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Abstract—Modern connected vehicles (CVs) frequently require
diverse types of content for mission-critical decision-making and
onboard users’ entertainment. These contents are required to be
fully delivered to the requester CVs within stringent deadlines
that the existing radio access technology (RAT) solutions may
fail to ensure. Motivated by the above consideration, this paper
exploits content caching in vehicular edge networks (VENs)
with a software-defined user-centric virtual cell (VC) based RAT
solution for delivering the requested contents from a proximity
edge server. Moreover, to capture the heterogeneous demands
of the CVs, we introduce a preference-popularity tradeoff in
their content request model. To that end, we formulate a joint
optimization problem for content placement, CV scheduling, VC
configuration, VC-CV association and radio resource allocation
to minimize long-term content delivery delay. However, the joint
problem is highly complex and cannot be solved efficiently in
polynomial time. As such, we decompose the original problem
into a cache placement problem and a content delivery delay
minimization problem given the cache placement policy. We
use deep reinforcement learning (DRL) as a learning solution
for the first sub-problem. Furthermore, we transform the de-
lay minimization problem into a priority-based weighted sum
rate (WSR) maximization problem, which is solved leveraging
maximum bipartite matching (MWBM) and a simple linear
search algorithm. Our extensive simulation results demonstrate
the effectiveness of the proposed method compared to existing
baselines in terms of cache hit ratio (CHR), deadline violation
and content delivery delay.

Index Terms—Connected vehicle (CV), content caching, delay
minimization, software-defined networking (SDN), user-centric
networking, vehicular edge network (VEN).

I. INTRODUCTION

ADVANCED driver-assistance systems (ADAS) and info-
tainment are two premier features for modern connected

vehicles (CVs). With advanced radio access technologies
(RATs), delivering the Society of Automotive Engineers (SAE)
level 5 automation on the road seems more pragmatic day
by day. Different government organizations - such as the
U.S. Department of Transportation’s National Highway Traffic
Safety Administration in the United States [1], the Department
for Transport in the U.K. [2], etc., set firm regulations for the
CVs to ensure public safety on the road. For swift decision-
making to satisfy the safety requirements, the CVs need fast,
efficient, and reliable communication and data processing. As
such, an efficient vehicular edge network (VEN) must ensure
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uninterrupted and ubiquitous wireless connectivity on the road.
Note that a VEN is an edge network that mainly focuses
on communication among vehicles and/or between vehicles
and infrastructure [3]. To deliver above services, the VEN
demands advanced machine learning (ML) tools for resource
management complementary to a RAT solution, such as the 5G
new-radio (NR) vehicle-to-everything (V2X) communication
[4].

With increased automation, in-car entertainment is also
becoming a priority for modern CVs [5]. Modern CVs are
expected to have many new features, such as vehicular sensing,
onboard computation, virtual personal assistant, virtual reality,
vehicular augmented reality, autopilot, high-definition (HD)
map collection, HD content delivery, etc., [6], [7] that are
interconnected for both ADAS and infotainment. For these
demands, by exploiting the emerging content caching [8], the
centralized core network can remarkably gain by not only
ensuring local content distribution but also lessening the core
network congestion [9], [10]. As such, VENs can reduce
end-to-end latency significantly by storing the to-be-requested
contents at the network edge [11], which is vital for the CVs’
mission-critical delay-sensitive applications. A practical RAT
on top of content caching can, therefore, bring a promising
solution for SAE level 5 automation on the road. Moreover,
owing to these multifarious requirements, it is also critical
to explore the efficacy of content caching with limited cache
storage and different types of content classes, each class with
multiple contents, in the content library.

For diverse applications, such as mobile broad bandwidth
and low latency (MBBLL), massive broad bandwidth machine-
type (mBBMT), massive low-latency machine-type (mLLMT)
communications, etc., the CVs urgently need an efficient RAT
solution [12]. In the meantime, regardless of the applications,
the VEN must ensure omnipresent connectivity to the CVs
and deliver their requested contents timely. The so-called
user-centric networking [13]–[16] is surging nowadays with
its ability to shift network resources towards network edge.
Note that a user-centric approach is based on the idea of
serving users by creating virtual cells (VCs) [17]–[19]. While
the network-centric approach serves a user from only one
base station, the user-centric approach enables serving a user
from a VC that may contain multiple transmission points
[17]–[19]. The latter approach can, thus, not only provide
ubiquitous connectivity but also provide higher throughput
with minimized end-to-end latency for the end-users [20]. As
such, a user-centric approach can combat the frequent changes
in received signal strength - often experienced in VENs due
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to high mobility, by ensuring multipoint data transmission and
receptions.

While the user-centric networking approach can bring uni-
versal connectivity and MBBLL/mBBMT/mLLMT solutions
for the CVs, it induces a more complex network infrastructure.
To ensure multipoint data transmission and reception, efficient
baseband processing is required. Moreover, as the traditional
hardware-based and closed network-centric approach is inflex-
ible, the user-centric approach demands the use of software-
defined networking [21], which can offer more efficient and
agile node associations and resource allocations in the user-
centric approach. With proper system design, it is possible to
create VCs with multiple low-powered access points (APs) to
ensure that the throughput and latency requirements of the CVs
are satisfied. Moreover, amalgamating content caching with the
user-centric RAT solution can indeed ensure timely payload
delivery for stringent delay-sensitive application requirements
of modern CVs. However, this requires a joint study for -
content placement, CV scheduling, VC formulation, VC asso-
ciation with the scheduled CV, and radio resource allocation
of the APs in the VCs.

A. Related Work

In literature, there exist several works [22]–[29] that consid-
ered cache-enabled VENs from the traditional network-centric
approach. Huang et al. proposed a content caching scheme
for the Internet of vehicles (IoVs) in [22]. They developed a
delay-aware content delivery scheme exploiting both vehicle-
to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links. The
authors minimized content delivery delays for the requester
vehicles by jointly optimizing cache placement and vehicle
associations. Nan et al. also proposed a delay-aware caching
technique assuming that the vehicles could either a) decide
to wait for better delivery opportunities, or b) get associated
with the roadside unit (RSU) that has the content, or c) use one
RSU as a relay to extract the content from the cloud in [23].
The authors exploited deep reinforcement learning (DRL) to
minimize content delivery cost. However, these assumptions
are not suitable for CVs because time-sensitivity plays a
crucial role in the quick operation of CVs. [24] proposed
quality-of-service ensured caching solution by bounding the
content into smaller chunks.

Dai et al. leveraged blockchain and DRL to maximize
caching gain [25]. Lu et al. proposed a federated learning
approach for secure data sharing among the IoVs [26]. How-
ever, [25], [26] assumed that the data rate is perfectly known
without any proper resource allocations for the RAT. Zhang et
al. addressed proactive caching by predicting user mobility and
demands in [27]. Similar prediction-based modeling has also
been extensively studied in [8], [30], [31]. Moreover, [27] only
analyzed cache hit ratio without incorporating any underlying
RAT. Fang et al. considered a static popularity-based cooper-
ative caching solution for roaming vehicles, which assumed
constant velocity and downlink data rate and minimized con-
tent extraction delay [28]. Liu et al. considered coded caching
for a typical heterogeneous network with one macro base
station (MBS) overlaid on top of several RSUs [29]. Vehicles
trajectory, average residence time within RSU’s coverage, and

system information were assumed to be perfectly known to the
MBS in [29]. Owing to the time-varying channel conditions in
VENs, the authors further considered a two-time scaled model.
Particularly, they assumed that content requests only arrive at
the large time scale (LTS) slot, whereas MBS could decide
to orchestrate resources in each small time scale (STS) slot
- within the LTS slot. However, although [29] assumed LTS
and STS considering time-varying wireless channels, it did
not consider any communication model. Therefore, the study
presented in [29] did not reflect delay analysis in VENs.

The study presented in [22]–[29] mostly considered that the
content catalog consist of a fixed number of contents from a
single category. In reality, each content belongs to a certain
category, and the catalog consists of contents from different
categories. Besides, these studies mainly assumed that the
users request contents based on popularity. However, each CV
may have a specific need for a particular type of content.
For example, some CVs may need to have frequent opera-
tional information, whereas other CVs may purely consume
entertainment-related content. Therefore, a VEN shall consider
individual CV’s preference, as well as the global popularity.

Some literature also exploited user-centric RAT solutions
for VENs [14], [17]–[20], [32]. Considering the high mobility
of the vehicles, [14] proposed an approach for user-centric
VC creation and optimized resource allocation to ensure max-
imized network throughput. A power-efficient solution for the
VC of the VENs was also proposed in [20]. Lin et al. proposed
heterogeneous user-centric (HUC) clustering for VENs in [32].
Particularly, the authors considered creating HUC using both
traditional APs and vehicular APs. The goal of [32] was to
study how HUC migration helps in VEN. Considering both
horizontal handover (HO) and vertical HO, [32] studied the
tradeoff between throughput and HO overhead. Xiao et al.
showed that dynamic user-centric virtual cells could be used
to multicast the same message to a group of vehicles in [17].
Particularly, [17] assumed that a group of vehicles could be
considered as a hotspot (HS). If all vehicles inside the HS
are interested in the same multicasted message, multiple APs
could formulate a VC to serve the HS. [17] optimized power
allocation to balance the signal-to-interference-plus-noise ratio
for the vehicles in the HS. Shahin et al. also performed similar
studies in [18], [19]. Instead of serving a single user, they
created HS for V2X broadcast groups. They then maximized
the total active HS in the network using admission control,
transmission weight selection and power control [18], [19].

B. Motivations and Our Contributions

As ubiquitous connectivity is essential for CVs, the existing
RAT solutions may not be sufficient to meet the strict require-
ments of CVs for higher automation. Existing literature shows
that VC-based user-centric networking can bring additional
burdens that need rigorous studies, such as mobility and
HO management [32]. Moreover, as multicasting delivers
a common signal, the study presented in [17]–[19] is not
suitable for CV-specific independent data requirements in
delay-sensitive applications. However, an alternative software-
defined networking approach with advanced ML algorithms
can potentially bring the RAT solution [14], [20], [33].
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Moreover, [14], [20] considered that all APs could serve all
users, which may not be possible due to limited coverage
and other resource constraints. Inspired by the user-centric
VC-based studies [14], [17]–[20], [32], our proposed VEN
can deploy a close proximity edge server that acts as the
software-defined controller. The to-be-requested contents can
be prefetched through the edge servers to ensure local delivery.
Besides, multiple low-powered APs can be placed as RSUs.
The controller can determine the user-centric VC configuration
and the corresponding resource orchestration to meet the
requirements of the CVs by controlling these APs.

