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Abstract—Data estimation is conducted with model-based
estimation methods since the beginning of digital communica-
tions. However, motivated by the growing success of machine
learning, current research focuses on replacing model-based
data estimation methods by data-driven approaches, mainly
neural networks (NNs). In this work, we particularly investigate
the incorporation of existing model knowledge into data-driven
approaches, which is expected to lead to complexity reduction
and / or performance enhancement. We describe three different
options, namely “model-inspired” pre-processing, choosing an
NN architecture motivated by the properties of the underlying
communication system, and inferring the layer structure of an
NN with the help of model knowledge. Most of the current
publications on NN-based data estimation deal with general
multiple-input multiple-output (MIMO) communication systems.
In this work, we investigate NN-based data estimation for so-
called unique word orthogonal frequency division multiplexing
(UW-OFDM) systems. We highlight differences between UW-
OFDM systems and general MIMO systems one has to be
aware of when using NNs for data estimation, and we introduce
measures for a successful utilization of NN-based data estimators
in UW-OFDM systems. Further, we investigate the use of NNs
for data estimation when channel coded data transmission is
conducted, and we present adaptions to be made, such that NN-
based data estimators provide satisfying performance for this
case. We compare the presented NNs concerning achieved bit
error ratio performance and computational complexity, we show
the peculiar distributions of their data estimates, and we also
point out their downsides compared to model-based equalizers.

Index Terms—Data estimation, neural networks, unique word
OFDM

I. INTRODUCTION

On the receiver side of wireless digital communication
systems, data estimation, also referred to as equalization, is
conducted to reconstruct the transmitted data that have been
disturbed during transmission. Traditionally, this task is ac-
complished with model-based estimation methods. That is, the
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data transmission is described by physical and mathematical
models, such that on basis of these models statistical esti-
mation methods can be developed to estimate the transmitted
data. This established approach has many advantages, e.g., the
derived estimation methods are well-interpretable, and often
performance bounds can be derived. However, there are also
some downsides. Model-based estimation methods yielding
optimal performance are generally computationally infeasible,
which requires resorting to less complex, suboptimal methods
in practice. Furthermore, modeling inaccuracies may lead to
severe performance degradation, and the empirical statistical
behavior of available data cannot be utilized for improving the
estimation results. With data-driven machine learning methods,
some of the aforementioned issues of model-based approaches
can be resolved. Hence, employing data-driven methods, par-
ticularly neural networks (NNs), for equalization is a focus
of current research [2]–[12]. These NNs, which are known to
be universal function approximators [13], should approximate
the optimal data estimator function. Ideally, the developed NN-
based data estimators exhibit a low computational complexity
and require a low amount of training data. However, this is a
major challenge, since most of the currently known standard
NNs usually have a large number of trainable parameters,
leading to a large amount of required training data and a
high inference complexity. One approach for tackling this
problem is to design the layer architecture of an NN based
on the model of the data transmission. In the context of
such model-inspired NN layer structures, the concept of deep
unfolding [14] is worth mentioning. There, the iterations of
an iterative model-based algorithm are unfolded to layers
of an NN, where free parameters or even whole parts of
the model-based inference structure are replaced by trainable
parameters or modules, respectively, that are optimized with
the help of training data. NN-based data estimators which
are deduced by deep unfolding are, e.g., DetNet [3], OAMP-
Net2 [4], ViterbiNet [8], or DeepSIC [9], to name just a few.
Besides deep unfolding, there are also other approaches to
obtain model knowledge aided data-driven methods for data
estimation. In [15], a deep learning aided sphere decoder is
proposed, where the radius of the decoding hypersphere is
learned. Further, in [10], an interesting NN-based equalizer,
referred to as RE-MIMO, is proposed, which can be applied
for equalization in multiple-input multiple-output (MIMO)
systems, using an NN architecture that is designed by con-
sidering properties of MIMO systems.

An important distinction between NN-based equalizers can
be made by considering their generalization ability regarding
different channels. While the aforementioned DetNet, RE-
MIMO, and OAMP-Net2 are trained with an ensemble of dif-
ferent channels, representing samples from a statistical channel
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model, and use the actual channel realization as an input,
MMNet [7], ViterbiNet, and DeepSIC are trained for a single
channel realization. The former NNs can be trained completely
offline (assuming the channel statistics do not change), but
generally feature a higher inference complexity than the latter.
The latter have to be (re-)trained in an online manner, however,
they usually contain fewer trainable parameters, leading to a
faster training convergence and a smaller amount of required
training data. In this paper, we focus on NNs that are trained
offline with a multitude of different channels and use the
current channel realization as an input during inference.

We consider NN-based equalization for communication
systems employing the so-called unique word orthogo-
nal frequency division multiplexing (UW-OFDM) signaling
scheme [16]. UW-OFDM is an alternative to the popular cyclic
prefix (CP)-OFDM, which allows, among others, achieving a
better bit error ratio (BER) performance than with CP-OFDM,
however, at the cost of a higher equalization complexity. That
is, while a low-complex single-tap (per subcarrier) equalizer
provides already optimal performance for CP-OFDM, this
is not the case for UW-OFDM. More specifically, for UW-
OFDM, e.g., the linear minimum mean square error (LMMSE)
estimator [17] requires a full estimator matrix. The perfor-
mance can be improved even further by nonlinear data esti-
mators like a noise interpolator [18], sphere decoder [19], or
decision feedback equalizers (DFEs) in different variants [20].
This motivates the investigation of NNs as an alternative to
model-based equalizers in UW-OFDM systems. This work
gives a comprehensive investigation of NN approaches for data
estimation in UW-OFDM systems. However, many of the ideas
are quite general, and can also be transferred to other digital
communication waveforms. We naturally highlight the advan-
tages of the ideas presented, but also intentionally discuss the
downsides and open challenges that still need to be overcome
in NN-based data estimation for future digital communication
systems, which we regard as an important contribution for
other researchers in this field.

Contribution: In this work, we suggest and investigate dif-
ferent approaches for obtaining model-inspired NN-based data
estimation methods, namely, by model-aware pre-processing,
by choosing NN architectures motivated by the properties of
the UW-OFDM waveform, and by deducing an NN layer
structure based on model knowledge. For presenting the latter
approach, we choose to utilize DetNet, whose layer structure is
inferred by unfolding a model-based gradient descent method.
We apply DetNet, which has originally been proposed for a
MIMO system, to the considered UW-OFDM systems, and
make adaptions required specifically for UW-OFDM. Further,
we show that also fully-connected NNs (FCNNs) can solve
the problem of data estimation for non-static environments,
whereby we suggest – motivated by an investigation of the
nonlinear minimum mean square error (MMSE) estimator – a
model-aware data pre-processing scheme applied to its input
data. Investigations on the input data of the FCNN revealed
that its input data exhibit correlations. We aim to exploit these
correlations by choosing an appropriate NN architecture for
achieving an improved equalization performance and/or lower
complexity. Hence, we propose as a third NN-based equalizer
a novel NN, which is – as one of the first proposed NN-based
data estimators – based on the Transformer architecture [21],
and utilizes self-attention.

The majority of available publications on NN-based data
estimators assume a MIMO system model – often with data
transmission over an uncorrelated Rayleigh fading channel.
It turns out that applying DetNet for data estimation in UW-
OFDM systems as it is suggested for MIMO systems, does not
provide satisfactory performance. This issue can be overcome
by introducing a data normalization scheme specifically for
UW-OFDM and applying preconditioning. This should point
out the importance of investigating the properties of a com-
munication system even for data-driven NN approaches, since
system-specific adaptions of existing state-of-the-art (SOTA)
NN-based data estimators may be required. We compare the
NN-based approaches with model-based methods in terms of
performance and complexity.

We conduct our investigations for both channel coded and
uncoded data transmission, where the former case has rarely
been covered in publications on NN-based data estimators
yet. For channel coded transmission, the equalizers have to
provide reliability information about their estimates. It turns
out, that NN-based data estimators tend to be overconfident in
their decisions, which impairs the overall system performance
including channel decoding. We suggest a simple yet effective
measure that can be conducted to counteract the overconfi-
dence of the NNs, which allows achieving approximately the
same BER performance as with an optimal equalizer. Further-
more, we present results for imperfect channel knowledge, and
we plot the empirical distributions of the estimates of model-
based and NN-based equalizers, which highlights peculiarities
of some of the considered equalizers.

To summarize, in our paper [1], on which this manuscript
is based on, we introduced a data normalization scheme for
UW-OFDM systems, we proposed a preconditioning method
for DetNet, which boosts its performance, and we analyzed
the complexity of this NN-based equalizer and some model-
based equalizers. In this work, we extend [1] by the following
main contributions:
• The proposal of a model-aware data pre-processing,

which we validate by applying an FCNN as a data
estimator using the pre-processed data as input data.

• A novel NN-based data estimator, referred to as Attention
Detector, which utilizes the self-attention mechanism to
exploit correlations in the input data for enhancing its
estimation performance.

• An analysis of the impact of imperfect channel knowl-
edge on the performance of the presented NN equalizers.

• An investigation of the performance of NN-based data
estimators for channel coded data transmission with a
convolutional channel code, including a suggestion for
the selection of the training data to achieve approximately
optimal performance.

• A detailed complexity analysis of the presented model-
based and NN-based equalizers.

