
ar
X

iv
:2

30
2.

14
70

4v
1 

 [
ee

ss
.S

P]
  2

1 
Fe

b 
20

23

Joint Spectrum and Power Allocation for V2X

Communications with Imperfect CSI
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Abstract—In Vehicle-to-Everything (V2X) communication, the
high mobility of vehicles generates the Doppler shift which
leads to channel uncertainties. Moreover, the reasons for channel
uncertainties also include the finite channel feedback, channels
state information (CSI) loss and latency. With this concern, we
formulate a joint spectrum and power allocation problem for
V2X communication with imperfect CSI. Specifically, the sum
capacity of cellular user equipments (CUEs) is maximized subject
to the minimum Signal-to-Interference-and-Noise Ratio (SINR)
requirements of CUEs and the outage probability constraints of
vehicular user equipments (VUEs). Then, two different robust
resource allocation approaches are designed to solve the prob-
lem. One is Bernstein Approximation-based Robust Resource
Allocation approach. More specifically, Bernstein approximations
are employed to convert the chance constraint into a calculable
constraint, and Bisection search method is proposed to obtain
the optimal allocation solution with low complexity. Then, for
further reducing the computational complexity, Self-learning
Robust Resource Allocation approach, which includes a learning
method and an analytical mapping method, is proposed as
the second approach. The learning method is devised to learn
the uncertainty set which transforms the chance constraint
into calculable constraints, and the analytical mapping method
is proposed to obtain closed-form solutions of the resource
allocation problem. Finally, the simulation results prove that
the proposed approaches can improve the capacity of all CUEs
effectively whilst ensuring the reliability of the channel.

Key Terms: resource allocation, imperfect CSI, V2X commu-
nications, chance constraint, robust optimization.

I. INTRODUCTION

In recent years, with the evolution of the significant research

area about vehicular networks, automotive and telecommu-

nication industries have begun to focus on this research.

The application of wireless communication to vehicular net-

works has generated a new concept denoted as Vehicle-

to-Everything (V2X) communication. V2X communication

consists of Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle

(V2V), Vehicle-to-Pedestrian (V2P) and so on [1], [2]. The

goal of V2X communication is to assist traffic management

and guarantee road security. In addition, it can be applied

to autopilot and vehicular entertainment. V2X communication

demands to achieve the communication in real-time between
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vehicles and other objects, such as other vehicles, base stations

(BS) and intelligent mobiles. As a result, it is considered as a

key technique to connect vehicles and satisfy the requirement

of intelligent transportation system (ITS) [3], [4].

To satisfy the requirements of V2X communication, two

leading wireless communication technologies are put forward

by the research community. The WiFi technology, which

works in 5.9 GHz, is supported by the IEEE 802.11p standard

[5]. Vehicular Ad-hoc NETworks, which apply the WiFi tech-

nology as the first standard, can enable vehicles to access the

network in a competitive way. The cellular technology, which

works in permissible bands of networks, is represented as

Cellular-V2X (C-V2X) [6]. The Third Generation Partnership

Program (3GPP) proposed the Long Term Evolution V2X

(LTE-V2X) where radio resources were managed uniformly

by the BS in 2016 [7]. Afterwards, the 3GPP standardized

the 5G New Radio-V2X (NR-V2X) in Release 16 in 2018

[8]. Compared with 802.11p, the analysis shows that C-V2X

has various advantages in the field of latency, coverage area

and throughput [9], [10]. Thus, NR-V2X is chosen as the

communication technology in this work.

In practice, it is inevitable to face the challenge of the

resource allocation problem when V2X communication is

applied. Hence, the research community has devoted in the

V2X resource allocation problem in recent years. Generally,

the radio frequency is always scarce and essential so that it

should be efficiently allocated. Since the BS cannot cover all

areas, NR-V2X proposes two modes to allocate resources: the

centralized under-coverage mode (mode-1) and the distributed

out-of-coverage mode (mode-2) [11]. Based on these two

modes, vehicles can directly communicate with each other

bypassing BS. The difference between the two modes is their

arrangement approaches about the radio frequency. Specifi-

cally, the Next Generation NodeB (gNB) in mode-1 is in

charge of scheduling and allocating resources to vehicles. On

the contrary, the vehicles in mode-2 can autonomously choose

their own radio resources. Compared with mode-2, mode-1 can

efficiently use sub-carriers with less interference because the

gNB is able to collect comprehensive information from the

vehicles covered by the gNB. Therefore, this paper studies

the resource allocation problem based on mode-1 of NR-V2X

networks.

The resource arrangement for V2X communication faces

distinct challenges compared with traditional wireless commu-

nication. In practical situations, an important feature of V2X

communication is the high mobility of vehicles which leads to

the Doppler effect in small-scale fading. Therefore, acquiring
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the precise channel state information (CSI) is challenging.

Particularly, when the links are not directly connected to the

gNB, the precise CSI is more difficult to be acquired due

to latency. Typically, for vehicles running at low speeds, the

Doppler shift is not prominent and is neglected. Nevertheless,

for vehicles running at high speeds, it can significantly affect

the small-scale fading which results in rapid channel variations

[12]. Moreover, the challenge of acquiring the precise CSI

should also include the finite channel feedback, CSI loss and

latency [13]–[15]. To sum up, the channel uncertainty can

result in the violation of V2V links and effect the resource

arrangement of V2X communication.

Our work investigates the resource allocation of V2X com-

munication with imperfect CSI. In realistic vehicular networks,

the gNB can merely acquire the precise CSI in V2I links,

whereas it estimates the CSI in V2V links with some errors

due to the uncertainty of CSI. To overcome the problem of

the limited spectrum, we present a system model where each

cellular user equipment (CUE) can share the spectrum with at

most one vehicular user equipment (VUE), and each VUE can

reuse the spectrum of at most one CUE. Then, we design a

joint spectrum and power allocation optimization problem to

maximize the sum capacity of CUEs subject to the minimum

Signal-to-Interference-and-Noise Ratio (SINR) requirement of

CUEs and the probabilistic quality of service (QoS) of VUEs.

The contributions of this work are summarized as follows:

• Bernstein Approximation-based Robust Resource Alloca-

tion approach is presented to solve the resource alloca-

tion problem. Specifically, Bernstein approximations are

employed to make the chance constraint tractable, and

Bisection search method is developed to resolve the non-

convex problem with low complexity.

• For further reducing the computational complexity, Self-

learning Robust Resource Allocation approach, which

includes a learning method and an analytical mapping

method, is proposed to resolve the above problem. We

devise the learning method, which learns the channel

uncertainty set to obtain an affine set, to transform the in-

tractable chance constraint into simple linear constraints.

The analytical mapping method is developed to obtain

closed-form solutions of the non-convex optimization

problem.

• The trade-off between robustness and the capacity of

CUEs is revealed for the above two approaches. Sim-

ulation results are provided to demonstrate that Self-

learning Robust Resource Allocation approach increases

robustness at the expense of decreasing the capacity

of CUEs. On the contrary, Bernstein Approximation-

based Robust Resource Allocation approach increases the

capacity of CUEs at the expense of decreasing robustness.

The remainder of this paper is organized as follows. In Sec-

tion II, we review the related work. We introduce the system

model and state the optimization problem in Section III. In

section IV, Bernstein Approximation-based Robust Resource

Allocation approach is presented to resolve the optimization

problem. For further minimizing the computation complexity,

Self-learning Robust Resource Allocation approach is pro-

posed in Section V. Then, the suboptimality of the proposed

methods is analysed in Sections VI. Finally, we elaborate the

simulation results in Sections VII and summarize the paper in

Sections VIII.

II. RELATED WORK

The resource allocation is a significant part of the challenges

for V2X communications. To effectively reduce the inter-

channel interference and markedly enhance the throughput

in V2X networks, the applicable resource allocation schemes

should be adopted [16]. Therefore, for achieving the ultra-

reliable V2X communications, different resource management

approaches have been researched in [2], [17]–[20]. In [2], the

resource management scheme, which utilized the expressions

of reliability and delay assurances, was presented to guarantee

the QoS requirements for V2X communication. For ensuring

the SINR to exceed its objective threshold, the work in [17]

proposed a two-stage resource allocation method for V2X

communication. The paper in [18] designed a mode selection

method based on the resource management whilst the mini-

mum SINR requirements and the maximum global information

value were guaranteed for V2X communication. The authors

in [19] developed a jointly power and subcarrier allocation

approach to guarantee the minimum SINR requirements for

C-V2X communication which is satisfied by the long-term

SINR. The work in [20] studied the resource allocation for

intelligent reflecting surface aided vehicular communications

while the minimum SINR of V2V links was guaranteed.

