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Abstract—A new method for joint ranging and Phase Offset
(PO) estimation of multiple drones/aircrafts is proposed in this
paper. The proposed method employs the superimposed uncoor-
dinated Automatic Dependent Surveillance–Broadcast (ADS-B)
packets broadcasted by drones/aircrafts for joint range and
PO estimation. It jointly estimates range and PO prior to
ADS-B packet decoding; thus, it can improve air safety when
packet decoding is infeasible due to packet collision. Moreover,
it enables coherent detection of ADS-B packets, which can
result in more reliable multiple target tracking in aviation
systems using cooperative sensors for detect and avoid (DAA).
By minimizing the Kullback–Leibler Divergence (KLD) statistical
distance measure, we show that the received complex baseband
signal coming from K uncoordinated drones/aircrafts corrupted
by Additive White Gaussian Noise (AWGN) at a single antenna
receiver can be approximated by an independent and identically
distributed (i.i.d.) Gaussian Mixture (GM) with 2K mixture
components in the two-dimensional (2D) plane. While direct joint
Maximum Likelihood Estimation (MLE) of range and PO from
the derived GM Probability Density Function (PDF) leads to
an intractable maximization, our proposed method employs the
Expectation–Maximization (EM) algorithm to estimate the modes
of the 2D Gaussian mixture followed by a reordering estimation
technique through combinatorial optimization to estimate range
and PO. An extension to a multiple antenna receiver is also
investigated in this paper. While the proposed estimator can esti-
mate the range of multiple drones/aircrafts with a single receive
antenna, a larger number of drones/aircrafts can be supported
with higher accuracy by the use of multiple antennas at the
receiver. The effectiveness of the proposed estimator is supported
by simulation results. We show that the proposed estimator can
jointly estimate the range of multiple drones/aircrafts accurately.

Index Terms—Range estimation, phase offset, cooperative navi-
gation, expectation–maximization (EM), Gaussian mixture (GM),
ADS-B, multiple receive antennas, detect and avoid (DAA).

I. INTRODUCTION

AUTOMATIC Dependent Surveillance–Broadcast (ADS-
B) is one of the two Automatic Dependent Surveillance

(ADS) systems that tracks aircrafts without employing radar.
It is intended to improve traffic surveillance capabilities by
sharing accurate aircraft position information between pilots
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and air traffic controllers. In the ADS-B system, aircrafts
regularly and asynchronously broadcast their real-time position
information, velocity, and identification to no specific receiver
using a transponder, typically combined with a Global Posi-
tioning System (GPS), to transmit highly accurate positional
information to traffic controllers and directly to other aircrafts.
This transmission is known as ADS-B Out and its accuracy
and update rate are much greater than conventional primary
radar surveillance. The reception of the ADS-B packet by an
aircraft is ADS-B In [1]–[3].

ADS-B system is considered a promising solution to enable
safe autonomous drone navigation, especially in urban envi-
ronments [4]. In order to avoid aviation accidents, each drone
needs to be aware of the position and speed of the surrounding
drones so that it can keep a safe separation distance with
the other drones. This safe separation can be achieved by
a cooperative sensor system, such as the ADS-B system.
In this solution, drones are equipped with GPS, an Inertial
Measurement Unit (IMU), and a miniaturized transponder and
they broadcast their real-time position information, which can
be employed by the surrounding drones or Ground Controllers
(GCs) to maintain a safe operation distance of drones at low
altitude and congested airspace. In addition to ADS-B system,
cooperative navigation by using Wi-Fi and other industrial,
scientific, and medical (ISM) band wireless technologies have
been suggested in [5] and [6]. However, these solutions do not
support long ranges.

Typically, ADS-B system is susceptible to severe message
collisions in dense air spaces. The random channel access of
the communication protocols using the 1090 MHz frequency
leads to ADS-B packet error rates above 50 percent for typical
air space densities as observed during the day [1]. One of the
main challenges in the employment of a cooperative sensor
system, such as ADS-B, for future drone technology is packet
collisions due to a larger number of drones compared to
aircrafts in the airspace. As the number of drones in the
airspace increases, the probability of packet collision also
increases. The ADS-B system in its current form cannot handle
packet collision; hence, a large number of packets are lost.
Packet loss means less information and more uncertainty for
the surrounding drones, resulting in less air safety.

Information extraction from collided and overlapping ADS-
B packets, such as range, velocity, Angle of Arrival (AoA),
etc. can contribute to safer navigation of a drone/aircraft. These
information can improve situational awareness and safety of
the detect and avoid (DAA) systems. Specifically, joint ranging
and Phase Offset (PO) estimation enables coherent detection
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of a single or (collided) multiple ADS-B packets with a
significantly lower Packet Error Rate (PER) compared to non-
coherent detection. To the best of the authors’ knowledge, joint
estimation of range and PO for multiple drones/aircrafts using
collided ADS-B packets has not been investigated yet. Existing
blind source separation algorithms suffer from sign ambiguity
and require the number of receive antennas not to be larger
than the number of drones/aircrafts [7]–[9].

In this paper, we address the problem of joint range and
PO estimation of multiple drones/aircrafts using the collided
and overlapping ADS-B packets. We analytically derive the
Maximum Likelihood (ML) cost function for joint range and
PO estimation of multiple drones/aircrafts. Then, a simple so-
lution based on the Expectation–Maximization (EM) algorithm
is proposed. Our proposed estimator enables avionic systems
employing cooperative sensors to obtain range information of
the surrounding drones/aircrafts while ADS-B packet decoding
is not feasible due to collision. Furthermore, the estimated
range and PO can be employed for coherent detection of
ADS-B packets, which offers higher detection performance.
Our proposed estimator can estimate the range of multiple
drones/aircrafts with a single receive antenna.

A. Related Works

Existing solutions for the separation of the overlapping
ADS-B packets can be broadly divided into time-domain and
spatial-domain methods [10]. The spatial-domain methods take
the advantage of antenna array and if the direction of arrival
of the aircrafts/drones signal are known, the signal subspace
methods, such as, MUSIC [11], ESPRIT [12], and minimum
variance distortionless response (MVDR) [13], can be em-
ployed for ADS-B signal separation. Projection Algorithm
(PA) and corresponding extensions for the separation of the
secondary surveillance radar (SSR) signal have been proposed
in [14], [15]. ADS-B signal separation using high-order statis-
tics of the received signal has shown to be ineffective because
the overlapping signal is pseudo-Gaussian [16]. Furthermore,
Alternating Direction Method of Multipliers (ADMM) has
been suggested to solve the non-convex blind adaptive beam-
forming problem for ADS-B signal separation in [17]. The
authors in [18] showed that the performance of the blind
source separation algorithms, such as, independent component
analysis (ICA) is not acceptable for ADS-B signal separation
because of its short length. Principal Component Analysis
(PCA) and Fast ICA algorithms for ADS-B signal separation
have been proposed in [19] and [20]. A promising solution for
ADS-B signal separation is Manchester decoding algorithm;
however, as the delay between the reception of two ADS-B
packets decreases, the performance significantly drops [18].

There are several works dealing with time-domain ADS-B
signal separation. The authors in [21] have proposed to employ
the empirical mode decomposition and ICA for the separation
of overlapping ADS-B signals via single receive antenna. The
K-means clustering for ADS-B signal separation based on
empirical mode decomposition and ICA has been developed
in [22]. An anomaly doubt degree has been introduced in [23]
to calculate signal overlap time delay, and adaptive threshold

(a) Range estimation in a Ground Controller (GC).

(b) Range estimation in a flying drone.