• An in-depth investigation of some model-based linear and
nonlinear estimators, and a visualization of their decision
boundaries.

The remainder of this paper is structured as follows: we
start by reviewing the UW-OFDM signaling scheme in Sec. II.
In Sec. III, we present optimal and suboptimal model-based
equalizers. We address the NN-based equalizers, as well as the
utilized data normalization scheme, in Sec. IV. In Sec. V, we
provide BER performance results for both channel coded and
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uncoded data transmission, we conduct a complexity analysis,
and we compare the distributions of the estimates provided by
model-based and NN-based equalizers.

Notation: Throughout this paper, the ith element of a vector
x, the element in the ith row and the jth column of a matrix
X, and the ith row of a matrix X are denoted as xi, [X]ij ,
and [X]i,∗, respectively. The operators Re{.} and Im{.} deliver
the real and the imaginary part of a complex-valued quantity,
(.)T and (.)H indicate the transposition and the conjugate
transposition of a vector/matrix, respectively. Furthermore,
p(.), p[.], Pr(.), p[a|b], p[a = ã], and Ea[.] describe the
probability density function (PDF) of a continuous random
variable, the probability mass function (PMF) of a discrete
random variable, the probability operator, a conditional PMF
of the random variable a given b, a PMF evaluated at the value
ã, and the expectation operator averaging over the PDF/PMF
of a, respectively. The subscript of the expectation operator is
omitted, when the averaging PDF/PMF is clear from context.

II. UNIQUE WORD OFDM SYSTEM MODEL

In this section, we describe the basics of UW-OFDM. The
UW-OFDM signaling scheme mainly exhibits two differences
from CP-OFDM. Firstly, a deterministic sequence, the so-
called UW, is employed as a guard interval. Secondly, the
guard interval is part of a UW-OFDM time domain symbol
resulting from an inverse discrete Fourier transform (IDFT)
operation. That is, a guard interval is not removed on receiver
side, but is transformed to frequency domain together with
the preceding payload. With this approach, redundancy in
frequency domain is introduced, which can be exploited ben-
eficially for spectral shaping [22], and for achieving a better
BER performance [16] than with CP-OFDM, however, at the
cost of receiver complexity. For more detailed information on
UW-OFDM, we refer to [16], [17], [23], [24]. In the following,
we elucidate the data transmission in a UW-OFDM system and
its associated system model.

As in CP-OFDM, the data symbols, drawn from a phase-
shift keying (PSK) or quadrature amplitude modulation
(QAM) alphabet1 S′, are defined in frequency domain. In con-
trast to a CP-OFDM symbol, a UW-OFDM symbol x̃ ∈ CN ,
containing Nd data symbols d′ ∈ S′, has to fulfill specific
conditions. To reveal the conditions on a UW-OFDM symbol,
we consider the structure and the generation of a UW-OFDM
time domain symbol xt ∈ CN of length N . In a first step, a
time domain symbol x is generated that consists of payload
data xpl, and a succeeding sequence of zeros with length Nu,
i.e., x = [xTpl 0T ]T . The requested structure of x imposes
the condition F−1N x̃ = [xTpl 0T ]T on the corresponding UW-
OFDM symbol x̃ in frequency domain, where F−1N is the
N -point IDFT matrix. To fulfill this constraint, the number
of data symbols Nd per UW-OFDM symbol has to be at
least by Nu smaller than the length N of a UW-OFDM
symbol, reduced by the number of zero subcarriers Nz, i.e.,
Nd ≤ N − Nz − Nu. Throughout this paper, we consider
the case2 Nd = N − Nz − Nu. The generation of a UW-
ODFM symbol is described by x̃ = BGd′, where d′ ∈ S′Nd

is the data vector, B ∈ {0, 1}N×(Nd+Nu) models the optional

1In this paper, the alphabet is assumed to be QPSK.
2In case of additionally employingNp pilot subcarriers,Nd has to be further

reduced by Np. For simplicity, we omit the inclusion of pilot subcarriers in this
derivation, and refer to [25] and [26] for details on pilot subcarrier inclusion.

insertion of zero subcarriers, and G ∈ C(Nd+Nu)×Nd is the so-
called generator matrix. The generator matrix G can be de-
composed into G = A

[
IT TT

]T
, with the Nd×Nd identity

matrix I, and an appropriately chosen matrix T ∈ CNu×Nd ,
ensuring Nu trailing zeros in the UW-OFDM time domain
symbol. The matrix A ∈ R(Nd+Nu)×(Nd+Nu), in turn, can be
any non-singular matrix, which can be chosen according to the
so-called systematic or non-systematic UW-OFDM signaling
scheme. In this work, the non-systematic approach is used,
where A is optimized for the BER performance of the linear
minimum mean square error (LMMSE) data estimator as
in [23]. In case A is chosen to be a permutation matrix
placing the data symbols and the redundant values on their
intended subcarrier position, the signaling scheme is termed
systematic UW-OFDM. For further details on systematic and
non-systematic UW-OFDM, we refer to [16], [17], [23], [24].

The last step on transmitter side is generating a transmit
symbol xt by inserting the deterministic UW xu ∈ CNu at
the position of the zero sequence of the UW-OFDM time
domain symbol, i.e., xt = x+ [0T xTu ]T . After transmission
of xt over a multipath channel and additional disturbance by
additive white Gaussian noise (AWGN), the corresponding
received vector is transformed to frequency domain, and the
zero subcarriers are removed. The resulting downsized vector
yd follows to

yd = H̃Gd′ + H̃BT x̃u + BTFNn , (1)

where the diagonal matrix H̃ ∈ C(Nd+Nu)×(Nd+Nu) contains
the sampled channel frequency response excluding the po-
sitions of the zero subcarriers, FN is the N -point discrete
Fourier transform (DFT) matrix, x̃u = FN [0T xTu ]T denotes
the UW in frequency domain, and n ∼ CN (0, σ2

n I) is
circularly symmetric complex white Gaussian noise, where σ2

n
is the variance of the AWGN in time domain.

Removing the influence of the known UW on yd yields the
equivalent complex baseband system model

y′ = yd − H̃BT x̃u = H′d′ + w′ , (2)

with H′ = H̃G and w′ ∼ CN (0, Nσ2
n I).

In case of channel coded data transmission, reliability in-
formation of the estimates, also referred to as soft information
or soft decision estimates, has to be provided, e.g., in form of
log-likelihood ratios (LLRs)

Lji = ln

(
Pr(bji = 1|y′)
Pr(bji = 0|y′)

)
, (3)

with Lji being the LLR of the jth bit bji of the ith data
symbol, j ∈ {0, ..., log2(|S′| − 1)}, i ∈ {0, ..., Nd − 1}. The
LLRs serve as input for the channel decoder. For uncoded
data transmission, the data symbol estimates are sliced to the
nearest symbol in the symbol alphabet, which is also termed
hard decision estimation.

III. MODEL-BASED DATA ESTIMATION

In this section, we review some traditional, model-based
equalizers, that aim to estimate the data vector d′, given
the received vector y′ and channel state information in form
of the matrix H′, using the system model (2). We start by
elaborating on optimal estimators, which are, however, in
general computationally infeasible. Consequently, one usually
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has to resort to suboptimal estimation methods in practice.
We describe two SOTA suboptimal estimators, where one is
a linear and the other one is a nonlinear estimator. Further,
we present the decision boundaries of the aforementioned
equalizers in a toy example to visualize their differences.

A. Bit-Wise Maximum A-Posteriori Estimator
The optimal estimator in terms of the BER performance

is the bit-wise maximum a-posteriori (MAP) estimator [27],
yielding the bit value featuring the highest probability for a
given received vector y′ according to

b̂ji = arg max
b̃∈{0,1}

p[bji = b̃|y′] = arg max
b̃∈{0,1}

∑
d′′∈S(b̃)

ji

p(y′|d′′) ,

(4)

with p(y′|d′′) = κ exp
(
− 1
Nσ2

n
||y′−H′d′′||22

)
, κ being a con-

stant that does not affect the maximization, and S(b̃)ji ⊂ S′Nd

denoting the set of data vectors with the bit bji fixed to the
value b̃ ∈ {0, 1}. In the second step, we assume independent
and identically distributed (i.i.d.) data symbols in the data
vector with a uniform prior probability.

B. Vector Maximum Likelihood Estimator
The estimated data vector d̂′ produced by the vector max-

imum likelihood (ML) estimator maximizes the likelihood
function p(y′|d′′), d′′ ∈ S′Nd . Since we assume to have i.i.d.
data symbols in the data vector, the vector ML estimator
coincides with the vector MAP estimator. The vector ML
estimator is given by

d̂′ = arg max
d′′∈S′Nd

p(y′|d′′) = arg min
d′′∈S′Nd

||y′ −H′d′′||22 . (5)

In literature, this estimator is often considered to be the
optimal equalizer. In fact, it is optimal with respect to the
error probability of the data vector estimate [27], but not with
respect to the BER, which is the usual figure of merit in
communications. By examining (5), a noteworthy peculiarity
of the vector ML estimator can be observed, namely, this
estimator does not depend on the noise variance σ2

n , which
is in contrast to the bit-wise MAP estimator (4).

C. Minimum Mean Square Error Estimator
The nonlinear MMSE estimator is, in contrast to the ML

and the MAP estimators, very rarely regarded in communica-
tions literature. Especially when it comes to NN-based data
estimators, which try to approximate the nonlinear MMSE
estimator, we believe that a detailed consideration of the
nonlinear MMSE estimator is quite meaningful.