Nevertheless, in above approaches, the minimum SINR

requirements could merely supply the best-effort services for

VUEs. Thus, these approaches failed to adopt the form of

probability to guarantee the requirements of the ultra-reliable

transmission. For guaranteing the VUE QoS requirements,

the outage probability of the SINR requirements must be

below the default probability. In [21], Bernstein approxima-

tions were adopted to transform the probabilistic constraints

of the interference of D2D-V links into the tractable con-

straints, and the resource allocation problem was resolved

by the successive convex approximation. The authors in [22]

developed the block coordinate descent approach to solve the

spectrum sharing problem in RIS-aided vehicular networks

where the outage probability of V2V links was employed to

ensure the reliability of V2V communication. The work in

[23] utilized the chance constraints to ensure the minimum

reliability requirement for V2V and proposed a suite of graph-

based resource management algorithms to resolve the resource

allocation problem. The reliability requirements for VUEs,

expressed as the tolerable VUEs chance constraints, were

converted into an easier affine constraint in [24], and the

analytical mapping method was designed to obtain the optimal

transmit power for V2X networks.

However, all of these works neglected the channel uncer-

tainties, resulting in the violation of QoS constraints for V2V

links. Though some researchers used the robust optimization



to handle the CSI uncertainties in [25]–[27], they considered

the error region of CSI uncertainty as the prior knowledge and

the CSI uncertain set as the fixed-size set. In a realistic sce-

nario, due to the unknown of the channel uncertainty model,

these approaches were challenging to be deployed in the fast

variational channels for the V2X communication. Although

the resource allocation based on the uncertain probability

distribution information was solved in [28], [29], they required

the mean and variance of the uncertain CSI samples, which

complicated the resource allocation approaches and increased

the computational complexity. Thus, this paper investigates the

robust resource allocation problem based on the uncertain CSI

in V2X networks with low complexity.

III. SYSTEM MODEL

In this section, we introduce the system model and discuss

the channel uncertainty scenarios in V2X communication

network. Then, the resource allocation problem is formulated

based on the different QoS requirements.

A. Network Model

In Fig. 1, a single cellular vehicle network is considered as

the system model. We assume there are J vehicles whose set

is J = {1, · · · , J}, denoted as CUEs. The CUEs apply V2I

links to deliver messages with the gNB. There are S pairs of

vehicles whose set is S = {1, · · · , S}, denoted as VUEs. The

VUEs achieve the V2V communication. Furthermore, the Uu

interface of NR is utilized to send messages for V2I communi-

cation and the transmission mode-1 in NR sidelink is utilized

for V2V communication. The set of resource blocks (RBs)

is allocated to Uu interface by the gNB. Orthogonal multiple

access technique is applied in the above network model so

that each orthogonal RB can serve a vehicle under OFDMA

subcarriers. The orthogonal RBs can weaken the interference

of neighboring CUEs. Because the CUEs sparsely use the

uplink resource and the VUEs can cause less interference for

gNB, the VUEs can reuse the uplink resource of CUEs. The

indicator variable ρj,s represents the allocation of the uplink

resource for VUEs. Significantly, if the spectrum of the jth

CUE is reused by the sth VUE then ρj,s = 1, otherwise

ρj,s = 0. pcj represents the transmit power of the jth CUE.

Likewise, pds represents the transmit power of the transmitter

of the sth VUE. We represent the channel gain between the

sth VUE as

gds =
∣

∣hd
s

∣

∣

2
̟d

sκD
−ǫ
s

∆
=
∣

∣hd
s

∣

∣

2
ωd
s , (1)

where ωd
s = ̟d

sκD
−ǫ
s denotes the large-scale slow fading

channel gain, hd
s represents the small-scale fast fading power

component, κ is the pathloss constant, Ds is the distance

between the sth VUE, ǫ is the decay exponent, and ̟d
s is log-

normal shade fading random variable with a standard deviation

ϑ. Similarly, gcj denotes the channel gain between the jth CUE

and the gNB, gsj denotes the crosstalk channel gain between

the jth CUE and the sth VUE, gBs denotes the crosstalk

channel gain between the sth VUE and the gNB and their

expression forms are all similar to gds .

c
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Fig. 1. Single cellular vehicle network of V2X communication.

Because the large-scale fading components generally rely on

the vehicular position and undergo the slow scale variation, the

gNB can entirely acquire the large-scale fading information

of all communication links. However, we make different

assumptions for the small-scale fading of different links. We

assume that the small-scale fading information hc
j and hB

s of

the links can be accurately obtained at the gNB in this paper.

The reasons are mainly the following two fold. On the one

hand, since the links gcj and gBs are directly connected to the

gNB as shown in Fig. 1, their latency is very low. On the

other hand, since the gNB is stationary in the side of the road,

the relative movement between the gNB and the transmitters

of the vehicles is marginal when compared with the relative

movement between the transmitters and the receivers of the

vehicles. For acquiring the small-scale fading hd
s and hs

j of

the links, we present the physical sidelink feedback channel

(PSFCH), which is applied to transmit the CSI of the receiver

to the transmitter. When the PSFCH receives the reply, a

physical uplink control channel (PUCCH), which forwards

the sidelink CSI from transmitter to the gNB, is allocated to

the transmitter by the gNB. There is some delay when the

CSI is transmitted to the gNB by vehicular links because

of the overhead of establishment and disconnection of the

channels. Moreover, the high mobility of vehicles can result

in the Doppler shift which affects the small-scale fading.

Therefore in this paper, we suppose that gNB merely acquires

the estimated small-scale fading ĥd
s and ĥs

j with estimation

error eds and esj , respectively. The additive error [30] model of

the channel imperfection is applied, i.e.,

h = λĥ+
√

1− λ2e, (2)

where e ∼ CN (0, 1) is i.i.d., λ (0 < λ < 1) expresses the

channel estimation error coefficient. From the fading channel

of the Jakes [31] statistical model, λ is expressed as

λ = J0(2πfsT ), (3)

where J0 is the zero-order Bessle function of the first kind and

T is the channel feedback latency. fs = vfv/c represents the

maximum Doppler frequency, where v denotes the vehicular

speed, fv is the carrier fequency and c = 3 × 108m/s. This



paper supposes that the transmitting vehicles and the receiving

vehicles can obtain the accurate λ.

On this basis, the received SINR of the sth VUE is

expressed as

Γd
s =

pdsω
d
s

(

λ2
∣

∣

∣
ĥd
s

∣

∣

∣

2

+ (1− λ2)
∣

∣eds
∣

∣

2
)

σ2 +
∑

j∈J

ρj,spcjω
s
j

(

λ2
∣

∣

∣
ĥs
j

∣

∣

∣

2

+ (1− λ2)
∣

∣esj
∣

∣

2
) , (4)

where σ2 is the power of the additive white Gaussian noise.

Likewise, the SINR from the jth CUE to the gNB is expressed

as

Γc
j =

pcj
∣

∣hc
j

∣

∣

2
ωc
j

σ2 +
∑

s∈S

ρj,spds|hB
s |2ωB

s

. (5)

B. Problem Formulation

Because the V2I communications can satisfy the require-

ment of mobile high-data rate services, it is significant to

maximize the capacity of all CUEs. In V2X communication

systems, the V2I communications usually serve insecure sce-

narios. The reliability of V2V communications is ensured by

the probability of outage event since the CSI of vehicles is

uncertain. Therefore, the resource allocation problem can be

formulated as

max
{ρj,s}{pc

j
}{pd

s}

J
∑

j=1

Bclog2(1 + Γc
j) (6a)

s.t. Γc
j ≥ Γc

min, ∀j ∈ J , (6b)

Pr{Γd
s ≥ Γd

min} ≥ 1− β, ∀s ∈ S, (6c)

S
∑

s=1

ρj,s ≤ 1, ρj,s ∈ {0, 1}, ∀j ∈ J , (6d)

J
∑

j=1

ρj,s ≤ 1, ∀s ∈ S, (6e)

0 ≤ pcj ≤ pcmax, ∀j ∈ J , (6f)

0 ≤ pds ≤ pdmax, ∀s ∈ S, (6g)

where Γc
min is the SINR threshold of V2I communications,

Γd
min is the SINR threshold of V2V communications, Bc

denotes the channel bandwidth of RBs, Pr{·} denotes the

form of the probability, β represents the maximum acceptable

outage probability of V2V communications, pcmax and pdmax

denote the maximum transmit power of V2I communications

and V2V communications, respectively. Constraints (6d) and

(6e) express that each CUE can share the spectrum with at

most one VUE pair and each VUE pair can only reuse the

spectrum of at most one CUE, respectively.