Fig. 1: Range estimation using the asynchronous ADS-B In signatures
of the drones at the receiver.

method based on power difference has been employed to
separate ADS-B signal when the overlap signal is relatively
large. The problem of ADS-B signal separation using deep
learning with a single receive antenna has been investigated
in [24], [25]. The authors have shown that the separation
accuracy of the deep learning based algorithm is higher than
that of the traditional algorithms. To the best of the authors’
knowledge, the main issue with the above mentioned methods
is that most of them can only separate two overlapping ADS-B
signals.

B. Contributions

Consider a collection of K drones/aircrafts, which are asyn-
chronously broadcasting ADS-B packets. This simple trans-
mission protocol results in inevitable overlapping among mul-
tiple ADS-B signals. In this work, we show that the received
complex baseband signal from these drones/aircrafts can be
approximated by an independent and identically distributed
(i.i.d.) Gaussian Mixture (GM) random variable with 2K mix-
ture components in the 2D plane, which are independent of the
arrival time of the ADS-B packets at the receiver. Furthermore,
by using the approximate Probability Density Function (PDF),
we derive the ML cost function for the joint ranging and PO
estimation of multiple drones/aircrafts. We also propose the
low-complexity EM-based joint ranging and PO estimation
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Fig. 2: An ADS-B packet is composed of a preamble and data in the
Pulse Position Modulation (PPM) form.

algorithm for multiple drones/aircrafts. Our proposed estimator
makes active multiple target ranging possible with a single
receive antenna in the presence of ADS-B packet collision.
Moreover, our solution enables ADS-B systems to coherent
multi-packet decoding. Finally, we extend the proposed EM-
based joint estimator to the case of multiple receive antennas.

C. Notations

The identity matrix, all-zero vector, and all-one vector of
length N are denoted by IN , 0N , and 1N , respectively.
Throughout the paper, (·)∗, (·)T , and (·)H show the complex
conjugate, transpose, and Hermitian transpose, respectively.
Also, | · |, ⌊·⌋, ∗, and ⊗ represent the absolute value operator,
the floor function (greatest integer value), linear convolution,
and Kronecker product, respectively. E{·} is the statistical
expectation, x̂ is an estimate of x. The complex Gaussian
distribution with mean vector µ and covariance matrix Σ is
denoted by CN

(
µ,Σ

)
. The continuous uniform distribution

between a and b and the discrete uniform distribution between
N1 and N2 are denoted by Uc[a, b] and Ud[N1, N2], respec-
tively.

The remainder of the paper is organized as follows.
Section II introduces the system model. Section III de-
scribes the GM distribution approximation by minimizing
the Kullback–Leibler Divergence (KLD). In Section IV, the
maximum likelihood cost function and the EM-based joint
ranging and PO estimation algorithm are analytically derived.
Reordering estimation for the proposed EM-based joint esti-
mator through permutation-based combinatorial optimization
is investigated in Section V. Joint estimation by taking the
advantage of diversity gain through multiple receive antennas
is discussed in Section VI. Simulation results are provided in
Section VII, and conclusions are drawn in Section VIII.

II. SYSTEM MODEL

We consider K drones broadcasting ADS-B packets through
their transponders to the GC1 and also directly to other flying
drones/aircrafts. Typical scenarios for signal reception at the
GC and the flying drone are shown in Fig. 1. The packets are
transmitted at 1090 MHz and use PPM at a rate of 1 Mbit per
second.

It is assumed that the drones/aircrafts asynchronously broad-
cast their ADS-B packets every TP seconds. We consider
an observation window of length Tw = TP for parameter

1The GC can be a simple Software-defined Radio (SDR) receiver. Number
of drones/aircrafts, K, can be determined by employing model-order selection
techniques [26], [27] prior to joint ranging and PO estimation.

Tw

......

...

(a) The received ADS-B packet at the receiver and the observation
window with length Tw.

Tw

......

...

(b) A special case where the complete ADS-B packets of all the
drones fall inside the observation window with length Tw.

Fig. 3: The reception of the ADS-B packets at the receiver. Drones
periodically broadcast ADS-B packets. Different colors are used to
show the packet of drones.

estimation at the receiver (Fig. 3a). To make the joint ranging
and PO estimation independent of the arrival time of the ADS-
B packets at the receiver, we approximate the received samples
in the observation interval by an i.i.d. complex random variable
as it will be explained in Section III. Hence, without loss
of generality, we can consider the ADS-B packet reception
in Fig. 3b to simplify modeling of the joint range and PO
estimation. In this case, it is assumed that the ADS-B packet
of the kth drone/aircraft with a packet length of TA is
received at the receiver with time delay τk ∈ [0, τmax] in the
timing reference of the receiver, where τk is unknown and
random in each observation window of length Tw = TP, and
τmax = TP − TA is the maximum time delay of a packet.

By employing a baseband low pass filter with sufficient
bandwidth B at the receiver after RF down-conversion, the
received complex baseband signal at the ADS-B receiver can
be expressed as

y(t) ≈
K∑

k=1

√
PkLkxk(t− τk)e

j(2π∆fkt+θk) + w(t), (1)

where t ∈ [0, Tw], and where Pk, xk(t), w(t), and Lk

denote, the transmit power by the kth drone, the transmit PPM
waveform by the kth drone, the additive noise with Power
Spectral Density (PSD) N0 over the frequency f ∈ [−B,B] ,
and the path loss between the kth drone/aircraft and the ADS-
B receiver, respectively. For free-space path loss, we have

Lk ≜
( λc
4πrk

)2
, (2)

where rk is the range between the kth drone and the receiver,
λc ≜ c/fc is the wavelength of the carrier wave, c denotes the
speed of light, and fc represents the carrier frequency. For the
ADS-B system, since fc = 1090MHz, we have λc ≈ 0.2752
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m. In (1), ∆fk and θk further denote the Carrier Frequency
Offset (CFO) and the electrical PO of the kth drone in the
observation window. The CFO and PO occur because the local
oscillator signal for RF down-conversion at the receiver does
not synchronize with the carrier signal.2

In this paper, we consider that ∆fkTw ≪ 1 and
exp(j2π∆fkt) ≈ 1 for t ∈ [0, Tw], k = 1, 2, · · · ,K; thus,
we can write

y(t) ≈
K∑

k=1

√
PkLkxk(t− τk)e

jθk + w(t). (3)

Assumption 1: We assume that Pk, k = 1, 2, . . . ,K, is known
at the receiver, and that P1L1 > P2L2 > . . . , PKLK .

Since the bit-rate for ADS-B systems is 1M bit/s, a sam-
pling rate of fs = 1

Ts
= 2M samples/s is sufficient to

capture the bit transitions, detect the preamble and decode
packets. A typical sampled ADS-B signal is shown in Fig. 4
for visualization. The discrete-time received baseband signal
after sampling, i.e., yn ≜ y(nTs), n = 0, 1, . . . , N , where
N = 239 +M ,3 M ≜ ⌊ τmax

Ts
⌋, can be written in vector form

as

y =

K∑
k=1

hkxk +w =

K∑
k=1

zk +w = g +w, (4)

where g ≜
∑K

k=1 hkxk =
∑K

k=1 zk, zk = hkxk,

y ≜
[
y0 y1 . . . yN

]T
, (5a)

g ≜
[
g0 g1 . . . gN

]T
, (5b)

w ≜
[
w0 w1 . . . wN

]T
, (5c)

zk ≜
[
zk,0 zk,1 · · · zk,N

]T
, (5d)

wn ≜ w(nTs), hk ≜ βke
jθk , βk ≜

√
PkLk, and

xk ≜
[
xk,0 xk,1 · · · xk,N

]T
(6)

≜
[
0T
mk

sT dT
k 0T

M−mk

]T
.