In comparison to the above studies, in this work, we
have considered a practical communication model, introduced
a preference-popularity tradeoff in content request models,
considered a multi-class content catalog, introduced a new VC
formation strategy that exploits all possible ways of partition-
ing the low-powered APs, introduced a duration of interest
(DoI) for which the edge server cannot update the cache
storage due to practical hardware and overhead constraints,
and devised a joint cache placement and user-centric RAT
solution. Particularly, our contributions are

• Considering the stringent requirements of the regulatory
organizations, we propose a new software-defined user-
centric RAT solution that partitions the low-powered
APs to form VC, and provides ubiquitous and reliable
connectivity to the CVs on the road.

• To ensure fast decision-making for mission-critical op-
erations and uninterrupted onboard entertainment, we
exploit content prefetching at the edge server, with mul-
tiple classes in the content catalog, while introducing
preference-popularity tradeoff into individual content re-
quests owing to the CVs’ heterogeneous preferences.
Moreover, we introduce a DoI for which the cached
contents remain idle due to practical limitations and lever-
age our proposed RAT solution to deliver the requested
contents within a hard deadline.

• We introduce a joint content placement, CV scheduling,
VC configuration, CV-VC association and radio resource
allocation problem to minimize content delivery delays.

• To tackle the grand challenges of the joint optimization
problem, we decompose it into a cache placement sub-
problem and a delay minimization sub-problem - given
the cache placement policy. We propose a novel DRL
solution for the first sub-problem. We then transform
the second sub-problem to a weighted sum rate (WSR)
maximization problem due to practical limitations and
solve the transformed problem using maximum weighted
bipartite matching (MWBM) and a simple linear search
algorithm.

• Through analysis and simulation results, we verify that
our proposed solution achieves better performance than
the existing baselines in terms of cache hit ratio (CHR),
deadline violation and content delivery delay.

The rest of the paper is organized as follows: Section II
introduces our proposed software-defined user-centric system
model. Section III presents the caching model, followed by
the joint problem formulation in Section IV. Problem trans-

TABLE I
IMPORTANT NOTATIONS UTILIZED IN THIS PAPER

Parameter Definition
B,B,b Set of APs, total number of APs, bth AP
U ,U,u Set of CVs, total number of CVs, uth CV

Wmax, W (t) Maximum possible VCs with B APs, total created VCs in
slot t

Bvc(W (t)), AW (t),
Ba

vc(W (t))
All VC configurations set, total possible VC configurations

in Bvc(W (t)), VC sets under ath configuration
VCi

a ith VC of Ba
vc(W (t))

Ii,a
b (t) Indicator function that defines whether AP b is in VCi

a
Iu(t) Indicator function that defines whether CV u is scheduled at

slot t
Ii,a
u (t) Indicator function that defines whether VC VCi

a is selected
for user u at time t

Z̄, Z, z, ω Total network bandwidth, total orthogonal pRB, zth pRB,
size of the pRBs

Ib,u
z (t) Indicator function that defines whether pRB z is assigned to

AP b to serve CV u at time t
ψu

b (t),τ
u
b (t),

h̆u,z
b (t), hu,z

b (t)
Large scale fading, log-Normal shadowing, fast fading

channel response, entire channel response, respectively, from
AP b to CV u during slot t over the zth pRB

Hb
u(t) Stacked hu,z

b s over all pRBs for CV u and AP b during slot t
xu

b(t), su
b(t), wu,z

b Intended signal, symbol, and beamforming vector of AP b
for CV u, respectively

Pb Transmission power of AP b
yz

u(t), Γz
u(t) Downlink received signal and downlink SNR at CV u over

pRB z, respectively, during slot t
κ Transmission time interval

Ru(t) Downlink achievable rate at CV u during slot t
C , C, c Content class set, total content class, cth content class

Fc, F , fc, F Content set in class c, total content in a class, f th content of
class c, entire content library

G fc , Gc, g fc Set of the content features, total number of features, gth
fc

feature, respectively, of content f of class c
ϒ, n DoI, cache (re)-placement or DoI change counter
Θt

u Bernoulli random variable that defines whether CV u places
a content request at time t

Ψt Total content requests from all CVs during time t
I fc
u (t) Indicator function that defines whether CV u requests

content fc during time t

Ω
f
′
c

fc Cosine similarity index of content fc and f
′
c

S, Λ, Λc content size, cache storage size of edge server, cache storage
to be filled with content from class c

I fc (n) Indicator function that defines whether content fc is stored
during cache placement counter n

εu Highest probability for content exploitation of CV u
pu

c CV u’s probability of selecting content class c
p fc

c Global popularity of content fc of class c
dm,t

u, fc , dq,t
u, fc , ds,t

u, fc Content extraction delay from cloud, wait time of I fc
u (t)

before being scheduled, transmission delay
dmax

f , d̂ fc
u (t) Maximum allowable delay by the CV, hard-deadline for the

edge server to completely offload the requested content
d̄(t) Average delays for all I fc

u (t)s
mca,m joint (n) Cache placement action, possible action space

1
I fc
u
(t) Cache hit event for I fc

u (t)

h(t), CHR(t) Total cache hit during slot t, cache hit ratio during slot t
πca Cache placement policy of the edge server
T t

SoI Slots of interests during slot t

T
t−dmax

f +ζ

u,rem ,

P
t−dmax

f +ζ

u,rem

Remaining time to the deadline and payload for the
requested content in slot t−dmax

f +ζ at the current slot t

U t
val, T t

rem, P t
rem Valid CV set during slot t, and their minimum remaining

deadline and payload sets, respectively
φu(t) Normalized weights of the CVs in valid CV set during slot t
U t

sch Scheduled CV set during slot t
R̆(t) Weighted sum rate of the VEN during slot t

Ftop(n) Top-most popular and their Λc-top similar contents matrix
Pu

req(n) Content-specific requests history matrix of u in past DoI
Pu

hit (n) Content-specific local cache hit history matrix of u in past
DoI

P f (n) Measured popularity of contents during n based on past DoI
xn

ca, rn
ca State and instantaneous reward of the edge server during πca

learning
θθθ ca, θθθ−ca Online DNN and offline DNN of the edge server for learning

the CPP
memca, memmax

ca Edge server’s memory buffer, maximum length of memca for
learning πca

G, Rt Bipartite graph, weighted data rate matrix
e(b,z), Rt [b,z] Edge connecting vertex b and z, and corresponding weights

Rbit
u (t) Possible transmissible bits for CV u during slot t

formations are detailed in Section V, followed by our proposed
solution in Section VI. Section VII presents extensive simu-
lation results and discussions. Finally, Section VIII concludes
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the paper. The important notations are listed in Table I.

II. SOFWARE-DEFINED USER-CENTRIC COMMUNICATION
MODEL

A. Communication System Model

This paper considers a software-defined cache-enabled VEN.
An edge server - controlled by a software-defined controller, is
placed in proximity to the edge CVs. The edge server has ded-
icated radio resources with limited local cache storage and is
connected to the cloud. Several low-powered APs are deployed
as RSUs to provide omnipresent wireless connectivity to the
CVs. These APs are connected to the edge server with high-
speed wired links. The software-defined centralized controller
can control the edge server and perform user scheduling,
node associations, precoding, channel estimations, resource
allocations, etc. In other words, the edge server acts as the
baseband unit. Besides, unlike the legacy system models,
we consider a user-centric approach that uses multiple APs
to serve the scheduled CVs. These APs are used as RSUs
that only perform radio transmissions over the traditional Uu
interface [34]. Denote the vehicle and AP set by U = {u}Uu=1
and B = {b}B

b=1, respectively. The VEN operates in slotted
times. Given B APs at fixed locations, unlike the traditional
network-centric approach, the proposed VEN partitions the AP
set B into W (t)≤B subsets of APs at each slot t. Without loss
of generality, we define each subset as a VC. The proposed
VEN can assign such a VC to a scheduled CV.

Let there be a set A (W (t)) = {a}
AW (t)
a=1 that defines the

possible ways to partition the B APs into W (t) subsets of APs,
i.e., VCs. Denote the ith VC of a∈A (W (t)) by VCi

a ⊂B and
the set of VCs by Ba

vc(W (t)) = {VCi
a}

W (t)
i=1 . Furthermore, for

each a ∈A (W (t)), the VC must obey the following rules:
VCi

a 6= /0, ∀a and i, (1a)

VCi
a
⋂

VCi′
a = /0, ∀a and i 6= i′, (1b)⋃W

i=1
VCi

a = B, ∀a. (1c)
The first rule in (1a) means that the VCi

as must not be empty,
while the second rule in (1b) means the subsets are mutually
exclusive. Besides, the last rule in (1c) represents that the
union of the VCi

as must yield the original AP set B. When
W (t) = 3 and B = 6, for one possible a ∈ A (W (t)), the VC
set Ba

vc(W (t)) is shown in Fig. 1 by the filled ovals.
Then, for a given W (t), the VEN can formulate the total VC

configuration pool Bvc(W (t)) = {Ba
vc(W (t))}

AW (t)
a=1 . Moreover,

the VEN can partition the B APs into W (t) VCs following
the above rules in AW (t) = W (t)!Bvc(B,W (t)) ways, where
Bvc(B,W (t)) is calculated as

Bvc(B,W (t)) =
1

W (t)! ∑
W (t)
w̄=1 (−1)w̄

(
W (t)

w̄

)
(W (t)− w̄)B. (2)

Note that Bvc(B,W (t)) is commonly known as the Stirling
number of the second kind [35].

To this end, as the VCs contain different AP configurations,
denote the VC and AP mapping by

Ii,a
b (t) =

{
1, if AP b is in VCi

a during slot t,
0, otherwise,

. (3)

The edge server selects the total W (t) number of VCs to form
and their configuration Ba

vc(W (t)) ∈ Bvc(W (t)). The VCs
VCi

a ∈ Ba
vc(W (t)) are assigned to serve the scheduled CVs.

