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On-Time Communications Over Fading Channels
Yan Li, Yunquan Dong, Member, IEEE, and Byonghyo Shim, Senior Member, IEEE

Abstract—We consider the on-time transmissions of a sequence
of packets over a fading channel. Different from traditional in-
time communications, we investigate how many packets can be
received δ-on-time, meaning that the packet is received with a
deviation no larger than δ slots. In this framework, we first
derive the on-time reception rate of the random transmissions
over the fading channel when no controlling is used. To improve
the on-time reception rate, we further propose to schedule the
transmissions by delaying, dropping, or repeating the packets.
Specifically, we model the scheduling over the fading channel as
a Markov decision process (MDP) and then obtain the optimal
scheduling policy using an efficient iterative algorithm. For a
given sequence of packet transmissions, we analyze the on-time
reception rate for the random transmissions and the optimal
scheduling. Our analytical and simulation results show that the
on-time reception rate of random transmissions decreases (to
zero) with the sequence length. By using the optimal packet
scheduling, the on-time reception rate converges to a much larger
constant. Moreover, we show that the on-time reception rate
increases if the target reception interval and/or the deviation
tolerance δ is increased, or the randomness of the fading channel
is reduced.

Index Terms—On-time communications, information fresh-
ness, packet scheduling, on-time reception rate.

I. INTRODUCTION

W ITH the rapid development of the industrial Inter-

net technology, 5G communications, and Internet-of-

Things (IoT) technology, billions or even trillions of smart

devices will be connected to the internet to enable efficient

interactions between the physical world and its digital coun-

terpart. On the one hand, surge of industrial machine-type

communications furthered the possibilities for new applica-

tions in various industry areas. On the other hand, applications

like industrial sensing and controlling, remote surgery, and

automatic driving, require a very low latency (e.g., end-

to-end delay being smaller than 10 ms) and a very small

jitter (approximately several milliseconds) [1]–[4]. For ex-

ample, communications between the sensor, actuators, and

controller of an industrial Internet should be completed on-

time with a deterministic delay between 1 and 10 ms [5];

the braking/steering commands and advanced driver assistance

systems (ADAS) type data need to be delivered to/from the

actuators/sensors with a deterministic latency being less than

1 ms [3]. Therefore, how to deliver information in-time, or

even on-time, has become one of the the biggest challenge of

modern wire-line and wireless communications.

Owing to the high reliability of cable (or optical fiber)

communications, wire-line networks were the first choice
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Fig. 1. An exemplary 5G URLLC and TSN based vehicular network,
in which sensors are connected to the VCU through wire-line TSN
and the VCU is connected with other vehicles and the internet through
5G URLLC.

in deterministic-latency information deliveries. Based on the

widely used Ethernet, IEEE 802.1 working group has devel-

oped a series of time sensitive networking (TSN) standards

for time sensitive applications [6]. By scheduling traffics with

timed transmission gates, filtering traffics based on priorities,

and forwarding traffics with repeating circles, TSN networks

can deliver the traffics with deterministic delays. Thus, TSN

has become the basis of time sensitive applications like in-

dustrial automation and automotive driving. In an in-vehicle

TSN network, for example, the communications between the

vehicle control unit (VCU) and the cameras, radars, lidars, and

the positioning module, can be guaranteed to be deterministic

and timely (less than 1 ms) [3]. Furthermore, the inter-vehicle

communications can be realized by 5G ultra reliable low la-

tency communication (URLLC), as shown in Fig. 1. By using

techniques such as mini-slot scheduling, multi-access comput-

ing, and downlink preemption scheduling, URLLC achieves a

round-trip air-interface delay of 2.7 ms (almost deterministic)

[4]. Although the combination of TSN and URLLC can offer

a satisfying solution for vehicular communications [7], one

important question remains: Is it possible to replace the wire-

lines of TSNs with wireless channels?

A. Overview and Main Contributions

In this paper, we will study how wireless channels can sup-

port on-time communications. Instead of delivering the packets

over fading channels using the best effort principle, we focus

more on how many packets can be delivered to the receiver at

the predefined epochs (with no delay or ahead of time) or in

reception ranges with small deviations (no larger than δ). Note

that in case the packet can be delivered on-time, corresponding

delays and system status become more predictable, thereby

supporting numerous time-sensitive applications in 5G and 6G.

First of all, we note that due to the randomness and

time-varying property of wireless channels, the transmission

delays are also random. Therefore, to ensure 100 percent

deterministic transmissions directly is not possible for the

fading channels. For this reason, we propose a metric of on-

timeliness called δ-on-time reception rate, which is defined

http://arxiv.org/abs/2202.08646v1
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as the proportion of received packets whose deviation is no

larger than δ. Second, we derive the δ-on-time reception rate

of the random transmissions over fading channels and show

that it goes to zero when a length of the packet sequence goes

to infinity. Specifically, we explicitly calculate the probability

for each packet to be received δ-on-time. We also show

that the average number of packets received δ-on-time is

equivalent to the sum of these probabilities, with which the

δ-on-time reception rate can be obtained. Third, we propose

a scheme improving the on-time reception rate by optimally

delaying, dropping, or repeating the packets. By modeling

the packet scheduling problem as a Markov decision process

(MDP), we solve the optimal control problem using a simple

iterative algorithm. We also analyze the δ-on-time reception

rates of the random transmissions and the optimally controlled

transmissions, from which we validate the effectiveness of

the proposed algorithm. The contributions of the paper are

summarized as follows.

• We propose a method of evaluating the on-time perfor-

mance of communications in terms of strictly on-time,

δ-on-time, and the on-time reception range.

• We explicitly derive the on-time reception rate of the

random transmissions over fading channels and show that

the on-time reception rate decreases monotonically (to

zero) with the length of the packet sequence.

• We improve the on-time reception rate over fading chan-

nels by delaying, dropping, and repeating packets. We

also solve the optimal packet scheduling policy through

an MDP formulation. We demonstrate from simulation

that the obtained scheduling policy matches with the

theoretical results with negligible error, which show that

by using the optimal packet scheduling, the on-time

reception rate converges to a constant and significantly

outperforms the random transmission scheme.

B. Related Works

The time-sensitive communications and networks have re-

ceived much attention in recent years, among which the

wired TSN [6] and wireless 5G deterministic network [8]

are the most representative works. First, TSN follows the

standard Ethernet protocol system and reduces physical- and

link-layer delays by IEEE 802. 1AS clock synchronization,

IEEE 802. 1Qcc flow reservation, and IEEE 802. 1Qch cyclic

queuing. Most academic researches in this area focus on

the scheduling of messages. For example, a computational

efficient solution to the fully deterministic 802.1Qbv scheduler

was presented in [9]; a bandwidth-efficient TSN scheduler was

investigated through a size based queueing method in [10]; an

asynchronous traffic scheduling algorithm which achieves both

low delay and low implementation complexity was proposed

in [11]; and an online scheduling approach was proposed to

deal with the dynamic virtual machine migrations in multicast

TSN networks in [12]. In addition, the authors proposed a

simple hardware enhancement of switches to increase the

schedulability and throughput of time-triggered traffics in

[13]. Routing is also an important part of TSN networks, for

which an ILP-based scheduling and degree of conflict aware

multipath routings scheme was proposed in [14] while a joint

routing-scheduling optimization for time-triggered Ethernet

networks was investigated in [15]. Second, URLLC is one of

the three major scenarios of the 5G mobile cellular systems

[4]. Since 5G URLLC aims at transmitting packets with ultra

low delay (2∼12 ms) and ultra high reliability (99.999%),

it is possible to support some dedicated networks providing

predictable and deterministic services, which are referred to

as the 5G deterministic networking (5GDN or 5G DeNet) [8],

[16]. As was reviewed in [16], 5GDN has great opportunities

to converge with applications including real-time monitoring,

remote controlling, material management, massive access, and

product life-cycle management, to name just a few.

Moreover, the age of information (AoI) theory provides a

new theoretic framework of evaluating the timeless of com-

munications [17]. Distinct from the traditional delay measure

which only considers the latency to complete the transmission

of packets regardless of the packet generation machanism,

AoI is defined as the difference between the current epoch

and the generation epoch of the latest received packet. That

is, AoI considers the effects of both the information source

and transmission channel. In doing so, AoI characterizes the

freshness of the available packet at the receiver more precisely.

By modeling the arrivals and transmissions of packets as

a queueing system, the AoI of the various systems can be

obtained explicitly, such as the M/M/1 queue and the M/D/1

queue, with the first-come-first-service or the last-come-first-

service policy, respectively [17]. In [18], the author explored

the impact of service rate on the average AoI of both systems

with a fixed deadline and a random deadline. In addition to

this kind of timeliness characterizations, we can also optimize

the packet scheduling based on the AoI theory. For example,

the optimal link scheduling under some throughput and energy

constraints was studied in [19], [20]. The peak AoI and average

AoI minimizing scheduling of multi-channel networks was

investigated in [21]. In [22], [23], the authors constructed a

feasible scheduling set by traversal and deduced an average-

AoI minimizing scheduling strategy.