When employing the Bayesian mean square error
Ey′,d′ [||d̂′−d′||22] as a performance measure, MMSE estima-
tor is the optimal estimator. The MMSE estimator is obtained
by computing the mean of the posterior PMF [28], i.e.,

d̂′ = Ed′|y′ [d
′|y′] =

∑
d′′∈S′Nd

d′′p[d′′|y′]

=

∑
d′′∈S′Nd

d′′ exp(− 1
Nσ2

n
||y′ −H′d′′||22)∑

d′′∈S′Nd

exp(− 1
Nσ2

n
||y′ −H′d′′||22)

, (6)

where again a uniform prior probability distribution of the data
vectors is assumed.

Interestingly, as shown in Appendix A, for a QPSK modu-
lation alphabet (which is employed as modulation alphabet
in this paper) the hard decision estimates of the MMSE
estimator coincide with those of the bit-wise MAP estimator.
Hence, the MMSE estimator also serves as a benchmark
for the best BER performance achievable. For higher-order
modulation alphabets, e.g., 16-QAM or 64-QAM, the MMSE
has to be formulated for the transmitted bit vector (instead of
the complex-valued data symbol vector) for obtaining optimal
BER performance.

Reliability Information for MMSE Estimates: As obvious
from (3), the posterior probabilities Pr(bji = 1|y′) and
Pr(bji = 0|y′) have to be determined to obtain the desired
LLRs Lji. For the employed QPSK modulation alphabet, the
LLRs L0i and L1i, corresponding to the zeroth and the first
bit of the ith data symbol d′i, respectively, can be computed on
basis of the MMSE estimates d̂′i with low complexity, which
is presented in the following. To this end, let us consider the
QPSK bit-to-symbol mapping (b1ib0i) 7→ d′i, where the bits
b0i and b1i are mapped to the real part and the imaginary
part of d′i, respectively. The bit values 0 and 1 are mapped
to the symbol values −ρ and ρ, respectively, with the energy
normalization factor ρ = 1/

√
2. Hence, as given in (37), the

real part of the ith MMSE estimate follows to

Re{d̂′i} = Ed′i|y′ [Re{d′i}|y′]
= ρPr(b0i = 1|y′)− ρPr(b0i = 0|y′) . (7)

Since Pr(b0i = 0|y′) + Pr(b0i = 1|y′) = 1, (7) can be
expressed as

Re{d̂′i} = ρ(2Pr(b0i = 1|y′)− 1) , or as

Re{d̂′i} = ρ(1− 2Pr(b0i = 0|y′)) .
(8)

By rearranging the two expressions in (8) with respect to the
posterior probabilities, and plugging the results into the LLR
definition (3) yields

L0i = ln

(
ρ+ Re{d̂′i}
ρ− Re{d̂i}

)
, L1i = ln

(
ρ+ Im{d̂′i}
ρ− Im{d̂i}

)
, (9)

where for obtaining L1i the same steps as above have to be
conducted for the imaginary part of d̂′i.

D. Linear Minimum Mean Square Error Estimator

The aforementioned optimal equalizers all suffer from a
complexity that is exponential in the length of the data
vector. To obtain low-complex equalizers, one can constrain
the estimator to be linear. The best linear estimator in terms of
the Bayesian mean square error is the LMMSE estimator [28]

d̂′ = ELMMSEy
′ =

(
H′HH′ +

Nσ2
n

σ2
d

I

)−1
H′Hy′ , (10)

where σ2
d is the variance of the data symbols, and ELMMSE is

the LMMSE estimator matrix.
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Reliability Information for LMMSE Estimates: With
LMMSE estimates d̂′i at hand, the LLRs can be computed
by evaluating the alternative LLR definition [29]

LLMMSE
ji = ln

(
Pr(bji = 1|d̂′i)
Pr(bji = 0|d̂′i)

)
. (11)

By assuming a Gaussian conditional distribution p(d̂′i|d′i) for
the LMMSE estimates (which is valid for large Nd follow-
ing central limit theorem arguments), it can be shown [30],
that (11) is equivalent to the LLR definition (3). Following
the derivation described in [26], the LLRs for the zeroth and
the first bit are given by

L0i =
4Re{d̂i}αiρ

σ2
i

and L1i =
4Im{d̂i}αiρ

σ2
i

, (12)

respectively, where σ2
i = eHi (σ2

dH̄
′
iH̄
′H
i + Nσ2

n I)ei,
αi = eHi h′i, e

H
i is the ith row of ELMMSE, h′i denotes the

ith column of H′, and H̄′i is H′ without the ith column.

E. Decision-Feedback Equalizer
A performance-complexity trade-off is provided by the

decision-feedback equalizer (DFE). In this iterative method,
LMMSE estimation of a single data symbol is conducted in
every iteration. As a decision criterion which data symbol
is estimated in the kth iteration, we use the diagonal of
the LMMSE error covariance matrix Cee,k, containing the
error variances of the LMMSE estimates. That is, in a single
iteration the data symbol corresponding to the smallest error
variance is estimated, followed by updating the system model
in form of removing the influence of the hard decision estimate
bd̂ie from the received vector, and by deleting the appropriate
column from the system matrix H′k of the kth iteration. For
further details we refer to [20].

Reliability Information for the DFE: Due to the nonlinear
iterative equalization process, the best BER results for channel
coded data transmission are obtained by incorporating channel
decoding into the iterations of the DFE. However, in this work,
we do not consider information feedback from the channel
decoder to any of the regarded equalizers. As a circumvention,
we utilize the LLRs of the LMMSE data symbol estimation in
every iteration as reliability information of the DFE. Hence,
the LLRs L0i and L1i corresponding to the data symbol
estimate d̂′i estimated in the kth iteration are computed as given
in (12), whereby H′ is replaced by H′k.

F. Decision Boundaries of Model-Based Equalizers
To illustrate the differences between the model-based data

estimators elaborated above, we plot the decision boundaries
of their hard decision estimates for a small toy example

y = Hd + w =

[
0.9 0.6
−0.3 0.5

] [
d0
d1

]
+ w , (13)

where w ∼ N (0, σ2I). The data vector d, with d0, d1 ∈
{−1, 1}, corresponds to a block of two bits (b1b0), where
the bit values 0 and 1 are mapped to the symbols −1 and 1,
respectively. The decision boundaries are plotted for different
noise power levels, i.e., for σ2 = 0.5 and σ2 = 0.05 in Fig. 1.

As already mentioned in Sec. III-B, the vector ML estima-
tor, which is optimal regarding the estimation error probability

of the whole data symbol vector, does not depend on the noise
variance. This is visible in the identical decision boundaries
of the vector ML estimator in Figs. 1b and 1f. The decision
boundaries of the MMSE estimator (Figs. 1a and 1e) change
with the noise variance, whereby the decision boundaries (and
thus also the performance) of the MMSE estimator converge
towards those of the vector ML estimator for σ2 → 0.
That is, only for higher values of the noise variance a BER
performance difference between these two equalizers might
be observable. As shown in Sec. V-C, the BER performance
difference between the vector ML estimator and the MMSE
estimator is negligible for the considered UW-OFDM system.
Clearly, the decision boundaries of the LMMSE estimator
(Figs. 1c and 1g), can only be straight lines. The decision
boundaries of the LMMSE estimator distinctly deviate from
those of the MMSE estimator, indicating a considerable per-
formance degradation for hard decision estimation due to the
linearity constraint. With the DFE, in turn, in each iteration a
symbol is estimated using a linear estimation step, leading to
a smaller deviation of the decision boundaries to the optimal
ones, which is visible in Figs. 1d and 1h.

IV. NEURAL NETWORK BASED DATA ESTIMATION

We start this section by presenting a data normalization
scheme specifically designed for UW-OFDM systems, which
is essential to achieve well-performing NNs. Then, we intro-
duce three NN-based data estimation methods for UW-OFDM
systems. As already mentioned, the three presented approaches
for NN-based data estimation can be regarded as different op-
tions for utilizing model knowledge when conducting data esti-
mation with NNs. In DetNet, model knowledge is incorporated
by designing the structure of a layer by unfolding a model-
based gradient descent method. When using an FCNN or our
proposed Attention Detector as an equalizer, model knowledge
is incorporated into data pre-processing, which is inspired by
the MMSE estimator and sufficient statistics. The utilization of
an encoder in the Attention Detector, which contains so-called
self-attention layers [21], stems from the knowledge of corre-
lated input data. The similarities and differences of the three
approaches are visualized in Fig. 2. Interestingly, although the
three NN-based approaches are inspired by different model-
based concepts, for all NNs the quantities HTH and HTy
(for their definition we refer to (14)) are used, however, at
different positions of the NNs (DetNet: in all layers; FCNN
and Attention Detector: at their input). This observation is also
highlighted in Fig. 2.