For solving problem (6), the major challenges are listed in

following: (i) Obtaining the closed-form expression of (6c) is

difficult due to the existence of the outage probability con-

straint and the channel uncertainty for V2V communications;

(ii) Problem (6) is a non-convex problem since (6a) is non-

convex and the variable ρj,s belongs to the discrete variable;

(iii) The variables in problem (6) are coupled with each other

since the variables ρj,s, pcj and pds coexist in the numerators

and denominators of Γc
j and Γd

s . To tackle these challenges, we

propose two different robust resource allocation approaches to

solve problem (6).

IV. BERNSTEIN APPROXIMATION-BASED ROBUST

RESOURCE ALLOCATION

As mentioned in above sections, the accurate distributions of

eds and esj are difficult to receive in practical vehicular commu-

nication. In addition, the different V2X scenarios can generate

different distributions of eds and esj . In this section, we suppose

that the distributions of eds and esj are uncertain. Then, problem

(6), which can be decomposed into a power allocation problem

and a spectrum allocation problem, is solved by Bernstein

Approximation-based Robust Resource Allocation approach.

To be specific, the optimal power allocation solutions can be

obtained based on each possible spectrum reusing pair of CUE

and VUE. Then, the optimal spectrum allocation solution can

be obtained based on the optimal power allocation solutions

of all possible reusing pairs.

A. Chance Constraint Approach

The power allocation problem is researched based on each

possible reusing pair of CUE and VUE in following subsec-

tion. Assuming that the spectrum reusing pair is determined,

the power allocation problem is simplified as

Cj,s = max
{pc

j
}{pd

s}
Bclog2(1 +

pcjg
c
j

σ2 + pdsg
B
s

) (7a)

s.t.
pcjg

c
j

σ2 + pdsg
B
s

≥ Γc
min, (7b)

Pr{ pdsg
d
s

σ2 + pcjg
s
j

≥ Γd
min} ≥ 1− β, (7c)

0 ≤ pcj ≤ pcmax, 0 ≤ pds ≤ pdmax. (7d)

For better compatibility with the following robust optimization

approaches, constraint (7b) is translated into a linear constraint

which can be rewritten as

pcjg
c
j

σ2 + pdsg
B
s

≥ Γc
min ⇒

pcjg
c
j

Γc
min

−pdsg
B
s ≥ σ2. (8)

Likewise, the content in the brace of constraint (7c) can be

rewritten as

pdsg
d
s

σ2 + pcjg
s
j

≥ Γd
min ⇒ pdsg

d
s

Γd
min

− pcjg
s
j ≥ σ2 ⇒ pd

sθ
d
s ≥ σ2, (9)

where pd
s = [

pd
s

Γd
min

,−pcj ] and θd
s = [gds , g

s
j ]

T . As shown

in [32], a convex function can take the place of (7c) as

the safe approximations based on the Bernstein approach for

i.i.d. uncertain channel parameters. The uncertainty set can be

written as

θd
s ∈ [θ̄d

s − θ̂d
s , θ̄

d
s + θ̂d

s ], (10)

where θ̄d
s = [ḡds , ḡ

s
j ]

T , θ̂d
s = [ĝds , ĝ

s
j ]

T , ḡds and ḡsj are the

estimated values of gds and gsj , respectively. ĝds and ĝsj are the



error values of gds and gsj , respectively. For applying the chance

constraint approach, the V2V constraint in (7c) is rewritten as

pd
sθ

d
s =

pds ḡ
d
s

Γd
min

− pcj ḡ
s
j + ξ1s

pds ĝ
d
s

Γd
min

− ξ2sp
c
j ĝ

s
j , (11)

where ξ1s =
gd
s−ḡd

s

ĝd
s

, ξ2s =
gs
j−ḡs

j

ĝs
j

. ξ1s and ξ2s are i.i.d. for each

s ∈ S and in the range of [−1, 1]. The values of ξ1s and ξ2s are

independent of each other and belong to the particular class

of Fs, which denotes the probability distribution function of

θd
s . Then, the intractable chance constraint is transformed into

a convex constraint from the following theorem.

Theorem 1. Consider a chance constraint as follows

Prξl∼P

{

f0(y) +

d
∑

l=1

ξlfl(y) ≤ 0

}

≥ 1− β, (12)

where fl(y) is the real-valued function of the variable y,

and the uncertain data ξl is random with a partially known

probability distribution P , so the explicit convex constraint

f0(y) +

d
∑

l=1

max
[

µ−
l fl(y), µ

+
l fl(y)

]

+
√

2 ln(1/β)

(

d
∑

l=1

σ2
l f

2
l (y)

)1/2

≤ 0 (13)

is a safe approximation of (12).

Proof. Refer to Section IV in [32].

Therefore, Bernstein approximations of the chance con-

straint can take the place of constraint (7c), i.e.,

pcj ḡ
s
j −

pds ḡ
d
s

Γd
min

+ σ2 +max
{

µ2−
Fs

pcj ĝ
s
j , µ

2+
Fs

pcj ĝ
s
j

}

+max

{

µ1−
Fs

−pds ĝ
d
s

Γd
min

, µ1+
Fs

−pds ĝ
d
s

Γd
min

}

(14)

+

√

2 ln

(

1

β

)

(

(

σ2
Fs

pcj ĝ
s
j

)2
+

(

σ1
Fs

−pds ĝ
d
s

Γd
min

)2
)1/2

≤ 0,

where σ1
Fs

≥ 0, σ2
Fs

≥ 0, −1 ≤ µ1−
Fs

≤ µ1+
Fs

≤ 1,

−1 ≤ µ2−
Fs

≤ µ2+
Fs

≤ 1. These parameters serve as the

safe approximations of the chance constraint and rely on

Fs. Because the parameters including the transmit power, the

channel gain and the SINR threshold are positive, we discover

µ2−
Fs

pcj ĝ
s
j ≤ µ2+

Fs
pcj ĝ

s
j and µ1−

Fs

−pd
s ĝ

d
s

Γd
min

≥ µ1+
Fs

−pd
s ĝ

d
s

Γd
min

. Moreover,

from

(

A
∑

a=1
(xa)

2

)1/2

≤
√
Amax

∀a∈A
|xa|, we can further get an

upper bound of (14), i.e.,

pcj ḡ
s
j −

pds ḡ
d
s

Γd
min

+ σ2 + µ2+
Fs

pcj ĝ
s
j + µ1−

Fs

−pds ĝ
d
s

Γd
min

+

√

4 ln

(

1

β

)

max

{

σ2
Fs

pcj ĝ
s
j , σ

1
Fs

pds ĝ
d
s

Γd
min

}

≤ 0. (15)

TABLE I
µ+

Fs
AND σFs

FOR TYPICAL FAMILIES OF Fs

Fs is µ−
Fs

µ+

Fs
σFs

I: sup{Fs} ∈ [−1, 1] -1 1 0

II: sup{Fs} is uni-modal and sup{Fs} ∈ [−1, 1] − 1

2

1

2

1√
12

III: sup{Fs} is uni-modal and symmetric 0 0 1√
3

Then, (15) can be rewritten as

pds ḡ
d
s

Γd
min

− pcj ḡ
s
j + µ1−

Fs

pds ĝ
d
s

Γd
min

− µ2+
Fs

pcj ĝ
s
j

+

√

4 ln

(

1

β

)

min

{

−σ2
Fs
pcj ĝ

s
j ,−σ1

Fs

pds ĝ
d
s

Γd
min

}

≥ σ2. (16)

From [6], [33], µ+
Fs

and σFs
are relevant to the mean and

variance of Fs as shown in Table I, respectively. Therefore,

by applying Bernstein approximations, the chance constraint

in (7c) is translated into the computable constraint in (16).

B. Bisection Search Algorithm

According to above Bernstein approximations for the V2V

chance constraint, problem (7) is reformulated as

Cj,s = max
{pc

j
}{pd

s}
Blog2(1 +

pcjg
c
j

σ2 + pdsg
B
s

) (17)

s.t. (8), (16), (7d).

As discussed above, the V2V chance constraint becomes a

tractable constraint. However, problem (17) is non-convex

because of the fractional form of pcj and pds in the objective

function. Thus, Bisection search algorithm is designed to solve

problem (17). First, either pcj or pds should be fixed to search

the corresponding optimal solution pd,∗s or pc,∗j . Then, the

value of the fixed variable is adjusted until both pcj and pds
are close to the optimal solution of problem (17).