Access Point

Access Point Access PointAccess Point

Access Point
Access Point

E
d

g
e 

S
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v
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Cell 1

Virtual 
Cell 2

Virtual 
Cell 3

Fig. 1. Proposed user-centric cache-enabled vehicular edge network

Denote the CV scheduling and VC-CV association decisions
by the following indicator functions:

Iu(t) =

{
1, if CV u is scheduled in slot t,
0, otherwise,

. (4)

Ii,a
u (t) =

{
1, if VCi

a is selected for CV u in slot t,
0, otherwise,

. (5)

Note that (5) means that if Ii,a
u (t) = 1, i.e., VCi

a is assigned to
CV u, then the CV is connected to all APs inside this VCi

a.
We contemplate that the VEN operates in frequency division

duplex (FDD) mode and has a fixed Z̄ Hz bandwidth. The
edge server uses this dedicated Z̄ Hz bandwidth and divides
it into Z orthogonal physical resource blocks (pRBs). Let the
set of the orthogonal pRBs be Z = {z}Z

z=1 for the down-
link infrastructure-to-vehicle (I2V) communication. Denote
the size of a pRB by ω , while we introduce the following
indicator function for the pRB allocation

Ib,u
z (t) =


1, if pRB z is assigned to AP b when

Ii,a
u (t) = 1 and Ii,a

b (t) = 1,
0, otherwise,

. (6)

B. Communication Channel Modeling
We consider single antenna CVs whereas, the APs are
equipped with L > 1 antennas. Let us denote the channel
response at a CV u from the AP b, over pRB z, as follows:

hu,z
b (t) =

√
ψu

b (t)τ
u
b (t)h̆

u,z
b (t) ∈ CL×1, (7)

where
√

ψu
b (t), τu

b (t) and h̆u,z
b (t) = [hu,z

b,1(t), . . . ,h
u,z
b,L(t)]

T ∈
CL×1 are large scale fading, log-Normal shadowing and fast
fading channel responses from the L antennas, respectively.
Besides, hu,z

b,l (t) is the lth row of h̆u,z
b (t) that denotes the channel

between u and the lth antenna of AP b at time t over pRB z.
Note that we consider the urban macro (UMa) model [36] for
modeling the path losses following 3rd Generation Partnership
Project (3GPP) standard [34]. Then, for all pRBs in the system,
we express the wireless channels from AP b to CV u, at time
t, as Hb

u(t) =
[
hu,1

b (t), . . . ,hu,Z
b (t)

]
∈ CL×Z . We consider the

edge server has perfect channel state information (CSI)1 and

1Although channel reciprocity does not hold in FDD, the edge server can
use some feedback channels to estimate the CSI.
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all transceivers can mitigate the Doppler effect.

C. Transceiver Modeling

The transmitted signal at the AP b for CV u is su
b(t) =√

Pbxu
b(t)w

u,z
b (t) ∈ CL×1, where Pb is the transmission power

of AP b. Besides, xu
b(t) and wu,z

b (t) ∈ CL×1 are the unit
powered intended signal and corresponding precoding vector
over pRB z, respectively, of the AP b for u during slot
t. Then, the transmitted signals for CV u from all APs
is su(t) = [su

1(t), . . . ,s
u
B(t)]

T ∈ CL×B. Moreover, as each AP
transmits over orthogonal pRBs, the proposed VEN does not
have any interference. To this end, we calculate the received
signal at CV u, over pRB z, as

yz
u(t)=

W (t)

∑
i=1

Ii,a
u (t)

( B

∑
b=1

Ii,a
b (t) · Ib,u

z (t)
[
hu,z

b (t)Hsu
b(t)+η

u
b (t)

])
, (8)

where ηu
b (t) ∼CN

(
0,σ2

b

)
is zero mean circularly symmetric

Gaussian distributed noise with variance σ2. The correspond-
ing signal-to-noise ratio (SNR), over pRB z, is

Γ
z
u (t)=

∑
W (t)
i=1 Ii,a

u (t)
(
∑

B
b=1Ii,a

b (t) · Ib,u
z (t)

[
Pb
∣∣hu,z

b (t)Hwu,z
b (t)

∣∣2])
ω
[

∑
W (t)
i=1 Ii,a

u (t) ·
(

∑
B
b=1 Ii,a

b (t) ·σ2
b

)] .

(9)
Therefore, the total downlink achievable capacity for CV u is

Ru (t) = ∑
Z
z=1 ω · log2 (1+Γ

z
u (t)) . (10)

III. EDGE CACHING MODELING

A. Definitions and Assumptions

To avoid cross-domain nomenclature, we present necessary
terms and our assumptions in the following.
Definition 1 (Content). The source file that the CVs request is
defined as content. These files can contain CVs’ operational
information, geographic information, map/navigation informa-
tion, weather conditions, compressed file with sensory data,
local news, video/audio clips, etc.

Definition 2 (Content Class). Each content belongs to a class
that defines the type/category of the content. Let there be F
contents in each class and the set of the content class be
C = {c}Cc=1, where C ∈ Z+. Denote the content set of class c
by Fc = { fc}F

f=1, where fc represents the f th content of class
c. Moreover, let the content size be S bits.

Definition 3 (Content Features). Let the content in the cth class
have Gc ∈Z+ features. Denote the feature set of content fc by
G fc = {g fc}

Gc
g=1. Note that the content features are essentially

the descriptive attributes of the content. For example, it can be
the genre/type of the content, names of the directors, actors,
actresses, geolocation information, timestamp, etc.

Definition 4 (Content Library). The content library is com-
prised of all contents from all classes. Let F =

⋃C
c=1 Fc be

the content library.

Definition 5 (Duration of Interest (DoI)). The period for which
the content library remains fixed is denoted as the duration of
interest (DoI). Denote this period by ϒ.

The content library F is fixed. While the CVs may request
contents in each slot t, the edge servers can update its cached
content only in each t = nϒ time slot, where n ∈ Z+ defines

the cache (re)placement counter. Note that this assumption is
made as it may not be practical to update the cache storage in
each slot t due to hardware limitations. Moreover, we assume
that the content update/refresh process is independent of the
content request arrival process. To this end, we focus on
request arrival modeling from the CVs, followed by modeling
their preferences, i.e., their requested fc ∈F in slot t.

B. User Request/Traffic Modeling
We assume that the CVs can make content requests in each
slot t following Bernoulli distribution2. At slot t, let Θt

u denote
a Bernoulli random variable - with success probability pu,
that defines whether u makes a content request or not. The
total number of requests during a DoI ϒ for an individual CV
u follows Binomial distribution. Besides, at slot t, the total
number of requests from all CVs, i.e., Ψt = ∑

U
u=1 Θt

u, follows
a Poisson binomial distribution [39] with probabilities p =
{pu}u∈U . Moreover, the probability of the distribution of Ψt
can be bounded using Proposition 1.
Proposition 1. Let µ̄ = E[Ψt ] = ∑

U
u=1 pu and p̄ =

(1/U)∑
U
u=1 pu be the average success probability. Then, at

slot t, the probability that the distribution of the total number
of requests of the CVs gets larger than some ξ = µ̄ + δ and
0 < δ <U− µ̄ , is bounded above as follows:

Pr{Ψt ≥ ξ} ≤ exp [−UDp̄ (χ)] , (11)
where Dp̄ (χ) = χ ln(χ/p̄)+(1−χ) ln((1−χ)/(1− p̄)) is the
relative entropy of χ to that of p̄ and χ = ξ/U.

Proof. Please see Appendix A. �

C. Individual User Preference Modeling
Given that a CV makes a request, we now focus on the which
question, i.e., given that Θt

u = 1, which content shall that CV
request at that slot? Let us express a particular content fc
requested by CV u during slot t by

I fc
u (t) =

{
1, if Θt

u = 1 and u request fc,

0, otherwise,
(12)

Unlike legacy modeling3, we consider that a CV’s choice
depends both on its personal preference and global popularity.
Depending on the operational needs, a CV may prefer to
consume a specific content related to its operation. Besides,
it may also prefer consuming a content very similar to the
one that it previously consumed. Moreover, it may also get
influenced by the popularity of the contents. For example, at
slot t, a CV may request operation-related content fc specific
to that particular timestamp. At slot t + 1, it may then need
another operation-related content f

′
c that is very similar to fc.

Similarly, for purely entertainment-related content, the request
can get influenced by the user’s previous experience. The user
may also choose to consume the most popular content at that
time. As such, we model the user’s content request as the
exploitation-exploration tradeoff between personal preference
and global popularity of the contents. We present this by the
εu-policy, i.e., a CV exploits with probability εu and explores
with probability (1− εu).

2Similar access modeling was also used in existing works [37], [38].
3Legacy model assumes that content requests follow Zipf distribution [22],

[23], [28], which does not capture the personal preferences of the users [8].



DRAFT 6

1) Content Selection during Exploitation: In this case, the
CV exploits its preferred contents from the same class it
previously consumed a content. Given that CV has requested
fc in slot t, it will request the most similar content to fc in
class c with probability εu if Θt+1

u = 1. Note that similarity
between fc and f

′
c, where fc 6= f

′
c is calculated as

Ω
f
′
c

fc =
(
∑g∈G fc

g fc g f ′c

)
/
(√

∑g∈G fc
g2

fc

√
∑g∈G

f
′
c

g2
f ′c

)
. (13)

2) Content Selection during Exploration: Given that the
CV requested content from class c previously, it will explore
new content from a different class c′ 6= c. Denote CV u’s
class selection probability by pu

c , which follows a categorical
distribution. Once the CV chooses the new content class c,
it randomly selects a content from this class based on global
popularity. Denote the global popularity of contents in class c
by p f

c = {p fc
c } fc∈Fc , where p fc

c is the popularity of content fc.
Note that our design boils down to a solely popularity-based

model [11] when there is only a single content class and εu = 0.

D. Content (Re)placement in the Cache

Recall that only the edge server has limited cache storage in
the proposed VEN. Let the cache storage of the edge server
be Λ. Denote the cache placement indicator by the binary
indicator function I fc(n) during cache placement counter n.
The edge server obeys the following rules for cache placement:
S ·∑

C
c=1 ∑

F
f=1 I fc(n)≤Λ, (14) S ·∑

F
f=1 I fc(n) = Λ

c, (15)
where Λc is the total storage taken by the cached content from
class c ∈ C . Moreover, (14) ensures that the size of the total
cached contents must not be larger than the storage capacity.
At each t = nϒ, the software-defined controller pushes the
updated contents into the cache storage. These contents remain
at the edge servers’ cache storage till the next DoI update.