In (6), xk,n ≜ xk(nTs− τk), dk ∈ {0, 1}, is the data vector
of the kth drone with a length of 224 symbols, s is the pream-
ble vector given by s =

[
1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0

]T
,

and M ≜ ⌊ τmax

Ts
⌋ and mk ≜ ⌊ τk

Ts
⌋ denote the maximum

possible integer delay for a drone/aircraft and the integer
delay of the kth drone/aircraft, respectively. The integer delays
mk, k = 1, 2, · · · ,K, are unknown at the receiver and
their values change from one observation window to another.
The vector w ≜ [w0 w1 . . . wN ]T in (4) denotes the
additive white Gaussian noise (AWGN) with covariance matrix
E
{
wwT

}
= σ2

wI = 2N0BI.
Let us define hypothesis Hk

m as follows:

Hk
m : xk =

[
0T
m, s

T ,dT
k ,0

T
M−m

]T
, (7)

which represents the ADS-B packet of the kth drone arriving
at the receiver with integer delay mk = m ∈ {0, 1, . . . ,M}.

2The tolerable PO estimation error for coherent ADS-B detection depends
on the value of SNR. The higher value of SNR, the less sensitivity to the PO
estimation error in coherently detecting an ADS-B packet.

3A sampling rate of 2M samples/s results in 240 samples per ADS-B
packet.

Fig. 4: Amplitude of the noisy ADS-B packet after sampling.

III. DISTRIBUTION APPROXIMATION

To remove the dependency of joint ranging and PO estima-
tion from the unknown arrival time of the ADS-B packets at
the receiver, we approximate the received noisy samples in the
observation interval by i.i.d. complex random variables. In this
paper, we show that an i.i.d. two-dimensional (2D) GM model
can be used to model the received baseband superimposed and
noise corrupted signal at the receiver.

Theorem 1. By maximizing the KLD criterion, the ele-
ments of the ADS-B packet of the kth drone, i.e., xk =

[xk,0 xk,1 . . . xk,N ]T =
[
0T
mk

sT dT
k 0T

M−mk

]T
can be

approximated by an i.i.d. random variable that are Bernoulli
distributed with Probability Mass Function (PMF)

q
(
x; p
)
=

{
p if x = 0,

1− p if x = 1,
(8)

where

p =
M + 124

M + 240
. (9)

Proof. See Appendix A.

As seen in Theorem 1, the approximated PMF q does not
depend on Hk

m.
Since zk = hkxk is the scaled version of xk and the pa-

rameter of the Bernoulli distribution, p, is independent of mk,
the elements of the complex vector zk can be approximated
by i.i.d. complex random variables Zk with PDF fZk

(
z; p, hk

)
as follows

fZk

(
z; p, hk

)
= pδc(z) + (1− p)δc(z − hk), (10)

where δc(z), z = zr + jzI ∈ C, is the complex Delta function
and is defined as

δc(z) ≜ δ(zr)δ(zI), (11)

where δ(t), t ∈ R, is the Dirac Delta function.
We consider that gi ≜

∑K
k=1 zk,i ∼ G and zk,i ∼ Zk given

in (10), where the symbol ∼ denotes distributed according
to. The PDF of the sum of independent random variables is
obtained as the convolution of the PDFs. For the complex
random variable, G =

∑K
k=1 Zk, by employing the multi-

binomial theorem [28], we can obtain the PDF of G as

fG(g; p,h) =

1∑
v1=0

· · ·
1∑

vK=0

[
p
∑K

k=1 vk(1− p)K−
∑K

k=1 vk

× δc

(
g −

K∑
k=1

(1− vk)hk

)]
, (12)

where h ≜ [h1, h2, · · · , hK ]T .
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Proof. See Appendix B.

For the circularly symmetric complex Gaussian noise vector,
w ≜

[
w0 w1 . . . wN

]T
, the PDF of the random variable W

associated with the noise elements is expressed as

fW (w;σ2
w) ≜

1

πσ2
w

exp

(
−|w|2

σ2
w

)
, (13)

where w ∈ C. From (4), we have yn = gn + wn, n =
0, 1, . . . , N , where gn ∼ G and wn ∼ W . Since G and
W are independent complex random variables, the PDF of
Y = G + W is obtained by the linear convolution of the
PDFs in (12) and (13), which results in

fY (y; p,β,θ, σ
2
w) =

2K−1∑
a=0

ξa
πσ2

w

CN (y;µa, σ
2
w) (14)

=

2K−1∑
a=0

ξa
πσ2

w

exp

(
− |y − µa|2

σ2
w

)
,

where

β ≜
[
β1 β2 . . . βK

]T
, (15a)

θ ≜
[
θ1 θ2 . . . θK

]T
, (15b)

ξa ≜ p
∑K

k=1 bk(1− p)K−
∑K

k=1 bk , (16)

and

µa ≜
K∑

k=1

(1− bk)hk =

K∑
k=1

(1− bk)βk exp(jθk). (17)

with bi the ith bit in the binary representation of a as

a = (bK , bK−1, . . . , b1)2, bi ∈ {0, 1}, (18)

and a = 0, 1, . . . , 2K − 1.
As seen, fY (y; p,β,θ, σ2

w) represents a 2D GM, where its
modes are located at the delta functions given in (12). Since
θ1, θ2, . . . , θK , are independent uniform random variables in
the range of [0, 2π), and β1 > β2 > . . . > βK , with
probability of almost one, the number of distinct mixtures is
2K . Fig. 5 illustrates the constellation of the received signal
for K = 3 drones, maximum integer delay M = 20, and
transmit power of 51 dBm.

IV. JOINT RANGE AND PO ESTIMATION

The Maximum Likelihood Estimation (MLE) for the vec-
tor parameters [βT θT ]T given observation vector y =
[y0 y2 . . . yN ]T is expressed as

{β̂, θ̂} = argmax
β,θ

N∑
n=0

ln fY (yn; p,β,θ, σ
2
w). (19)

The maximization problem in (19) cannot be analytically
solved in a trackable manner. An alternative simple solution
is to employ the EM algorithm to estimate the 2K modes
of the GM components; then, we can decouple the desired
parameters, i.e., β and θ from the estimated modes.

Let µ ≜ [µ0 µ1 . . . µ2K−1]
T denote the mode vector of

the GM, where µa, a = 0, 1, . . . , 2K − 1, is given by (17).

-6 -5 -4 -3 -2 -1 0

10
-4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
10

-4

Fig. 5: The in-phase and quadrature components of the received signal
for K = 3 drones at r1 = r2 = r3 = 12 Km with transmit power of
51 dBm.

The elements of the vector µ for K = 2, 3, 4 are given in
Appendix C.

Let us define the discrete function χq(n) as

χq(n) : {1, 2, . . . , l} −→ {1, 2, . . . , l}, (20)

where for n1 ̸= n2, χq(n1) ̸= χq(n2). There are Ql ≜ l!
unique functions in the form of (20), where ! denotes the
factorial function. Using (20), Ql permutation matrices of size
l × l can be defined as

Λq =


eχq(1)

eχq(2)

...
eχq(l)

 , (21)

where eℓ, ℓ = 1, 2, . . . , l, denote the standard basis vec-
tors of length l with a 1 in the ℓth coordinate and 0’s
elsewhere. The set composed of all permutations of vector
a = [a1 a2 . . . al]

T is given by

FQl
a ≜

{
Λ1a,Λ2a, . . . ,ΛQl

a
}
, (22)

where Ql = l!.
The EM algorithm estimates the permuted mode vector η =

[η0 η1 . . . η2K−1]
T ∈ FQ2K

µ ⊂ C2K , where Q2K = 2K !
and µ ≜ [µ0 µ1 . . . µ2K−1]

T . The EM algorithm defines a
latent random vector u ≜ [u0 u1 . . . uN ]T that determines
the GM component from which the observation originates,
i.e., fY |U (yn|un = a; p,β,θ, σ2

w) ∼ CN (yn;µa, σ
2
w), where

PU (un = a) = ξa for n = 0, 1, . . . , N and a = 0, 1, . . . , 2K−
1. The EM algorithm iteratively maximizes the expected value
of the complete-data log-likelihood function to estimate the
permuted mode vector η = [η0 η1 . . . η2K−1]