C. Organizations

This rest of the paper is organized as follows. In Section II,

we present the definitions of on-time reception, the channel

model, and the source model. In Section III, we analyze the

probability that each packet is received on time and also the

on-time reception rate of the random transmission scheme. In

Section IV, we present three packet controlling strategies. In

Section V, we formulate an MDP optimization problem to

solve the optimal packet scheduling policy. For a sequence

of packet transmissions, we also derive the corresponding

reward in theory in this section. In Section VI, we present the

simulation and numerical results on the on-time reception rates

over the fading channel, with both the random transmission

scheme and the optimal packet scheduling policy. Finally, we

conclude the paper in Section VII.
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II. SYSTEM MODEL

A. Definition of On Time

Different from conventional in-time communications in

which the packets are delivered with best-effort and are

expected be received before a certain deadline, the on-time

receptions (of the transmitted packets) studied in this paper

require that each packet should be received exactly at its

desired epoch, without any early arrivals or delays. However,

wireless channels are random and time-varying, and thus it is

very difficult to guarantee that all of the transmitted packets

could be received on-time. In this paper, we shall investigate

how fading channels can support the on-time transmissions in

terms of on-time reception ratio.

We consider the sequential transmissions of packets over a

fading channel. We assume that the transmission of a packet

starts from the beginning of a slot and is completed at the

end of the slot. Due to the fading property of the channel, the

transmission time (i.e., the number of slots) to successfully de-

liver a packet is random. Suppose that the packets are intended

to be received by the destination node at a sequence of preset

slots (i.e., {Ttgt, 2Ttgt, 3Ttgt, · · · }) with fixed intervals. The on-

timeliness of the corresponding transmissions are defined as

follows.

Definition 1. The m-th packet is said to be received strictly on-

time if the packet is received by the destination node exactly

in the mTtgt-th slot.

As mentioned, strictly on-time transmission over fading

channels is quite difficult so we allow the receptions of packets

to deviate from the target slot with a maximum tolerance of δ
slots. A slightly relaxed version of the on-timeliness is defined

as follows.

Definition 2. The m-th packet is said to be received δ-on-

time if the packet is received by the destination node in any

of the slots among {mTtgt − δ,mTtgt − δ + 1, · · · ,mTtgt + δ}
(cf. Fig. 2). Moreover, the period {mTtgt − δ,mTtgt − δ +
1, · · · ,mTtgt + δ} is referred to as the target reception range

of the m-th packet.

It is clear that the δ-on-time returns to the strictly on-time

if we set the deviation tolerance to be δ = 0.

0
d d d d d d

tgtT tgt2T tgt3T1

Fig. 2. The on-time reception model. Ttgt(≥ 1) is the preset interval
between target reception epochs, δ ≥ 0 is the tolerance of deviations,
mTtgt is the target reception slot of the m-th packet.

B. Channel and Source Models

We consider the packet transmissions over a fading channel

with power gain distribution fγ(x). We denote the distance

between the source and destination nodes as d, the path loss

exponent as α, and the transmit power of the source node as

Pt. In the n-th slot, the power of the received signal at the

destination node can then be expressed as Pt,n = γnPt/d
α, in

which γn is the random power gain of the channel in the n-th

slot. Thus, the signal-to-noise ratio (SNR) at the destination

node can be expressed as

ρn =
γnPt

dασ2
, (1)

in which σ2 is the power of the Gaussian white noises.

We assume that the minimum SNR for the destination node

to successfully decode the received packet is VT. That is,

the destination can successfully decode the packet from the

received signal only if the corresponding SNR ρn is larger

than VT. Otherwise, the packet cannot be decoded and shall

be retransmitted in the next slot. Thus, the probability that the

destination node can decode a packet from the received signal

can be expressed as

p = Pr {ρn > VT} =

∫ +∞

VTdασ2

Pt

fγ (x) dx. (2)

It can be seen that the transmission time S to successfully

deliver a packet over the fading channel follows the geometric

distribution with parameter p:

Pr {S = j} = p(1− p)j−1, j = 1, 2, . . . . (3)

On the packet generations, we assume that the (m + 1)-st

packet will be generated immediately after the transmission

completion of the m-th packet. After the generation of the

packet, the source node begins to transmit the packet im-

mediately. In particular, irrespective of the packet generation

time, the desired reception time of the (m + 1)-st packet is

(m+ 1)Ttgt.

C. On-Time Reception Rate

The primary concern of this work is how many packets

can be received on time, i.e., within their respective target

reception ranges. In the transmission of a total number of M
packets, we denote the number of packets received with δ-

on-time as κM . Then the on-time reception rate ̺M can be

defined as

̺M =
κM

M
. (4)

We would like to mention that the on-time reception rate

is closely related to the length of the packet sequence M .

Specifically, the larger M is, the smaller the on-time reception

rate would probably be. This is because when more packets

are transmitted, there would be more unexpectedly large

transmission times, which makes the following packets more

difficult to be received on-time. As will be shown in Section

VI, the on-time reception rate of the random transmission

scheme decreases moderately with M , even when M is very

large. In this paper, we will maximize the on-time reception

rate of the system by scheduling the transmissions of packets.

III. ON-TIME RECEPTION RATE OF RANDOM

TRANSMISSIONS

In this section, we consider the on-time performance of

the transmissions over the fading channel in the absence of
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scheduling and controlling. By deriving the probability that

each packet is received δ-on time, we can also obtain the

average number of packets received with δ-on time and the

corresponding on-time reception rate.

We denote the total number of packets to be transmitted

as M , the transmission time of the m-th packet as τm, and

the probability that the m-th packet is received δ-on time as

P (xm) for m = 1, 2, . . .M .

First, we consider the probability for the first (m = 1)

packet to be received δ-on time and have

P (x1) = Pr {Ttgt − δ ≤ τ1 ≤ Ttgt + δ} . (5)

Note that its transmission time satisfies τm ≥ 1 and follows

the geometric distribution with parameter p (see (3)). In case

Ttgt ≤ 1 + δ, we have Ttgt − δ ≤ 1 and (5) is equivalent to

P (x1) = Pr {1 ≤ τ1 ≤ Ttgt + δ}

= Pr {τ1 = 1}+ . . .+ Pr {τ1 = Ttgt + δ}

= p+ . . .+ p(1− p)
Ttgt+δ−1

= 1− (1− p)
Ttgt+δ

. (6)

In case Ttgt > 1 + δ, we have

P (x1) = Pr {Ttgt − δ ≤ τ1 ≤ Ttgt + δ}

= Pr {τ1 ≤ Ttgt + δ} − Pr {τ1 ≤ Ttgt − δ − 1}

= (1− p)
Ttgt−δ−1

− (1− p)
Ttgt+δ

. (7)

By combining (6) and (7), the probability that the first

packet is received δ-on time can be expressed as

P (x1) =

{

1− (1− p)Ttgt+δ, Ttgt ≤ 1 + δ

(1− p)Ttgt−δ−1 − (1− p)Ttgt+δ, Ttgt > 1 + δ.
(8)

For the m-th packet, which is intended to be received within

{mTtgt−δ,mTtgt−δ+1, · · · ,mTtgt+δ}, the total transmission

time
∑m

k=1 τk follows the negative binomial distribution with

parameter p. The following proposition describes the proba-

bility of a packet being received δ-on time.

Proposition 1. For a sequence of M packet transmissions over

the fading channel, the probability of the m-th packet being

received δ-on time is given by

P (xm) =



























mTtgt+δ
∑

k=m

Cm−1
k−1 pm(1− p)

k−m
, mTtgt ≤ m+ δ

mTtgt+δ
∑

k=mTtgt−δ

Cm−1
k−1 pm(1− p)

k−m
,mTtgt > m+ δ,

(9)

in which p is the probability of successful reception in a slot,

Ttgt is the target reception interval, δ is the deviation tolerance,

and Ck
n =

(

n
k

)

is the combination operator.

Proof. See Appendix A. �

From Proposition 1, we can observe the behavior of P (xm).
In Fig. 3, we compare P (xm) obtained by analytical and

simulation results, in which p = 0.2 and Ttgt = 5. We

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Theory, =0
Simulation, =0
Theory, =3
Simulation, =3
Theory, =10
Simulation, =10

Fig. 3. Probability being received δ-on time. (p = 0.2 and Ttgt = 5).

observe that P (xm) decreases with packet index m. That is,

the P (xm) of the m-th packet is no larger than that of previous

packets. It is also seen that P (xm) increases with the deviation

tolerance δ.

We denote a subset of k (not necessarily successive) packets

out of M as xM
k . We denote the probability that k out of the

M packets are received δ-on time as P
(

xM
k

)

. Among the M
packets, therefore, the statistical average number of packets

received δ-on time would be

κM =
M
∑

k=1

kP
(

xM
k

)

. (10)

Moreover, as shown in the following theorem, κM can be

further expressed in terms of P (xk).

Theorem 1. For the transmissions of a sequence of M packets

over the fading channel, the probability that packets are

received δ-on time satisfies

M
∑

k=1

kP
(

xM
k

)

=

M
∑

k=1

P (xk), (11)

where P (xk) is the probability for the k-th packet to be

received δ-on time (cf. Proposition 1) and P
(

xM
k

)

is the

probability for k out of the M packets being received δ-on

time.

