pp. 377–
388.

[22] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini,
M. Feldmann, M. Marchese, J. Segui, and K. Suzuki, “Contact graph
routing in DTN space networks: overview, enhancements and perfor-
mance,” IEEE Communications Magazine, vol. 53, no. 3, pp. 38–46,
2015.

[23] F. Tang, H. Zhang, and L. T. Yang, “Multipath cooperative routing
with efficient acknowledgement for LEO satellite networks,” IEEE
Transactions on Mobile Computing, vol. 18, no. 1, pp. 179–192, 2019.

[24] B. Soret and D. Smith, “Autonomous routing for LEO satellite con-
stellations with minimum use of inter-plane links,” in Proc. IEEE ICC.
IEEE, 2019, pp. 1–6.

[25] H. Tan and L. Zhu, “A novel routing algorithm based on virtual topology
snapshot in LEO satellite networks,” in Proc. IEEE CSE, 2014, pp. 357–
361.

[26] J.Shen, C.Wang, A.Wang, X.Sun, S.Moh, and P.C.K.Hung, “Organized
topology based routing protocol in incompletely predictable Ad-hoc
networks,” Computer Communications, vol. 99, no. C, pp. 107–118,
2017.

[27] M. Werner, “A dynamic routing concept for ATM-based satellite per-
sonal communication networks,” IEEE Journal on Selected Areas in
Communications, vol. 15, no. 8, pp. 1636–1648, 1997.

[28] D.-N. Yang and W. Liao, “On multicast routing using rectilinear steiner
trees for LEO satellite networks,” IEEE Transactions on Vehicular
Technology, vol. 57, no. 4, pp. 2560–2569, 2008.

[29] E.Ekici, I.F.Akyildiz, and M.D.Bender, “A distributed routing algorithm
for datagram traffic in LEO satellitte networks,” IEEE/ACM Transactions
on Networking, 2001.

[30] J. A. Ruiz de Azúa, A. Calveras, and A. Camps, “Internet of satellites
(IoSat): Analysis of network models and routing protocol requirements,”
IEEE Access, vol. 6, pp. 20 390–20 411, 2018.

[31] H. Li, T. Zhang, Y. Zhang, K. Wang, and J. Li, “A maximum flow
algorithm based on storage time aggregated graph for delay-tolerant
networks,” Ad Hoc Networks, vol. 59, pp. 63–70, 2017.

[32] D. Zhou, M. Sheng, B. Li, J. Li, and Z. Han, “Distributionally robust
planning for data delivery in distributed satellite cluster network,” IEEE
Transactions on Wireless Communications, vol. 18, no. 7, pp. 3642–
3657, 2019.

[33] P. Yuan, Z. Yang, Y. Li, and Q. Zhang, “An event-driven graph-based
min-cost delivery algorithm in earth observation DTN networks,” in
Proc. WCSP, 2015, pp. 1–6.

[34] F. He, Q. Liu, T. Lv, C. Liu, H. Huang, and X. Jia, “Delay-bounded
and minimal transmission broadcast in leo satellite networks,” in Proc.
IEEE ICC, 2016, pp. 1–7.

15

[35] Z. Tang, Z. Feng, W. Han, W. Yu, B. Zhao, and C. Wu, “Improving
the snapshot routing performance through reassigning the inter-satellite
links,” in Proc. IEEE INFOCOM WKSHPS, 2015, pp. 97–98.

[36] B. George, S. Kim, and S. Shekhar, “Spatio-temporal network databases
and routing algorithms: A summary of results,” in International Sympo-
sium on Spatial and Temporal Databases. Springer, 2007, pp. 460–477.

[37] T. Zhang, H. Li, S. Zhang, and J. Li, “A storage-time-aggregated
graph-based QoS support routing strategy for satellite networks,” in
GLOBECOM 2017-2017 IEEE Global Communications Conference.
IEEE, 2017, pp. 1–6.

[38] B. George and S. Shekhar, “Time aggregated graphs.” 2009.
[39] Z. Song, Y. Hao, Y. Liu, and X. Sun, “Energy-efficient multiaccess edge

computing for terrestrial-satellite internet of things,” IEEE Internet of
Things Journal, vol. 8, no. 18, pp. 14 202–14 218, 2021.

