
1

Coexistence Designs of Radar and Communication
Systems in a Multi-path Scenario
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Abstract—The focus of this study is on the spectrum shar-
ing between multiple-input multiple-output (MIMO) commu-
nications and co-located MIMO radar systems in multi-path
environments. The major challenge is to suppress the mutual
interference between the two systems while combining the useful
multi-path components received at each system. We tackle this
challenge by jointly designing the communication precoder, radar
transmit waveform and receive filter. Specifically, the signal-
to-interference-plus-noise ratio (SINR) at the radar receiver
is maximized subject to constraints on the radar waveform,
communication rate and transmit power. The multi-path prop-
agation complicates the expressions of the radar SINR and
communication rate, leading to a non-convex problem. To solve it,
a sub-optimal algorithm based on the alternating maximization
is used to optimize the precoder, radar transmit waveform
and receive filter iteratively. Simulation results are provided to
demonstrate the effectiveness of the proposed design.

Index Terms—MIMO communications, multi-path combining,
pulsed radar, radar and communication coexistence.

I. INTRODUCTION

THE explosive growth of mobile devices has placed an
urgent demand for exploring extra radio spectrum re-

sources. To cope with that, the frequency bands traditionally
occupied by radar systems are shared with the wireless com-
munication systems, e.g., sub-6 GHz band leveraged by air
traffic control radars and long-range weather radars [1], and
the millimeter wave (mmWave) band conventionally assigned
to automotive radars and high-resolution imaging radars [2].
This has led to strong interest in the coexistence of radar and
communication (CRC) [3].

The primary challenge of CRC is to manage the interference
at both radar and communication systems. Early studies in-
cluded policies for opportunistic spectrum access [4], separate
radar waveform design [5], [6] and separate communica-
tion receiver design [7]. The joint design of the radar and
communication signals increases the degrees of cooperation
between the two systems, thus suppressing the interference
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more effectively. The cooperative spectrum sharing between
a single-input single-output (SISO) pulsed radar and a SISO
communication system was considered in [8], [9]. Specifically,
in [8], the performance metric of the communication system
was formulated as a weighted sum of rates with and without
the radar interference, which is then maximized with con-
straints on radar signal-to-interference-plus-noise-ratio (SINR)
and transmit power. The work of [9] investigated radar-
oriented multi-carrier CRC systems and developed optimum
power allocation strategies to maximize the radar SINR subject
to communication throughput and power constraints.

For the CRC systems based on multiple-input multiple-
output (MIMO) architectures, cooperative mutual interference
management methods in the space-time domain were proposed
in [10], [11]. In [10], the communication codebook was jointly
designed with MIMO-matrix completion (MC) radar sampling
scheme to minimize the effective interference power of the
radar system, while the average capacity and transmit power
constraints on the communication system were taken into ac-
count. The authors in [11] borrowed the interference alignment
methods from communication theory and jointly designed
the transmit and receive beamformers for both the MIMO
radar and MIMO communication systems to eliminate mutual
interference. A more practical multiple-antenna scenario was
considered in [12], [13], where the radar waveform was chosen
to bear the requirements concerning range resolution, sidelobe
level and envelope constancy. In [12], the radar SINR at a sin-
gle resolution cell was maximized subject to the constraints on
the transmit power, the communication rate and the similarity
of the radar waveform to a reference signal. In [13], the figure
of merit was constructed as the inverse of the harmonic mean
of the radar SINR across multiple resolution cells, which was
minimized under the constraints similar to those in [12].