T ∈ FQ2K
µ ⊂

C2K of the GM as follows [29]–[31]

η̂(t+1) = argmax
η

Q(η|η(t)), (23)
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where η(0) is the initialization vector,

Q(η|η(t)) = EU |Y ,η(t)

{
ln fY ,U (y,u; p,η, σ2

w)
}

(24)

=

N∑
n=0

2K−1∑
a=0

λ(t)a,n

(
ln

ξa
πσ2

w

− |yn − ηa|2

σ2
w

)
,

with

λ(t)a,n = PU |Y
(
un = a|yn;η(t)

)
(25)

=
PU (un = a)fY |U

(
yn|un = a;η(t)

)
fY (yn)

=
ξaCN

(
yn; η

(t)
a , σ2

w)∑2K−1
q=0 ξqCN (yn; η

(t)
q , σ2

w)
,

and the complete-data likelihood function is given by

fY ,U (y,u; p,η, σ2
w) =

N∏
n=0

2K−1∏
a=0

(
ξaCN (yn; ηa, σ

2
w)
)I{un=a}

.

(26)

In (26), I{·} denotes the indicator function, and ξa is a function
of p and is given in (16). The EM algorithm at the (t+1)th iter-
ation estimates the vector η(t+1) = [η

(t+1)
0 η

(t+1)
1 . . . η

(t+1)

2K−1
]T

which is a permuted version of the vector µ. The order of
η(t+1) depends on the initialization of the EM algorithm,
i.e., η(0). By solving the maximization problem in (23), the
elements of η(t+1) are iteratively updated as follows

η(t+1)
a =

∑N
n=0 λ

(t)
a,nyn∑N

n=0 λ
(t)
a,n

, (27)

for a = 0, 1, . . . , 2K − 1, where the convergence condition
for the EM algorithm is ∥η(t+1) − η(t)∥ < ϵ, with ϵ a preset
threshold. We denote η̂ = η(t+1) when the EM algorithm
converges at the (t+ 1)th iteration.

The EM algorithm may converge to a local maximum of the
observed data likelihood function, depending on the starting
value. A variety of heuristic or metaheuristic approaches
exist to escape a local maximum, such as random-restart
hill climbing where the EM algorithm starts with different
random initial estimates. The recursive expression in (27) is
very straightforward and can be easily computed for multiple
initial points. Hence, EM with random-restart hill climbing can
be employed for the problem at hand. As mentioned earlier,
there is an order ambiguity in the vector η̂; thus, reordering
estimation is required to resolve this ambiguity. In the next
section, we propose different solutions based on permutation-
based combinatorial optimization for one to one mapping
between the elements of η̂ and µ.

V. REORDERING ESTIMATION

The goal of reordering estimation is to change the order of
the elements in η̂ ≜ [η̂0 η̂1 . . . η̂2K−1]

T , obtained by the EM
algorithm, to achieve a new vector µ̂ ≜ [µ̂0 µ̂1 . . . µ̂2K−1]

T

that corresponds to an estimate of µ ≜ [µ0 µ1 . . . µ2K−1]
T .

Let us denote η̂i as the element of η̂ that corresponds to
µ2K−1 = 0. The index i can be estimated as

|η̂i| < min
{
|η̂0|, |η̂1|, . . . , |η̂i−1|, |η̂i+1|, . . . , |η̂2K−1|

}
. (28)

Accordingly, we have µ̂2K−1 = η̂i. Let us now define

η̂i ≜ [η̂0 η̂1 . . . η̂i−1 η̂i+1 . . . η̂2K−1]
T , (29)

and

Âl ≜
{
[ϕ1 ϕ2 . . . ϕl]

T
∣∣∀d ∈ {1, 2, . . . , l},

ϕd ∈ {η̂0, η̂1, . . . η̂i−1, η̂i+1 . . . η̂2K−1}, (30)

|ϕ1| > |ϕ2| > . . . |ϕl|
}
.

Different reordering estimation methods for β̂ and θ̂ can be
considered. The Least Squares (LS) reordering estimation for
β̂ and θ̂ form η̂i is given by

ĥ = β̂ejθ̂ = Λ̂AΦ̂, (31)

where

{Λ̂, Φ̂} = argmin
Λ,Φ

∥∥ΛAΦ− η̂i

∥∥
2
, (32)

s.t. Φ ≜ [Φ1,Φ2, . . . ,ΦK ]T ∈ ÂK

Λ ∈ {Λ1,Λ2, . . . ,Λ(2K−1)!}

where Λi is a permutation matrix of size 2K−1× 2K−1 given
in (21) for l = 2K−1, and A is the 2K−1 ×K matrix given
by

A ≜



e1
e2
...
eK

e1 + e2
e1 + e3

...
e1 + e2 + . . .+ eK


, (33)

where ej , j = 1, 2, . . . ,K, denote the standard basis vectors
of length K.

An alternative minimization problem with lower computa-
tional complexity for vector reordering is given by

{Λ̂, Φ̂} = argmin
Λ,Φ

∥∥ΛAΦ− η̂i

∥∥
2
, (34)

s.t. Φ ≜ [Φ1,Φ2, . . . ,ΦK ]T ∈ CK

Λ ∈ {Λ1,Λ2, . . . ,Λ(2K−1)!}

By employing the solution of the unconstrained LS minimiza-
tion for a linear observation model [32] and the fact that
ΛTΛ = ΛΛT = I2K−1, we can easily write

Φ = (ATA)−1ATΛT η̂i, (35)

and thus we can formulate the following problem

Λ̂ = argmin
Λ

η̂T
i (η̂i −ΛAΦ) (36)

s.t. Φ = (ATA)−1ATΛT η̂i

|Φ1| > |Φ2| > . . . > |ΦK |
Λ ∈ {Λ1,Λ2, . . . ,Λ(2K−1)!}.
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Our simulation experiments show that for low and moderate
Signal-to-Noise Ratios (SNRs), the vector reordering based on
the combinatorial optimization in (34) outperforms the one in
(32) in terms of estimation error. While the vector reordering
based on the minimization formulation in (34) offers a lower
computational complexity compared to the minimization in
(32), the computational complexity of both methods is still
high for K > 4.

An alternative low complexity solution is to define a com-
binatorial optimization with lower cardinality. By selecting all
Q-combination of the set {η̂0 η̂1 . . . η̂i−1 η̂i+1 . . . η̂2K−1},
we can define a C2K−1

Q -cardinality combinatorial optimization
problem that minimizes a linear/non-linear combinations of the
elements in the set in such a way that one or more elements
of the set can be unambiguously assigned to the elements of
µ.