To use existing knowledge of NN architectures and NN
training methods, real-valued input data of the NNs are gen-
erated. Hence, we map the complex-valued system model (2)
to an equivalent real-valued model of double dimension

y = Hd + w , (14)

where

y =

[
Re{y′}
Im{y′}

]
, H =

[
Re{H′} −Im{H′}
Im{H′} Re{H′}

]
,

d =

[
Re{d′}
Im{d′}

]
, and w =

[
Re{w′}
Im{w′}

]
∼ N

(
0,
Nσ2

n

2
I
)
.

Assuming a symmetric alphabet S′, d ∈ S2Nd contains
data symbols di, i ∈ {0, ..., 2Nd − 1}, drawn from the real-
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(a) MMSE, σ2 = 0.5 (b) Vector ML, σ2 = 0.5 (c) LMMSE, σ2 = 0.5 (d) DFE, σ2 = 0.5

(e) MMSE, σ2 = 0.05 (f) Vector ML, σ2 = 0.05 (g) LMMSE, σ2 = 0.05 (h) DFE, σ2 = 0.05

Fig. 1. Decision boundaries of model-based equalizers for σ2 = 0.5 and σ2 = 0.05.
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Layer 0
q0(d̂−1,H

TH,HTy)

grad. descent step

0
d̂0 Layer L− 1

qL−1(d̂L−2,H
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grad. descent step

d̂L−2 d̂L−1

d̂H, y

FCNN

H, y
Pre-
proc.

MMSE,
suff. stat.

FCNN
HTH, HTy

d̂

Attention Detector

H, y
Pre-
proc.

MMSE,
suff. stat.

Encoder
(self-att.)

correl.
input data

FCNN
HTH, HTy

Attention Detector

d̂

Fig. 2. High-level visualization of the three presented NN-based equalizers.
Ideas from model-based methods and concepts that are used in some blocks
are given in ellipses below the blocks.

valued symbol alphabet S = Re{S′} = Im{S′}. The
NN-based data estimators are, however, not trained to directly
estimate the data symbols di, but to estimate the corresponding
so-called one-hot vectors doh,i ∈ {0, 1}|S|. Let sj ∈ S,
j ∈ {0, ..., |S| − 1} be the uniquely numbered symbols of the
symbol alphabet S. Then, a one-hot vector doh,i corresponding
to a data symbol di that exhibits the value sj contains all zeros
but a one at the jth position. The one-hot vectors doh,i are
stacked to a vector doh, serving as ground truth for training the
NNs. Further, a quadratic loss function `(doh, d̂oh) is employed
to quantify the error between the output d̂oh ∈ R2Nd|S| of an
NN and doh. It can be shown (cf., e.g., [3]), that with this
approach the estimates d̂oh,i of a properly trained NN approx-
imately contain the posterior probabilities Pr(di = sj |y),
i.e., d̂oh,i ≈ [Pr(di = s0|y), ..., Pr(di = s|S|−1|y)]T . With
the approximate posterior probabilities, LLRs can be computed
using (3). Hence, soft information of the data symbol estimates
required for coded data transmission is available. A hard
decision estimate, in turn, is the symbol corresponding to the
maximum entry in d̂oh,i.

A. Data Normalization
Proper normalization of the input data of an NN is gen-

erally very important for well-behaved training, and thus the
performance of trained NNs [31], [32]. Interestingly, in the
majority of currently available publications on NNs for data
estimation in MIMO systems (e.g., [3]–[5], [10]), the input
data of the NNs are not normalized. As we show in Sec. V-C,
applying DetNet [3] as a data estimator in a UW-OFDM
system without any data normalization (which is done in [3]
for general MIMO systems) leads to poor BER performance.
A major reason for this issue can be found by investigating the
relation between the noise variance σ2

n and the signal-to-noise
ratio (SNR) on receiver side. The performance of an equalizer
is typically determined by evaluating the achieved BER at a
specified Eb/N0, which is a measure for the SNR, where Eb
is the mean energy per bit, and N0 is the noise power spectral
density. For the following considerations, we define an SNR
measure

γ =
Ed[||Hd||22]

Ew[||w||22]
=
σ2

d tr(HTH)

N2σ2
n

, (15)

which is proportional to Eb/N0. For a specified SNR γ at the
input of the equalizer, the noise variance in time domain σ2

n
can therefore be expressed as

σ2
n =

1
N σ

2
d tr(HTH)

Nγ
. (16)

In case of a general MIMO system over an uncorrelated
Rayleigh fading channel, which is mainly used in, e.g., [3]–
[5], [10] for the performance comparison of different NN-
based data estimators, the elements of H ∈ R2N×2Nd are
drawn independently from a standard normal distribution, i.e.,
[H]lm ∼ N (0, 1), l ∈ {0, ..., 2N−1}, m ∈ {0, ..., 2Nd−1}.
This leads to EH

[
[HTH]

]
= 2NI. Due to central limit the-

orem arguments, for large N , tr(HTH) can be approximated
as tr(HTH) ≈ 2NdEH

[
[HTH]ll

]
= 4NdN . Plugging this

approximation into (16) results in

σ2
n ≈

4σ2
dNd

Nγ
. (17)
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That is, for a general MIMO system over an uncorrelated
Rayleigh fading channel, the noise variances var(wl) = Nσ2

n
of the elements wl of the noise vector w are independent
of the current channel realization, and for a fixed SNR, they
are constant. Hence, the data is implicitly normalized for this
communication system. This is not the case for UW-OFDM
systems, and thus we normalize the data such that the variances
of the elements of the noise vector become independent of
the channel realization. The data normalization is conducted
by multiplying the real-valued system model (14) by the
normalization factor

√
N/||H||F , with ||H||F =

√
tr(HTH)

denoting the Frobenius norm of H. Consequently, every
element of the noise vector after normalization has a vari-
ance var

(
(
√
Nwl)/||H||F

)
= (N2σ2

n )/(2||H||2F ) = σ2
d/(2γ),

which is independent of the channel realization. This data
normalization is implemented by multiplying both y and H
by the above-given normalization factor, which is conducted
as a pre-processing step for all the NN-based data estimators
presented subsequently. In the remainder of this paper, we omit
the normalization factor for the sake of better readability.

B. DetNet
DetNet is proposed in [3] for data estimation in MIMO

systems. Its network architecture is deduced by deep un-
folding [14] a projected gradient descent method applied to
the optimization problem of the vector ML estimator for the
model (14). The kth step of the iterative optimization method
can be expressed as

d̂k = Π

(
d̂k−1 − δk

∂||y −Hd||22
∂d

∣∣∣∣
d=d̂k−1

)
= Π

(
d̂k−1 + 2δkH

Ty − 2δkH
THd̂k−1

)
, (18)

where Π(.) denotes a nonlinear projection to a convex sub-
space D containing all possible data vectors d, i.e., S2Nd ⊂
D ⊂ R2Nd , and δk is the step width in the kth iteration.

The structure of the kth layer of the L DetNet layers is
inspired by a projected gradient descent iteration step (18).
Firstly, the affine mapping

qk = d̂k−1 + δk1H
Ty − δk2HTHd̂k−1 (19)

is applied to the layer input d̂k−1 to obtain the temporal
variable qk, where δk1 and δk2 are learned parameters. Sec-
ondly, the temporal variable is forwarded to a fully-connected
neural network (FCNN) with a single hidden layer consisting
of dh hidden neurons and ReLU activation, which replaces
the (unknown) nonlinear projection Π(.). To ease the training
of DetNet, weighted residual connections [33] with weighting
factor α, as well as an auxiliary loss inspired by the loss
function employed for the training of GoogLeNet [34] are
utilized. Further, dv-dimensional auxiliary variables vk passing
unconstrained information from layer to layer are used to
improve the performance of DetNet. We refer to [3] for more
detailed information.

Preconditioning: Due to the deduction of the layer structure
of DetNet by deep unfolding, the number of layers corresponds
to the number of required iterations of the underlying projected
gradient descent method. It is well known, that the condition
number of the Hessian matrix in an optimization problem
influences the number of iterations required for an iterative
optimization method to converge. Hence, preconditioning the

system model (14) may reduce the number of required DetNet
layers and thus the number of trainable parameters, which, in
turn, enhances both the training behavior and the inference
complexity. As also stated in [7], we have observed [1] that for
ill-conditioned channel matrices NN-based equalizers suffer
from severe performance degradation. We showed in [1] that
preconditioning distinctly narrows the eigenvalue spectrum of
the Hessian matrix S ∈ RP×P , [S]rs = ∂`(doh,d̂oh)

∂pr ∂ps
of the NN

learning problem, where pr and ps are two of the P trainable
parameters of the NN. This, in turn, allows using higher
learning rates, which leads to a faster and probably better
optimization of the NN parameters. We show the influence
of preconditioning on the DetNet performance in Sec. V-C.

In the following, we show that preconditioning does only
add a further processing step of the layer input data, while the
layer structure of DetNet remains unchanged. To this end, let
us rewrite the optimization problem of the vector ML estimator
in form of

min
d∈S2Nd

||y −HL−1Ld||22 , (20)

where L ∈ R2Nd×2Nd is an invertible matrix. Neglecting
temporarily the projection operator, a gradient descent step
for the linearly transformed vector dpr = Ld is given by

d̂pr,k = d̂pr,k−1 − δk
∂||y −HL−1dpr||22

∂dpr

∣∣∣∣
dpr=d̂pr,k−1

= d̂pr,k−1 + 2δkL
−THT

(
y −HL−1d̂pr,k−1

)
, (21)

with d̂pr,k/k−1 = Ld̂k/k−1, and L−T =
(
L−1

)T
=
(
LT
)−1

.
Hence, the kth iteration of the projected gradient descent for
d follows to

d̂k = Π
(
L−1d̂pr,k

)
= Π

(
d̂k−1 + 2δkP

−1HTy − 2δkP
−1HTHd̂k−1

)
, (22)

where P = LTL is the so-called preconditioning matrix. In
this paper, we utilize a Jacobi preconditioning matrix, which is
a diagonal matrix containing diag(HTH) on its main diagonal.
Hence, the computation of P−1, P−1HTy, and P−1HTH
can be carried out with low complexity. A comparison of
a projected gradient descent step (18) and its preconditioned
version (22) reveals that preconditioning does not change the
structure of the equation. Hence, the layer architecture of
DetNet remains unchanged, while HTy and HTH have to
be replaced by P−1HTy and P−1HTH, respectively.