Proof. See Appendix B. �

From Theorem 1, we have

κM =
M
∑

k=1

kP
(

xM
k

)

=
M
∑

k=1

P (xk). (12)

That is, the average number of packets that can be received

δ-on time is equal to the sum probability for each of the

packets to be received δ-on time. Since the probability P (xk)
for each of the packets being received δ-on-time has been

given in Proposition 1, we can calculate the on-time reception
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rate ̺M = κM/M by combing the results in Proposition 1,

Theorem 1, and equation (12).

IV. ON-TIME RECEPTION RATE OF CONTROLLED

TRANSMISSIONS

In this section, we present three controlling strategies to

improve the on-time reception rate of the system. We first

discuss the low on-time reception behavior of the random

transmissions and then discuss a scheme to improve the on-

time reception rate using delaying, dropping, and repeating the

packets.

A. Drawbacks of Random Transmissions

In the random transmission scheme, any packet that is not

received δ-on time not only degrades system performance, but

also affects the transmissions of the subsequent packets. For

example, if a packet is received before its target reception

range, the probability that the next packet is received δ-on time

will also be reduced since there is more than enough time for

its transmission so that the packet might be received earlier

than the desired time. If the transmission time of a packet is

large so the packet is received after the target reception range,

the probability for the subsequent packet being received δ-on

time may also be reduced (even to zero), since the remaining

time for its transmission is shortened. Therefore, the on-time

reception rate of the random transmissions is often relatively

small.

B. Controlling with Delaying, Dropping or Repeating

We propose a scheme to control the transmission of packets

and improve the on-time reception rate of the system by

delaying dropping, or repeating the transmission of packets.

1) Delaying: At the beginning of each packet transmission,

the delaying strategy would delay the transmission for a period

of nd (nd = 0, 1, 2, . . .) slots. This strategy is especially useful

when the previous packet is received before its target reception

range. In particular, when the delayed time nd is set to 0, the

delaying strategy is equivalent to the random transmissions.

2) Dropping: Under the dropping strategy, the packets can

be dropped on demand so that the next packet could be

transmitted immediately. This strategy is very useful if the

transmission time of the previous packet is so large that the

subsequent packet completely misses the chance to be received

δ-on time.

3) Repeating: In case a packet is received before its target

reception range, the repeat strategy allows the packet to

be retransmitted. This is especially useful in the case the

destination node is periodically awaken only for a short period.

We limit the retransmissions to a finite number of times and

denote the maximum number of allowed retransmissions as

nr (nr ≥ 0). In case nr = 0, the repeating strategy is equivalent

to random transmissions.

In the following, we investigate the performance of the

repeating strategy. Specifically, we consider a single packet

(M = 1) transmission over the fading channel. We denote the

target reception interval as Ttgt, the deviation tolerance as δ

and the maximum number of retransmissions as nr. It should

be noted that once the packet is received within its target

reception range (i.e., δ-on-time) or after the target reception

range (i.e., have missed its chance), the transmission stops

immediately and no more retransmission is needed. Under the

repeating strategy, therefore, the transmission time Snr
of a

packet can be expressed as

Snr
=

l
∑

i=0

sr,i, (13)

in which sr,i is the transmission time of the i-th retransmission

and follows the geometric distribution (see (3)), and l is the

random variable taking values among {0, 1, 2, · · · , nr}. It is

clear that the packet could be received δ-on-time if and only

if |Snr
−Ttgt| ≤ δ. On the distribution of Snr

, we further have

the following result.

Proposition 2. Considering the transmission of a single packet

(M = 1) with the maximum number nr ≥ 0 of retransmis-

sions, the probability distribution function of the transmission

time Snr
is given by

Pr {Snr
− Ttgt > j}

=































1, j < nr − Ttgt

nr
∑

m=0

Cm
Ttgt−δ−1p

m(1− p)j+Ttgt−m, j ≥ −1− δ

nr
∑

m=0

Cm
j+Ttgt

pm(1− p)j+Ttgt−m, else,

(14)

if Ttgt ≥ 1 + nr + δ. In the case Ttgt ≤ 1 + δ, we have

Pr {Snr
− Ttgt > j} = Pr {S0 − Ttgt > j}

=

{

(1− p)
j+Ttgt , j ≥ −Ttgt

1, j < −Ttgt.
(15)

In case 1 + δ < Ttgt < 1 + nr + δ, we have

Pr {Snr
− Ttgt > j} = Pr

{

STtgt−1−δ − Ttgt > j
}

=

{

(1− p)j+1+δ, j ≥ −1− δ

1, j < −1− δ.
(16)

Proof. See Appendix C. �

We see from Proposition 2 that the repeating strategy

changes the distribution of the transmission time of each

packet and improves the on-time performance of the trans-

missions. In fact, the probability that a packet is received δ-

on-time increases substantially by repeating the transmission

of the packet for some times. In Fig. 4, we present the comple-

mentary cumulative distribution functions (CCDF) of Snr
−Ttgt

for various nr (the maximum numbers of retransmissions),

in which the probability of successful transmission is set to

p = 0.2, the target reception interval is set to Ttgt = 20, and the

deviation tolerance is set to δ = 1. We plot the target reception

range, i.e., the area in interval (−2, 1], by the shaded area. We

denote the y-coordinates of the intersections of each CCDF

curve and the shaded area as q1,nr
and q2,nr

. It is clear that

q2,nr
− q1,nr

= Pr{Snr
− Ttgt > −2} − Pr{Snr

− Ttgt > 1}



6

-20 -15 -10 -5 -2 0 1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Complementary cumulative distribution functions (CCDF) of
Snr − Ttgt (p = 0.2, Ttgt = 20 and δ = 1).

is the probability that the packet is received δ-on-time, when

a maximum nr retransmissions are allowed. From Fig. 4, we

observe that as nr increases, the probability for the packet to be

received δ-on-time will also increase, while the probabilities of

the packets being received before (i.e., 1−q2,nr
) and after (i.e.,

q1,nr
) the target reception range are, respectively, decreases

and increases. However, it is clear that the uncertainty in

the reception time is unavoidable due to the randomness of

the fading channel. For example, we observe that in case

nr = Ttgt = 20, the probability that a packet is received

after the right boundary of the target reception range is still

quite large. Thus, the gain in the probability of δ-on-time by

repeating the packets is also limited.

V. OPTIMAL PACKET SCHEDULING

In practical transmissions of a sequence of packets, a packet

may either be received before or after its desired target

reception range. To increase the probability of being received

δ-on-time for the following packets, controlling strategies such

as the delaying, dropping, and repeating should be considered.

In this section, we shall maximize the on-time reception

rate of the system by modeling the optimal packet scheduling

problem as an MDP problem. Using the MDP formulation, we

can determine the optimal controlling strategy of a packet in

an online manner. That is, we shall determine the controlling

strategy of a packet based on the state of the system at

the starting time of its transmission. In particular, we solve

the optimal scheduling policy using the MDP-based iterative

algorithm.

To be specific, the state set, available actions, transition

probabilities, reward functions, and optimal packet scheduling

policy of the MDP problem are elaborated in the following

subsections 1 to 5, respectively.

1) States: Since the controlling strategies are selected in the

beginning of packet transmissions, we only need to consider

the states of the system when a packet starts its transmission.

To be specific, we define the state sm of the system as

the difference between the transmission starting time and the

S j

i tgtT

tgtmT ( ) tgt1m T+

dn S j

i tgtT

tgtmT ( ) tgt1m T+

0S =
j

i tgtT

tgtmT ( ) tgt1m T+

y j

i tgtT

tgtmT ( ) tgt1m T+

(a) Random transmissions (b) Delaying

(c) Dropping (d) Repeating

Fig. 5. Illustration of controlling strategies, in which y = i+Ttgt −j.

target reception time of the packet. For example, suppose the

(m− 1)-st packet is received in slot n− 1 and thus the m-th

packet has a chance to be transmitted from slot n. In slot n,

the state of the system would then be sm = mTtgt − n + 1,

in which mTtgt is the time when the packet is expected to be

received. Since the previous packet m−1 may be received even

later than the target reception time mTtgt of the m-th packet,

the state sm could also be negative. The state set, therefore,

would be S = Z, i.e., the integer set.

Suppose the current state is sm = i, the transmission time

of the packet is S, and the next state sm+1 = j, we further

have

j = i− S + Ttgt, i, j ∈ S. (17)

2) Actions: In the beginning of the transmission of a packet

m, we schedule the packet by either delaying it by nd ≥ 0
slots, dropping it, or repeating the transmission by nr ≥ 0
times, which are referred to as taking an action a. The set of

all possible actions is referred to as the action set A.