As an example, for K = 4 drones/aircrafts, our goal is
to estimate µ14 = β1 exp(jθ1), µ13 = β2 exp(jθ2), µ11 =
β3 exp(jθ3), and µ7 = β4 exp(jθ4), where β1 > β2 > β3 >
β4 (refer to (70)). We can easily show that there is a unique
solution for the linear equation

z0 + z1 + z2 + z3 − z4 = 0, (37)

where zi ∈ {µ0 µ1 . . . µ14} and |z1| > |z2| > |z3| > |z4|.
This unique solution is µ14 + µ13 + µ11 + µ7 − µ0 = 0,
where µ0 =

∑4
i=1 βi exp(jθi), µ14 = β1 exp(jθ1), µ13 =

β2 exp(jθ2), µ11 = β3 exp(jθ3), and µ7 = β4 exp(jθ4) for
β1 > β2 > β3 > β4. By taking this into account, we can
define the following combinatorial optimization for reordering
estimation

Φ̂ = argmin
Φ

∣∣vTΦ
∣∣ (38)

s.t. Φ ≜ [ϕ1 ϕ2 . . . ϕ5]
T ∈ Â5

where Φ̂ ≜ [ϕ̂1 ϕ̂2 . . . ϕ̂5]
T , the set Â5 is defined in (30)

for l = 5, and v ≜ [v1 v2 v3 v4 v5]
T = [1 1 1 1 − 1]T . It is

obvious that (38) represents a C15
5 = 3003-cardinality com-

binatorial optimization problem. By solving the combinatorial
optimization in (38), we obtain

ĥ = β̂ejθ̂ = [ϕ̂1 ϕ̂2 ϕ̂3 ϕ̂4]
T . (39)

Different combinatorial optimization problems can be de-
fined for reordering estimation. For K = 4, let us consider
the following linear equation

7

3∑
i=0

zi −
14∑
i=4

zi = 0, (40)

where zi ∈ {µ0 µ1 . . . µ14} and |z1| > |z2| > |z3| >
|z4|. Since β1 > β2 > β3 > β4 (refer to assumption
1), we can show that the solution of (40) is given by
7µ14 + 7µ13 + 7µ11 + 7µ7 − cTΛT = 0, where c ≜
[µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ8 µ9 µ10 µ12]

T and Λ is a 11× 11
permutation matrix.4 Taking this equation into account, the

4The second summation is independent of the permutation of c.

combinatorial optimization for reordering estimation can be
expressed as

Φ̂ = argmin
Φ

∣∣∣7ΦT14 − α
∣∣∣, (41)

s.t. Φ ≜ [ϕ1 ϕ2 ϕ3 ϕ4]
T ∈ Â4

α =
∑
κ∈S

κ

where S ≜ {η̂0, η̂1, . . . η̂i−1, η̂i+1 . . . η̂2K−1} −
{ϕ1, ϕ2, ϕ3, ϕ4}, Φ̂ ≜ [ϕ̂1 ϕ̂2 ϕ̂3 ϕ̂4]

T , 14 = [1 1 1 1]T ,
and the set Â4 is defined in (30) for l = 4. By using the
solution of the minimization in (41), we can write ĥ = β̂ejθ̂ =
[ϕ̂1 ϕ̂2 ϕ̂3 ϕ̂4]

T .
It should be mentioned that other combinatorial optimiza-

tions can also be defined for reordering estimation. Ambiguity
removal through multiple combinatorial optimization problems
can also be considered.

A. Joint Range and PO Estimation

For joint range and PO estimation of K drones, the modes
µak

≜
√
PkLke

jθk , k = 1, 2, . . . ,K, are needed to be
estimated, where

ak =

K−1∑
n=0

n ̸=k−1

2n. (42)

Let µ̂ak
, k = 1, 2, . . . ,K, denote the estimated modes after

reordering estimation. By using (2), the range and PO for the
kth drone are estimated as

r̂k =
λc
√
Pk∣∣4πµ̂ak

∣∣ , (43)

and

θ̂k =

tan−1 ℑ{µ̂ak
}

ℜ{µ̂ak
} , ℜ{µ̂ak

} ≥ 0

tan−1 ℑ{µ̂ak
}

ℜ{µ̂ak
} + π, ℜ{µ̂ak

} < 0
. (44)

where ℑ{·} and ℜ{·} denotes the real and imaginary opera-
tors, respectively. The proposed EM-based joint ranging and
PO estimation is summarized in Algorithm 1, where TEM

denotes the number of iterations of the EM algorithm.5

VI. MULTIPLE ANTENNAS RECEIVER

In this section, we extend the derived maximum likelihood
cost function and the proposed EM-based joint range and PO
estimators to the case of multiple receive antennas.

5The pseudocode has been written for the reordering methods in (32)
and (34). Similar pseudocode can be written for other reordering estimation
methods.
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Algorithm 1 : EM-based joint ranging and PO estimation

Input: P1, P2, . . . , PK and y
Output: r̂k and θ̂k for k = 1, 2, . . . ,K
Initialize η(0)

1: for t = 0, 1, . . . , TEM − 1 do
2: Use (27) to obtain η(t+1) ≜ [η

(t+1)
0 η

(t+1)
1 . . . η

(t+1)

2K−1
]T

3: if ∥η(t+1) − η(t)∥ < ϵ or t = TEM − 1
4: η̂ = η(t+1) and t = TEM

5: end if
6: end for
7: Use (28) to estimate the element of η̂ that corresponds to
µ2K−1 = 0 and obtain η̂i in (29).

8: Solve the combinatorial optimization in (32) or (34) to
obtain {Λ̂, Φ̂}

9: Estimate ĥ = [µ̂a1
µ̂a2

. . . µ̂aK
] by using (31) for ak,

k = 1, 2, . . . ,K, given in (42).
10: Estimate rk and θk by employing (43) and (44).

A. Maximum Likelihood and EM Estimators

We consider Nr single antenna receivers where we assume
that the distance between the receive antenna elements is more
than half a wavelength. Under this assumption, the coupling
effect can be neglected and spatially uncorrelated Gaussian
noise can be considered. We propose a time-domain estimator
and does not consider the directivity of the multiple receive
antennas in contrast to an antenna array because of the random
phase of each receiver. It should be mentioned that an antenna
array is a set of multiple connected antennas which work
together as a single antenna to transmit or receive radio waves.
However, we consider independent single antenna receivers
that take the advantage of combining gain.

With the assumption that the time delay between receive
antennas is negligible, and the path loss between the kth drone
and ℓth receive antenna is the same for all receive antennas,
i.e, Lℓ,k = Lk, k = 1, 2, . . . ,K, ℓ = 1, 2, . . . , Nr, the received
complex baseband signal at the multiple-receive antennas can
be expressed as

Y = HX+W, (45)

where X ≜ [x1 x2 . . . xK ]T ∈ CK×(N+1), Y ≜
[y0 y1 . . . yN ] ∈ CNr×(N+1), xk is given by (6), and
yn ≜ [y1,n y2,n . . . yNr,n]

T denotes the received vector
at time index n. In (45), the matrices H ∈ CNr×K and
W ∈ CNr×(N+1) are given as

H =


hT
1

hT
2

...
hT
Nr

 , W =


wT

1

wT
2

...
wT

Nr

 , (46)

where

hℓ ≜
[
hℓ,1 hℓ,2 . . . hℓ,K

]T
(47)

=
[
β1 exp(jθℓ,1) . . . βN exp(jθℓ,K)

]T
,

βk = βℓ,k =
√
PkLk, wℓ ≜ [wℓ,0 wℓ,1 . . . wℓ,N ]T with

wℓ,n ∼ CN (0, σ2
w) the complex Gaussian noise at the ℓth

receive antenna at time index n. As seen, while β1,k =
β2,k = · · · = βNr,k = βk, the phases θ1,k, θ2,k, . . . , θNr,k

are independent random values in [0 2π).
The joint PDF of the elements of Y is given by

fY(Y; p,β,Θ, σ2
w) =

Nr∏
ℓ=1

N∏
n=0

fY (yℓ,n; p,β,θℓ, σ
2
w), (48)

where β ≜ [β1 β2 . . . βK ]T , Θ ≜
[
θT
1 θT

2 . . . θT
Nr

]T
,

θℓ ≜
[
θℓ,1 θℓ,2 . . . θℓ,K

]T
, and fY (y; p,β,θ, σ

2
w) is given

in (14). We can easily write the direct MLE of the parameter
vector β and Θ as

{β̂, Θ̂} = argmax
β,Θ

Nr∑
ℓ=1

N∑
n=0

ln fY
(
yℓ,n; p,β,θℓ, σ

2
w

)
. (49)

Solving the maximization problem in (49) is not straightfor-
ward. Hence, the direct MLE cannot be obtained. However,
indirect estimation can be obtained by estimating the modes
of the GM similar to the single receive antenna.