[40] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Transactions on Wireless
Communications, vol. 21, no. 2, pp. 1362–1377, 2022.

[41] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in LEO
satellite networks with hybrid cloud and edge computing,” IEEE Internet
of Things Journal, vol. 8, no. 11, pp. 9164–9176, 2021.

[42] N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D.-T. Do, and M. Gid-
lund, “Computation offloading and resource allocation in MEC-enabled
integrated aerial-terrestrial vehicular networks: A reinforcement learning
approach,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–14, 2022.

[43] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 5506–5519, 2018.

[44] Y. Zhou, L. Tian, L. Liu, and Y. Qi, “Fog computing enabled future
mobile communication networks: A convergence of communication and
computing,” IEEE Communications Magazine, vol. 57, no. 5, pp. 20–27,
2019.

[45] T. Dang and M. Peng, “Joint radio communication, caching, and
computing design for mobile virtual reality delivery in fog radio access
networks,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 7, pp. 1594–1607, 2019.

[46] Y. Liu, J. Zhou, D. Tian, Z. Sheng, X. Duan, G. Qu, and V. C. M. Leung,
“Joint communication and computation resource scheduling of a UAV-
assisted mobile edge computing system for platooning vehicles,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–16, 2021.

[47] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation
and communication design for UAV-assisted mobile edge computing in
IoT,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp.
5505–5516, 2020.

[48] S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K. Wang, “Energy-
optimal dynamic computation offloading for industrial IoT in fog com-
puting,” IEEE Transactions on Green Communications and Networking,
vol. 4, no. 2, pp. 566–576, 2020.

[49] A. Geist, C. Brewer, M. Davis, N. Franconi, S. Heyward, T. Wise,
G. Crum, D. Petrick, R. Ripley, C. Wilson et al., “Spacecube v3. 0
NASA next-generation high-performance processor for science applica-
tions,” 2019.

[59] T. Flatley, A. Giest, D. Petrick, G. Crum, and M. Davis, “SpaceCube
v3. 0 single-board computer,” Patent 11,026,331, June, 2021.

[50] “Q7S specifications - datasheet,” http://xiphos.com/wp-content/uploads/
2015/06/XTI-2001-2020-e-Q7S-Spec-Sheet.pdf, 2020.

[51] “Q8S specifications - datasheet,” http://xiphos.com/wp-content/uploads/
2020/06/XTI-2001-2025-f-Q8S-Rev-B-Spec-Sheet-1.pdf, 2020.

[52] “RAD5545 SpaceVPX single-board computer,” https://www.baesystems.
com/en-media/uploadFile/20210404061759/1434594567983.pdf, 2017.

[53] “CFC-500: Compact on-board computer - datasheet,” https://www.
innoflight.com/product-overview/cfcs/cfc-500/, 2020.

[54] “Integrated avionics unit - datasheet,” https://www.moog.com/
content/dam/moog/literature/Space Defense/spaceliterature/avionics/
moog-integrated-avionics-unit-datasheet.pdf, 2020.

[55] “iX5-100 spacecloud solution,” https://unibap.com/en/our-offer/space/
spacecloud-solutions/ix5100/.

[56] F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. Troxel, “Enabling
radiation tolerant heterogeneous GPU-based onboard data processing in
space,” CEAS Space Journal, vol. 12, no. 4, pp. 551–564, 2020.

[57] “iX10-100 spacecloud solution,” https://unibap.com/en/our-offer/space/
spacecloud-solutions/ix10100/.

[58] “SpaceCube v2.0 hybrid data processing system,” https://spacecube.nasa.
gov/SpaceCube v2 BriefPDF.

[60] N. G. Franconi, A. D. George, A. D. Geist, and D. Albaijes, “Signal
and power integrity design methodology for high-performance flight
computing systems,” in Proc. IEEE SCC, 2021, pp. 27–38.

[61] I. Del Portillo, B. G. Cameron, and E. F. Crawley, “A technical
comparison of three low earth orbit satellite constellation systems to
provide global broadband,” Acta Astronautica, vol. 159, pp. 123–135,
2019.

[62] C. Carrizo, M. Knapek, J. Horwath, D. D. Gonzalez, and P. Cornwell,
“Optical inter-satellite link terminals for next generation satellite constel-
lations,” in Proc. Free-Space Laser Communications XXXII, vol. 11272,
2020, pp. 8 – 18.