3) Transition probabilities: For a given state sm = i and

the corresponding action a ∈ A, we denote the transition prob-

ability to state sm+1 = j as pij (a) = Pr{sm+1 = j|sm = i}
and have

∑

j∈S

pij (a) = 1. (18)

By taking different actions, the transition probabilities are

also different. First, we consider the transition probability of

random transmissions. By combing (3) and (17), and the fact

S ≥ 1, we have (cf. Fig. 5(a))

pij =

{

0, j ≥ i+ Ttgt

p(1− p)
i−j+Ttgt−1

, j < i+ Ttgt.
(19)

Second, we consider the transitions of delaying the trans-

mission by nd slots and denote the corresponding probability

as pij (nd). Likewise, the transition probability of the delaying

action is (see Fig. 5(b))

pij (nd) =

{

0, j ≥ i+ Ttgt − nd

p(1− p)
i−nd−j+Ttgt−1

, j < i+ Ttgt − nd.

(20)

Third, given that the current state is sm = i and the packet
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m is dropped, its transmission time would be deterministic,

i.e., S = 0. In addition, the packet m + 1 will be generated

and then transmitted immediately. Thus, the time for the

transmission of the (m + 1)-st packet to be received strictly

on-time (i.e., its state) is j = i + Ttgt (cf. Fig. 5(c)). That is,

the transition probability pij from state i to state j is

pij =

{

1, j = i+ Ttgt

0, j 6= i+ Ttgt.
(21)

Fourth, when the packet is allowed to be repeated with a

maximum number nr retransmissions, we denote the transition

probability from state i to state j as pij(nr), on which we have

the following proposition.

Proposition 3. When a packet is allowed to be retransmitted

for at most nr times and if i ≤ 1 + δ, we have

pij(nr) =

{

0, j ≥ i+ Ttgt

p(1− p)
i−j+Ttgt−1

, j < i+ Ttgt;
(22)

if 1 + δ < i < 1 + δ + nr, we have

pij (nr) =

{

0, j ≥ 1 + δ + Ttgt

p(1− p)δ−j+Ttgt , j < 1 + δ + Ttgt;
(23)

if i ≥ 1 + δ + nr, we have

pij (nr)

=























0, y ≤ nr

Cnr

y−1p
1+nr(1− p)

y−1−nr , nr < y ≤ i− 1− δ
nr
∑

m=0

Cm
i−1−δp

1+m(1− p)
y−1−m

, y > i− 1− δ,

(24)

in which y = i− j + Ttgt.

Proof. See Appendix D. As an intuitive explanation, y =
i − j + Ttgt is time reserved for the transmissions and the

retransmissions of packet m (see Fig. 5(d)). As long as the

packet is received at the destination before the target reception

range [mTtgt−δ,mTtgt+δ] and the number of retransmissions

is less than nr, the retransmission of packet m continues. �

4) Reward function: When the state of the system transits

from sm = i to sm+1 = j, we define the reward rij of the

system as

rij =

{

1, if Ttgt − δ ≤ j ≤ Ttgt + δ

0, else.
(25)

That is, the total reward of the system (i.e. the number of

packets received δ-on time) will increase by one if the m-th

packet is received δ-on time. Otherwise, the reward is set to

zero.

From a state i and with an action a, we define the expected

reward function as r (i, a), which can be calculated by

r (i, a) =
∑

j∈S

pij (a) rij , (26)

in which pij (a) (see (19) to (24)) is the state transition prob-

ability under action a. In the following, we shall investigate

the reward functions of different controlling strategies case by

case.

First, we denote the reward function of the random transmis-

sions as R (i). By combining equations (19), (25), and (26),

we have

R (i) =

Ttgt+δ
∑

j=Ttgt−δ

pij

=







































0, i ≤ −δ

Ttgt+δ
∑

j=Ttgt−δ

p(1− p)i−j+Ttgt−1, i > δ

i+Ttgt−1
∑

j=Ttgt−δ

p(1− p)i−j+Ttgt−1, else,

(27)

which is equivalent to

R (i) =















0, i ≤ −δ

(1− p)i−1−δ
[

1− (1− p)1+2δ
]

, i > δ

1− (1− p)i+δ, else.

(28)

Second, we denote the reward function of the delaying strat-

egy as RDL (i, nd), where nd is the delay time. By replacing

i in (28) with i− nd, we have

RDL (i, nd)

=















0, i ≤ nd − δ

(1− p)
i−nd−δ−1

[

1− (1− p)
1+2δ

]

, i > δ + nd

1− (1− p)
δ+i−nd , else.

(29)

Third, we denote the reward function of the dropping

strategy as RDP (i). Since a dropped packet can never be

received on time, we immediately have

RDP (i) = 0. (30)

Fourth, we denote the reward function of the repeating

strategy as RRP (i, nr), in which nr is the maximum allowed

retransmissions. From (25) and (26), we have

RRP (i, nr) =

Ttgt+δ
∑

j=Ttgt−δ

pij (nr) , (31)

In case i ≤ 1 + δ, from (22), we have

RRP (i, nr) =















0, i ≤ −δ
i+Ttgt−1
∑

j=Ttgt−δ

p(1− p)
i−j+Ttgt−1

, i > −δ.
(32)

In case 1 + δ < i ≤ 1 + δ + nr, from (23), we have

RRP (i, nr) =

Ttgt+δ
∑

j=Ttgt−δ

p(1− p)δ−j+Ttgt . (33)
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In case i > 1 + δ + nr, from (24), we have

RRP (i, nr) =

Ttgt+δ
∑

j=Ttgt−δ

nr
∑

m=0

Cm
i−1−δp

1+m(1− p)
i−j+Ttgt−1−m

.

(34)

By combing (31)∼(34), the reward function of the repeating

strategy can be expressed as

RRP (i, nr) =



























0, i ≤ −δ

1− (1− p)
i+δ

, −δ < i ≤ 1 + δ

1− (1− p)
1+2δ

, 1 + δ < i ≤ 1 + δ + nr

D
[

1− (1− p)
1+2δ

]

, i > 1 + δ + nr,

(35)

in which D =
nr
∑

m=0
Cm

i−1−δp
m(1− p)

i−1−δ−m
.

5) Optimal Packet Scheduling Policy: A packet scheduling

policy π is a rule for choosing actions (i.e., delaying, dropping,

or repeating) for each packet, i.e., a mapping from the state

space S to the action space A. Specifically, for each state s = i
(can be negative), the corresponding element of π specifies

which action should be taken for the current packet. In case

the packet should be delayed, πi also indicates how long it

should be delayed, i.e., determining nd; in case the packet

should be repeated, πi also indicates how many times it could

be retransmitted, i.e., determining nr; in case the packet should

be randomly transmitted or dropped, no other parameters are

needed to be determined.

For a sequence of packet transmissions, we seek such a

policy π∗ that maximizes the average reward of the system

with any initial state s1 = i. That is,

π∗ = argmax
π

E

[

1

M

M
∑

m=1

R (sm, am) |s1 = i

]

, (36)

in which sm (m = 1, 2, . . . ,M, sm ∈ S) is the state of the

m-th packet, am (m = 1, 2, . . . ,M, am ∈ A) is the action as-

signed for the m-th packet, R (sm, am) is the reward function

of the m-th packet when the state is sm and the action is

am. From (26), we know that the reward function R (sm, am)
is also the probability that the packet is received δ-on time

after taking action am in state sm so that we define the

corresponding cost as

C (sm, am) = 1−R (sm, am) , (37)

which is non-negative. Therefore, we can also find out the opti-

mal packet scheduling policy π∗ by minimizing the following

average cost.

Vπ∗ (i) = min
π

E

[

1

M

M
∑

m=1

C (sm, am) |s1 = i

]

(38)

As shown in [24, Chap. 6.7, Theorem 6.17], (38) can be

solved by the following functional equation,

g + h (i) = min
a∈A







C (s, a) +
∑

j∈S

pij (a)h (j)







, (39)

in which g is a constant, h (i) is a bounded function, pij (a)
is the state transition probability of the packet from state i to

state j when action a is taken.

It is noted, however, that (39) is not a contraction mapping

[24, Chap. 6.4, Theorem 6.10]. Thus, the searching process

with (39) may not converge or converge very slowly. This

motivates us to consider an alternative expected total α-

discounted cost as shown below.

Vπ∗

α
(i) = min

π
E

[

1

M

M
∑

m=1

αmC (sm, am) |s1 = i

]

(40)

for all i ∈ S, in which 0 < α < 1 is a discounting factor.

Moreover, the α-optimal policy π∗
α and the α-optimal cost

function Vα (i) satisfies [24, Chap. 6.7, (24)],

Vα (i) = min
a∈A







C (i, a) + α
∑

j∈S

pij (a)Vα (j)







. (41)

Particularly, the following theorem shows that as α approaches

unity, π∗
α would converge to π∗.

Theorem 2. For some sequence αn → 1, we have h (s) =
lim
n→∞

Vαn
(s) − Vαn

(s1), g = lim
α→1

(1− α)Vα (s1), for any

fixed reference state s1. In particular, (38) and (40) share the

same optimal policy.

Proof. Based on the state transition probabilities given in

(20), (21), (22), (23) and (24), it can be seen that each state

can reach all other states directly or indirectly through some

intermediate states, which means that the Markov chain is

irreducible. According to [24, Chap. 6.8, Corollary 6.20],

Vα (s) − Vα (s1) would be uniformly bounded, and hence

the conditions of [24, Chap. 6.7, Theorem 6.17] are satisfied,

which yield the results in Theorem 2 immediately. �

Theorem 2 shows that (36), (38) and (40) have the same

optimal scheduling policy. Thus, the optimal scheduling policy

of the system can be calculated by the matrix iteration method.