Analogous to the single receive antenna scenario, we can
employ the EM algorithm for estimating the modes of the
GM. For multiple receive antennas, the EM algorithm defines
an identical latent random vector u ≜ [u0 u1 . . . uN ]T for
all receive antennas. This random vector determines the GM
component from which the observation originates, i.e.,

fY (yℓ,n|un = a; p,β,θℓ, σ
2
w) ∼ CN (yℓ,n;µℓ,a, σ

2
w), (50)

where n = 0, 1, . . . , N , ℓ = 1, 2, . . . , Nr, a = 0, 1, . . . , 2K−1,
µℓ,a ≜

∑K
k=1(1 − bk)hℓ,k =

∑K
k=1(1 − bk)βk exp(jθℓ,k),

a = (bK , bK−1, . . . , b1)2, bi ∈ {0, 1}, and PU (un = a) = ξa.
The EM algorithm iteratively maximizes the expected value

of the complete-data log-likelihood function to estimate the
vector Γ ≜ [ηT

1 ηT
2 . . . ηT

Nr
]T as

Γ(t+1) = argmax
Γ

C
(
Γ|Γ(t)

)
, (51)

where the vector ηℓ ≜ [ηℓ,0 ηℓ,1 . . . ηℓ,2K−1]
T denotes the

2K modes of the 2D GM at the lth receive antenna, Γ(0) is
the initialization vector,

C(Γ|Γ(t)) = EU |Y ;Γ(t)

{
ln fY ,U (Y,u; p,Γ, σ2

w)
}

(52)

=

Nr∑
ℓ=1

N∑
n=0

2K−1∑
a=0

δ(t)a,n

(
ln

ξa
πσ2

w

− |yℓ,n − ηℓ,n|2

σ2
w

)
,

δ(t)a,n = PU |Y
(
un = a|yn; p,Γ

(t), σ2
w

)
(53)

=
PU (un = a)fY |U

(
yn|un = a; p,Γ(t), σ2

w

)∑2K−1
a=0 fY ,U (yn, un = a; p,Γ(t), σ2

w)

=
ξa
∏Nr

ℓ=1 CN
(
yℓ,n; η

(t)
ℓ,a, σ

2
w)∑2K−1

a=0 ξa
∏Nr

ℓ=1 CN (yℓ,n; η
(t)
ℓ,a, σ

2
w)
,

and the joint complete-data likelihood function is given by

fY ,U (Y,u; p,Γ, σ2
w) (54)

=

Nr∏
ℓ=1

N∏
n=0

2K−1∏
a=0

(
ξaCN (yℓ,n;µℓ,a, σ

2
w)
)I{un=a}

.
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By solving the maximization problem in (51), the elements
of η(t+1) are iteratively updated as follows

η
(t+1)
ℓ,a =

∑N
n=0 δ

(t)
a,nyℓ,n∑N

n=0 δ
(t)
a,n

. (55)

The convergence condition for the EM algorithm is ∥Υ(t+1)−
Υ(t)∥ < ϵ, where ϵ is a preset threshold. We denote η̂ℓ,a =

η
(t+1)
ℓ,a when the EM algorithm converges at the (t + 1)th

iteration.
While the EM algorithm estimates Nr2

K parameters, only
NrK parameters are used for joint ranging and PO estimation
of K drones. These NrK modes are µℓ,a1

, µℓ,a2
, . . . , µℓ,aK

,
where ak is defined in (42). After the EM convergence, each
receive antenna independently applies estimation mapping as
explained in section V. Let µ̂ℓ,a1 , µ̂ℓ,a2 , . . . , µ̂ℓ,aK

denote the
estimated and reordered modes at the ℓth receive antenna. By
averaging, then we can write

|µ̂ak
| = 1

Nr

Nr∑
ℓ=1

|µ̂ℓ,ak
| ∝ 1

r̂k
, (56)

where k = 1, 2, . . . ,K. By substituting (56) into (43),
we can estimate the range of the kth drone. The PO
for each drone-receive antenna is obtained by replacing
µ̂ℓ,a1

, µ̂ℓ,a2
, . . . , µ̂ℓ,aK

, ℓ = 1, 2, · · · , Nr into (44).
It should be mentioned that the EM algorithm can also be

implemented independently at each receive antennas. Then,
after reordering estimation, the ranges are obtained by aver-
aging. This results in a lower complexity solution.

B. Outlier Detection

For multiple receive antennas at the receiver, it is possible
that one or multiple outliers appear in the estimated sequence
|µ̂ℓ,a1 |, |µ̂ℓ,a1 |, . . . , |µ̂ℓ,aK

|, where ak is given in (42). These
outliers can increase the estimation error of |µ̂ak

| in (56) that
is used for range estimation. To remove the effect of outliers,
we can use outlier detection algorithms, such as the median
absolute deviation (MAD) [33]. In this case, the averaging
is performed over the receive antennas without outliers. This
results in a significant performance improvement in range
estimation.

C. Computational Complexity Analysis

In each iteration of the EM algorithm, we evaluate Nr2
K

Gaussian densities for N +1 observation points in the E-step
in (52), and its computational cost scales as O(NrN2K). The
computational cost of the M-step in (55) per iteration also
scales as O(NrN2K). The complexity of the k-means++
initialization is O(NrN2K). The number of combinatorial
search for reordering estimation via the LS and the proposed
linear/non-linear combinations minimization is (2K − 1)! and
C2K−1

Q , Q = 1, 2, . . . , 2K − 1, (depending on the selected
linear/non-linear combinations), respectively. Hence, for K ≥
4, the method of linear/non-liner combinations minimization
is more computationally efficient for reordering estimation.

TABLE I: Operation parameters for the simulation [34].

ADS-B parameters for the simulation
Pt = 51 dBm ADS-B transmit power
fc = 1090 MHz Carrier frequency of the ADS-B system
B3 = 1.3 MHz 3 dB bandwidth of the transmit ADS-B signal
B20 = 7 MHz 20 dB bandwidth of the transmit ADS-B signal
B40 = 23 MHz 40 dB bandwidth of the transmit ADS-B signal
B60 = 78 MHz 60 dB bandwidth of the transmit ADS-B signal
Tr = 0.01µs Rise time of the ADS-B trapezoidal transmit pulse
Td = 0.01µs Decay time of the ADS-B trapezoidal transmit pulse
T = 0.48µs Time of the ADS-B trapezoidal transmit pulse

VII. SIMULATION

In this section, we examine the performance of the proposed
EM-based joint range and PO estimator through several simu-
lation experiments to confirm the effectiveness of the proposed
algorithm.

A. Simulation Setup
Unless otherwise mentioned, we considered K drones with

ranges r1, r2, . . . , rK ∈ Uc[1, 10] Km. The azimuth and eleva-
tion angles of the drones are assumed to be ϕ1, ϕ2, . . . , ϕK ∈
Uc[−π, π) and ψ1, ψ2, . . . , ψK ∈ Uc[0, π/2], respectively. We
considered free space path loss model in (2) and λc ≈
0.2752 m for ADS-B systems. The number of receive an-
tennas was set to Nr = 5. For ADS-B message period of
TP = 240µs, the discrete time delay of each drone for each
ADS-B packet transmission is assumed to be modeled by a
discrete i.i.d. random variable with uniform distribution as
m1,m2, . . . ,mK ∈ Ud[0,M ], where M ≜ ⌊2BTp⌋ with B as
the bandwidth of the square-root-raised-cosine (SRRC) receive
baseband filter h(t) with roll-off factor β = 0.9 and group
delay τgr = 47.25µs. Without loss of generality, we consider
that Eh ≜

∫ +∞
−∞ |h(t)|2dt =

∫ +B

−B
|H(f)|2df = 1, where

H(f) is the frequency response of the receive filter.
We also assumed that the PO between the kth drone and the

ℓth receive antenna is modeled by a continuous i.i.d. random
variable with uniform distribution as θℓ,k ∈ Uc[0, 2π), k =
1, 2, . . . ,K, ℓ = 1, 2, . . . , Nr. Without loss of generality, we
considered that P1 = P2 = · · · = PK = 51 dBm [34], and the
noise power in dBm at each receive antennas is considered to
be σ2

w = 10 log10((N0Eh)/10
−3) = −174.