Based on the above analysis, we choose to fix pds and

consider pcj as the variable. Thus, the problem is formulated

as

Cj,s = max
{pc

j
}

Blog2(1 +
pcjg

c
j

σ2 + pdsg
B
s

) (18)

s.t. (8), (16), 0 ≤ pcj .

Due to the form of min{} in constraint (16), problem (18)

is first divided into following two cases: (i) Assuming that
σ1
Fs

pd
s ĝ

d
s

Γd
min

≤ σ2
Fs

pcj ĝ
s
j , constraint (16) can be transformed into a

linear constraint so problem (18) becomes a concave problem;

(ii) Assuming that
σ1
Fs

pd
s ĝ

d
s

Γd
min

≥ σ2
Fs

pcj ĝ
s
j , constraint (16) also

becomes a linear constraint and problem (18) becomes a

concave problem. Then, the optimal solution pc,∗j of problem

(18) can be obtained by the interior method. Finally, we

test whether the optimal solutions are inconsistent with the

assumptions in both cases, and then discard the contradictory

case.

Furthermore, it is noted that if the transmit power pcj
becomes smaller, the smaller transmit power pds will be



given for satisfying the QoS constraint in (7c). It means that

pds is a monotone increasing function of pcj and it can be

expressed as pds(p
c
j). Therefore, Bisection search algorithm

can be employed to obtain the approximate optimal solutions

pc,∗j and pd,∗s of problem (17) by constantly adjusting pds .

According to the conclusion in the following Section V.A, the

optimal transmit power of problem (17) always satisfies either

pc,∗j = pcmax or pd,∗s = pdmax. Thus, the termination condition

of the algorithm can be obtained based on this conclusion.

Consequently, the optimal solution of problem (17) is re-

solved by Algorithm 1. Then, the computational complexity

of Algorithm 1 will be analyzed. It can be seen that the

maximum iteration is eventually decided by line 1 and line

7. The optimal solution pd,∗s can be obtained from the interval

[0, pdmax] and the search region can be cut down by half at each

iteration. Therefore, after finishing N iterations, the length of

interval is only pdmax/2
n. From the above conclusions, the

maximum iteration number of Algorithm 1 is log2(p
d
max/ξ),

where ξ is the termination threshold. Because the interior

point algorithm is applied to resolve problem (18), the com-

plexity of problem (18) is O(log 1
ι ), where ι is the target

accuracy [34]. Therefore, the complexity of Algorithm 1 is

O(log 1
ι log2(

pd
max

ξ )).

Algorithm 1 Bisection Search for Solving Problem (17)

Input: pds,min = 0, pds,max = P d
max and the termination

threshold 0 < ξ < 1;

1: while pds < P d
max − ξ do

2: set pds = (pds,min + pds,max)/2; Solve problem (18) to

obtain pcj ;

3: if pcj > P c
max + ξ then

4: pds,max = pds
5: else if pcj < P c

max − ξ then

6: pds,min = pds
7: else if P c

max − ξ < pcj < P c
max + ξ then

8: break

9: end if

10: end while

Output: The optimal solution pc,∗j and pd,∗s .

C. Spectrum Allocation

We can acquire the power allocation of all possible spectrum

reusing pairs by means of the method in above subsection. In

practical V2X networks, the number of VUE pairs is no larger

than CUEs (S ≤ J) [12]. Because each VUE can reuse the

spectrum of at most one CUE and the spectrum of each CUE

can be reused by at most one VUE. For the case J > S, there

is a situation where the spectrums of J − S CUEs can not be

reused by VUEs. For considering the spectrum allocation as a

bipartite matching problem, a set of virtual VUEs represented

as S ′ is constructed as S ′ = {S+1, S+2, · · · , J}. Since the

sth VUE (s ∈ S ′) can not reuse the spectrum of the jth CUE

(j ∈ J ), pcmax is allowed as the transmit power of the jth CUE

and the transmit power of the sth VUE (s ∈ S ′) is regarded

as 0. Therefore, the optimal solution to the power allocation is

calculated as Cj,s = Bclog2

(

1 +
pmax
c gc

j

σ2

)

. After solving the

power allocation problem under all possible spectrum pairs,

we can find the optimal the spectrum reusing pattern based on

the obtained optimal power allocation solutions. Then, in order

to search the optimal spectrum reusing pairs, a combinational

optimization problem can be described as

max
∑

j∈J

∑

s∈{S∪S′}

ρj,sCj,s (19)

s.t.
∑

j∈J

ρj,s ≤ 1, ∀s ∈ {S ∪ S ′},
∑

s∈{S∪S′}

ρj,s ≤ 1, ∀j ∈ J ,

ρj,s ∈ {0, 1}, ∀j, s,

which is a maximum weight bipartite matching problem and

can be efficiently solved by Hungarian method in polynomial

time [35]. According to the spectrum allocation above, prob-

lem (6) can be solved in Algorithm 2. We have known that

the complexity of Hungarian method is O(J3). Therefore, the

complexity of Algorithm 2 is O(J3+JRlog 1
ι log2(

pd
max

ξ )).

Algorithm 2 Bernstein Approximation-based Robust Resource

Allocation
Input: The i.i.d. channel state samples of V2I communication

and V2V communication;

1: for j = 1, · · · , J do

2: for s = 1, · · · , S do

3: Obtain µ−
Fs

, µ+
Fs

and σFs
of Fs from Table I;

4: Use a convex function to replace (7c) as the safe

approximations based on the Bernstein approach;

5: Acquire the optimal power solution (pc,∗j , pd,∗s ) from

Algorithm 1;

6: end for

7: end for

8: Apply Hungarian algorithm to compute the optimal spec-

trum reusing pattern {ρ∗j,s} based on {Cj,s};

Output: The optimal resource allocation {ρ∗j,s}{pc,∗j }{pd,∗s }.

V. SELF-LEARNING ROBUST RESOURCE ALLOCATION

APPROACH

As described on the previous sections, the resource al-

location in section IV is achieved by using Bernstein

Approximation-based Robust Resource Allocation approach.

Based on the above analysis, though the computation complex-

ity of this approach is not significantly high, its complexity

is still high for the real-time high-mobility vehicle network

and it is not suitable for the practical environment of V2X.

Therefore, a new approach with lower complexity is proposed

to solve problem (6). In the following section, we continue

decomposing problem (6) into a power allocation problem and

a spectrum allocation problem.
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Fig. 2. Timeline of the sampling process.

A. Power Allocation

According to (8) and (9), the power allocation subproblem

(7) is reformulated as

Cj,s = max
{pc

j
}{pd

s}
Blog2(1 +

pcjg
c
j

σ2 + pdsg
B
s

) (20a)

s.t. Pr{pd
sθ

d
s ≥ σ2} ≥ 1− β, (20b)

(8), (7d). (20c)

For transforming the intractable chance constraints into com-

putable ones, we present a learning method which uses a high-

probability-region (HPR) to represent the channel uncertainty.

Let Gd
s denote the HPR which requires to be learned from the

data samples. When Gd
s is chosen to cover a 1 − β content

of θd
s , i.e. Pr{θd

s ∈ Gd
s} ≥ 1 − β, the feasible solutions of

problem (20) certainly satisfy

Pr{pd
sθ

d
s ≥ σ2} ≥ Pr{θd

s ∈ Gd
s}. (21)

Because of the unknown prior distribution of θd
s , the confi-

dence level 1 − ς is utilized as the statistic assurance of the

robust optimization approach which can satisfy 1−β content of

θd
s . Then, the basic idea is to satisfy (21) through constructing

Gd
s under the confidence level 1− ς , i.e.

Pr{Pr{θd
s ∈ Gd

s} ≥ 1− β} ≥ 1− ς. (22)

Multiple samples of the uncertain CSI θd
s should be collected

to learn the uncertainty set so that the distribution of eds and

esj can be acquired. In the sampling process, we consider the

block fading channel where the channel distribution is assumed

invariant [36] within TB blocks, where each block is called

a coherence interval for CSI and the large-scale slow fading

information remains unchanged within each block. Therefore,

the gNB can collect N i.i.d. samples of the imperfect CSI as

the sample set X = {χ1,χ2, · · · ,χN} within each block,

where χn = {χn
1 ,χ

n
2 , · · · ,χn

S} and χn
s ∈ R

2. In order

to intuitively express the sampling process, the timeline of

sampling process is expressed as shown in Fig. 2.