To be specific, for each state i, we shall calculate the expected

costs C (i, a) + α
∑

j∈S pij (a)Vα(j) for each action a ∈ A,

including the random transmission, dropping the packet, de-

laying the packet for some slots (nd = 1, 2, · · · , nmax
d ), or

retransmit the packet for some times (nr = 1, 2, · · · , nmax
r ).

With the obtained expected costs, we can determine the best

action and update the cost Vα (i) with (41). In particular, it

was shown in [24, Chap. 6.8] that the mapping shown in (41)

is contract mapping. We denote the vector of all the states as

s and the cost vector as V α. By applying (41) to s (which is

done element by element) iteratively, the cost vector V α would

then converge to the optimal cost vector while the obtained

actions are all optimal for the corresponding states, as shown

in Algorithm 1.

Since the state of a packet is the difference between its

transmission starting time and its target reception time, the

state space S is often infinitely large. The probability for the

state of packets to be very large or small, however, is very

small and can be neglected. Thus, we shall limit the state

space to the set of integers within the finite range [ιmin, ιmax],
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Algorithm 1 Solving the optimal packet scheduling policy

1: Input:

cost matrix CDL and transition probability matrix PDL of the delaying strategy;

cost vector CDP and transition probability matrix PDP of the dropping strategy;

cost matrix CRP and transition probability matrix PRP of the repeating strategy;

2: Initialization:

Set iteration error to ∆v = +∞, ε = 10−3;

Initialize the cost function vector V α = zeros (ιmax − ιmin + 1, 1);

Initialize the policy vector π∗

α = zeros (ιmax − ιmin + 1, 1);

3: Iteration:

while: ∆v > ε, do

fDP = CDP + αPDPV α;

for nd = 0 to nmax
d do

FDL (:, nd + 1) = CDL (:, nd + 1) + αPDL (:, :, nd + 1)V α;

end for

for nr = 0 to nmax
r do

FRP (:, nr + 1) = CRP (:, nr + 1) + αPRP (:, :, nr + 1)V α;

end for

V old = V α;

S = [fDP, FDL, FRP];
[V α,π∗

α] = min (S, 2); %find the minimum over the 2-nd dimenssion

∆v = max(|V α − V old|);

end while

4: Output: V α, π∗

α.

so that we can solve the problem more efficiently. In this case,

the number of desirable states is ιmax − ιmin + 1.

From (20), (21), (22), (23), and (24) we can explicitly

express the transition matrices of delaying, dropping and

repeating, which are denoted, respectively, as PDL, PDP, and

PRP. In particular, PDL and PRP are three-dimensional matrices.

In PDL, the first and the second dimensions represent the

states before and after the transition, while the third dimension

represents the number of slots the packets are delayed, i.e., nd.

Likewise, the third dimension of PRP represents the maximum

allowed number of retransmission, i.e., nr.

From (29), (30), (35), and (37), we can also obtain the

cost functions of the three strategies, i.e., CDL, CDP and CRP.

Matrices CDL and CRP are two-dimensional matrices defining

the costs for each state and each nd and nr.

Finally, (ιmax − ιmin + 1) × 1 vector of optimal packet

scheduling policy π∗
α can be obtained by Algorithm 1. As

shown in Theorem 2, we have π∗
α = π∗, which specifies the

actions for all the states.

With the obtained optimal scheduling policy π∗
α, which can

be expressed by a state-action mapping table, we can then find

out the optimal action (i.e., transmit it without control, delay

it, drop it, or repeat it) of each packet based on its current state.

As shown in our simulations in Section VI, the corresponding

δ-on-time reception rate achieves the optimal reward of the

system exactly.

A. Theoretical Analysis of Expected Total Rewards

In this section, we will analyze the total expected reward

of two systems, in which the random transmission strategy

and the packet scheduling is used respectively. In particular,

the system with the packet scheduling would optimize the

controlling strategy of each packet by maximizing the expected

total reward of the system.

1) System with Random Transmissions: For the system

using the random transmission strategy, the expected reward

of a single transition from state i can be expressed as

R (i) =
∑

j∈S

pijrij , i ∈ S, (42)

in which pij (cf. (19)) and rij (cf. (25)) are, respectively, the

probability and the reward of the transition from i to j. We

denote the vector of expected transition rewards of all the

states as R = [R (ιmin) , R (ιmin + 1) , . . . , R (ιmax)]
T

.

We denote the expected total reward of a sequence of m
transitions from state i as v

′

m (i), which can be calculated

based on v
′

m−1 (j) and rij as

v
′

m (i) =
∑

j∈S

pij

[

rij + v
′

m−1 (j)
]

= R (i) +
∑

j∈S

pijv
′

m−1 (j), i ∈ S. (43)

We denote the vector of the expected m-

transition rewards of all the states as V
′

m =
[

v
′

m (ιmin) , v
′

m (ιmin + 1) , . . . , v
′

m (ιmax)
]T

. It is clear

that

V
′

1 = R, (44)

V
′

m = R+ PV
′

m−1,m = 2, 3, . . . ,M, (45)

in which P is the state transition probability matrix of the

random transmission strategy (cf. (19)). Starting from (44), we

repeatedly use (45) to obtain the expected total reward vector

V
′

M of a sequence of M − 1 state transitions (Algorithm 2).

Moreover, V
′

M is also the expected total reward of the system

for transmitting M packets to the destination node.

Remark 1. Note that the transmission of the first packet

starts from the first slot and the corresponding initial state

is s1 = Ttgt. When the transmission of all of M packets

have been completed, the expected total reward of the system

would then be v
′

M (Ttgt), which can be obtained by Algorithm

2. Note also that the expected total reward of a system using

random transmissions equals to the number κM (cf. (10)) of

packets received δ-on-time, which can be obtained through

classical probability methods, as shown equations (10) and

(11), in Section III. In particular, it can be verified through

simulations that the v
′

M (Ttgt) obtained by Algorithm 2 equals

to κM exactly.

2) System with Scheduling: Likewise, we calculate the

expected total reward of the system with packet scheduling

iteratively, as shown in Algorithm 2.

We note that the transition probability matrices PDL(nd) =
[pij(nd)], PDP = [pij ], PRP(nr) = [pij(nr)] of the delaying

strategy, the dropping strategy, and the repeating strategy are

given, respectively, by (20), (21) and (22) to (24). For each

state i ∈ S and each chosen strategy, therefore, the expected

reward of the next transition R (i) can be calculated by (42), in

which pij is replaced by pij(nd), pij , and pij(nr), respectively.

We denote the vector of expected m-transition

rewards of the system with scheduling as V m =
[vm (ιmin) , vm (ιmin + 1) , . . . , vm (ιmax)]

T
. Given the

expected m-transition reward vector V m, we shall first

estimate the expected (m + 1)-transition rewards for all

the cases when the delaying (for all nd), dropping, and the
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Algorithm 2 Total expected reward

1: Input:

reward vector R and transition probability matrix P of random transmission;

reward vector RDP and transition probability matrix PDP of drop strategy;

reward matrix RDL and transition probability matrix PDL of delay strategy;

reward matrix RRP and transition probability matrix PRP of repeat strategy;

2: Initialization:

Initialize optimal scheduling policy vector V 0 = zeros (ιmax − ιmin + 1, 1);

Initialize random transmission vector V
′

0 = zeros (ιmax − ιmin + 1, 1);

3: Iteration:

for: m = 1 to M do

V
′

m = R + PV
′

m−1;

fDP = RDP + PDPV m−1;

for nd = 0 to nmax
d do

FDL (:, nd + 1) = RDL (:, nd + 1) + PDL (:, :, nd + 1)V m−1;

end for

for nr = 0 to nmax
r do

FRP (:, nr + 1) = RRP (:, nr + 1) + PRP (:, :, nr + 1)V m−1;

end for

S = [fDP, FDL, FRP];
V m = max (S, 2);

end for

4: Output: V M , V
′

M .

repeating (for all nr) strategy are used. Specifically, we have

FDL (:, nd + 1) =RDL (:, nd + 1) + PDL (:, :, nd + 1)V m

(46)

fDP =RDP + PDPV m (47)

FRP (:, nr + 1) =RRP (:, nr + 1) + PRP (:, :, nr + 1)V m,
(48)

for nd = 0, 1, · · · , nmax
d and nr = 0, 1, · · · , nmax

r . For each

state i, therefore, we have obtained the expected total reward

for all controlling strategies (i.e., delaying, dropping, and

repeating) and parameters (i.e., nd and nr). By searching

the maximum reward among {FDL(i, 1), · · · ,FDL(i, n
max
d +

1),fDP(i),FRP(i, 1), · · · ,FRP(i, n
max
r + 1)}, we can then de-

termine the optimal controlling action and parameter. With the

obtained controlling strategy and parameter, we can further

update the expected (m + 1)-transition rewards V m+1 of

system. As shown in Algorithm 2, this process continues

until the controlling strategies of all the packets has been

determined and the expected total reward of the system with

scheduling is vM (Ttgt).