C. Fully-Connected Neural Network

According to the universal approximation theorem [13], an
FCNN with a single hidden layer and sufficiently many hidden
neurons can approximate any function, and thus should also
be able to accomplish the task of data estimation. However,
as stated in [3], it is challenging to employ an FCNN for
equalization under changing channel realizations when using
the columns of H concatenated with y as input data. That is,
training an FCNN for different channels might be a hard task.
One reason for this issue might be that no model knowledge
is included in the structure of an FCNN. We therefore suggest
to include model knowledge in data pre-processing.
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To motivate the choice of the proposed data pre-processing
with the purpose of reducing redundant information, we eluci-
date three observations. Firstly, the FCNN should approximate
the estimator function of the optimal MMSE estimator (6).
An inspection of (6) reveals, that an MMSE estimate is a sum
of exponential terms, where the exponents contain3

||y −Hd||22 = yTy − 2dTHTy + dTHTHd, ∀d ∈ S2Nd .

That is, the MMSE estimator does not use the isolated data y
and H, but the terms yTy, HTy, and HTH. Secondly, it can
be shown with the help of the Fisher-Neyman factorization
theorem [35] that HTy provides a sufficient statistic for the
data estimation problem. Consequently, multiplying y by HT ,
which modifies the system model to

HTy = HTHd + HTw , (23)

preserves all the relevant information contained in y for the
estimation of d, while reducing the dimension of the available
data. Thirdly, the matched filter equalizer for the system
model (14) is given by d̂MF = HTy, which is the linear filter
designed for maximizing the output SNR [36].

With the above-given arguments, we conclude that multi-
plying both H and y by HT before using them as inputs
of an FCNN compresses the input data while preserving all
the information required for data estimation. Interestingly, also
for DetNet the quantities HTy and HTH are utilized instead
of y and H, however, due to a different motivation, and in
a different manner. Since HTH is a symmetric matrix, the
dimension of the input data is further reduced by utilizing
only the upper triangular matrix of HTH including its main
diagonal. That is, the input vector of the FCNN data estimator
is [

[HTH]00, [H
TH]T0:1,1, [HTH]T0:2,2, · · · ,

[HTH]T0:2Nd−1,2Nd−1, (HTy)T
]T
,

where [HTH]0:l,l denotes the vector containing the first l+ 1
entries of the lth column of HTH.

The utilized FCNNs for equalization are comprised of L
layers, dh neurons per hidden layer, and weighted residual
connections with weighting factor α. The employed activation
functions ϕ(.) are stated in Tab. I.

D. Attention Detector
Due to the arguments given in Sec. IV-C, we use the

compressed system model (23) for defining the inputs of the
so-called Attention Detector. Investigations on the compressed
system model (23) revealed that the entries in HTy are corre-
lated. This observation motivates the use of an NN architecture
that exploits these correlations for enhancing the estimation
performance and/or reducing the required computational com-
plexity. In order to exploit long-range correlations in large-
scale communication systems as well, we decide to utilize the
self-attention mechanism [21] instead of convolutional layers
(which only capture local dependencies) for the NN-based data
estimator. The architecture of the Attention Detector is inspired
by the Vision Transformer [37]. The Vision Transformer
solely relies on the self-attention mechanism and does not

3Here, we express the exponent with the real-valued quantities y, d, and
H instead of using the complex-valued y′, d′, and H′ as in (6).

Encoder Layer l

Encoder Layer 0

Encoder Layer Lenc − 1

Concatenation Layer

FCNN

mT
0 mT

Nd−1

m
(1)T
0 m

(1)T
Nd−1

m
(l)T
0 m

(l)T
Nd−1

m
(l+1)T
0 m

(l+1)T
Nd−1

m
(Lenc−1)T
0 m

(Lenc−1)T
Nd−1

m
(Lenc)T
0 m

(Lenc)T
Nd−1

s

d̂oh

Add & Norm Add & Norm

m
(l)T
0 m

(l)T
Nd−1

Self-Attention Layer

Feedforward Feedforward

Add & Norm Add & Norm

m
(l+1)T
0 m

(l+1)T
Nd−1

Fig. 3. Structure of the Attention Detector (left) and one of its encoder layers
(right).

employ convolutional layers for capturing spatial correlations.
Although Transformer architectures do not exhibit some of
the inductive biases of convolutional NNs (CNNs), for im-
age classification tasks the Vision Transformer shows similar
performance as SOTA CNNs, especially when being pre-
trained on large amounts of data. For further elaborations
on the network architecture of the Attention Detector, let
us start by defining its inputs, which are the rows mT

k ,
k ∈ {0, ..., 2Nd − 1 }, of the matrix

M = P−1
[
HTy, HTH

]
, (24)

where P is the Jacobi preconditioning matrix as described in
Sec. IV-B. Although the layer architecture of the Attention
Detector is not deduced by deep unfolding, we apply precon-
ditioning for obtaining a narrower eigenvalue spectrum of the
Hessian matrix of the NN learning problem, cf. Sec. IV-B. The
vectors mT

k serve as an input sequence of an encoder. Since
the rows of the equation system (23) are interchangeable, no
positional encoding is applied to the vectors. The encoder is
very similar to that of the Transformer [21]. It is comprised
of Lenc stacked encoder layers, whereby the lth encoder layer,
l ∈ {0, ..., Lenc − 1}, is schematically shown in Fig. 3.
An encoder layer with inputs4 m

(l)T
k consists of a self-

attention layer [21], followed by a batch norm layer, a single
hidden layer FCNN with dh,enc hidden neurons and ReLU
activation function, and another batch norm layer. Around
both the self-attention layer and the single hidden layer FCNN
residual connections are employed. Further, dropout [38] with
a dropout rate D is applied to the outputs of the self-
attention layer and the single hidden layer FCNN, as well
as to the input layer outputs of the latter. The outputs of
the last encoder layer m

(Lenc)T
k are concatenated to the input

vector s = [m
(Lenc)T
0 , · · · , m(Lenc)T

Nd−1 ] of a shallow FCNN with
Lfcnn hidden layers, dh,fcnn neurons per hidden layer, and an

4Note that m(0)T
k = mT

k .
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TABLE I
HYPERPARAMETER SETTINGS.

DetNet FCNN Attention Detector
η L dh dv α η L dh α ϕ(.) η Lenc dh,enc Lfcnn dh,fcnn D ϕ(.)

System I 1.9·10−3 10 80 32 0.1 6.0·10−4 10 300 0.0 ReLU 1.8·10−3 8 80 2 150 0.0 ReLU
System II 4.6·10−4 30 250 80 0.9 1.0·10−4 22 800 0.7 SeLU 3.0·10−4 10 400 3 500 0.0 SeLU

activation function ϕ(.) specified in Tab. I. The outputs of this
shallow FCNN are the final estimation results d̂oh.

V. RESULTS

In this section, we compare the proposed NN-based data
estimators for UW-OFDM with SOTA model-based equalizers
in terms of the achieved BER performance over a specified
SNR range by means of simulations, and provide an in-depth
comparison of the computational complexity of the presented
NNs and the model-based methods. For UW-OFDM, no other
NN-based equalizers have been presented yet, and thus we
regard the model-based LMMSE estimator, the DFE, and –
for simulation setups where it is computationally feasible – the
MMSE estimator as the SOTA equalizers to be used for com-
parison. However, we also show the BER performance results
of the recently published NN-based data estimators OAMP-
Net2 [4] and RE-MIMO [10], which have been proposed for
equalization in MIMO systems, for one of our simulation
scenarios. OAMP-Net2 is deduced by deep unfolding the
OAMP algorithm [39] and replacing a few scalar parameters
of the model-based method (four per iteration) by learnable pa-
rameters. RE-MIMO, in turn, implements a recurrent learning
scheme to conduct iterative symbol estimation. This NN-based
equalizer consists of three modules, where the NN architecture
of each module is chosen due to model-based considerations.
One of the three modules is very similar to the encoder of
the Transformer [21], which allows to capture dependencies
between a varying number of transmitters (and independent of
their ordering in the system model) in a MIMO system. We
study the model-based and NN-based equalizers presented in
Sec. III and IV, respectively, in different simulation scenarios
for channel coded and uncoded data transmission, and we
detail how to counteract overconfidence of NN-based data esti-
mators to obtain reliable soft information required for channel
coded data transmission. Further, we investigate the influence
of imperfect channel knowledge on the BER performance
of NN-based equalizers and model-based estimators, and we
highlight the peculiar distribution of the estimates provided by
NN-based data estimators. Due to the multitude of possible
combinations of system settings, only selected simulation
cases are presented, while those setups that do not provide
further insights are omitted. Since with non-systematic UW-
OFDM signaling a better BER performance is achievable [23],
we focus on this signaling scheme in our investigations.