IV. DELAY MODELING AND PROBLEM FORMULATION

A. Content Delivery Delay Modeling
For higher automation (and uninterrupted entertainment of the
onboard users), the CVs may need to continuously access
diverse contents within a tolerable delay to avoid fatalities (and
quality of experiences (QoEs)). This motivates us to introduce
a hard deadline requirement for the edge server to deliver the
requested contents. We consider that content requests arrive
continuously following Θt

us. Each CV can make at most a
single content request based on its preference if Θt

u = 1. The
requester has an associated hard deadline requirement dmax

f ,
within which it needs the entire payload. The edge server, on
the other hand, can have a shorter deadline, denoted by d̂ fc

u (t),
associated with the requests as it replaces the content at the
end of each DoI. Formally, the deadline for the edge server to
fully offload a requested content is

d̂ fc
u (t) = min{dmax

f ,(n+1)ϒ− t}, ∀t ∈ [nϒ,(n+1)ϒ]. (16)
Essentially, (16) ensures that the edge server cannot exceed the
minimum of the maximum allowable delay threshold dmax

f and
remaining time till the next cache replacement slot (n+1)ϒ.

To that end, we calculate the associated delay of delivering
the requested contents from all CVs u ∈ U . This delay
depends on whether the requested content has been prefetched
and the underlying wireless communication infrastructure.

Particularly, for the cache miss event4, the requested content is
extracted from the cloud. This extraction causes an additional
delay and involves the upper layers of the network5. Denote
the delay for extracting content fc, requested by CV u during
slot t, from the cloud by dm,t

u, fc . Moreover, we consider two more
additional delays. The first one is the wait time of a request
before being scheduled for transmission by the edge server,
given that the edge server has either prefetched the content
during the cache placement slot or the upper layers have
already processed the requested content from the cloud. The
second one is the transmission delay. Denote these two delays,
i.e., wait time and transmission delays, for I fc

u (t) by dq,t
u, fc and

ds,t
u, fc , respectively. Therefore, the total delay of delivering the

entire content is calculated as
d fc

u (t) =
[
1− I fc(n)

]
dm,t

u, fc +dq,t
u, fc +ds,t

u, fc . (17)
Thus, the average content delivery delay for all CVs is

d̄(t) = (1/U)∑
U
u=1 ∑

C
c=1 ∑

F
f=1 I fc

u (t) ·d fc
u (t). (18)

B. Joint Problem Formulation

We aim to find joint cache placement I fc(n), user scheduling
Iu(t), total W (t) VC to form, the VC configuration Ba

vc(W (t)),
VC association Ii,a

u (t) and radio resource allocation for the
serving APs in the selected VCs, i.e., Ib,u

z (t)s to minimize long-
term expected average content delivery delay for the CVs. As
such, we pose our joint optimization problem as

minimize
I fc (n),Iu(t),W (t),Ba

vc(W (t)),Ii,a
u (t),Ib,u

z (t)
d = limsup

T→∞

E

[
1
T

T

∑
t=1

d̄(t)

]
(19)

s. t. C1 : ∑
C
c=1 ∑

F
f=1 I fc

u (t)≤ 1, ∀ u, t (19a)

C2 : (14),(15), ∀ n, (19b)

C3 : ∑
U
u=1 Iu(t)≤W (t), ∀ t, (19c)

C4 : ∑
W (t)
i=1 Ii,a

u (t) = 1, ∀ u, (19d)

C5 : ∑
U
u=1 Ii,a

u (t) = 1, ∀ i, (19e)

C6 : ∑
U
u=1 ∑

W (t)
i=1 Ii,a

u (t) =W (t), (19f)

C7 : W (t) = min
{
∑

U
u=1 Iu(t),Wmax

}
, (19g)

C8 : ∑
B
b=1 Ib,u

z (t) = 1, ∀ z,u, (19h)

C9 : ∑
Z
z=1 Ib,u

z (t) = 1, ∀ b,u, (19i)

C10 : ∑
U
u=1 Ib,u

z (t) = 1, ∀ z,b, (19j)

C11 : ∑
Z
z=1 ∑

B
b=1 ∑

U
u=1 Ib,u

z (t) = Z, (19k)

C12 : d fc
u (t)≤ d̂ fc

u (t), (19l)

C13 : I fc(n), Iu(t), Ii,a
u (t), Ib,u

z (t) ∈ {0,1}, (19m)
where Wmax is the maximum allowable number of VCs in
the system. Constraint C1 ensures that each CV can request
at most one content in each slot t. The constraints (14) and
(15) in C2 are due to physical storage limitations. Constraint
C3 in (19c) restricts the total number of scheduled CVs to at
max the total number of created VCs W (t). Constraints (19d),
(19e) and (19f) make sure that each CV can get at max one
VC, each VC is assigned to at max one CV and summation of

4When the edge server needs to serve content request I fc
u (t) but it does not

have content fc in its local cache storage is known as the cache miss.
5We assume that each miss event needs to be handled by the upper layers.
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all assigned VCs is at max the total number of available VCs,
respectively. Besides, constraints C7 in (19g) restricts the total
VCs W (t) to be at max the minimum of the total scheduled
CVs and Wmax. Furthermore, constraints (19h), (19i) and (19j)
ensure that each AP can get at max one pRB, each pRB is
assigned to at max one AP and each CV gets non-overlapping
resources, respectively. Constraint C11 in (19k) ensures that
all available radio resources are utilized. C12 is introduced to
satisfy the entire payload delivery delay of a requested content
to be within the edge server’s hard deadline d̂ fc

u (t). Finally,
constraints in (19m) are the feasibility space.
Remark 1. (Intuitions behind the constraints) Constraint
C1 incorporates CV’s content request, while C2 is for the
cache placement at the edge server. Constraint C3 is for CV
scheduling. Constraints C4 - C7 are for the user-centric RAT’s
VC formation and associations. Besides, constraints C8 - C11
are for radio resource allocation. Moreover, C12 is introduced
to satisfy the hard deadline for delivering the CVs’ requested

contents, which holds if ∑
d̂ fc

u (t)
t̄=t Iu(t̄) ·κ ·Ru(t̄)≥ S, where κ is

the transmission time interval (TTI).

Remark 2. The total delay associated with each content
request, calculated in (17), depends on both cache placement
and the RAT. More specifically, an efficient cache placement
solution can minimize cache miss events, i.e., minimize dm,t

u, fcs.
On the other hand, dq,t

u, fc and ds,t
u, fc depend on the CV schedul-

ing, and total VC W (t), VC configuration Ba
vc(W (t)), CV-VC

association Ii,a
u (t) and radio resource allocation Ib,u

z (t).
Note that the optimization problem in (19) is an average

Markov decision process (MDP) over an infinite time horizon
with different combinatorial optimization variables. Recall that
the CSI varies in each slot t. Besides, in slot t, neither the
CV’s to-be-requested contents nor the CSI in the future time
slots are known beforehand. As such, without knowing these
details, the optimal decision variables may not be known. In
the subsequent section, we will prove that even the reduced
problems of this complex joint optimization are NP-hard.
Moreover, the decision variables are different in different
time slots. As such, we decompose the original problem into
two sub-problems. The first sub-problem transforms the cache
placement problem, which will be solved using a learning
solution. The second sub-problem introduces a joint CV
scheduling, total W (t) VC formation, association and resource
allocation optimization problem for minimizing the average
content delivery delay, given that the edge server knows the
cache placement decisions. The learning solution for the cache
placement depends on the following preliminaries of DRL.

C. Preliminary of Deep Reinforcement Learning

An MDP contains a set of states X = {x}|X |x=1 , a set of possible
actions M = {m}|M |m=1, a transition probability Ptt ′(m) from the
current state xt ∈X to the next state xt ′ ∈X when action m is
taken, and an immediate reward Rt(m) for this state transition
[40]. RL perceives the best way of choosing actions in an
unknown environment through repeated observations and is
widely used for solving MDP. The RL agent learns policy
π : M ×X → [0,1], where π(xt ,m) = Pr{m|xt} denotes the
probability of taking action m given the agent is at state xt .

Following π , given the agent is at state xt , the expected return
from that state onward denotes how good it is to be at that
state and is measured by the following state-value function:

Vπ(xt) = E[R|xt ,π] = E
[
∑

Tend
t ′=t γ

t ′−tRt ′(m)|xt ,π
]
, (20)

where γ ∈ [0,1] is the discount factor, Tend is the time step at
which the episode ends, and Rt ′(m) is the reward at step t ′.
Moreover, the quality of an action taken at a state is ascertained
by the following action-value function [40]:

Q(xt ,m) = Rt(m)+ γ ∑xt′∈X
Ptt ′(m)Vπ(xt ′). (21)

The agent’s goal is to find optimal policy π∗ to maximize
Q∗(xt ,m) = Rt(m)+ γ ∑xt′∈X

Ptt ′(m)Vπ∗(xt ′), (22a)
where Vπ∗(xt ′) = max

m̆∈M
Q∗(xt ′ , m̆). This Q(xt ,m) value is up-

dated as [41]
Q(xt ,m)← (1−α)Q(xt ,m)+α ȳt , (23)

where α is the learning rate and ȳt =Rt(m)+γ max
m̆∈M

Q(xt ′ , m̆))

is commonly known as the temporal target. Usually, a deep
neural network (DNN), parameterized by its weight θθθ , is
used to approximate Q∗(x,m) ≈ Q(x,m;θθθ), which is known
as the so-called DRL [42]. The agent is trained by randomly
sampling Sb batches from a memory buffer D , which sores of
the agent’s experiences {xt ,m,Rt ,xt ′}, and performing stochas-
tic gradient descent (SGD) to minimize the following loss
function [42]:

L(θθθ) = [ȳt(θθθ)−Q(xt ,m;θθθ)]2, (24)
where ȳt(θθθ) = Rt(m) + γ max

m̆∈M
Q(xt ′ , m̆;θθθ). While the same

DNN θθθ can be used to predict both Q(xt ,m;θθθ) and the target
ȳt(θθθ), to increase learning stability, a separate target DNN,
parameterized by θ−θ−θ−, is used to predict ȳt(θθθ

−) [42].
Here we emphasize that since the Q value functions are

estimated using the DNN θθθ , i.e., Q∗(x,m)≈Q(x,m;θθθ), unlike
classical tabular Q-learning, the DRL solution may not be
optimal [40]. To that end, we first introduce our problem
transformation in the next section, followed by more pertinent
information on a DRL-based solution in Section VI.