Based on the above analysis, the learning method, which in-

cludes the set construction and the size calibration, is proposed

to determine the size of the HPR.

1) Set Construction: In general, ellipsoid sets are utilized

to model the channel uncertainty. However, the robust re-

source allocation problem containing ellipsoid sets is often

transformed into a second-order cone program (SOCP) which

is a complicated problem. Thus, to simplify the problem, the

affine sets can be constructed to model the channel uncertainty,

such as ATY ≥ r, where A ∈ R
n,Y ∈ R

n and r ∈ R. Then,

when an initial feasible solution p̃d
s is given, the uncertainty set

Gd
s is constructed as Gd

s = {θd
s |p̃d

sθ
d
s ≥ rd}, where rd ∈ R

is the size of the HPR Gd
s .

2) Size Calibration: Gd
s is calibrated by the sample set

X to satisfy (22). The quantile evaluation approach, which

is the critical idea of size calibration, is utilized to measure

the size of the affine uncertainty set [28]. Thus, the 1 − β
quantile t1−β with 1 − ς confidence of data samples in X

can be estimated to calibrate the uncertainty set Gd
s . First,

let fχ(χ
n) = min

s=1,··· ,S
{p̃d

sχ
n
s } be the mapping from the

stochastic space R
2S into R. Gd

s demonstrates that the value

of Pr{θd
s ∈ Gd

s} should be larger than 1 − β based on

1 − ς confidence. Second, t1−β of the potential distribution

of f(χ(n)) is defined under the sample set of X based on

Pr{f(χ(n)) ≤ t1−β} = 1−β. Thus, we can obtain fχ(χ
(k∗

χ
))

which is the 1−ς confidence upper boundary in regard to t1−β

from the following theorem.

Theorem 2. fχ(χ
(1)) ≤ fχ(χ

(2)) ≤ · · · ≤ fχ(χ
(N)) is

defined as the order statistics based on the samples of X.

fχ(χ
(k∗

χ
)) can be obtained from

Pr{rd ≥ t1−β} = 1− ς,

where k∗χ is computed as

min

{

kχ :

kχ−1
∑

t=0

(

N
t

)

(1 − β)
t
βN−t ≥ 1− ς

}

.

Proof. Refer to Theoren 1 in [28].

Third, the size of rd can be given as

rd = fχ(χ
(k∗

χ
)).

Based on the uncertainty set Gd
s , problem (20) is transformed

into

Cj,s = max
{pc

j
}{pd

s}
Blog2(1 +

pcjg
c
j

σ2 + pdsg
B
s

) (23a)

s.t. pd
sθ

d
s ≥ σ2, θd

s ∈ Gd
s, (23b)

(8), (7d). (23c)

According to constraint (23b) for V2V communication, the

tractable QoS constraints are obtained by the following opti-

mization problem

min
θd
s

pd
sθ

d
s (24)

s.t. p̃d
sθ

d
s ≥ rd.

The dual problem of problem (24) is

max
zd
s

zds rd (25)

s.t. zds p̃
d
s ≤ pd

s , z
d
s ≥ 0.

From above analysis, the chance constraint in (20b) is trans-

formed into following constraints
{

zds rd ≥ σ2, (26a)

zds p̃
d
s ≤ pd

s, z
d
s ≥ 0. (26b)



Thus, problem (20) becomes

Cj,s = max
{pd

s}}{p
c
j
{zd

s }
Blog2(1 +

pcjg
c
j

σ2 + pdsg
B
s

) (27a)

s.t. zds p̃
d
s ≤ pd

s , (27b)

zds rd ≥ σ2, zds ≥ 0, (8), (7d). (27c)

Because the variables pcj and pds coexist in the numerator and

denominator of the objective function in (27a), problem (27) is

still non-convex. For overcoming this challenge, the following

analytical mapping method is proposed to resolve problem

(27).

To clearly reflect the relationships between different con-

straints, constraint (27b) is equivalent to

{

zds p̃
d
s ≤ pds, (28a)

zds p̃
c
j ≥ pcj . (28b)

Then, together with constraint (7d), the following two simpler

constraints are obtained as

{

0 ≤ pcj ≤ min{zds p̃cj, pcmax}, (29a)

zds p̃
d
s ≤ pds ≤ pdmax. (29b)

By comparing the values of zds p̃
c
j and pcmax in constraint (29a),

problem (27) is divided into two cases.

1) Case 1: When zds p̃
c
j ≤ pcmax and problem (27) is feasible,

then pds and pcj satisfy



















pcjg
c
j

Γc
min

−pdsg
B
s ≥ σ2, (30a)

zds p̃
d
s ≤ pds ≤ pdmax, (30b)

0 ≤ pcj ≤ zds p̃
c
j ≤ pcmax. (30c)

We can obtain the feasible region as shown in the shadow of

Fig. 3, where E is the intersection point of pds = zds p̃
d
s and

pcj = zds p̃
c
j . The CUE QoS constraint of (8) is plotted as Kc.

Based on the objective function of problem (27), the following

conclusions can be obviously obtained. When pds is fixed, the

capacity Cj,s monotonely increases with pcj . In contrast, when

pcj is fixed, the capacity Cj,s monotonely decreases with pds .

It is not difficult to find that the optimal solution of problem

(27) must be located in the coordinate of E which can be

computed as (zds p̃
c
j , z

d
s p̃

d
s). Moreover, when the feasible region

exists, the optimal solution of problem (27) is uncorrelated

with the constraint (30a) because it is an inactive constraint.

Then, according to the coordinate of E, the optimal solution

of problem (27) only depends on zds and is not affected by

the variables pcj and pds . Thus, constraints (30b) and (30c) can

be transformed into zds ≤ pd
max

p̃d
s

and zds ≤ pc
max

p̃c
j

, respectively.

Then, by substituting the coordinate of E into problem (27),

we obtain

dp

cp

E

d

sp

d c

s jz p

d d

s sz p

c

jp

dK

cK

E

E

Fig. 3. The feasible region of Case 1.

Cj,s = max
{zd

s }
Blog2(1 +

zds p̃
c
jg

c
j

σ2 + zds p̃
d
sg

B
s

) (31a)

s.t.
zds p̃

c
jg

c
j

Γc
min

−zds p̃
d
sg

B
s ≥ σ2, (31b)

zds rd ≥ σ2, zds ≥ 0, (31c)

zds ≤ pdmax

p̃ds
, zds ≤ pcmax

p̃cj
. (31d)

By combining the constraints of problem (31), we discover

that the feasible region exists when zds satisfies

max{Υc
j,∆d} ≤ zds ≤ min{Λd

s,Λ
c
j}, (32)

where Υc
j =

σ2Γc
min

p̃c
j
gc
j
−Γc

minp̃
d
sg

B
s

, ∆d = σ2

rd
, Λd

s =
pd
max

p̃d
s

and Λc
j =

pc
max

p̃c
j

. Note that the capacity Cj,s monotonely increases with

zds , so the optimal solution of problem (31) should be zd,∗s =
min{Λd

s,Λ
c
j}. Then, by substituting the value of zd,∗s into the

coordinate of E to obtain pc,∗j and pd,∗s , the capacity C∗
j,s

can be calculated. If zds dissatisfies (32), problem (31) is not

feasible and the capacity is set as C∗
j,s = 0.