The performance of the proposed EM-based joint range and
PO estimator was evaluated in terms of 1−Pout,r and 1−Pout,θ

where

Pout,r ≜
1

K

K∑
k=1

P
{
|r̂k − rk|

rk
> αr

}
,

and

Pout,θ ≜
1

KNr

Nr∑
ℓ=1

K∑
k=1

P
{
|θ̂ℓ,k − θℓ,k|

θℓ,k
> αθ

}
,

with r̂k as the estimated range of the kth drone and θ̂ℓ,k as
the PO of the kth drone at the ℓth receive antenna. The EM
algorithm was run with 100 different random initial values by
using the k-means++ initialization, and we considered the
minimization problem in (34) for reordering estimation. The
number of Monte Carlo runs is 104.
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Fig. 6: Range tracking by the proposed EM-based estimator for K =
3 drones. The dashed and solid lines denote the true and estimated
range, respectively.

B. Simulation Results

To illustrate the performance of the proposed EM-based
joint estimator over time, we show range tracking for K = 3
drones with transmit power P1 = P2 = P3 = 51 dBm in
Fig. 6. It is considered that the ADS-B packets overlap. The
range, delay, and PO variations versus index of the ADS-
B packet, n, for the three drones are modeled as r1(n) =
500+200 cos(0.1πn+π/3), r2(n) = 1200+200 cos(0.05πn+
2π/4), r3(n) = 1900 + 200 cos(0.2πn + π/6), mk(n) ∈
Ud[0, 17280], θℓ,k(n) ∈ Uc[0, 2π) for ℓ = 1, 2, . . . , 5, k =
1, 2, 3, n = 1, 2, . . . , 100, and B = 36 MHz. We consider that
E{θℓ1,k1

(n1)θℓ2,k2
(n2)} = (π2/3)δ[ℓ1 − ℓ2]δ[k1 − k2]δ[n1 −

n2]. As seen, the proposed EM-based estimator can accurately
track the range of K = 3 drones. While the estimation
error for the closest drone to the receiver is lower, i.e.,
E{|r1 − r̂1|}2 < E{|r2 − r̂2|}2 < E{|r3 − r̂3|}2, 1−Pout,r is
almost the same for all drones.

Fig. 7 illustrates 1− Pout,r and 1− Pout,θ of the proposed
EM-based joint estimator versus αr and αθ for different
number of drones K = 2, 3, 4 and different values of receive
filter bandwidth B. As seen, by increasing B, the performance
of the EM-based joint estimator improves because sharp pulses
are received at the receiver, and thus; the approximation error
of received signal model in (1) reduces. Moreover, as expected,
the larger number of drones, higher estimation error. The
reason is that the number of GM components to be estimated
by the EM algorithm exponentially increases with K, i.e., 2K ;
however, the number of observation samples remains fixed.

Fig. 8 shows the effect of the number of receive antennas
on the range and PO estimation versus αr and αθ for K = 2
drones, P1 = P2 = 51 dBm, and B = 36 MHz. As seen, the
larger number of receive antennas, Nr, higher 1−Pout,r. Also,
the rate of performance improvement decreases as the number
of receive antennas increases. As expected, increasing the
number of receive antennas does not affect 1−Pout,θ because
spatial diversity is not employed for the estimation of the KNr

independent POs. However, the range estimation takes the
advantage of spatial diversity. The interesting property of the
proposed algorithm is that it can jointly estimate the range and
PO of multiple drones/aircrafts with a single receive antenna.
With a single receive antenna, the range accuracy of αr = 0.03
is archived for 80% of the time.

Fig. 9 illustrates the performance of the proposed EM-based
joint estimator for different minimum overlapping percentage
of the ADS-B packets for K = 2 drones/aircrafts, Nr = 5
receive antennas, and B = 36 MHz. As expected, the lower
minimum overlapping percentage, more accurate ranging and
PO estimation because interference decreases.

In Fig. 10, we compare the performance of the proposed
EM-based joint estimator with the time segmentation (TS) and
the blind adaptive beamforming (BAB) ADS-B packet sepa-
ration methods in [10] and [17] for K = 2 drones/aircrafts,
Nr = 5 receive antennas, and B = 36 MHz. The TS and BAB
methods first separate the ADS-B packets. Then, by using the
separated packets, they can estimate the range and PO of the
drones. As seen, our proposed method outperforms the TS
and the BAB methods because it employs all the observation
samples including the overlapping snapshot for ranging and
PO estimation; however, the TS and the BAB methods rely
on the non-overlapping snapshot for ADS-B packet recovery.
Hence, as the delay between the reception of two ADS-B
packets decreases, their performance degrades. It should be
mentioned that while the TS and the BAB methods can be
used to estimate the range of maximum K = 2 drones; our
proposed method can estimate the range of K > 1 drones with
a single receive antenna. In Fig. 10, we also show performance
of the efficient estimator6 [32]. For the efficient estimator, the
transmit symbols and delay of the drones/aircrafts are assumed
to be known a priori at the receiver. As seen, there is a small
gap between the performance of the proposed estimator and
the efficient estimator while the transmit symbols and delay
of the drones/aircraft are unknown to the EM-based estimator.

VIII. CONCLUSION

In this paper, we showed that the lost ADS-B packets
due to packet collisions can be employed to jointly estimate
range and PO of multiple drones/aircrafts in the airspace.
This enables drones to maintain safe operation distance in
the congested airspace, where ADS-B packet decoding is
impossible due to packet collisions. To achieve this, we
derived the maximum likelihood and EM-based joint range and
PO estimators using an approximate PDF obtained by KLD
minimization. The proposed estimators consider uncoordinated
and asynchronous ADS-B packet transmission. For joint range
and PO estimation, a priori knowledge or estimation of the
drones’ time delay is not required. Simulation results showed
that the EM-based joint estimator can estimate the range of
multiple drones/aircrafts with a single receive antenna. Perfor-
mance improvement by employing multiple receive antennas
is obtained.

6An efficient estimator is an unbiased estimator that attains the Cramer-Rao
Lower Bound (CRLB) [35].
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(d) PO estimation for K = 3 drones
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Fig. 7: The performance of the proposed joint EM-based estimator for different number of drones, K, P1 = P2 = . . . = PK = 51 dBm,
r1, r2, . . . rK ∈ Uc[1, 10] Km, and Nr = 5.
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(a) The effect of Nr on range estimation
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(b) The effect of Nr on PO estimation

Fig. 8: The effect of the number of receive antennas, Nr, on the
performance of the proposed EM-based joint estimator for K = 2
drones, P1 = P2 = 51 dBm, r1, r2 ∈ Uc[1, 10] Km, and
θ1,1, θ1,2, θ2,1, θ2,2,∈ Uc[−π, π) .

APPENDIX A
PROOF OF THEOREM 1

The vector xk given hypothesis Hk
m in (7) is composed of

4 ones and 12 zeros in s. The number of zeros and ones in the
data field dk is 112 due to Manchester encoding. Moreover,
M zeros are added irrespective to the hypothesis Hk

m because
of the maximum integer delay. Hence, the total number of
zeros and ones in xk are M + 124 and 116, respectively.