V. PROBLEM TRANSFORMATIONS

Since the original problem is hard to solve and the decision
variables are not the same in different time slots, we decom-
pose the original problem by first devising a learning solution
for cache placement policy (CPP) for the cache placement slot
t = nϒ. Then, we use this learned CPP to re-design the delay
minimization problem from the RAT perspective. Intuitively,
given that the best CPP for the slot t = nϒ is known, in order to
ensure minimized content delivery delay, one should optimize
the RAT parameters jointly.

A. Cache Placement Policy (CPP) Optimization Sub-Problem

We want to learn the CPP πca that provides the optimal cache
placement decision I fc(n) in the cache placement time slots
t = nϒ, ∀n. We have total mca = ∏

C
c=1 mc

ca = ∏
C
c=1
( F

Λc

)
ways

for content placement as Λc and Λ are of the unit of content
size S based on constraints (14) and (15). Moreover, the CPP
πca is a mapping between the system state xn

ca and an action
mca in the joint action space with mca(n) possible actions. To
this end, let us define a cache hit event by

1I fc
u
(t) =

{
1, if I fc

u (t) = 1 and I fc(n) = 1,
0, otherwise.

. (25)
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Besides, the total cache hit at the edge server is calculated as
the summation of the locally served requests and is calculated
as h(t) = ∑

U
u=11I fc

u
(t). Thus, we calculate the CHR as

CHR(t) = h(t)/
(
∑

U
u=1 I fc

u (t)
)
. (26)

Next, we devise the CPP of the edge server that ensures a
long-term CHR while satisfying the cache storage constraints.
Formally, we pose the optimization problem as follows:

maximize
πca

CHR(πca) = lim
T→∞

E
[
(1/T )∑

T
t=1 CHR(t)

]
, (27)

s. t. C1,C2, I fc(n) ∈ {0,1}, (27a)
where C1 and C2 are introduced in (19).

Theorem 1. The CHR maximization problem (27) is NP-hard.

Proof. Please see Appendix B. �

B. Joint Optimization Problem for the User-Centric RAT

Note that as the delay of extracting a content from the cloud
during a cache miss event is fixed, the first term in (17) will
be minimized if the CPP πca ensures maximized CHR. In this
sub-problem, we focus on the other two delays dq,t

u, fc and ds,t
u, fc

in (17) by jointly optimizing scheduling, VC formation, VC
association and radio resource allocation of the proposed user-
centric RAT solution assuming the cache placement is known
at the edge server. Therefore, we pose the following modified
content delivery delay minimization problem.

minimize
Iu(t),W (t),Ba

vc(W (t)),Ii,a
u (t),Ib,u

z (t)
d = limsup

T→∞

E
[
(1/T )∑

T
t=1 d̄(t)

]
(28)

s. t. C3,C4,C5,C6,C7,C8,C9,C10,C11,C12, (28a)

Iu(t), Ii,a
u (t), Ib,u

z (t) ∈ {0,1}, (28b)
where the constraints in (28a) and (28b) are taken for the same
reasons as in the original problem in (19).

Sub-problem (28) contains combinatorial optimization vari-
ables and, thus, is NP-hard. An exhaustive search for optimal
parameters is also infeasible due to the large search space as
well as sequential dependencies for the deadline constraints in
C12. Besides, as each content request arrives with a deadline
constraint and wireless links vary in each slot, we consider that
the edge server adopts priority-based scheduling. Intuitively,
given the fact that the edge server does not know the trans-
mission delay ds,t

u, fc due to channel uncertainty and it needs
to satisfy constraint C12 for all I fc

u (t)s, it should schedule the
CVs with earliest-deadline-first (EDF)6 followed by optimal
VC formation, association and radio resource allocation. Note
that EDF is widely used for scheduling in real-time operating
systems [45]. If EDF cannot guarantee zero deadline violation
for the tasks, no other algorithm can [44]. In our case,
scheduling also depends on the availability of the requested
content at the edge server. In cache miss event, the edge server
must wait for dm,t

u, fc so that the upper layers can extract the
content from the cloud.

Upon receiving a content request I fc
u (t), the edge server

checks I fc(n). If I fc(n) = 0, the request is forwarded to the
upper layers. The upper layer initiates the extraction process
from the cloud. At each slot t, before making the scheduling
and VC formation decisions, the edge server considers previ-

6Similar scheduling is also widely used in literature [43], [44].

ous T t
SoI slots information. These T t

SoI slots are termed as our
slots of interest (SoI) and are calculated in (29).

T t
SoI =

{
min{0, t−dmax

f +ζ}
}dmax

f
ζ=1 . (29)

This SoI captures the previous slots that may still have undeliv-
ered payloads with some remaining time to the deadlines at the
current slot t. Denote the remaining time to the deadline and

payload for I fc
u (t−dmax

f +ζ ) in current slot t by T
t−dmax

f +ζ

u,rem and

P
t−dmax

f +ζ

u,rem , respectively. Particularly, for all I fc
u (t− dmax

f + ζ ),
the edge server first checks whether the content is available at
the edge server’s local cache storage or by the upper layers.
If it is available, the edge server calculates the remaining time
to the deadlines and payloads for the requests in all slots
of T t

SoI. The edge server finds a set of candidate requester
CVs U t

val ⊆U , their minimum remaining time to the deadline
set T t

rem and corresponding left-over payload set Pt
rem. This

procedure is summarized in Algorithm 1. Note that the time
complexity of Algorithm 1 is O(4U |T t

SoI|+3U +5).

After extracting the valid CV set U t
val, the edge server can

formulate total W (t) VCs based on the following equation:
W (t) = min{

∣∣U t
val
∣∣ ,Wmax}, (30)

where
∣∣U t

val

∣∣ is the cardinality of the set U t
val. This essentially

means that the server creates the minimum of the total valid
CVs in the set U t

val and the maximum allowable number of
VCs. Besides, the edge server calculates the priorities of the
valid CVs set based on their remaining time to the deadlines
using the following equation:

φu(t) = φ̄u(t)/
(
∑u∈U t

val
φ̄u(t)

)
, (31)

where φ̄u(t) =
(

∑u∈U t
val

T t
val[u]

)
/T t

val[u]. Note that (31) sets
the highest priority to the CV that has the least remaining
time to the deadline. The edge server then picks the top-W (t)
CVs for scheduling based on the priorities φu(t)s. Denote the
scheduled CV set during slot t by U t

sch ⊆U t
val. Given that the

edge server makes scheduling decisions based on top-W (t)
priorities of (31), to satisfy the hard deadline constraint in
C12, we aim to maximize a WSR, which is calculated as

R̆(t) = ∑u∈U t
sch

Iu(t) ·Ru(t) ·φu(t), (32)
where the weights are set based on the CV’s priority φu(t).
Again, the intuition for this is that with the underlying RAT
solution, due to channel uncertainty, the edge server expects
to satisfy constraint C12 by prioritizing the CVs based on (31)
and follow optimal VC configuration, their association and
radio resource allocation. As such, we pose the following WSR
maximization problem for the edge server:

maximize
Ba

vc(W (t)),Ii,a
u (t),Ib,u

z (t)
R̆(t), (33)

subject to C4,C5,C6,C8,C9,C10,C11, (33a)

Ii,a
u (t) ∈ {0,1}, Ib,u

z (t) ∈ {0,1}, (33b)
where the constraints in (33a) and (33b) are taken for the same
reasons as in the original problem in (19).

Remark 3. The edge server finds W (t) VCs and Iu(t)s using
(30) and (31), respectively. Given that the contents are placed
following πca during slot t = nϒ, and the edge server knows
W (t) and Iu(t)s, the joint optimization problem in (28) is
simplified to a joint VC configuration, CV-VC association and
radio resource allocation problem in (33).
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Algorithm 1: Get Eligible CV Set for Scheduling
Input: T t

SoI, {I
fc
u (k)}k∈T t

SoI
, {Tk

u,rem}k∈T t
SoI

, {Pk
u,rem}k∈T t

SoI
1 Initiate empty valid CV set U t

val = [·], valid minimum time to the
remaining deadline set T t

rem = [·] and valid remaining payload set
Pt

rem = [·] ;
2 Initiate an initial deadline matrix TTTt

rem← Ones(U×dmax
f )×100 ;

3 Initiate an initial payload matrix PPPt
rem← Zeros(U×dmax

f ) ;
4 for all k slots in SoI set T t

SoI do
5 for u ∈U do
6 if I fc

u (k) is available at the edge server in this slot t and
Tk

u,rem > 0 and Pk
u,rem > 0 then

7 TTTt
rem[u,k]← Tk

u,rem ;
8 PPPt

rem[u,k]← Pk
u,rem ;

9 end
10 end
11 for u ∈U do
12 Find the maximum remaining payload for CV u in all slots

inside the SoI T t
SoI as Pu

max = max{PPPt
rem[u, :]};

13 if Pu
max > 0 then

14 Find the minimum valid remaining time to the deadline
kval

min = min{TTTt
rem[u, :]} and corresponding slot index kidx

min ;
15 U t

val.append(u) ;
16 T t

rem.append(kval
min) ;

17 Pt
rem.append

(
PPPt

rem
[
u,kidx

min
])

;
18 end

Output: U t
val, T t

rem and Pt
rem

VI. PROBLEM SOLUTION

The edge server uses a DRL agent to solve the transformed
CHR maximization problem (27). Since the CVs request
contents based on the preference-popularity tradeoff and their
future demands are unknown to the edge server, DRL is
adopted as a sub-optimal learning solution for (27). More-
over, we optimally solve the joint optimization problem (33).
In order to do so, first, we leverage graph theory to find
optimal pRB allocation based on a given VC configuration
Ba

vc(W (t)) ∈ Bvc(W (t)). Then we perform a simple linear
search to find the best VC configuration Ba∗

vc (W (t)).