2) Case 2: When pcmax ≤ zds p̃
c
j and problem (27) is feasible,

then pds and pcj satisfy



















pcjg
c
j

Γc
min

−pdsg
B
s ≥ σ2, (33a)

zds p̃
d
s ≤ pds ≤ pdmax, (33b)

0 ≤ pcj ≤ pcmax ≤ zds p̃
c
j . (33c)

We can obtain the feasible region as shown in the shadow of

Fig. 4, where F is the intersection point of pds = zds p̃
d
s and

pcj = pcmax. Similar to the conclusion of Case 1, the optimal

solution of problem (27) resides at the coordinate of F which

is expressed as (pcmax, z
d
s p̃

d
s). Similarly, if the feasible region

exists, the optimal solution of problem (27) is uncorrelated

with constraint (33a). Meanwhile, constraints (33b) and (33c)

are combined into
pc
max

p̃c
j

≤ zds ≤ pd
max

p̃d
s

. Thus, by substituting



max

dp

max

cp c

jp

F

d

sp

d d

s sz pss

d c

s jz pcj

cK

dK

1F

Fig. 4. The feasible region of Case 2.

the coordinate of F into problem (27), it becomes

Cj,s = max
{zd

s }
Blog2(1 +

pcmaxg
c
j

σ2 + zds p̃
d
sg

B
s

) (34a)

s.t.
pcmaxg

c
j

Γc
min

−zds p̃
d
sg

B
s ≥ σ2, (34b)

zds rd ≥ σ2, zds ≥ 0 (34c)

pcmax

p̃cj
≤ zds ≤ pdmax

p̃ds
. (34d)

Then, by combining the constraints of problem (34), it will

become feasible when zds satisfies

max{∆d,Λ
c
j} ≤ zds ≤ min{Ωc

j,Λ
d
s}, (35)

where Ωc
j =

pc
maxg

c
j−σ2Γc

min

Γc
minp̃

d
sg

B
s

. Further analysis about the ob-

jective function of problem (34) shows that the capacity Cj,s

monotonely decreases with zds . Therefore, the optimal solution

of problem (34) is zd,∗s = max{∆d,Λ
c
j}. Then, we can

substitute zd,∗s into the coordinate of F to obtain pc,∗j and pd,∗s

so that the capacity C∗
j,s can be figured out. If zds dissatisfies

(35), problem (34) is not feasible and the capacity is set as

C∗
j,s = 0.

To sum up, the power allocation solution can be acquired

as

(pc,∗j , pd,∗s ) = arg max
(pc

j ,p
d
s)∈C

{

Bclog2(1 +
pcjg

c
j

σ2 + pdsg
B
s

)

}

, (36)

where

C =











































{(pcmax,
pcmaxp̃

d
s

p̃cj
)},ifmax{Υc

j ,∆d} ≤ Λc
j ≤ min{Ωc

j ,Λ
d
s}

{(
pdmaxp̃

c
j

p̃ds
, p

d
max)},ifmax{Ωc

j ,∆d} ≤ Λd
s ≤ Λc

j

{(pcmax,
σ2p̃ds

rd
)}, ifΛc

j ≤ ∆d ≤ min{Ωc
j ,Λ

d
s}

0, otherwise.

It is apparent to find that (36) only requires several multipli-

cation procedures and has not loop structures. Therefore, the

complexity of the power allocation is O(1), which is obviously

lower than Algorithm 1 of Bernstein Approximation-based

Robust Resource Allocation approach.

B. Spectrum Allocation

According to above subsection, we can obtain the optimal

solutions (pc,∗j , pd,∗s ) under each possible spectrum reusing

pair. For searching the optimal spectrum reusing pattern,

Hungarian method is applied to resolve problem (19). Then,

Self-learning Robust Resource Allocation approach has been

summarized in Algorithm 3. Because the complexity of

the spectrum allocation is O(J3), the general complexity of

Algorithm 3 is O(J3 + JR) [29].

Algorithm 3 Self-learning Robust Resource Allocation

Input: An initial feasible solution p̃d
s and the dada set X =

{χ1,χ2, · · · ,χN};

1: for j = 1, · · · , J do

2: for s = 1, · · · , S do

3: Compute the values of Υc
j , Ωc

j , ∆d, Λd
s and Λc

j;

4: if these values cannot satisfy (32) or (35) then

5: Set Cj,s = 0;

6: continue

7: else

8: Compute the optimal solution (pc,∗j , pd,∗s ) from

(36);

9: Obtain the capacity Cj,s using (pc,∗j , pd,∗s );
10: end if

11: end for

12: end for

13: Apply Hungarian algorithm to compute the optimal spec-

trum reusing pattern {ρ∗j,s} based on {Cj,s};

Output: The optimal resource allocation {ρ∗j,s}{pc,∗j }{pd,∗s }.

VI. THE ANALYSES OF SUBOPTIMALITY

In this section, we characterize the degrees of suboptimality

of Algorithm 2 and 3 by means of the analyses.

A. Suboptimality of Algorithm 2

We first characterize the degrees of suboptimality of Al-

gorithm 2 by means of the following analysis. When we do

not consider the uncertain CSI of the V2V links, the power

allocation problem can be formulated as

Cj,s = max
{pc

j
}{pd

s}
Bclog2(1 +

pcjg
c
j

σ2 + pdsg
B
s

) (37a)

s.t. pd
sθ

d
s ≥ σ2, (37b)

(8), (7d). (37c)

We discover that problem (37) is convex and can be obtained

by means of the toolbox CVX.

In Section IV, the uncertain CSI of the V2V links is

considered and constraint (16) is replaced by Bernstein ap-

proximations of the chance constraint, i.e.,

pd
s θ̄

d
s +∆(pds) ≥ σ2, (38)

where ∆(pds) = µ1−
Fs

pd
s ĝ

d
s

Γd
min

− µ2+
Fs

pcj ĝ
s
j +

√

4 ln
(

1
β

)

min
{

−σ1
Fs

pcj ĝ
s
j ,−σ2

Fs

pd
s ĝ

d
s

Γd
min

}

is the protection



function for problem (7), whose value (called the protection

value) is negative and depends on the uncertain parameters.

The optimal capacity of all CUEs for problem (37) and

(7) is represented as v∗ and v∗1 , respectively. Let u∗(∆) =

sup
{

Bclog2

(

1 +
pc
jg

c
j

σ2+pd
sg

B
s

)

|(8), (38), (7d)
}

. When ∆ is

small, u∗(∆) is differentiable with respect to ∆. Using Taylor

series, we write u∗(∆) = u∗(0) + ∆∂u∗(0)
∂∆ + o, where u∗(0)

is the optimal value for (37a). Since (37a) is convex, u∗(∆) is

obtained from the Lagrange dual function of (37a), i.e., from

L (p,λ) = Bclog2

(

1 +
pcjg

c
j

σ2 + pdsg
B
s

)

+ λ1

(

pcjg
c
j

Γc
min

− pdsg
B
s − σ2

)

+ λ2

(

pds θ̄
d
s +∆ ≥ σ2

)

+ λ3

(

pcmax − pcj
)

+ λ4

(

pdmax − pds
)

, (39)

and from the sensitivity analysis in [37], we have
∂u∗(0)
∂∆ ≈ λ2,

so v∗1 − v∗ ≈ λ2∆. Since λ2 is a nonnegative Lagrange

multiplier, the optimal capacity is reduced, as compared with

the case in which complete CSI is available. Hence, the

reduction of the optimal capacity is defined by

d1 = v∗ − v∗1 = −λ2∆ ≥ 0, (40)

which also describes the degrees of suboptimality of Algo-

rithm 2.

B. Suboptimality of Algorithm 3

Then, we characterize the degrees of suboptimality of

Algorithm 3 by means of the following analysis. In order

to compare the optimal capacity of problem (37) and problem

(27), the feasible regions of both problem (37) and problem

(27) are plotted in Fig. 3 and Fig. 4 because they have partially

common constraints and feasible regions.

When case 1 is satisfied, we can obtain the feasible region

as shown in the shadow of Fig. 3. The VUE QoS constraint

of (37b) are plotted as Kd. E1 is the intersection point of Kd

and pcj = pcmax. E2 is the intersection point of Kd and pcj =
zds p̃

c
j . From Section V, we find that the optimal solution of

problem (27) must be located in the coordinate of E. Likewise,

the optimal solution of problem (37) must be located in the

coordinate of E1. We also discover that the capacity of E2

is larger than that of E. By substituting the boundary line

function of Kd to the capacity of CUE, we obtain

Cj,s

(

pcj
)

= log2

(

1 +
pcjg

c
jg

d
s

gdsσ
2 +

(

σ2 + pcjg
s
j

)

Γd
ming

B
s

)

.

(41)

It is not difficult to find that the derivative of Cj,s

(

pcj
)

is

always greater than zero for pcj ≥ 0. Hence, the function in

(41) is an increasing function. It can be concluded that the

capacity of E1 is larger than that of E2 and the capacity of

E1 is larger than that of E.