Let X k
m denote all possible vector for xk given hypothesis

Hk
m. The cardinality of X k

m, i.e., |X k
m| = 2112 since the

randomness in xk because of the data field dk results in 2112

different Manchester encoded sequences. Thus; the joint PMF
of xk,0, xk,1, · · · , xk,N is given by

f(xk) = f
(
xk,0, xk,1, . . . , xk,N |Hk

m

)
(57)

=

{
1

2112 xk ∈ X k
m,

0 xk /∈ X k
m.
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(a) The effect of minimum overlapping on range estimation
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(b) The effect of minimum overlapping on PO estimation

Fig. 9: The effect of the minimum overlapping percentage on
the performance of the proposed EM-based joint estimator for
K = 2 drones, P1 = P2 = 51 dBm, r1, r2 ∈ Uc[1, 10] Km,
θ1,1, θ1,2, θ2,1, θ2,2,∈ Uc[−π, π), and Nr = 5 .

Let us consider the following approximation for the joint PMF
in (57).

f(xk) = f
(
xk,0, xk,1, . . . , xk,N |Hk

m

)
(58)

≈
N∏

n=0

g(xk,n|Hk
m)

The KLD for f and g in (58) is given by

D(f∥g) =
∑
Xk

m

[
f
(
xk,0, xk,1, . . . , xk,N |Hk

m

)
× ln

f
(
xk,0, xk,1, · · · , xk,N |Hk

m

)∏N
n=0 g(xk,n|Hk

m)

]
. (59)

Because xk,n ∈ {0, 1} for n = 0, 1, . . . , N , the KLD is
minimized for Bernoulli distribution. The PMF of Bernoulli
distribution is expressed as

g(i|Hk
m) =

{
p if i = 0,

1− p if i = 1,
(60)
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Fig. 10: Performance comparison of the proposed EM-based joint
estimator for K = 2 drones, P1 = P2 = 51 dBm, r1, r2 ∈ Uc[1, 10]
Km, θ1,1, θ1,2, θ2,1, θ2,2,∈ Uc[−π, π), and Nr = 5. .

where p ∈ [0, 1].
By substituting the PMF in (57) and (60) into (59), and by

using the fact that
∑N

n=0 xk,n = 116 for xk ∈ X k
m, we can

write the KLD in (59) as

D(f∥g) = 1

2112

∑
Xk

m

ln

[
1

2212pM+124(1− p)116

]
(61)

= − ln
[
2212pM+124(1− p)116

]
.

To obtain p, we need to minimize D(f∥g). Because ln(·)
is a monotonically increasing function, D(f∥g) is minimized
when pM+124(1 − p)116, p ∈ [0, 1], is maximized. By taking
the derivative with respect to p and setting it to zero, we obtain

d
(
pM+124(1− p)116

)
dp

= (M + 124)pM+123(1− p)116 (62)

− 116(1− p)115pM+124 = 0.

By solving (62), we obtain (9).

APPENDIX B
PROOF OF THE PDF OF G =

∑K
k=1 Zk

Let us consider G =
∑K

k=1 Zk. Since Zk, k = 1, 2, · · · ,K,
are independent random variables, the PDF of G is given by

fG(g; p,h) = fZ1

(
z; p, h1

)
∗ fZ2

(
z; p, h2

)
(63)

∗ . . . ∗ fZK

(
z; p, hK

)
,

where z ≜ zr + izI ∈ C, h ≜ [h1, h2, · · · , hK ]T , hk ≜
(hk)r + i(hk)I ∈ C, and fZk

(
z; p, hk

)
is given in (10).

The two-dimensional Laplace transform of fZk

(
z; p, hk

)
is

expressed as

FZk

(
s1, s2; p, hk

)
=

∫ +∞

−∞

∫ +∞

−∞
fZk

(
z; p, hk

)
e−s1zr−s2zIdzrdzI

=

∫ +∞

−∞

∫ +∞

−∞
pδ(zr)δ(zI)e

−s1zr−s2zIdzrdzI

+

∫ +∞

−∞

∫ +∞

−∞
(1− p)δ(zr − (hk)r)δ(zI − (hk)I)e

−s1zr−s2zIdzrdzI

= p+ (1− p)e−((hk)r
s1+(hk)Is2).

Using the fact that the linear convolution is equivalent to
multiplication in the Laplace domain, we can write

FG

(
s1, s2; p,h

)
=

K∏
k=1

FZk

(
s1, s2; p, hk

)
(64)

=

K∏
k=1

[
p+ (1− p)e−((hk)rs1+(hk)Is2)

]
,

where FG

(
s1, s2; p,h

)
denotes the two-dimensional Laplace

transform of fG(g; p,h). Let us consider the multi-binomial
theorem as follows [28]

d∏
i=1

(ai + bi)
ni (65)

=

n1∑
v1=0

· · ·
nd∑

vd=0

(
n1
v1

)
av11 b

n1−v1
1 · · ·

(
nd
vd

)
avdd b

nd−vd
d .

By substituting ai ≜ p, bi ≜ (1−p)e−((hi)rs1+(hi)Is2), d = K,
and ni = 1, i = 1, 2, . . . , d, into (65), we obtain

FG

(
s1, s2; p,h

)
=

1∑
v1=0

· · ·
1∑

vK=0

[
p
∑K

k=1 vk(1− p)K−
∑K

k=1 vk

× exp
[
−

K∑
k=1

(1− vk)((hk)rs1 + (hk)Is2)
]]
. (66)

The two-dimensional inverse Laplace transform of the expo-
nential term in (66) is given by

L−1

{
exp

[
−

K∑
k=1

(1− vk)((hk)rs1 + (hk)Is2)
]}

(67)

= δ
(
sr −

K∑
k=1

(1− vk)(hk)r

)
δ
(
sI −

K∑
k=1

(1− vk)(hk)I

)
= δc

(
s−

K∑
k=1

(1− vk)hk

)
,
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where s = sr + isI ∈ C. By taking two-dimensional inverse
Laplace transform from both sides of (66) and then employing
(67), we obtain fG(g; p,h) as in (12).

APPENDIX C

For K = 2, we have

µ ≜ [µ0 µ1 µ2 µ3]
T (68)

= [β1 exp(jθ1) + β2 exp(jθ2) β2 exp(jθ2) β1 exp(jθ1) 0]T ,

where β1 > β2, and for K = 3, we can write

µ ≜ [µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7]
T (69)

=
[
β1 exp(jθ1) + β2 exp(jθ2) + β3 exp(jθ3)

β2 exp(jθ2) + β3 exp(jθ3) β1 exp(jθ1) + β3 exp(jθ3)

β3 exp(jθ3) β1 exp(jθ1) + β2 exp(jθ2) β2 exp(jθ2)

β1 exp(jθ1) 0
]T
,

with β1 > β2 > β3. For K = 4, we can write

µ ≜ [µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7 . . . µ13 µ14 µ15]
T (70)

=
[
β1 exp(jθ1) + β2 exp(jθ2) + β3 exp(jθ3) + β4 exp(jθ4)

β2 exp(jθ2) + β3 exp(jθ3) + β4 exp(jθ4)

β1 exp(jθ1) + β3 exp(jθ3) + β4 exp(jθ4)

β3 exp(jθ3) + β4 exp(jθ4)

β1 exp(jθ1) + β2 exp(jθ2) + β4 exp(jθ4)

β2 exp(jθ2) + β4 exp(jθ4)

β1 exp(jθ1) + β4 exp(jθ4) β4 exp(jθ4)

β1 exp(jθ1) + β2 exp(jθ2) + β3 exp(jθ3)

β2 exp(jθ2) + β3 exp(jθ3) β1 exp(jθ1) + β3 exp(jθ3)

β3 exp(jθ3) β1 exp(jθ1) + β2 exp(jθ2) β2 exp(jθ2)

β1 exp(jθ1) 0
]T
,

where β1 > β2 > β3 > β4.
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