A. Learning Solution for the CPP

To find the CPP πca, the edge server uses some key information
from the environment and learns the underlying environment
dynamics. Recall that the CVs requests are modeled by the
exploration and exploitation manner. At the beginning of each
DoI, the edge server determines top-Λc popular contents in
each class and also calculates top-Λc similar contents for each
of these popular contents as

Ftop(n)[c, fc] =

{
1, if fc is top-Λc similar content of f top

c ,

0, otherwise,
,

where f top
c is in top-Λc popular content list of class c. Besides,

the edge server also keeps track of the content requests coming
from each CV and corresponding cache hit based on the stored
content during the previous DoI. Let the edge server store the
content-specific request from CV u into a RC×F matrix Pu

req(n)
during all slots of the DoI. Similarly, let there be a matrix
Pu

hit(n)∈RC×F that captures content-specific cache hit 1I fc
u
(t)s

during all t within the DoI. Furthermore, we also provide
the measured popularity matrix P f (n) during the current DoI
based on the CVs requests in the previous DoI change interval
(n− 1). As such, the edge server designs state xn

ca as the
following tuple:

xn
ca = {{Pu

req(n)}Uu=1,{Pu
hit(n)}Uu=1,F

top(n),P f (n)}. (34)

The intuition behind this state design is to provide the edge
server some context on how individual CVs’ preferences and
global content popularity may affect the overall system reward.

At each t = nϒ, the edge server takes a cache placement
action mca to prefetch the contents in its local storage. At the
end of the DoI, it gets the following reward rn

ca

rn
ca = (1/ϒ)∑

(n+1)ϒ
t̃=t rca(t̃), (35)

where rca(t̃) = ∑
C
c=1 ∑

Fc
fc=1 rca[c, fc]. Moreover, rca[c, fc] is cal-

culated in (36), where δ sim
pop and δhit are two hyper-parameters.

Note that these hyper-parameters balance the cache hit for
the top-Λc contents and the other stored contents in the
edge server’s cache storage. Empirically, we have observed
δ sim

pop > δhit works well.

rca[c, fc](t̃) =



δ sim
pop ·∑U

u=11I fc
u
(t̃), if Ftop(n)[c, fc] = 1

and ∑
U
u=1 I fc

u (t̃)> 0,
δhit ·∑U

u=11I fc
u
(t̃), if Ftop(n)[c, fc] 6= 1

and ∑
U
u=1 I fc

u (t̃)> 0,
−∑

F
fc=1 ∑

U
u=1 I fc

u (t̃), otherwise,

, (36)

We consider that the edge server learns the CPP πca offline.
It uses two DNNs - θθθ ca and θθθ−ca, and learns πca following
the basic principles described in Section IV-C. Algorithm
2 summarizes the CPP learning process. While the training
episode is not terminated, in line 6, the CVs make content
requests. During the cache placement slots t = nϒ, line 7,
the edge server observes its state xn

ca in line 8. Based on the
observed state, the agent takes action mca following the ε-
greedy policy [40] using θθθ ca in line 9. During the last time
slot of the current DoI, in line 11, the environment returns
the reward rn

ca and transits to the next state xn′
ca in line 12.

Moreover, in line 13, the edge server stores its experiences
tuple

{
xn

ca,mca,rn
ca,x

n′
ca

}
into its memory buffer memca, which

can hold memmax
ca number of samples. In line 15, the edge

server randomly sample Sca batches from memca and uses
the θθθ ca and θθθ−ca to get Q(xn

ca,mca;θθθ ca) and the target value
ȳt(θθθ

−), respectively. In line 16, it then trains the DNN θθθ ca
by minimizing the loss function shown in (24) using SGD.
Moreover, after η̆ca steps, the offline DNN θθθ−ca gets updated
by θθθ ca in line 20.

B. WSR Maximization

Recall that once the edge server determines W (t) based
on (30), all possible VC configurations Bvc(W (t)) =

{Ba
vc (W (t))}

AW (t)
a=1 can be generated following the VC forma-

tion rules defined in (1a)-(1c). Besides, each VC configuration
Ba

vc (W (t)) has exactly W (t) number of VCs. Moreover, the
edge server schedules |U t

sch|=W (t) CVs in each slot t based
on the priority φu(t). Let the ith CV in U t

sch be assigned to
the ith VC in Ba

vc (W (t)). This assigns each CV to exactly one
VC and all VCs are assigned to all scheduled CVs. Therefore,
essentially, for a selected VC configuration Ba

vc (W (t)), by
assigning the VCs in the above mentioned way, the edge server
can satisfy constraints C3, C4, C5 and C6. To this end, given
that the selected VC configuration Ba

vc (W (t)) and Ii,a
u (t) are

known at the edge server, we can rewrite (33) as follows:
maximize

Ib,u
z (t)

R̆(t), (37)

subject to C8,C9,C10,C11, Ib,u
z (t) ∈ {0,1}. (37a)
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Algorithm 2: CPP Learning Algorithm
Input: Sca, Memca, η̆ca, εmax, εmin, ν , Tepoch, ϒ, θθθ ca, θθθ−ca

1 Calculate ε decaying rate as decayε = εmax−εmin
ν×Tepoch

;
2 for e in Tepoch do
3 ε ← max{εmin, εmax− (e×decayε )} ;
4 Set t = 0, n = 0, done=False ;
5 while not done do
6 Get all CVs content requests using Section III-C ;
7 if t == 0 or ((t +1) mod ϒ) == 0 then
8 Get state xn

ca from the environment ;
9 Edge server takes cache placement action mca based on

observation xn
ca using its action selection policy ;

10 n += 1 ;
11 else if (t +1) == (nϒ−1) then
12 Get rn

ca, xn′
ca and done flag from environment ;

13 Store {xn
ca,mca,rn

ca,x
n′
ca,done} into Memca ;

14 if len(Memca)≥ Sca then // train θθθ ca
15 Uniformly sample Sca samples from Memca ;
16 Use the sampled samples to train θθθ ca ;
17 xn

ca← xn′
ca ;

18 t += 1;
19 if t mod η̆ca == 0 then // Update θθθ−ca
20 θθθ−ca← θθθ ca
21 end
22 end

Output: θθθ ca

Algorithm 3: Get Weighted Data Rate Matrix
Input: U t

sch, Ba
vc(W (t)), {φu(t)}u∈U t

sch
, Hb

u(t)
1 Initiate matrix Rt = zeros(B×Z) ;
2 for u ∈U t

sch do
3 Get assigned VCi

a using Ii,a
u (t) ;

4 for b ∈VCi
a do

5 for z ∈Z do

6 Calculate rt(u,b,z) = log2

(
1+

Pb|hu,z
b (t)H wu,z

b (t)|2
σ2

b

)
received

at CV u from AP b over pRB z during slot t ;
7 Rt [b,z] = rt(u,b,z)×φu(t) ;
8 end
9 end

10 end
Output: Rt

As the CSI is perfectly known at the edge server, it can choose
maximal ratio transmission to design the precoding vector
wu,z

b . In other words, given Ib,u
z (t) = 1, the edge server chooses

wu,z
b (t) = hu,z

b (t)/
∥∥hu,z

b (t)
∥∥. Besides, the received SNR at the

CV u, calculated in (9), is the summation over all APs of the
CV’s assigned VC divided by total noise power. As such, we
can stack the weighted data rate at the CV from the APs that
are in its serving VC over all pRBs into a matrix - denoted by
Rt ∈ RB×Z matrix. This weighted data rate matrix extraction
process is summarized in Algorithm 3. In this algorithm, we
initiate a matrix of zeros of RB×Z in line 1. Recall that all VCs
are assigned to the scheduled CVs and all APs are assigned
to form the VCs based on the rules defined in Section II-A.
As such, for each u ∈ U t

sch, we get the assigned VC in line
3. Then, for all APs and all pRBs, we calculate the spectral
efficiency in line 6. Moreover, we update the respective (b,z)
element of the Rt matrix in line 7. Note that Algorithm 3’s
time complexity is O

(
W (t)

[
2Z|VCi

a|+1
]
+1
)
.

Upon receiving Rt , the edge server leverages graph theory
to get the optimal assignment as follows. It forms a bipartite
graph G = (B ×Z ,E ), where B and Z are the set of
vertices, and E is the set of edges that can connect the vertices
[47]. Moreover, Rt [b,z] are the weights of edge e(b,z) that
connects vertex b ∈B and z ∈ Z . Note that, for the graph
G, a matching is a set of pair-wise non-adjacent edges where
no two edges can share a common vertex. This is commonly

Algorithm 4: Optimal VC Configuration and pRB
Allocation

Input: W (t), U t
sch, {φu(t)}u∈U t

sch
, Hb

u(t), Bvc(W (t))
1 Initiate WSR vector r̆t = zeros(AW (t)) and empty pRB allocation set

IIIz(t) = [·];
2 for Ba

vc(W (t)) ∈Bvc(W (t)) do
3 Get Rt matrix from Algorithm 3 for this VC configuration ;
4 Solve the MWBM problem using Hungarian algorithm [46] to

get optimal pRB allocation set III∗z = {I
b,u
z (t)}Z

z=1 and get the
optimal sum-weights r∗t from the optimal edges e∗(b,z) ;

5 r̆t [a] = r∗t ;
6 IIIz(t).append(III∗z ) ;
7 end
8 Find the max(r̆t) and corresponding index a∗ ;
9 Take best VC configuration Ba∗

vc (W (t)) and corresponding optimal
pRB allocation set IIIb,u

z
∗
(t) = IIIz(t)[a∗];

Output: Ba∗
vc (W (t)) and IIIb,u

z
∗
(t)

Algorithm 5: Content Delivery Model
Input: I fc

u (t)’s of all CVs in content delivery slot t
1 Check if the requested contents are in the cache storage, if any

requested content is not available, forward the request to upper
layer for extraction from cloud ;

2 Calculate SoI T t
SoI using (29);

3 Find eligible CV set U t
val using Algorithm 1 ;

4 Find total number of VC to formulate, i.e., W (t) using (30) ;
5 Calculate eligible CVs’, i.e., u ∈U t

val, priorities using (31) ;
6 Get the CV set U t

sch to schedule by picking the top-W (t) φu(t)s ;
7 Find optimal VC configuration Ba∗

vc (W (t)) and optimal pRB
allocations Ib,u∗

z (t) by running Algorithm 4 ;
8 Based on VC configuration Ba∗

vc (W (t)) and Ib,u∗
z (t) calculate CVs

SNRs ΓΓΓt = {Γz
u(t)}u∈U t

sch
using (9) ;

9 Calculate Rbit
u (t) using (38) for all u ∈U t

sch ;
10 Offload Rbit

u (t) bits from the remaining payloads of all CVs u ∈U t
sch

orderly from the requests made in the SoIs T t
SoI ;

11 Update all u ∈U remaining payload and deadline ;

known as the maximum weighted bipartite matching (MWBM)
problem [47]. The edge server needs to find the set of edges
e∗(b,z) ∈ E that maximizes the summation of the weights
of the edges. Moreover, the edge server uses well-known
Hungarian algorithm [46] to get the optimal edges e∗(b,z),
i.e., pRB allocations Ib,u

z (t)s in polynomial time. This pRB
allocation is, however, optimal only for the selected VC config-
uration Ba

vc(W (t)). In order to find the best VC configuration
Ba∗

vc (W (t)), the edge server performs a simple linear search
over all AW (t)s VC configurations. As such, we can solve
problem (33) optimally using the above techniques. Algorithm
4 summarizes the steps. Note that Algorithm 4 has a time
complexity of O

(
AW (t)

[
W (t)(2Z|VCi

a|+1)+Z3 +4
]
+3
)
.