A. Simulation Setup

The evaluation is conducted for two different system dimen-
sions. The parameter setup for system I is N = 12, Nd = 8,
Nu = 4, Nz = 0, and Np = 0, and for system II N = 64,
Nd = 32, Nu = 16, Nz = 12, and Np = 4. System II should
represent a real-world communication system, where Np pilot

subcarriers can be utilized for synchronization purposes. How-
ever, in our simulations, the pilot subcarriers are unused and
do not influence the presented results. Since the computational
complexity of the optimal equalizers grows exponentially with
the data vector length Nd, simulating their BER performance
for system II is computationally infeasible. Hence, we also
introduced the downsized system I, for which the BER per-
formance of the optimal model-based data estimators can be
simulated in a reasonable time, providing insights concerning
the gap between the performance achieved with an NN-based
equalizer and the lower BER bound.

We assume data transmission over a multipath channel in
form of data bursts comprised of a sequence of 1000 UW-
OFDM symbols. The channel is assumed to be stationary
for a single data burst, but to be changing independently of
all other channel realizations from burst to burst. We utilize
the statistical channel model [40] of an indoor frequency
selective environment, where the channel impulse responses
are modeled in form of tapped delay lines. The complex tap
values exhibit a uniformly distributed phase and a Rayleigh
distributed magnitude with an exponentially decaying power
profile. As in the referenced works on UW-OFDM [16], [23],
[26], we use for system II a sampling time Ts = 50 ns, and we
choose a channel delay spread of τRMS = 100 ns. For system I,
we specify the sampling time to be 200 ns while keeping the
same channel delay spread as for system II. For all results apart
from those in Sec. V-D we assume perfect channel knowledge
on receiver side. The presented BER curves are obtained by
averaging over 8000 channels.

For channel coded data transmission, a convolutional code
with generator polynomials (133, 171)8, constraint length 7,
and rate R = 1/2 is used, whereby a Viterbi channel decoder is
employed. As already mentioned, the data symbols are drawn
from a QPSK modulation alphabet.

B. Neural Network Training
The dataset for training the NNs is obtained by simulating

sample data transmissions with known payload data over ran-
domly generated multipath channels following the employed
channel model described in Sec. V-A. Since data estimation is
most challenging for transmissions over deep fading channels,
we emphasize those cases by adding a set of sample data
transmissions to the training set that solely contains transmis-
sions over deep fading channels. The channels for this subset
of the training set are found by creating 5000 times more
channels than needed and picking the channels with the most
severe fading holes. Including particularly bad channels in the
training set turns out to be beneficial for the BER performance
of the NN-based data estimators (a similar observation has
also been mentioned in [41]). Empirical investigations show
that the proportion of the subset of specifically generated bad
channels in the training set of 10 % and 50 % is a good choice
for system I and system II, respectively. Overall, the training
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Fig. 4. BER performance comparison for system I, uncoded case.

set consists of 30000 channels and 40000 channels for system I
and system II, respectively. The selection of the Eb/N0 values
for the sample data transmissions, which turns out to have a
major impact on the performance of the NNs, differs for the
simulated system setups, and thus is given with the results
for the chosen system setup. Furthermore, we pre-trained the
NNs with noiseless data transmissions, i.e., the sent data is
only disturbed by a multipath channel, over 2000 different
channels, which leads to a faster training convergence.

For the training, we employ an Adam optimizer [42] with
default settings. The learning rate is decreased exponentially,
such that the learning rate in the final optimization step is
5 % of the initial learning rate η. All NNs are trained with a
batch size of 1024 and for 60 epochs. Further, early stopping
is utilized as a regularization technique. The hyperparameters
of the NN-based equalizers are found with an extensive grid
search by evaluating the trained NNs on a validation set; the
best settings found are summarized in Tab. I.

C. Bit Error Ratio Performance – Uncoded Transmission
We start the performance comparison of the NN-based

equalizers by highlighting the importance of data pre-
processing. Without data normalization, the NNs exhibit even
worse performance than the LMMSE estimator, which is
exemplarily shown for DetNet in Fig. 4 (dotted line). Utilizing
the normalized data leads to a major performance improvement
(dashed line in Fig. 4). For DetNet, the BER performance
can be further boosted by employing preconditioning, such
that with this NN close to optimal MMSE performance can
be achieved. The FCNN performs approximately equivalently
to the DetNet without preconditioning, while the Attention
Detector can outperform the FCNN, which confirms the idea
of exploiting correlations for enhancing the estimation perfor-
mance by utilizing the self-attention mechanism. It turns out,
that the SNR utilized for the sample transmission contained
in the training set has a large influence on the performance
of the NN-based data estimators. Training at too low SNRs
leads to flattening out BER curves of the NN-based data
estimators at higher SNRs. Training solely at higher SNRs,
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Fig. 5. BER performance comparison for system II, uncoded case.

in turn, impairs the overall performance of the NNs, which
probably comes from too few data samples located around the
optimal decision boundaries (these samples are very important
for the NNs to learn good decision boundaries). Hence, the
Eb/N0 training range is another hyperparameter for the NN-
based data estimators, whereby the Eb/N0 values for the data
burst transmissions contained in the training set are chosen
randomly, with uniform distribution on a linear scale within
the specified range. For system I, all NNs are trained in the
Eb/N0 range [9 dB, 18 dB]. To get an idea how other SOTA
NN-based equalizers (however, originally not being developed
for UW-OFDM systems) perform, for this evaluation setup
we further compare our proposed NN-based data estimators
with the SOTA NN-based equalizers OAMP-Net2 [4] and RE-
MIMO [10], which have been presented for data estimation in
MIMO systems. Both NNs are trained with the same training
set (with normalized data) as the aforementioned NN-based
equalizers. For OAMP-Net2, the best hyperparameters found
are (using the original notation from [4]) T = 8 layers and
a learning rate η = 10−3. For RE-MIMO (using the notation
from [10]), the best hyperparameter setting found is T = 10
layers, ds = 102 (dimensionality of the state variable), n = 4
parallel attention heads, dTE = 24 (dimensionality of the
transmitter encoding vector), and a learning rate η = 10−4.
As shown in Fig. 4, the OAMP-Net2 is the worst performing
NN, which could be due to the fact that this NN is designed for
unitarily-invariant system matrices H, a condition that is not
satisfied in UW-OFDM systems. The RE-MIMO, which also
utilizes the self-attention mechanism, performs approximately
the same as the Attention Detector.

Regarding the model-based equalizers, we observe a large
performance gap between the LMMSE estimator and other
estimators. With the DFE, a performance close to the optimal
MMSE performance5 can be achieved, while the BER perfor-
mance difference between the vector ML estimator and the
MMSE estimator is negligible for the considered system.

As illustrated in Fig. 5, for system II, DetNet can slightly
outperform the DFE. Similar as for system I, the Attention
Detector exhibits a small performance gap compared to the
DetNet, while it outperforms the FCNN. All NNs consid-
ered clearly outperform the LMMSE baseline performance.

5As stated in Sec. III-C, for the regarded setup the hard decision estimates
of the MMSE estimator coincide with those of the bit-wise MAP estimator.
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Fig. 6. BER performance comparison for system I, uncoded transmission,
imperfect channel knowledge; solid lines: imperfect channel knowledge,
dashed lines: perfect channel knowledge.

While for DetNet the Eb/N0 training range is chosen to
be [18 dB, 27.5 dB], the Attention Detector and the FCNN
exhibit better performance for an Eb/N0 training range of
[15 dB, 27.5 dB].

D. Bit Error Ratio Performance – Uncoded Transmission with
Imperfect Channel Knowledge

As mentioned earlier, for the results presented we assume
to have perfect channel knowledge in form of the channel
impulse response (CIR). However, in practice, the CIR has
to be estimated as well, and the occurring estimation errors
naturally degrade the performance of the equalizer. Hence, in
this section we compare the influence of channel estimation
errors on the performance of the investigated model-based
and data-driven equalizers. For estimating the CIR, a known
preamble, which is defined in [43], is transmitted prior to a
data burst. Based on this preamble, the CIR is estimated with
the BLUE as described in [44].

We regard the same system setting as in Sec. V-C and
evaluate the BER performance of the equalizers for system I
using the estimated CIRs. For the NN-based equalizers, we
use the same hyperparameters as in case of perfect channel
knowledge, however, the NNs are trained with estimated CIRs
instead of true CIRs. The obtained results are shown in
Fig. 6, where the BER results for imperfect channel knowledge
are plotted with solid lines, and – for comparison – the
results with perfect channel knowledge from Sec. V-C are
plotted with dashed lines. It can be observed that imperfect
channel knowledge degrades the performance of both model-
based and NN-based equalizers in the same scale, namely by
approximately 0.7 dB.