VI. SIMULATION RESULTS

In this section, we investigate the on-time reception rate of

a sequence of M packets transmission over a Rayleigh fading

channel. In particular, we transmit a sequence of M packets

over the channel and schedule each packet with the optimal

scheduling policy obtained by Algorithm 1. We then calculate

the corresponding on-time reception rate (which is referred

to as the simulation result) by counting the packets received

δ-on-time. Moreover, we also calculate the on-time reception

rate theoretically using Algorithm 2, which is referred to as

the theoretical results.

The distribution of the channel power gain of the Rayleigh

fading channel is given by

fγ(x) = λe−λx. (49)

We set the channel parameter as λ = 2, the transmit power

of the source node as Pt = 1 W, the distance between the

source and destination nodes as d = 100 m, the path loss
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Fig. 6. The probability for a packet being successfully received versus
SNR threshold (Pt = 1, d = 100, α = 2, and σ2 = 10−4).
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Fig. 7. The on-time reception rate ̺M versus the deviation tolerance
δ (p = 0.2, M = 10000, and Ttgt = 5).

exponent as α = 2, and the channel noise as σ2 = 10−4 W. For

a given SNR threshold VT, the probability that the transmitted

packet can be successfully decoded by the destination node

would be p = exp(−λVTd
ασ2) = exp(−2VT) (see (2)). Thus,

we can adjust the probability of successful transmissions by

changing the threshold VT, as shown in Fig. 6. For example,

we have p = 0.2 if VT = 0.8047.

Without loss of generality, we consider a finite numbers

of states and set the maximum and the minimum state as

ιmax = 500 and ιmin = −500, respectively, i.e., s ∈
{−500,−499, · · · , 500}. In the simulation, we also limit the

delay time and the number of retransmissions by nmax
d = 20

and nmax
r = 20. In the implementation of the MDP algorithm,

we set the discount factor as α = 0.999.

In Fig. 7, we investigate the behavior of the on-time

reception rate ̺M as a function of the deviation tolerance δ.

The probability of successful transmission is set to p = 0.2,
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Fig. 8. The on-time reception rate versus the target reception interval
Ttgt (p = 0.2, M = 10000, and δ = 2).

the number of packets is set to M = 10000, and the target

reception interval is set to Ttgt = 5. We observe that under

the optimal packet scheduling policy obtained by Algorithm

1, the on-time reception rates are much larger than that of the

random transmission scheme. This shows that the proposed

MDP based packet scheduling is very effective. In case δ = 0,

the δ-on-time requirement reduces to the strictly on-time.

From the figure, it can be seen that the corresponding on-

time reception rates are relatively small, even though the

optimal packet scheduling is used. In fact, due to the fading

property of the wireless channel, it is very difficult to alleviate

the randomness of transmissions. Nevertheless, by using the

optimal scheduling policy, the strictly on-time reception rate

can be increased about 13%, which is much larger than that of

random transmissions. Moreover, it is seen that our simulation

results and theoretical results matches well.

Fig. 8 presents how the on-time reception rate ̺M changes

with the target reception interval Ttgt. Besides the superior-

ity of the optimal scheduling, we observe that the on-time

reception rate increases with Ttgt. This is because when Ttgt

is relatively large, we have more freedom of scheduling. For

the random transmissions, it is observed that ̺M changes

differently and reaches its maximum at Ttgt = 5, which

is exactly the expected value of the transmission time, i.e.,

E(S) = 1/p = 5. This is in consistent with our intuitions that

most of the transmission times fall into a finite range around

their common expectation.

We plot the on-time reception rate ̺M as a function of

the successful reception probability p (i.e., the reliability of

the fading channel) in Fig. 9, in which we set Ttgt = 4,

M = 10000, and δ = 2. With the optimal scheduling

policy, it is seen that ̺M is increasing with p and almost

approaches the unity as p reaches 0.5. Under the random

transmission scheme, however, ̺M does not change much as

p is increased. This is because when p increases, although

the variance (randomness) of the transmission time becomes

smaller, the expected reception time of a packet deviates the

target reception time more, unless Ttgt = 1/p holds.
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Fig. 9. The on-time reception rate versus the reception probability p
(Ttgt = 4, M = 10000, and δ = 2).
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Fig. 10. The on-time reception rate versus the number of packets M
(p=0.2, Ttgt = 5 and δ = 1).

In Fig. 10, we present how the on-time reception rate

changes when the length M of the packet sequence increases.

For the random transmission strategy, we observe that the

on-time reception rate decreases with M and is expected to

approach zero as M goes to infinity. This is because the

channel gains are random and difficult to predict while the

accumulated deviation from the target times increases with M .

For the transmission with optimal packet scheduling, it is seen

that the on-time reception rate is much larger and converges

to a constant as M goes to infinity. By optimally scheduling

the packets, however, the gain in the on-time reception rate is

also limited, since the randomness of the channel cannot be

removed completely.

In Fig. 11, we present how many packets are delayed,

dropped, and repeated, respectively. As shown in the pie chart,

we see that over 60% of packets are repeated, which is because

Ttgt = 33 is relatively large. From the circle labeled curve, we

also see that most of these packets are repeated by 5 to 10
times, since Ttgt/E [S] = pTtgt = 6.6. Among the 36.3% of
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Fig. 11. The proportions of the controlling strategies being used under
the optimal scheduling policy (p=0.2, M=1000000, Ttgt = 33 and
δ = 3).

delayed packets, most of them are delayed for 20 slots, which

is also because Ttgt is large. In addition, only 1% of packets

need to be dropped in this setting.

VII. CONCLUSION

In this paper, we have proposed an evaluation framework

for the on-time communication over a fading channel. Due

the fading property of the channel, the time to successfully

deliver a packet is random so that it is very difficult to receive

a packet in an expected slot. Thus, we increased the on-

time reception rate of the packets significantly by optimally

delaying, dropping, and repeating some of them. However,

the improvement is also limited and the 100% on-time trans-

mission can never be achieved, unless the randomness in the

channel gains can be completely removed (e.g., can be fully

predicted). In our future work, we shall further combat the

randomness of fading channels by power allocations, variable-

rate compressions, and parallel transmissions. By optimizing

the δ-on-time reception rate jointly, it is expected that TSN

networks can be implemented over wireless networks in the

near future.

APPENDIX

A. Proof of Proposition 1

Proof. We denote the transmission time of the m-th packet as

τm and the probability that the m-th packet is received δ-on

time as P (xm). For the m-th packet, we have

P (xm) = Pr

{

mTtgt − δ ≤
m
∑

k=1

τk ≤ mTtgt + δ

}

. (50)

Since transmission time τk follows the geometric distribution

(cf. (3)) and the total transmission time
∑m

k=1 τk follows the

negative binomial distribution with parameter p, we have

Pr

{

m
∑

k=1

τk = j

}

= Cm−1
j−1 pm(1− p)

j−m
, j = m,m+ 1, . . .

(51)

To calculate P (xm), we consider the following two cases.

1) mTtgt ≤ m + δ: Since τm ≥ 1, we have
m
∑

k=1

τk ≥ m,

and mTtgt − δ ≤ m ≤
m
∑

k=1

τk. Thus,

P (xm) = Pr

{

m
∑

k=1

τk ≤ mTtgt + δ

}

= pm + . . .+ Cm−1
mTtgt+δ−1p

m(1− p)mTtgt+δ−m

=

mTtgt+δ
∑

k=m

Cm−1
k−1 pm(1− p)

k−m
. (52)

2) mTtgt > m+ δ: In this case, we have

P (xm) = Pr

{

m
∑

k=1

τk ≤ mTtgt + δ

}

− Pr

{

m
∑

k=1

τk ≤ mTtgt − δ − 1

}

=

mTtgt+δ
∑

k=mTtgt−δ

Cm−1
k−1 pm(1− p)k−m. (53)

This completes the proof of Proposition 1. �

B. Proof of Theorem 1

Proof. Let P (xk) and P (xk) be the probability for the k-th

packet to be and to be not received δ-on time, respectively. We

denote the probability that k packets out of the M packets are

received δ-on time as P
(

xM
k

)

. Under this setting, We prove

the theorem by mathematical induction.