C. Content Delivery Process

Contents are placed using the trained CPP πca during each
cache placement slot t = nϒ, while the CVs make content
requests in each t following Section III-C. Please note that,
during t = nϒ, the edge server only requires to perform one
forward pass7 on the trained θθθ ca. Upon receiving the I fc

u (t)s,
the edge server checks whether I fc(n) = 1 or I fc(n) = 0. If
I fc(n) = 1, fc can be delivered locally. All cache miss events
are forwarded to the VEN’s upper layers. The upper layer
extracts each cache missed content from the cloud with an
additional delay of dm,t

u, fc . In all t, the edge server calculates the
SoI T t

SoI using (29). It then finds the eligible CV set U t
val and

7The time complexity of the forward pass depends on the input/output size
and DNN architecture.
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TABLE II
SYSTEM PARAMETERS

Item/Description Value
Total number of APs B 6

Maximum possible VC per slot Wmax 5
TTI κ 1 ms

DoI update interval ϒ 50×κ

Carrier frequency 2 GHz
pRB size ω 180 KHz

Noise power σ 2 -174 dBm/Hz
AP coverage radius 250 m

Antenna/AP L 4
AP antenna height 25 m
CV antenna height 1.5 m

Transmission power Pb 30 dBm
AP transmitter antenna gain Gb

T X 8 dBi
CV receiver antenna gain Gu

RX 3 dBi
CV receiver noise figure Lu

RX 9 dB
Total content class c 3

Contents per class |Fc| 5
Feature per content Gc 10

AN cache size Λ {3,6,9,12}×S
Max allowable delay dmax

f 10×κ

Content extraction delay dm,t
u, fc 5×κ

CV active probability pu Uniform(0.1,1)
CV’s inclination to similarity/popularity εu Uniform(0,1)

Fig. 2. Simulated RoI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Training Episode ×103

0.35

0.43

0.51

0.59

0.67

0.75

0.83

0.91

A
v
g.

P
er

E
p

is
o
d

e
R

e
tr

u
n

×103 Training Rewards Vs Episodes

Fig. 3. CPP learning: average return
during training

forms total W (t) VCs using Algorithm 3 and (30), respectively.
To that end, the edge server calculates the priorities φu(t)s
using (31) and selects top-W (t) CVs to schedule. Once the
edge server knows W (t), φu(t)s and U t

sch, it runs Algorithm
4 to get the VC configuration and pRB allocations that
maximizes the WSR of (33). Algorithm 4 returns the Ba∗

vc
and Ib,u∗

z (t) which then can be used to get the SNRs Γz
u(t)s

from (9). Upon receiving the SNRs Γz
u(t)s, the edge server can

calculate the possible transmitted bits for the CVs as follows:

Rbit
u (t) = κ ·Ru(t). (38)

The edge server then delivers the remaining P
t−dmax

f +ζ

u,rem s se-
quentially. This entire process is summarized in Algorithm 5.
The time complexity of running Algorithm 5 is O

(
U
[
Λ/S+

4|T t
SoI|+ 4

]
+W (t)

[
log(|U t

val|) + AW (t)(2Z|VCi
a|+ 1) + 3

]
+

AW (t)
[
Z3 +4

]
+ |U t

val|+ |T t
SoI|+10

)
.

VII. PERFORMANCE EVALUATION

A. Simulation Setting
We consider U CVs roam over a region of interest (RoI) and
deploy B = 6 APs alongside the road to cover the entire RoI.
Table II shows other key simulation parameters used in this
paper. We consider a 300 meters by 200 meters Manhattan grid
model [34] with two-way roads as shown in Fig. 2. For realistic
microscopic CV mobility modeling, we use the widely known
simulation of urban mobility (SUMO) [48]. The CVs are
deployed with some initial routes with a maximum speed of 45
miles/hour and later randomly rerouted from the intersections
on this RoI. In SUMO, we have used car-following mobility
model [49] and extracted the CVs’ locations using the Traffic
Control Interface [50] application programming interface.

To design our simulation episode, we consider 1000κ mil-
liseconds of CVs activities. For the CPP learning, the edge
server uses DNN θθθ ca that has the following architecture:
2D convolution (Conv2d) → Conv2d → Linear → Linear.
We train θθθ ca in each cache placement slots with a batch
size Sca = 512. Besides, we choose γ = 0.995, εmax = 1,
εmin = 0.005, ν = 0.6, Memmax

ca = 15000, Tepoch = 15000,
η̆ca = 4ϒ. For training, we use Adam as the optimizer with
a learning rate of 0.001. Using our simulation setup, the edge
server first learns πca using Algorithm 2 for Tepoch episodes.
The average per state returns during this learning is shown
in Fig. 3. As the training progresses, we observe that the
edge server learns to tune its policy to maximize the expected
return. After sufficient exploration, the edge server is expected
to learn the CPP that gives the maximized expected return.
As a result, it is expected that the reward will increase as
the learning proceeds. Fig. 3 also validates this and shows the
convergence of Algorithm 2. As such, we use this trained CPP
πca for performance evaluations in what follows.

B. Performance Study

We first show the performance comparisons of the learned CPP
with the following baselines without any RAT solution.

Genie-Aided cache replacement (Genie): The to-be re-
quested contents are known beforehand during the start of the
DoI provided by a Genie. In this best case, we then store the
top-Λc requested contents from all c ∈ C in all n.

Random cache replacement (RCR): In this case, contents
from each class are selected randomly for cache placement.

K-Popular (K-PoP) replacement [51]: In this popularity-
based caching mechanism, we store the most popular K = Λc

contents during the past DoI for each content class c ∈ C .
Modified K-PoP+LRU (K-LRU) replacement: We modify

the popularity-driven K-PoP with classical least recently used
(LRU) [52] cache replacement. The least popular contents in
the K-PoP contents are replaced by the most recently used but
not in K-PoP contents to prioritize recently used contents.

To this end, we vary the cache size of the VEN and show the
average CHR during an episode in Fig. 4. The general intuition
is that when we increase the cache size Λ, more contents can
be placed locally. Therefore, by increasing Λ, the average CHR
is expected to increase. K-PoP and K-LRU do not capture the
heterogeneous preferences of the CVs. Similarly, as contents
are replaced randomly with the naive RCR baseline, it should
perform poorly. However, when the cache size is relatively
small, solely popularity-based K-PoP performs even worse
than RCR. This means that popularity does not dominate the
content demands of the CVs. Moreover, when the cache size
becomes moderate, K-PoP and K-LRU outperform the naive
RCR baseline. On the other hand, the proposed CPP aims to
optimize πca by capturing the underlying preference-popularity
tradeoff of the CVs. Therefore, the average CHR is expected to
be better than the baselines. Fig. 4 also reflects these analysis.
Moreover, notice that the performance gap with the Genie-
aided average CHR and our proposed CPP is lower. In the
VEN, we do not know the future and CVs’ content demands.
Therefore, we can only predict the future and tune the CPP πca
accordingly. Particularly, when the cache storage is reasonable,
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the performance gap of the proposed CPP is much lower. For
example, at Λ = 9 and Λ = 12 the proposed CPP delivers
around 93% and 98% of the Genie-aided solution. Moreover,
the baselines perform poorly regardless of Λ. For example, at
Λ = 9, the proposed CPP is around 49%, 23% and 24% better
than RCR, K-PoP and K-LRU, respectively.

Fig. 5 shows the average CHR variation over 10 test
episode in 100 simulation runs and corresponding standard
deviations. As expected, the performance of the proposed CPP
is very close to the Genie-aided performance in these test
runs. Particularly, the proposed CPP delivers around 98% of
the Genie-aided performance. Moreover, the other baselines’
average CHRs largely deviate from the Genie-aided solution.
We observe that the proposed CPP is around 52%, 16% and
14% better than RCR, K-PoP and K-LRU, respectively, even
when Λ is 80% of the content catalog F , which validate the
effectiveness of the proposed method.

To this end, we study the impact of different DoI ϒ on
the CHR. Recall that the DoI is the period for which the
contents in the library remain fixed. A shorter DoI means
that the content catalog can be refreshed quickly. Besides,
based on our content request model, each CV’s content choices
change fewer times within this short interval. Hence, the edge
server can quickly accommodate the CPP to capture the future
demands of the CVs. This, thus, may yield better CHR. On
the other hand, when this period is extended, performance is
expected to deteriorate slightly. This is due to the fact that
the cache storage cannot be replaced until this DoI period
expires, while the CVs’ requests vary in each slot. We also
observe similar trends in our simulation results. Fig. 6 shows
CHR for different DoI, where we observe that even the Genie-
aided performance degrades from 80% to 76% when the DoI
is increased from 25× κ to 100× κ . We also observe that
our proposed CPP experiences only about 4% performance
degradation. Moreover, the performance improvement of our
proposed solution is about 49%, 22% and 23% at ϒ = 25×κ

and about 42%, 17% and 18% at ϒ = 100×κ , respectively,
over the RCR, K-Pop and K-LRU baselines. Note that we
leave the choice of DoI as a design parameter chosen by
the system administrator, which can be decided based on the
practical hardware limitations and other associated overheads
in the network. As such, we fix ϒ = 50×κ for the rest of our
analysis.