[63] V. Frost and B. Melamed, “Traffic modeling for telecommunications
networks,” IEEE Communications Magazine, vol. 32, no. 3, pp. 70–81,
1994.

[64] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-
Osorio, F. Pinto, and S. C. Burleigh, “Survey of inter-satellite communi-
cation for small satellite systems: Physical layer to network layer view,”
IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2442–2473,
2016.

[65] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully dynamic
algorithms for maintaining shortest paths trees,” Journal of Algorithms,
vol. 34, no. 2, pp. 251–281, 2000.

[66] P. G. Franciosa, D. Frigioni, and R. Giaccio, “Semi-dynamic breadth-
first search in digraphs,” Theoretical Computer Science, vol. 250, no.
1-2, pp. 201–217, 2001.

[67] C. Demetrescu, D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni,
“Maintaining shortest paths in digraphs with arbitrary arc weights: An
experimental study,” in Proc. ACM WAE, 2000.

[68] Sunita and D.Garg, “Dynamizing dijkstra: A solution to dynamic short-
est path problem through retroactive priority queue,” Journal of King
Saud University - Computer and Information Sciences, 2018.

[69] L. Lin, C.-G. Yan, C.-J. Jiang, and X.-D. Zhou, “Complexity and
approximate algorithm of shortest paths in dynamic networks,” Chinese
Journal of Computers, vol. 30, no. 4, p. 608, 2007.

http://xiphos.com/wp-content/uploads/2015/06/XTI-2001-2020-e-Q7S-Spec-Sheet.pdf
http://xiphos.com/wp-content/uploads/2015/06/XTI-2001-2020-e-Q7S-Spec-Sheet.pdf
http://xiphos.com/wp-content/uploads/2020/06/XTI-2001-2025-f-Q8S-Rev-B-Spec-Sheet-1.pdf
http://xiphos.com/wp-content/uploads/2020/06/XTI-2001-2025-f-Q8S-Rev-B-Spec-Sheet-1.pdf
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.innoflight.com/product-overview/cfcs/cfc-500/
https://www.innoflight.com/product-overview/cfcs/cfc-500/
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avionics/moog-integrated-avionics-unit-datasheet.pdf
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avionics/moog-integrated-avionics-unit-datasheet.pdf
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avionics/moog-integrated-avionics-unit-datasheet.pdf
https://unibap.com/en/our-offer/space/spacecloud-solutions/ix5100/
https://unibap.com/en/our-offer/space/spacecloud-solutions/ix5100/
https://unibap.com/en/our-offer/space/spacecloud-solutions/ix10100/
https://unibap.com/en/our-offer/space/spacecloud-solutions/ix10100/
 https://spacecube.nasa.gov/SpaceCube_v2_Brief PDF
 https://spacecube.nasa.gov/SpaceCube_v2_Brief PDF

	I Introduction
	I-A Main Contributions
	I-A1 A Snapshot-Free Dynamic Network Model
	I-A2 A Computing-Aware Routing Scheme
	I-A3 A Genetic Algorithm Based Approximation Method

	II Related Work
	II-A Routing Strategies for LEO Satellite Networks
	II-B Computing and Transmission Joint Optimization

	III State-of-the-Art LEO Satellite Capabilities
	III-A Computation Capability of LEO Satellites
	III-B Data Rate of LEO Satellites

	IV System Model
	IV-A Network Model
	IV-B Traffic Model
	IV-C Delay Model

	V Snapshot-Free Dynamic Network Modeling
	V-A Definition of Dynamic Network Model
	V-B Time-Varying Resources Modeling
	V-B1 Impact Factors of Edges and VNs
	V-B2 Edge Weights and Node Weights

	V-C Dynamic Topology Modeling

	VI Problem Formulation
	VI-A Dynamic Single Source Shortest Path Problem
	VI-B Computing-Aware Routing Problem
	VI-B1 Computing-Aware Routing Problem in GSFDNM(t)

	VII Computing-Aware Routing Based on Snapshot-Free Dynamic Network Model
	VIII Simulation Results and Analyses
	VIII-A Reduced Overall Delay (RQ1)
	VIII-B Impact from Transmission Capability (RQ2)
	VIII-C Impact from Task Properties (RQ3)

	IX Conclusion
	References