E. Bit Error Ratio Performance – Coded Transmission
As already described in Sec. IV, the NNs are trained to

provide estimates for the posterior probabilities for every data
symbol estimate for both coded and uncoded data transmis-
sion. That is, we expect a trained NN-based data estimator
to be applicable for coded and uncoded transmission without
requiring retraining. As detailed in Sec. V-C, for uncoded
transmission it is beneficial to train the NNs for different
SNRs, where the SNR training range limits can be viewed

as hyperparameters – with this approach a good, or even
close to optimal BER performance can be achieved. However,
employing these trained NNs for coded transmission, their
performance is unsatisfactory. As shown in Fig. 9b exemplarily
for DetNet, the NN-based equalizer trained in an Eb/N0 range
of [1 dB, 9 dB] performs distinctly worse than the DFE and
the LMMSE estimator, while the same NN outperforms both
model-based equalizers for uncoded transmission (Fig. 9a).
The reason for this result can be explained by investigating
the empirical distribution of the LLRs provided by DetNet.
Comparing the LLRs of DetNet trained in an Eb/N0 range of
[1 dB, 9 dB] (Fig. 7a) with the true LLRs at Eb/N0 = 4 dB
(Fig. 7c) reveals that a vast number of LLRs provided by
DetNet has a high absolute value6, while this is not the case
for the true LLRs and also not for the LLRs of the LMMSE
estimator (Fig. 7b). That is, the NN is overconfident in many
of its decisions, which harms the performance of the Viterbi
channel decoder.

To tackle this problem, we investigated treating the data
estimation problem as a classification task, i.e., we utilized
Softmax as an output activation function of the NNs, combined
with using cross-entropy loss for training. Then, so-called label
smoothing can be applied, which is a common approach for
combating overconfidence of classification NNs [45]. Unfor-
tunately, this approach did not lead to significant performance
improvements in our experiments. However, we observed that
the training Eb/N0 range has a large impact on the distribution
of the LLRs provided by DetNet. More specifically, the over-
confidence of an NN-based equalizer can be highly reduced by
training at low SNRs. This highlights the importance of the
training SNR as a hyperparameter, which has to be chosen
differently for coded and uncoded data transmission.

Investigating solely the distribution of the LLRs, however,
is only an indicator of their reliability. We utilize an approach
described in [46] for an assessment of the LLR quality of
turbo equalizers. To this end, we apply the trained NNs on
the validation set, to obtain the estimated LLRs Lest,i for all
bits bi contained in the validation set. The estimated LLRs
Lest,i are grouped according to their value into K bins with
the value Lk, k ∈ {0, ...,K − 1} (Lk is the mean of the
estimated LLRs in bin k). The signs of Lest,i are used for
a hard decision estimate of the corresponding bits bi. With
these hard decision estimates at hand, the empirical bit error
probability

Pemp,k =
# wrong hard decisions in bin k

# bits in bin k

can be computed for all K bins. These empirical bit error
probabilities, in turn, can be utilized to determine the empirical
LLRs Lemp,k for all K bins with

Lemp,k = sign(Lk)

∣∣∣∣ln(1− Pemp,k

Pemp,k

)∣∣∣∣ . (25)

Assuming a sufficiently large number of LLR values per bin,
the empirical LLRs Lemp,k provide an approximation of the
true LLRs. The quality of the estimated LLRs Lest,i can be
ascertained by plotting Lemp,k against Lk. Since the estimated
LLRs should match the empirical ones, the plotted graph is

6We introduced an upper and a lower limit for the output values of DetNet
since, due to imperfect training, its output values can be slightly smaller than
0 or greater than 1, which leads to problems for the computation of the LLRs.
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Fig. 8. Distribution of the estimated LLRs provided by the DetNet trained
at 1.5 dB, and their relation to the empirical LLRs at a test SNR of (a)
Eb/N0 = 4dB and (b) Eb/N0 = 8dB.

ideally a linear function with slope one. However, also slopes
not equal to one allow optimal channel decoding performance
of the Viterbi decoder, since all LLRs are under- or overrated
in the same fashion. Nonlinear graphs, in turn, indicate a
loss in BER performance, since some estimated LLRs are
overrated while others are underrated at the same time. This
may lead to wrong decisions of the Viterbi channel decoder
when searching the optimum path in the trellis diagram of the
convolutional code. As shown in Fig. 8 for the LLRs provided
by DetNet when being trained at 1.5 dB, the number of LLRs
with too high value could be drastically lowered. Further, the
empirical LLRs and the estimated LLRs are related nearly
linearly for the majority of the estimated LLRs, i.e., in the
regions where the relation is nonlinear, the counts per LLR
bin are comparatively small.

As the BER curves in Fig. 9b show, DetNet trained at 1.5 dB
achieves close to optimal BER performance. Interestingly, for
uncoded transmission, the DetNet trained at Eb/N0 = 1.5 dB
performs distinctly worse than the DetNet trained in the
Eb/N0 range of [1 dB, 9 dB], which is depicted in Fig. 9a.
This supports the our observation that NN-based equalizers
have to be trained differently for channel coded and uncoded
data transmission. For the Attention Detector and the FCNN,
Eb/N0 = 0.8 dB is utilized as an SNR for training, all other
hyperparameters are chosen as for uncoded data transmission.
Both achieve close to optimal BER performance, too.

For system II, we compare the LMMSE estimator, the DFE,
and the DetNet, which is trained at Eb/N0 = 4 dB. As shown
in Fig. 10, all three investigated equalizers exhibit approxi-
mately the same BER performance for coded data transmis-
sion. Although simulating the optimal BER performance is
computationally infeasible, it can be stated that the achieved
performance of the three equalizers is very close to the optimal
performance. This statement can be verified by considering the
LLRs provided by the LMMSE estimator. They are equivalent
to the true LLRs when the conditional distribution p(d̂′i|d′i) is
Gaussian (cf. Sec. III-D). Since this condition is well fulfilled
for the system dimensions of system II, the LLRs of the
LMMSE are close to the true LLRs, leading to close to optimal
BER performance for coded data transmission.

F. Complexity Analysis

In this section, we provide a brief analysis of the inference
complexity of the presented NN-based data estimators as
well as of the LMMSE estimator and the DFE in terms
of the number of required scalar, real-valued multiplications
needed for equalization of one UW-OFDM data symbol. In
this paper, we account four real-valued multiplications for one
complex-valued multiplication. Data normalization, as well as
the complexity required for training the NNs is not regarded
in this analysis.

For DetNet, we first determine the complexity of a single
layer. Given HTH, the number of multiplications carried out
in a layer according to (19) including the projection by an
FCNN with a single hidden layer, one-hot demapping, and
the weighted residual connections is

MDetNet,k = 4N2
d︸︷︷︸

HTHd̂k

+ 2dh(Nd(|S|+ 1) + dv)︸ ︷︷ ︸
single hid. layer FCNN

+ 2Nd︸︷︷︸
δ1k·

+ 2Nd︸︷︷︸
δ2k·

+ 2Nd|S|︸ ︷︷ ︸
one-hot demap.

+ 2Nd + dv︸ ︷︷ ︸
residual

.
(26)

Overall, DetNet has an inference complexity of

MDetNet = LMDetNet,k − 2Nd|S|+ 8N2
d (Nd +Nu)

+ 4Nd(Nd +Nu) + 2Nd(2Nd + 1)
(27)

real-valued multiplications, where we consider with the sub-
tracted term that no one-hot decoding is conducted in the last
layer, while with the three added terms the computations of
HTH and of HTy, and the preconditioning are taken into
account.
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Fig. 9. Comparison uncoded and coded BER performance for system I, non-systematic UW-OFDM. DetNet is once trained in an Eb/N0 range of [1 dB, 9 dB],
and once at Eb/N0 = 1.5 dB. The FCNN and the Attention Detector are trained at Eb/N0 = 0.8 dB.
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Fig. 10. BER performance comparison for system II, coded case.

Determining the number of multiplications required by the
FCNN is straightforward and can be expressed as

MFCNN = (2N2
d + 2Nd)dh︸ ︷︷ ︸

input to hidden

+ d2h(L− 1)︸ ︷︷ ︸
hidden to hidden

+ 2dhNd|S|︸ ︷︷ ︸
hidden to output

+ 2(2N2
d +Nd)(Nd +Nu) + 4Nd(Nd +Nu) ,

(28)

where with the last two terms the computations of the upper
triangular matrix (including the main diagonal) of HTH and
of HTy are considered.

For the Attention Detector, we start by evaluating the
complexity of a single encoder layer, which consists of a
self-attention layer, a single hidden layer FCNN, layer nor-
malization, and residual connections. The inputs of the self-
attention layer are mapped to so-called queries qi, keys ki,
and values vi, i ∈ {0, ..., 2Nd − 1}, by multiplying with
learned matrices [21]. Then, self-attention scores between each
query and each key are computed, followed by a weighting of

the values vi by these scores. The number of multiplications
conducted in one encoder layer thus is

MAttEnc,k = 6Nd(2Nd + 1)2︸ ︷︷ ︸
input mappings

+ 4N2
d (4Nd + 3)︸ ︷︷ ︸

score weighting

+ 8Nd(2Nd + 1)︸ ︷︷ ︸
normalization, residual

+ 4Nddh,enc(2Nd + 1)︸ ︷︷ ︸
single hid. layer FCNN

.
(29)

For the FCNN on top of the encoder, another

MAttFcnn = 2Nddh,fcnn(2Nd + 1)︸ ︷︷ ︸
input to hidden

+ (Lfcnn − 1)d2h,fcnn︸ ︷︷ ︸
hidden to hidden

+ 2Nd|S|dh,fcnn︸ ︷︷ ︸
hidden to output

(30)

multiplications have to be performed. Hence, the complexity
of the Attention Detector is given by

MAttDet = LencMAttEnc,k +MAtt,fcnn + 8N2
d (Nd +Nu)

+ 4Nd(Nd +Nu) + 2Nd(2Nd + 1) ,
(31)

where we consider the computations of HTH and HTy, as
well as the preconditioning with the last three terms.