As content requests arrive following preference-popularity
tradeoff, the CHR also gets affected by the total number of
CVs in the VEN. Intuitively, as the CVs’ preferences are
heterogeneous, when the total number of CVs in the VEN
increases, the content requests largely diversify. Therefore,
even with the Genie-aided solution, the CHR may degrade
when the number of CVs in the VEN increases. This is also
reflected in our simulated results in Fig. 7. The performance
of the proposed CPP algorithm is stable regardless of the
number of CVs in the VEN. We observe a slight performance
gap between the CPP and the Genie-aided solution. This gap
gets smaller and smaller as the total number of CVs in the
VEN increases. Particularly, we observe that the proposed
CPP delivers an average 97% CHR for the considered CV
numbers. Besides, it delivers around 47%, 21% and 22% better

performance than RCR, K-PoP and K-LRU, respectively.
Therefore, we will use this CPP πca to find I fc(n) for all n
and show performance analysis of our proposed user-centric
RAT solution.

To that end, we compare the performance of the proposed
RAT solution with legacy network-centric RAT (NC-RAT). In
the NC-RAT, a base station (BS) is located at a fixed suitable
location which has Z = 6 pRBs and total transmission power
of 46 dBm. We use the same scheduling and deadline-based
priority modeling for the NC-RAT as the proposed user-centric
case. Besides, we distributed the total transmission power
proportionally to the scheduled CVs’ priorities. Moreover, we
performed the same WSR maximization problem for getting
the pRB allocation using Hungarian algorithm [46]. In the
following, this legacy RAT solution is termed NC-RAT and
used with the cache placement baselines. On the other hand,
the ‘Proposed’ method uses the proposed CPP and user-centric
RAT solution.

Intuitively, with an increased Λ, the edge server can store
more contents locally which increases the total number of
local delivery by assuring lower cache miss events. Therefore,
with a proper RAT solution, the content delivery delay is
expected to decrease if we increase the cache size of the edge
server. We also observe this trend with both NC-RAT and
our proposed user-centric RAT solution in Fig. 8. However,
note that NC-RAT is inflexible, and depending on the location
of the CVs, NC-RAT may not even have expected radio-
link qualities. This can, therefore, cause link failure and may
increase the content delivery delay for the CVs’ requested
content. On the other hand, the proposed user-centric RAT
solution can design the appropriate VC configuration, VC
associations and proper radio resource allocation to deliver
the content timely. Therefore, we expect the user-centric RAT
solution to outperform the traditional NC-RAT. Fig. 8 shows
the average content delivery delay d = 1

T ∑
T
t=1 d̄(t), where d̄(t)

is calculated in (18) with Wmax = 5. As we can see, the
proposed solution outperforms the baselines. Particularly, the
average gain of the proposed solution on content delivery delay
is around 15% over the baselines.

The effectiveness of the proposed solution is more evident
in Fig. 9, which shows the percentage of deadline violations
in a test episode when the content size is S = 4 KB. As a
general trend, the deadline violations decrease as Λ increases.
Besides, among the cache placement baselines, as we have
seen in the performance comparisons of the CPP, even RCR
delivers lower deadline violations than solely popularity-based
K-PoP when the cache size is small. Moreover, we observe
around 28% higher deadline violations with the baseline NC-
RAT over our proposed user-centric RAT solution. Recall that
this deadline violation is essentially the violation of constraint
C12, which means the requester CVs have not received the
requested content by their required deadlines. As such, these
requester CVs may experience fatalities and degraded QoEs
with the existing RAT and cache placement baselines.

Content size S also affects the delivery delays and cor-
responding deadline violations. Intuitively, content delivery
delay shall increase if the payload increases when the network
resources are unchanged. This also increases the likelihood of
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Fig. 7. CHR comparison with baselines for different CVs when Λ= 9 (without
RAT)

deadline violations. Fig. 10 shows how the delivery delay gets
affected by content size S. Note that transmission delay is
directly related to channel quality between the transmitter and
receiver. This channel uncertainty can cause fluctuations in the
content delivery delay. However, the general expectation is that
the content delivery delay will increase when the payload size
increases. We also observe these in Fig. 10. Particularly, when
S = 2.5 KB, the performance gain of the proposed solution is
around 30% over the RCR+NCRAT and around 27% over the
K-PoP+NCRAT and K-LRU+NCRAT baselines.

Recall that delay cannot exceed the hard deadline. There-
fore, higher content delivery delay leads to deadline violations.
Fig. 11 shows how the payload size affects the deadline
violations in the proposed VEN. As expected, even when
the payload size is small, we observe that the legacy NC-
RAT solution cannot ensure guaranteed delivery within the
deadline. On the contrary, our proposed solution can ensure
0% deadline violations till S = 3 KB. Moreover, when S
increases, the deadline violation percentage of our proposed
solution performs significantly better than the NCRAT-based
baselines. For example, when S = 4 KB, the deadline violation
percentage with our proposed solution is around 12%, whereas
the NCRAT-based baselines have around 47% deadline vio-
lations. From Fig. 8 - Fig. 11, we can clearly see that the
traditional NC-RAT is not sufficient to deliver the demands of
the CVs.

To that end, we show the efficacy of the proposed RAT
solution by considering all cache placement baselines ac-
companied by the proposed RAT solution for delivering the

requested contents of the CVs. Fig. 12 shows how the content
delivery delay gets affected by different cache sizes. Particu-
larly, the proposed solution delivers requested contents around
14%, 7% and 8% faster than the RCR+Proposed-RAT, K-
PoP+Proposed-RAT and K-LRU+Proposed-RAT, respectively,
when Λ = 9. Recall that the proposed CPP (without RAT) had
a performance gain of around 49%, 23% and 24% over the
RCR, K-LRU and K-PoP, respectively. The proposed RAT can,
thus, significantly compensate for the cache miss events.

Moreover, Fig. 13 shows delay vs total number of CVs U in
the VEN. Intuitively, if U increases, the edge server receives a
larger number of content requests. Then, with the limited VCs,
the edge server can at max schedule only Wmax number of
CVs. Therefore, d is expected to increase if U increases, which
is also reflected in Fig. 13. Notice that in both Fig. 12 and Fig.
13, while the proposed solution outperforms the other cache
placement baselines, the performance gaps are small because
all cache placement baselines now use our proposed user-
centric RAT solution for delivering the requested contents.

Finally, our extensive simulation results suggest that the
CHR from our proposed CPP is very close to the genie-
aided solution, while the baseline RCR, K-Pop and K-LRU
cache placements yield poor CHRs. Besides, when we use
the proposed CPP with our user-centric RAT solution, the
performance improvements, in terms of deadline violation
percentage and content delivery delay, are significant com-
pared to existing legacy NC-RAT with the above cache
placement baseline solutions. Additionally, having a larger
cache storage size increases the CHR, while having more
CVs in the VEN leads to a slightly degraded CHR for all
cache placement strategies. Moreover, with fixed limited radio
resources, content delivery delays grow, which increases the
deadline violation percentage.

VIII. CONCLUSION

Considering the higher automation demand on the road, in this
paper, we propose a user-centric RAT solution for delivering
the CVs requested content with a learning solution for the
cache placement. From the results and analysis, we can con-
clude that existing cache placement baselines may not be suf-
ficient to capture the heterogeneous demands and preferences
of the CVs. Moreover, the existing NC-RAT may cause severe
fatalities on the road as it yields frequent deadline violations.
Even for continuous deadline-constrained demand arrivals in
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each time slot, the proposed software-defined user-centric RAT
solution has shown significant potential for offloading the
payloads timely. The results suggest that our proposed cache
placement policy delivers practical near-optimal cache hit ratio
while the proposed user-centric RAT efficiently delivers the
requested contents within the allowable deadline.

APPENDIX
A. Proof of Proposition 1
Assuming ι > 0, we write the following:

Pr{Ψt ≥ ξ}= Pr
{

eιΨt ≥ eιξ
} (a)
≤ (E

[
eιΨt

]
)/eιξ , (39a)

(b)
= e−ιξ

∏
U
u=1E

[
eιΘt

u
]
(c)
= e−ιξ

∏
U
u=1 (1− pu + pueι) , (39b)

(d)
≤ e−ιξ

[
∑

U
u=1 (1− pu + pueι)

U

]U

= e−ιξ [1− p̄+ p̄eι ]
U
, (39c)

= exp [−ιξ +U ln(1− p̄+ p̄eι)] , (39d)
where (a) follows Markov inequality, (b) is true as Θt

us are
independent and identically distributed, (c) follows as E

[
eιΘt

u
]

is the moment generating function of Θt
u, and (d) is obtained

following the inequality of arithmetic and geometric means.
To this end, we find eι = ξ (1−p̄)

p̄(U−ξ )
that minimizes (39).

Plugging this value in (39), we obtain the bound as

Pr{Ψt ≥ ξ}
(a)
≤ exp

[
U
{

ln
(
(1− p̄)
1−χ

)
−χ ln

(
χ (1− p̄)
p̄(1−χ)

)}]
,

= exp [−UD p̄ (χ)] , (40)

where χ = ξ

U in (a) and D p̄ = χ ln
(

χ

p̄

)
+(1−χ) ln

(
1−χ

1−p̄

)
.

B. Proof of Theorem 1
We show that an instance of our problem in (27) reduces to
an instance of a well-known NP-hard problem. Particularly,

we only consider a single cache placement step t = nϒ and
assume that I fc

u (t)s, ∀t ∈ [nϒ,(n+1)ϒ] are known at the edge
server beforehand8. Then, we re-write our (27) instance as

maximize
I fc (n); ∀ fc∈F

∑t∈[nϒ,(n+1)ϒ] CHR(t), (41)

∑
C
c=1 ∑ fc∈Fc

S · I fc(n)≤ Λ,∑ fc∈Fc
S · I fc(n) = Λ

c, (41a)

I fc(n) ∈ {0,1},∀c = 1, . . . ,C; fc ∈Fc, (41b)
where the constraints are taken for the same reasons as in (27).

To that end, if Λc = S · 1, we could rewrite the second
constraint as ∑ fc∈Fc I fc(n) = 1. Then, it is easy to recognize
that an instance of the well-known multiple-choice knapsack
problem (MCKP) [53] has reduced to this instance of our CHR
maximization problem. As MCKP is a well-known NP-hard
problem [53], we conclude that the cache placement problem
for each t = nϒ is NP-hard even when the to-be requested
contents are known beforehand. As such, the long-term policy
optimization problem in (27) is NP-hard.
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with time-varying popularity profiles: A learning-theoretic perspective,”
IEEE Trans. Commun., vol. 66, no. 9, pp. 3837–3847, 2018.

[39] Y. H. Wang, “On the number of successes in independent trials,”
Statistica Sinica, pp. 295–312, 1993.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[41] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[42] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” nature, vol. 518, no. 7540, pp. 529–533, 2015.
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