When case 2 is satisfied, we can obtain the feasible region

as shown in the shadow of Fig. 4. F1 is the intersection point

of Kd and pcj = pcmax. Similar to the conclusion of Case 1,

TABLE II
SIMULATION PARAMETERS

Parameter Value

Resource blocks bandwidth, Bc 10 MHz

Carrier frequency, fv 2 GHz

Noise power, σ2 -174 dBm

Channel feedback delay, T 0.5 ms

Outage probability, β 0.05

Confidence level, 1− ς 0.95

vehicle speed, ν 80 km/h
SINR threshold of V2I, Γc

min
2

SINR threshold of V2V, Γd
min

1

Maximum power of V2I, pcmax 30 dBm
Maximum power of V2V, pdmax 30 dBm

Pathloss model 128.1 + 37.6log10d
Shadowing standard deviation 8 dB(CUE), 4 dB(VUE)

Small-scale fast fading Rayleigh fading

Sample number of the sample set, X 3000

Sample number of the test set, X 6000

Bisection search accuracy, ξ 10−4

Interior point method accuracy, ι 10−3

the optimal solution of problem (27) resides at the coordinate

of F . Likewise, the optimal solution of problem (37) must be

located in the coordinate of F1. It is not difficult to find that

the optimal capacity for case 2 of problem (27) is smaller than

that of problem (37).

Then, let f(x0, y0) is the optimal capacity of problem (37),

where x0 and y0 are the optimal power pc,∗j and pd,∗s of

problem (37), respectively. Using Taylor series, we write

f(x0, y0) =f(x1, y1) + (x0 − x1)f
′

x(x1, y1)

+ (y0 − y1)f
′

y(x1, y1), (42)

where f(x1, y1) is the optimal capacity of problem (27), x1

and y1 are the optimal power pc,∗j and pd,∗s of problem (27),

respectively. Thus, the reduction of the sum capacity of all

CUEs is defined by

d2 = f(x0, y0)− f(x1, y1)

= (x0 − x1)f
′

x(x1, y1) + (y0 − y1)f
′

y(x1, y1) ≥ 0, (43)

which also describes the degrees of suboptimality of Algo-

rithm 3. The degrees of suboptimality of Algorithm 2 and

Algorithm 3 are characterized by means of the simulations in

Section VII.

VII. SIMULATION RESULTS

This section evaluates the performance of the above op-

timization methods. We consider a single cellular vehicle

network as shown in Fig. 1. The gNB models, whose coverage

areas are approximately 200 meters, are extensively applied

in the simulation of V2X networks [38]. In addition, it is

widely believed that the roads are far away from the gNB.

For guaranteeing the gNB to cover all vehicles, we suppose

that the distance is at least 100m between the gNB and the

roads. Thus, we assume that the distance between CUEs and

the gNB is uniformly distributed in a range of [100 200].

There are 4 CUEs and 4 VUEs in the roads. To ensure the

vehicles’ security, we consider that the average secure distance
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Fig. 5. (a) The convergence of CUE transmit power versus iteration number,
(b) Empirical CDF under VUE SINR.

between VUEs should be 2.5 sec×ν(m/ sec). We apply the

complex Gaussian distribution to obtain the evaluated error of

eds and esj . Moreover, Table II is summarized to enumerate the

other significant parameters and the channel information. In

the simulation, the first approach is Bernstein Approximation-

based Robust Resource Allocation (BRRA) in Section IV.

Then, Self-learning Robust Resource Allocation approach in

Section V is simulated by choosing the different initial feasible

solutions which are obtained from the worst and the average

uncertain CSI, respectively. We represent them as Self-learning

Worst approach (SLWA) and Self-learning Average approach

(SLAA). Besides, we simulate a non-robust resource allocation

(NRRA), which only considers the large-scale slow fading

channel. In a word, we will compare the four approaches above

to evaluate their performances.

In Fig. 5(a), we research the convergence of the CUE

transmit power versus the iteration number. We find that the

CUE transmit power of both BRRA and NRRA converges

in approximately 8 iterations. Moreover, their CUE transmit

power obviously fluctuates in the process of iterations because

of the requirements for the termination conditions of Bisection

search method. On the contrary, when the CUE transmit power

of both SLAA and SWAA converges, their iteration number

is only 2 which testifies the effectiveness of Self-learning

Robust Resource Allocation approach. The reason is that the

optimal power allocation can be directly obtained when the

initial feasible solutions are given based on the conclusion of

Section V.A. Therefore, we conclude that the complexity of

both SLAA and SWAA is lower than the complexity of both

BRRA and NRRA. We observe that the CUE transmit power

of most approaches is close to 1w in Fig. 5(a). This is because

they stop iterating when the optimal power allocation satisfies
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Fig. 6. (a) CUE capacity versus the maximum transmit power of V2I
communication, (b) VUE SINR versus the maximum transmit power of V2I
communication.

pc,∗j = pcmax or pd,∗s = pdmax. In Fig. 5(b), the empirical

cumulative distribution function (CDF) of VUE SINR is

utilized to evaluate the stability of the above four approaches.

Because the value of Γd
min is 1, from the figure above, it is

not difficult to understand that the outage probabilities are

determined by the dotted line whose abscissa value is 1. From

Fig. 5(b), the outage probability of NRRA is in a range of 0.35

to 0.45. This result shows that if the error of CSI is ignored,

the network will obtain terrible security so that the vehicles

cannot establish stable communication links. Thus, we propose

some robust approaches with protection procedures such as

SLWA, SLAA and BRRA to reduce the outage probability. In

Fig. 5(b), BRRA ensures that the outage probability is under

0.05, and both SLAA and SLWA are close to 0. However,

there is a significant difference between BRRA and the two

methods of Self-learning Robust Resource Allocation. The

robustness of SLAA and SLWA is overly conservative so their

CDF curves are far from Γd
min. The reason is that the affine

set can contain almost all feasible solutions under the sample

set and that the closed-form solutions of Self-learning Robust

Resource Allocation approach almost satisfy the V2V chance

constraints under the test set. On the contrary, to obtain better

optimal solutions, BRRA can guarantee the 1− β percentage

of solutions to satisfy the V2V chance constraints under the

test set. In addition, due to the accuracy of Bisction search,

Bisction search algorithm of BRRA can search for a few

solutions which are beyond feasibility boundaries slightly so

that they cannot satisfy the V2V chance constraints under the

test set.

Fig. 6 investigates CUE capacity and VUE SINR versus

the maximum transmit power of V2I communication. The



robust resource allocation approach in [23] is considered as a

baseline method, which is represented as APRA. Moreover, in

order to verify the analyses of suboptimality in Section VI, the

allocation approach of problem (37) is represented as OPT. It

is not difficult to find that the curves of both CUE capacity and

VUE SINR are infinitely close to 0 when the abscissa value

is smaller than 0 dBm. The reason is that the requirement of

the SINR threshold of V2I communication cannot be satisfied

due to the small CUE transmit power. With the increase of

the abscissa value, the curves of both CUE capacity and

VUE SINR increase until they reach their maximums. Then,

when the abscissa value exceeds 30 dBm, the curves of both

CUE capacity and VUE SINR become steady. The reason is

that larger CUE transmit power leads to more interference

of V2V communication. To decrease the interference of V2V

communication, more VUE transmit power is allocated until

it reaches the maximum transmit power pdmax. Therefore, the

system cannot continue allocating more transmit power pcj to

them, otherwise, the V2V QoS constraint can be violated.

Hence, the curves of both CUE capacity and VUE SINR

begin to remain stable. In Fig. 6(a), CUE capacity of OPT

is the largest among all the approaches. It is not difficult

to find that CUE capacity of BRRA decreases by 7%, CUE

capacity of SLAA decreases by 27.7% and CUE capacity

of SLWA decreases by 32.9% because the robust resource

allocation approaches for dealing with the channel uncertainty

are very conservative, which at many instances may not

be necessary and may lead to an inefficient utilization of

resources. Furthermore, CUE capacity of BRRA is larger than

the ones of SLWA, SLAA and APRA. Because the optimal

solutions of SLWA, SLAA and APRA are more conservative

than BRRA, the interference of V2I communication of BRRA

is smaller than others and CUE capacity of BRRA is larger.

The excessive conservatism also causes that VUE SINR of

SLWA, SLAA and APRA is larger than BRRA as shown in

Fig. 6(b). In Fig. 6(a), CUE capacity of SLAA is better than

SLWA because SLWA needs more VUE transmit power to

satisfy the SINR threshold of V2V communication. However,

more VUE transmit power can cause more interference of

V2I communication which can decrease CUE capacity of

SLWA. Fig. 6(a) reveals that VUE SINR of APRA is much

larger than that of other approaches. The reason is that the

chance constraint in V2V links is transformed into a linear

constraint by finding an approximate upper bound, which

makes the SINR threshold of V2V communication much

larger. Larger VUE SINR of APRA is required to satisfy

larger SINR threshold and more VUE transmit power causes

more interference of V2I communication, which decreases the

CUE capacity of APRA. For example, when β = 0.05 and

Γd
min = 1 is given, the transformed SINR threshold of V2V

communication Γ̄0 is about 19.5 according to Γ̄0 =
Γd
min

− ln(1−β)
[23]. This conclusion is consistent with Fig. 6(b). Furthermore,

CUE capacity of NRRA is the smallest and VUE SINR of

NRRA is less than 1 because some solutions of NRRA violate

the SINR threshold of V2V communication in Fig. 6(b).
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Fig. 7. (a) CUE capacity versus the maximum transmit power of V2V
communication, (b) VUE SINR versus the maximum transmit power of V2V
communication.