We start from M = 1 and readily see that P
(

x1
1

)

= P (x1).
We assume that Theorem 1 holds for M = n, i.e.,

M
∑

k=1

kP
(

xM
k

)

=

M
∑

k=1

P (xk). (54)

That is,

nP (x1x2 · · ·xn)

+ (n− 1) [P (x1x2 · · ·xn) + . . .+ P (x1 · · ·xn−1xn)] +

(n− 2) [P (x1 x2x3 · · ·xn) + . . .+ P (x1 · · ·xn−2xn−1 xn)]

+ . . .+ [P (x1x2 · · ·xn) + . . .+ P (x1 x2 · · ·xn)]

= P (x1) + P (x2) + . . .+ P (xn) . (55)

For M = n+ 1, we then have

n+1
∑

k=1

kP
(

xn+1
k

)

(a)
= (n+ 1)P (x1x2 · · ·xnxn+1)

+ n [P (x1x2 · · ·xnxn+1) + . . .+ P (x1x2 · · ·xn xn+1)]

+ (n− 1) [P (x1 x2 · · ·xn+1) + . . .+ P (x1 · · ·xn xn+1)]

+ . . . [P (x1x2 x3 · · ·xn+1) + . . .+ P (x1 x2 · · ·xn+1)]

(b)
= nP (x1x2 · · ·xn)

+ (n− 1) [P (x1x2 · · ·xn) + . . .+ P (x1x2 · · ·xn)]
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+ (n− 2) [P (x1 x2 · · ·xn) + . . .+ P (x1x2 · · ·xn−1 xn)]

+ . . . [P (x1x2 x3 · · ·xn) + . . .+ P (x1 x2 · · ·xn)]

+ [P (x1x2 · · ·xn+1) + . . .+ P (x1 x2 x3 · · ·xn+1)]

(c)
= P (x1) + P (x2) + . . .+ P (xn+1)

=

n+1
∑

k=1

P (xk), (56)

in which (c) follows from (55) and (b) is obtained by re-

organizing the equation (a). For example, the first term of

(56) can be calculated by

(n+ 1)P (x1 · · ·xn+1) + nP (x1 · · ·xnxn+1)

= nP (x1x2 · · ·xn) + P (x1x2 · · ·xnxn+1) . (57)

Thus, (11) holds true for M = n + 1, and thus holds for all

M ≥ 1 and the proof of Theorem 1 is completed. �

As an illustrative example, we have

3
∑

k=1

kP
(

x3
k

)

= 3P (x1x2x3)

+ 2 [P (x1x2x3) + P (x1x2x3) + P (x1x2x3)]

+ P (x1x2 x3) + P (x1 x2x3) + P (x1x2x3)

= 2P (x1x2) + P (x1x2) + P (x1x2)

+ [P (x1x2x3) + P (x1x2x3) + P (x1x2x3) + P (x1 x2x3)]

= P (x1) + P (x2) + P (x3)

=

3
∑

k=1

P (xk) (58)

C. Proof of Proposition 2

Proof. Before proving Proposition 2, we first prove the fol-

lowing equation

z−m
∑

y1=1

z−y1−(m−1)
∑

y2=1

. . .

z−
m−1∑

k=1

yk−1

∑

ym=1

1 = Cm
z−1, (59)

in which z ≥ m+ 1, m ≥ 1.

We prove (59) using the mathematical induction. For m =
1, it is clear that the equation is true. Suppose (59) holds for

m = n and we have

z−n
∑

y1=1

z−y1−(n−1)
∑

y2=1

. . .

z−
n−1∑

k=1

yk−1

∑

yn=1

1 = Cn
z−1. (60)

For m = n+ 1, we then have

z−(n+1)
∑

y1=1

z−y1−n
∑

y2=1

. . .

z−
n−1∑

k=1

yk−2

∑

yn=1

z−
n∑

k=1

yk−1

∑

yn+1=1

1

=
z−n−1
∑

y1=1











z−y1−n
∑

y2=1

. . .

z−
n−1∑

k=1

yk−2

∑

yn=1

z−
n∑

k=1

yk−1

∑

yn+1=1

1











=

z−n−1
∑

y=1











z−y−n
∑

y1=1

. . .

z−y−
n−1∑

k=1

yk−1

∑

yn=1

1











=
z−n−1
∑

y=1

Cn
z−y−1

= Cn
z−2 + Cn

z−3 + . . .+ Cn
n

= Cn
z−2 + Cn+1

z−2 − Cn+1
z−3 + Cn+1

z−3 . . .− Cn+1
n+1 + Cn

n

= Cn
z−2 + Cn+1

z−2

= Cn+1
z−1 . (61)

That is, (59) also holds for m = n+ 1. Therefore, (59) holds

for all m ≥ 1.

We denote the transmission time of a packet under the repeat

strategy and at most nr retransmissions as Snr
, the transmission

time of the i-th retransmission as sr,i, the transmission time of

the first transmission as sr,0. When a packet is received before

the target reception range, the packet will be retransmitted and

we have

Pr {Snr
− Ttgt > j}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

nr−1
∑

i=0

sr,i − Ttgt > j,

nr−2
∑

i=0

sr,i < Ttgt − δ ≤

nr−1
∑

i=0

sr,i

}

+ . . .+ Pr {s0 − Ttgt > j, s0 ≥ Ttgt − δ} . (62)

1) Ttgt ≥ 1+nr+δ: When j ≥ −1−δ, we have j+Ttgt ≥
Ttgt − δ − 1 and

Pr {Snr
− Ttgt > j}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

nr−1
∑

i=0

sr,i − Ttgt > j,

nr−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {s0 − Ttgt > j}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr {Snr−1 − Ttgt > j}

=

Ttgt−δ−nr
∑

y0=1

Ttgt−δ−y0−nr+1
∑

y1=1

· · ·

Ttgt−δ−
nr−2∑

i=0

yi−1

∑

ynr−1=1

V

+ Pr {Snr−1 − Ttgt > j} , (63)
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in which

V = pnr(1− p)

nr−1∑

i=0

yi−nr

· Pr

{

sr,nr
> j + Ttgt −

nr−1
∑

i=0

yi, sr,i = yi

}

=



























pnr(1− p)j+Ttgt−nr , j ≥

nr−1
∑

i=0

yi − Ttgt

pnr(1− p)

nr−1∑

i=0

yi−nr

, j <

nr−1
∑

i=0

yi − Ttgt.

(64)

Since j ≥ −1 − δ,
nr−1
∑

i=0

sr,i =
nr−1
∑

i=1

yi < Ttgt − δ, we have

j ≥
nr−1
∑

i=0

yi − Ttgt, and then V = pnr(1− p)
j+Ttgt−nr . From

(59), we have

Pr {Snr
− Ttgt > j}

=

Ttgt−δ−nr
∑

y0=1

Ttgt−δ−y0−(nr−1)
∑

y1=1

· · ·

Ttgt−δ−
nr−2∑

i=0

yi−1

∑

ynr−1=1

V

+ Pr {Snr−1 − Ttgt > j} ,

= Cnr

Ttgt−δ−1p
nr(1− p)

j+Ttgt−nr + Pr {Snr−1 − Ttgt > j}

= Cnr

Ttgt−δ−1p
nr(1− p)

j+Ttgt−nr

+ Cnr−1
Ttgt−δ−1p

nr−1(1− p)
j+Ttgt−nr+1

+ . . .+ (1− p)
j+Ttgt

=

nr
∑

i=0

Ci
Ttgt−δ−1p

i(1− p)
j+Ttgt−i

. (65)

In case nr − Ttgt ≤ j < −1 − δ, we have (66) from (62),

and we have (67) from (64). Finally, we have (68).

In case j < nr − Ttgt, we have j + Ttgt < nr ≤ Ttgt − δ− 1.

From (64), we obtain

Pr {Snr
− Ttgt > j}

= Pr

{

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

nr−1
∑

i=0

sr,i ≥ Ttgt − δ,

nr−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {sr,0 ≥ Ttgt − δ}

= 1. (69)

Therefore, the probability distribution function of the packet

under the condition of Ttgt ≥ 1 + nr + δ is given by

Pr {Snr
− Ttgt > j}

=































1, j < nr − Ttgt

nr
∑

i=0

Ci
Ttgt−δ−1p

i(1− p)
j+Ttgt−i

, j ≥ −1− δ

nr
∑

i=0

Ci
j+Ttgt

pi(1− p)
j+Ttgt−i

, else.

(70)

2) Ttgt ≤ 1 + δ: In case Ttgt ≤ 1 + δ, the transmission

starting time of the packet falls within the target reception

range. Thus the packet will not be received before the target

reception range and the packet will only be transmitted at most

once. We have Ttgt − δ ≤ 1 ≤ sr,0 ≤
nr
∑

i=0

sr,i. From (62), we

then have

Pr {Snr
− Ttgt > j} = Pr {sr,0 − Ttgt > j}

=

{

(1− p)
j+Ttgt , j ≥ −Ttgt

1, j < −Ttgt.
(71)

3) 1+ δ < Ttgt < 1+nr + δ: We denote Q = Ttgt − δ− 1.