For the LMMSE estimator, we first regard the complexity
for obtaining the estimator matrix ELMMSE. Since the channel
is assumed to be stationary for a whole data burst, the
estimator matrix has to be computed only once per burst.
Assuming that the inversion in (10) is computed by a Cholesky
decomposition as of [47], the computation of ELMMSE entails
a complexity of

MLMMSE,burst =
14

3
N3

d + 4N2
d︸ ︷︷ ︸

inverse (Cholesky)

+ 8N2
d (Nd +Nu)︸ ︷︷ ︸

H′HH′ & multipl. with H′H

=
38

3
N3

d + 8N2
d Nu + 4N2

d . (32)

Then, given ELMMSE, the number of required multiplications
for the equalization of every received UW-OFDM vector is

MLMMSE,eq = 4(Nd +Nu)Nd . (33)
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TABLE II
NUMBER OF REQUIRED MULTIPLICATIONS OF CONSIDERED EQUALIZERS

ROUNDED TO HUNDREDS.

System I System II
DetNet MDetNet 100000 3178300
FCNN MFCNN 866400 15437800
Attention Detector MAttDet 614400 49971700

LMMSE
MLMMSE,burst 8800 550200
MLMMSE,eq 400 6100

DFE
MDFE,burst 11700 1644700
MDFE,eq 800 12300

We determine the DFE complexity by first considering
those computations that have to be done once for every data
burst. Namely, this refers to the computations of the estimator
vectors eHk and the error covariance matrices Cee,k = Nσ2

nAk,
Ak =

(
H′Hk H′k +

Nσ2
n

σ2
d
I
)−1

, for every iteration step.
We note that H′HH needs to be computed only once, and
then the matrices H′Hk Hk can be retrieved by deleting the
appropriate rows and columns. The size of H′k decrements
in every iteration, and thus we elaborate the complexity of
computing Ak given H′Hk Hk ∈ CC×C , with C ∈ {2, ..., Nd}.
Furthermore, the scaling of Ak by Nσ2

n to obtain Cee,k can
be omitted, since only the minimum value on the diagonal of
Cee,k is needed for finding the data symbol to be estimated.
In summary,

MDFE,burst = 4N2
d (Nd +Nu)︸ ︷︷ ︸
H′HH′

+ 4(Nd +Nu + 1)︸ ︷︷ ︸
last estimator vector

+

Nd∑
C=2

14

3
C3 + 4C2︸ ︷︷ ︸

Ak (Cholesky)

+ 4C(Nd +Nu)︸ ︷︷ ︸
eH
k

=
7

6
N4

d +
29

3
N3

d +
31

6
N2

d + 6N2
d Nu

+
2

3
Nd + 2NdNu −

14

3

(34)

multiplications have to be carried out once for every data burst
to obtain the Nd estimator vectors eHk . For both the estimation
of a single data symbol and the removal of the influence of this
estimate on the received vector, (Nd + Nu) complex-valued
multiplications have to be accounted for. Hence, given the
estimator vectors, equalization of every received UW-OFDM
vector with the DFE has a complexity of

MDFE,eq = 8N2
d + 8NdNu . (35)

The particular complexity numbers of the considered equal-
izers are stated in Tab. II for both system I and system II.
Obviously, the NN-based equalizers exhibit a distinctly higher
complexity than the considered model-based ones. However,
a comparison of the complexities of the DetNet and the DFE
reveals that the complexity of the DFE grows significantly
faster with the dimension of the UW-OFDM system model
than that of the DetNet. Among the considered NNs, the
DetNet is the lowest complex equalizer. That is, incorporating
model knowledge directly into the layers structure of an NN
seems to be most promising for obtaining well-performing and
comparably low complex NN-based data estimators.

G. Distributions of the Data Estimates

We also want to highlight the differences in the distribu-
tions of the estimates of the MMSE estimator, the NN-based
estimators (exemplarily shown for DetNet), and the LMMSE
estimator. To this end, we visualize the conditional distribu-
tions of their estimates, given a transmitted symbol (1+j)/

√
2,

for system I at Eb/N0 = 4 dB in in-phase/quadrature-phase
(I/Q)-diagrams. The empirical distributions of the data symbol
estimates are plotted in histograms along the I-axis and the Q-
axis. As shown in Fig. 11a, the conditional LMMSE estimates
follow, as expected, (approximately) a Gaussian distribution.
However, the MMSE estimates are distributed in a completely
different manner. As indicated by the histograms in Fig. 11b,
the vast majority of the estimates are located very close to
the constellation point. Since the MMSE estimator yields
the posterior expectation of a data symbol as an estimate,
no estimate can lie outside the square connecting the four
constellation points (marked by red crosses). The estimates of
DetNet, plotted in Fig. 11c, exhibit a distribution similar to
that of the MMSE estimates. This is in fact expected, since,
due to training the NNs with a quadratic loss function, the
NNs try to minimize the cost metric that the MMSE estimator
minimizes, namely the Bayesian mean square error. Hence,
the trained NNs approximate the MMSE estimator function.

VI. CONCLUSION

In this paper, we investigated three NN-based approaches
for data estimation in UW-OFDM systems, whereby model
knowledge was utilized in different ways. Moreover, we
described SOTA model-based equalizers, and we discussed
the equivalence of the MMSE estimator and the bit-wise
MAP estimator for the considered system setup. We pointed
out the importance of proper data normalization for NN-
based equalizers and proposed a data normalization scheme
specifically for UW-OFDM signaling. With preconditioning,
we introduced adaptions for DetNet to boost its BER per-
formance and decrease its computational complexity. Further,
we showed a model-inspired approach for data pre-processing,
and we proposed an NN-based data estimator inspired by
the Transformer network. Among the different approaches
considered for exploiting model knowledge when conduction
data estimation with NNs, deep unfolding seems to be the most
promising approach for the UW-OFDM systems, since the
adapted DetNet can achieve the best BER performance with
the lowest inference complexity. We highlighted the difficulties
when employing NNs for data estimation in channel coded
data transmission, and we introduced a measure for obtaining
reliable LLRs by NN-based equalizers. Finally, we provided
BER performance results, we conducted a complexity analysis,
and we visualized the distribution of the estimates of selected
model-based and NN-based equalizers.

APPENDIX A
EQUIVALENCE OF THE MMSE AND THE BIT-WISE MAP

HARD DECISION ESTIMATES FOR QPSK

When employing a QPSK alphabet, the data symbols d′i
are drawn from S′ := ρ{1 + j, 1− j,−1 + j,−1− j}, with
ρ = 1/

√
2 for a normalized alphabet or ρ = 1 otherwise. For
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Fig. 11. Distribution of the conditional data symbol estimates for system I at Eb/N0 = 4dB.

deriving the MMSE hard decision estimates, let us consider
the MMSE estimate of the ith data symbol in the data vector:

d̂′i =
∑

d′′∈S′Nd

d′′i p[d
′′|y′]

=
∑

d′′i,Re∈SRe

∑
d′′i,Im∈SIm

(d′′i,Re + jd′′i,Im)p[(d′′i,Re + jd′′i,Im)|y′]

=
∑

d′′i,Re∈SRe

∑
d′′i,Im∈SIm

d′′i,Rep[(d
′′
i,Re + jd′′i,Im)|y′]

+ j
∑

d′′i,Re∈SRe

∑
d′′i,Im∈SIm

d′′i,Imp[(d
′′
i,Re + jd′′i,Im)|y′]

=
∑

d′′i,Re∈SRe

d′′i,Rep[d
′′
i,Re|y′] + j

∑
d′′i,Im∈SIm

d′′i,Imp[jd
′′
i,Im|y′] ,

(36)

where SRe = SIm = {−ρ, ρ}, d′′i,Re := Re{d′′i }, and d′′i,Im :=
Im{d′′i }. That is, the real and the imaginary part of di are
estimated independently of each other. Inserting the symbols
of the symbol alphabet into (36) leads to

d̂′i = −ρp[Re{d′i} = −ρ|y′] + ρp[Re{d′i} = ρ|y′]
+ j(−ρp[Im{d′i} = −ρ|y′] + ρp[Im{d′i} = ρ|y′])

= −ρp[b0i = 0|y′] + ρp[b0i = 1|y′]
+ j(−ρp[b1i = 0|y′] + ρp[b1i = 1|y′]) ,

(37)

where in the last step the QPSK bit-to-symbol mapping
described in Sec. III-C is applied. In case of hard decision,
d̂′i is sliced to the closest constellation symbol, i.e., to ρ for
Re{d̂i} > 0, and to −ρ otherwise (accordingly for Im{d̂i}).
Hence, the real and the imaginary part of an MMSE hard
decision estimate

⌊
d̂′i
⌉

follow to

Re
{⌊
d̂′i
⌉}

=

{
ρ p[b0i = 1|y′] > p[b0i = 0|y′]
−ρ otherwise

(38)

and

Im
{⌊
d̂′i
⌉}

=

{
ρ p[b1i = 1|y′] > p[b1i = 0|y′]
−ρ otherwise

, (39)

respectively, coinciding with a hard decision estimate of the
bit-wise MAP estimator.
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