Fig. 7 shows CUE capacity and VUE SINR versus the

maximum transmit power of V2V communication. In Fig. 7,

the curves of both CUE capacity and VUR SINR are infinitely

close to 0 when the abscissa value is close to 0 dBm. The

reason is that the SINR threshold of V2V communication is

very difficult to be satisfied when the VUE transmit power is

too small. With the increase of the abscissa value, the curves

of CUE capacity and VUE SINR begin to increase. When

the abscissa value is larger than 10 dBm, the curve of APRA

just begins to rise. This is because APRA is more difficult

than SLAA, SLWA and BRRA to find the feasible solution

when the parameter is set in the extreme condition. When

the abscissa value exceeds 30 dBm, their values reach the

maximums and tend to be stable. This is because larger VUE

transmit power results in more interference of V2I communi-

cation. To decrease the interference of V2I communication,

more CUE transmit power is allocated until it reaches the

maximum transmit power pcmax. Therefore, the system cannot

continue allocating more transmit power pds to them, otherwise,

more VUE transmit power can lead to the violation of V2I

QoS constraint and smaller CUE capacity, which is contrary

to our expectation. In addition, from Fig. 7, we observe that

CUE capacity of BRRA is larger than both SLWA, SLAA and

APRA. The reasons are same as the analyses in Fig. 6.

Fig. 8 shows the curves of CUE capacity and VUE SINR

under variation of the moving speed of vehicles. We evaluate

the effect of Doppler shift by means of changing the moving

speed of vehicles. As shown in Fig. 8(b), the curves of SLAA,

SLWA, BRRA and APRA increase with the increase of the

moving speed of vehicles. The reason is that serious Doppler

shift is generated and causes the increase of the uncertainty



20 40 60 80 100 120 140 160

Moving speed of vehicles [km/h]

0

0.5

1

1.5

2

2.5

3

3.5

C
U

E
 c

ap
ac

it
y

[b
p

s]

10
8

APRA

SLAA

SLWA

BRRA

NRRA

(a)

20 40 60 80 100 120 140 160

Moving speed of vehicles [km/h]

0

2

4

6

8

10

12

14

16

18

20

V
U

E
 S

IN
R

APRA

SLAA

SLWA

BRRA

NRRA

(b)

Fig. 8. (a) CUE capacity versus moving speed of vehicles, (b) VUE SINR
versus moving speed of vehicles.

of V2V communication. SLAA, SLWA, BRRA and APRA

have to increase the transmit power of V2V communication

to reduce the uncertainty so their VUE SINR increases. More-

over, the curve of NRRA remains steady since NRRA neglects

Doppler shift, which only generates the influence in the small-

scale fading. From the curves in Fig. 8(a), we observe that the

curves of SLAA, SLWA, BRRA and APRA decrease with the

increase of the moving speed of vehicles. This is because more

transmit power of V2V communication is allocated, which

causes more interference of V2I communication. When the

speed of vehicles is larger than 140 km/h, both CUE capacity

and VUE SINR of APRA drop to 0. The reason is that the QoS

constraint of V2I communication cannot be satisfied with the

increase of the transmit power of V2V communication. Thus,

besides NRRA, all of CUE capacity decreases. In addition, we

observe that CUE capacity of BRRA is the biggest of all.

Fig. 9 researches CUE capacity and VUE SINR under

variation of the SINR threshold of V2I communication. From

the curves of Fig. 9(a), the curves of both SLAA and SLWA

slightly rise and the curves of both BRRA and NRRA remain

stable before the abscissa value increases to 30. The reason

why the curves of SLAA and SLWA slightly rise is that the

increase of the SINR threshold of V2I communication can

influence the value of the initial feasible solution p̃d
s which

also influence VUE SINR of SLAA and SLWA as shown in

Fig. 9(b). Then, when the abscissa value exceeds 30, the curves

of these methods start to decrease in succession. We observe

the similar tendency in Fig. 9(b). The reason is that the SINR

threshold cannot be achieved due to the limited maximum

transmit power of V2V communication. Then, the feasible

probability of the problem decreases so that CUE capacity

also decreases. Compared with other approaches, the curves
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Fig. 9. (a) CUE capacity versus the SINR threshold of V2I communication,
(b) VUE SINR versus the SINR threshold of V2I communication.

of SLWA are the earliest to decrease because SLWA needs

more VUE SINR. More VUE SINR can result in larger VUE

transmit power which bring larger interference and smaller

capacity of V2I communication.

Fig. 10 shows the curves of CUE capacity, VUE SINR and

V2V QoS probability under variation of the SINR threshold

of V2V communication. In order to better meet the high

reliability of V2X communication, the outage probability is set

as β = 0.01. From the curves in Fig. 10(a) and 10(b), when the

abscissa value is in the range of 0 to 20, the curves of CUE

capacity decrease while the curves of VUE SINR increase.

The reason is that the feasible solutions can be obtained in this

interval so that more transmit power of V2V communication

is required for satisfying the SINR threshold of V2V com-

munication. BRRA and SLAA can obtain larger capacity than

others because they consume less VUE transmit power to reach

the SINR threshold of V2V communication and this causes

less interference of V2I communication. In the larger version

of Fig. 10(c), we do not consider the non-robust case because

the non-robust case is not limited by the outage probability. It

can be clearly seen that V2V QoS probability of SLAA, SLWA

and BRRA is in the range of 0.99 to 1. It demonstrates that the

outage probability of V2V communication is guaranteed when

the abscissa value is less than 20. Then, when the abscissa

value is greater than 20, the curves of all the approaches begin

to sharply decrease in succession. This is because the VUE

transmit power cannot continuously increase due to the limited

maximum transmit power of V2V communication. The result

is that V2V QoS probability decreases and the outage prob-

ability of V2V communication can not be guaranteed. Thus,

the curves of Fig. 10(a) and 10(b) descend to 0. Moreover,

the curve of SLWA is the earliest to drop to 0 because the
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Fig. 10. (a) CUE capacity versus the SINR threshold of V2V communication,
(b) VUE SINR versus the SINR threshold of V2V communication, (c) V2V
QoS probability versus the SINR threshold of V2V communication.

VUE SINR of SLWA is the largest and its conservatism is

also the highest. Higher conservatism requires larger transmit

power requirements. Thus, when the SINR threshold of V2V

communication becomes bigger, transmit power requirements

can no longer be satisfied and V2V QoS probability can also

not be guaranteed.

In summary, as shown in Fig. 6(a)-10(a), CUE capacity

of BRRA is the largest and the one of Non-robust is the

smallest among all of the approaches. CUE capacity of SLAA

is larger than SLWA. According to the analysis of Sections

IV and V, we can draw the conclusion that the complexity

of SLAA and SLWA is lower than that of BRRA. Thus,

further analysis shows that there exists a trade-off between

performance and computation complexity for Self-learning

Robust Resource Allocation and BARR. We can also draw

the conclusion that VUE SINR of BRRA is lower than the

ones of SLAA and SLWA. Therefore, there exists a trade-off

between robustness and CUE capacity for Self-learning Robust

Resource Allocation and BRRA. In addition, we discover that

the performance can be transformed when we change the

relevant parameters in above experiments. The results show

that the proposed methods may achieve the best performance

when they are in suitable configurations.

VIII. CONCLUSIONS

In this article, we investigated the joint spectrum and power

allocation problem for V2X communication with imperfect

CSI. In the realistic scenario, the gNB can acquire the accurate

CSI of V2I communication and the estimated CSI with error

of V2V communication. Then, two different robust approaches

were designed to solve the above problem. One was Bern-

stein Approximation-based Robust Resource Allocation ap-

proach. Then, to further reduce computational complexity, the

other was Self-learning Robust Resource Allocation approach,

which included a learning method and an analytical mapping

method. Then, we illustrated that the above approaches can

significantly improve the CUE capacity. Finally, in subsequent

research, we attended to investigate a more complex resource

problem approach where each CUE can share the spectrum

resource with multiple VUEs and each VUE can reuse the

resource of multiple CUEs.
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