Since nr > Ttgt − δ−1, we can get (72). Thus, by substituting

nr = Q = Ttgt − 1− δ into (70), we can get

Pr {Snr
− Ttgt > j}

= Pr
{

STtgt−δ−1 − Ttgt > j
}

=















Ttgt−δ−1
∑

m=0

Cm
Ttgt−δ−1p

m(1− p)
j+Ttgt−m

, j ≥ −1− δ

1, j < −1− δ

=

{

(1− p)
j+1+δ

, j ≥ −1− δ

1, j < −1− δ.
(73)

This completes the proof of Proposition 2. �

Pr {Snr − Ttgt > j}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

nr−1
∑

i=0

sr,i ≥ Ttgt − δ,

nr−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+Pr {sr,0 ≥ Ttgt − δ}

= Pr

{

nr
∑

i=0

sr,i − j − δ > Ttgt − δ,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

nr−1
∑

i=0

sr,i ≥ Ttgt − δ,

nr−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+Pr {sr,0 ≥ Ttgt − δ}

= Pr

{

nr
∑

i=0

sr,i − j − δ > Ttgt − δ

}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j

}

. (66)
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D. Proof of Proposition 3

Proof. Note that in Proposition 2, the system transmits only

one packet and the state of the packet is i = Ttgt. Using the

results in Proposition 2 and substituting y = j + Ttgt and

i = Ttgt into (14), (15) and (16), for the case i ≥ 1 + nr + δ
we have

Pr {Snr
> y}

=































nr
∑

m=0

Cm
y pm(1− p)y−m, nr ≤ y < i− 1− δ

nr
∑

m=0

Cm
i−δ−1p

m(1− p)
y−m

, y ≥ i− 1− δ

1, y < nr;
(74)

when i ≤ 1 + δ, we have

Pr {Snr
> y} = Pr {S0 > y} =

{

(1− p)
y
, y ≥ 0

1, y < 0;
(75)

when 1 + δ < i < 1 + nr + δ, we have

Pr {Snr
> y} = Pr {Si−1−δ > y}

=

{

(1− p)
y−i+1+δ

, y ≥ i− 1− δ

1, y < i− 1− δ.
(76)

We denote the transition probability of the packet from state

i to state j by adopting the repeat strategy as pij (nr). From

(17), we have

pij (nr) = Pr {i− j + Ttgt = y}

= Pr {Snr
= y}

= Pr {Snr
> y − 1} − Pr {Snr

> y} . (77)

1) i ≤ 1+δ: When i ≤ 1+δ, from (75) and (77), we have

pij (nr)

= Pr {i− j + Ttgt = y}

= Pr {Snr
= y}

= Pr {Snr
> y − 1} − Pr {Snr

> y}

= Pr {Snr
> i − j + Ttgt − 1} − Pr {Snr

> i− j + Ttgt}

=

{

(1− p)
i−j+Ttgt−1

− (1− p)
i−j+Ttgt , i − j + Ttgt > 0

1− 1, i − j + Ttgt ≤ 0

=

{

p(1− p)
i−j+Ttgt−1

, i > j − Ttgt

0, i ≤ j − Ttgt.
(78)

2) 1 + δ < i < 1 + nr + δ: When 1 + δ < i < 1 + nr + δ,

from (76) and (77), we have

pij (nr)

= Pr {i− j + Ttgt = y}

= Pr {Snr
= y}

= Pr {Snr
> y − 1} − Pr {Snr

> y}

= Pr {Snr
> i− j + Ttgt − 1} − Pr {Snr

> i− j + Ttgt}

=

{

p(1− p)
Ttgt−j+δ

, j < 1 + δ + Ttgt

0, j ≥ 1 + δ + Ttgt.
(79)

3) i ≥ 1 + nr + δ: In the case of i ≥ 1 + nr + δ, we

first consider the state transition probability when nr < y ≤
i− 1− δ. From (74) and (77), we have

pij (nr)

= Pr {i− j + Ttgt = y}

Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ, j ≥

nr−1
∑

i=0

sr,i − Ttgt

}

+ Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ, j <

nr−1
∑

i=0

sr,i − Ttgt

}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j, j ≥

nr−1
∑

i=0

sr,i − Ttgt

}

+ Pr

{

nr−1
∑

i=0

sr,i < Ttgt − δ, j <

nr−1
∑

i=0

sr,i − Ttgt

}

=

j+Ttgt−nr+1
∑

y0=1

j+Ttgt−y0−nr+2
∑

y1=1

· · ·

j+Ttgt−
nr−2∑

i=0

yi

∑

ynr−1=1

V + Pr

{

nr−1
∑

i=0

sr,i < Ttgt − δ, j <

nr−1
∑

i=0

sr,i − Ttgt

}

=

j+Ttgt−(nr−1)
∑

y0=1

j+Ttgt−y0−(nr−2)
∑

y1=1

· · ·

j+Ttgt−
nr−2∑

i=0

yi

∑

ynr−1=1

pnr(1− p)
j+Ttgt−nr + Pr

{

nr−1
∑

i=0

sr,i < Ttgt − δ, j <

nr−1
∑

i=0

sr,i − Ttgt

}

= Cnr

j+Ttgt
pnr(1− p)j+Ttgt−nr + Pr

{

nr−1
∑

i=0

sr,i < Ttgt − δ

}

− Pr

{

nr−1
∑

i=0

sr,i − Ttgt ≤ j

}

. (67)
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Pr {Snr
− Ttgt > j}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

nr−1
∑

i=0

sr,i ≥ Ttgt − δ,

nr−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {sr,0 ≥ Ttgt − δ}

= Cnr

j+Ttgt
pnr(1− p)

j+Ttgt−nr + Pr

{

nr−1
∑

i=0

sr,i < Ttgt − δ

}

− Pr

{

nr−1
∑

i=0

sr,i − Ttgt ≤ j

}

+ Pr

{

nr−1
∑

i=0

sr,i ≥ Ttgt − δ,

nr−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {sr,0 ≥ Ttgt − δ}

= Cnr

j+Ttgt
pnr(1− p)

j+Ttgt−nr + 1− Pr

{

nr−1
∑

i=0

sr,i − Ttgt ≤ j

}

= Cnr

j+Ttgt
pnr(1− p)j+Ttgt−nr + Pr

{

nr−1
∑

i=0

sr,i − Ttgt > j

}

= Cnr

j+Ttgt
pnr(1− p)

j+Ttgt−nr + Pr {Snr−1 − Ttgt > j}

= Cnr

j+Ttgt
pnr(1− p)

j+Ttgt−nr + Cnr−1
j+Ttgt

pnr−1(1− p)
j+Ttgt−nr+1

+ . . .+ (1− p)
j+Ttgt

=

nr
∑

i=0

Ci
j+Ttgt

pi(1− p)
j+Ttgt−i

. (68)

Pr {Snr
− Ttgt > j}

= Pr

{

nr
∑

i=0

sr,i − Ttgt > j,

nr−1
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr

{

Q
∑

i=0

sr,i − Ttgt > j,

Q
∑

i=0

sr,i ≥ Ttgt − δ,

Q−1
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {sr,0 − Ttgt > j, sr,0 ≥ Ttgt − δ}

= Pr

{

Q
∑

i=0

sr,i − Ttgt > j,

Q
∑

i=0

sr,i ≥ Ttgt − δ,

Q−1
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {sr,i − Ttgt > j, sr,i ≥ Ttgt − δ}

= Pr

{

Q
∑

i=0

sr,i − Ttgt > j,

Q−1
∑

i=0

sr,i < Ttgt − δ

}

+ Pr

{

Q−1
∑

i=0

sr,i − Ttgt > j,

Q−1
∑

i=0

sr,i ≥ Ttgt − δ,

Q−2
∑

i=0

sr,i < Ttgt − δ

}

+ . . .+ Pr {sr,0 − Ttgt > j, sr,0 ≥ Ttgt − δ}

= Pr {SQ − Ttgt > j} . (72)

= Pr {i− j + Ttgt > y − 1} − Pr {i− j + Ttgt > y}

=

nr
∑

m=0

Cm
y−1p

m(1− p)
y−1−m

−

nr
∑

m=0

Cm
y pm(1− p)

y−m

=

nr
∑

m=0

Cm
y−1p

m(1− p)
y−1−m

− (1− p)

nr
∑

m=0

y

y −m
Cm

y−1p
m(1− p)y−1−m

= p

nr
∑

m=0

Cm
y−1p

m(1− p)
y−1−m

− (1− p)

nr
∑

m=0

m

y −m
Cm

y pm(1− p)
y−1−m

=

nr
∑

m=0

Cm
y−1p

m+1(1− p)
y−1−m

−

nr
∑

m=1

Cm−1
y−1 pm(1− p)

y−m

=

nr
∑

m=0

Cm
y−1p

m+1(1− p)
y−1−m

−

nr−1
∑

m=0

Cm
y−1p

m+1(1− p)
y−1−m

= Cnr

y−1p
1+nr(1− p)

y−1−nr . (80)

We then consider the state transition probability when y >
i− 1− δ and have

pij (nr)
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= Pr {i− j + Ttgt = y}

= Pr {i− j + Ttgt > y − 1} − Pr {i− j + Ttgt > y}

=

nr
∑

m=0

Cm
i−1−δp

m(1− p)y−m−1

−

nr
∑

m=0

Cm
i−1−δp

m(1− p)
y−m

=

nr
∑

m=0

Cm
i−1−δp

1+m(1− p)
y−m−1

. (81)

Finally, when y ≤ k, we have

pij (nr)

= Pr {i− j + Ttgt = y}

= Pr {i− j + Ttgt > y − 1} − Pr {i− j + Ttgt > y}

= 1− 1

= 0, (82)

Thus when i ≥ 1 + nr + δ, we have

pij (nr)

=























0 , y ≤ nr

Cnr

y−1p
1+nr(1− p)y−1−nr , nr < y ≤ i− 1− δ

nr
∑

m=0

Cm
i−1−δp

1+m(1− p)
y−1−m

, y > i− 1− δ,

(83)

in which y = i− j + Ttgt.

This completes the proof of Proposition 3. �
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