The aforementioned contributions generally assume that
the CRC systems detect the target via a direct line-of-sight
(LoS) path and serve communication users in rich scattering
environments. Recently, to meet the demand for more spectral
and spatial resources, both radar and communication systems
have evolved towards the same direction of large bandwidth
and massive antennas, which makes physical channels exhibit
a sparse multi-path structure [14], [15]. Although dispersed
signals from Non-LoS (NLoS) paths may damage communica-
tion and radar performance, they also provide more degrees of
freedom (DoFs). Specifically, for communication, since NLoS
propagation provides diversity and multiplexing gains, it is
necessary to combine multi-path components to enhance data
transmission performance [16], [17]. For radar, the useful tar-
get multi-path returns include not only the backscattered signal
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along LoS, but also echoes from reflectors. By exploiting
the geometric relationship between the NLoS paths and the
reflectors in the resolvable multi-path components, the radar
system can combine the multi-path channels to change them
from invalid interference to effective signals, thus enhancing
the detection capability [18]–[21].

All these techniques are developed for multi-path combining
of individual radar or communication systems. However, for
the CRC systems in sparse multi-path environments, it be-
comes more complex. Specifically, the multi-path combining
of each system is for drastically different purposes, and the
existence of mutual interference poses greater challenges on
it. As a consequence, the known multi-path combining designs
for radar-only or communication-only are inapplicable for the
coexistence scenario. To the best of our knowledge, combining
useful multi-path signals from individual systems and simulta-
neously suppressing the mutual interference between the two
systems for better detection performance and higher data rates
has not been investigated before.

Motivated by the above observations, in this work, we
consider the coexistence between a co-located pulsed MIMO
radar and a single-user MIMO communication system in
sparse multi-path environments. The communication precoder,
radar transmit waveform and receive filter are jointly designed
to achieve interference suppression and multi-path combining.
Specifically, we take the SINR and the transmission rate as
the performance metrics of the radar system and the commu-
nication system, respectively. In order to effectively utilize the
diversity gain brought by multi-path propagation, the multi-
path returns of the target are exploited to further improve
the SINR. The existence of the mutual interference makes the
simultaneous optimization of the SINR and rate difficult. To
mitigate the impact of interference on the considered CRC
system, we formulate the radar-centric design strategy, where
the radar SINR is maximized with constraint on the commu-
nication transmission rate. The resulting problem is complex
due to the non-convex constraints and non-concave objective
function. We adopt the alternating optimization method to
decouple the optimization variables and propose effective
algorithms to solve each non-convex sub-problems. The main
contributions are summarized as follows.

• Multi-path CRC model: Different from previous works
[10]–[13], we consider the MIMO CRC systems in sparse
multi-path environments and construct the correspond-
ing multi-path signal model. Each system suffers from
not only the interference form its counterpart but also
the multi-path propagation of its own transmission. We
generalize the traditional performance metrics of radar
SINR and communication transmission rate to multi-path
situations. The suppression of mutual interference and
multi-path combining of useful signals are necessary to
enhance the performance of each system.

• Communication precoder design: Compared with the
communication design in [10]–[13], our constructed sub-
problem on the communication precoder is more in-
tractable due to multi-path propagation and dynamic radar
interference. We exploit the successive convex approxi-
mation (SCA) method to approximate the sub-problem

as a series of convex quadratically constrained quadratic
programming (QCQP) problems. Further, the alternating
direction method of multipliers (ADMM) method is uti-
lized to accelerate the solution of each QCQP problem
in the SCA procedure.

• Radar waveform design: In contrast to the waveform
design for LoS detection, we consider the exploitation
of multi-path target echoes and incorporate common
waveform constraints into the sub-problem. Specifically,
we use the SCA method to approximate the sub-problem
as a series of fractional semi-definite programming (SDP)
problems. When considering the similarity constraint, we
construct an equivalent problem of each fractional SDP
problem to solve it optimally. When considering the peak-
to-average power ratio (PAPR) constraint, we use the
alternate projection to efficiently obtain the solution of
each fractional SDP problem.

The remainder of the paper is organized as follows. Section
II introduces the system model and formulates the optimization
problem. The SCA-based algorithm for obtaining the com-
munication precoder is presented in Section III. Section IV
develops effective radar waveform design algorithms under
similarity and PAPR constraints, respectively. The numerical
results are given in Section V, followed by the conclusions
drawn in Section VI.

Notations: We use bold lowercase letters to represent col-
umn vectors, and bold uppercase letters to represent matrices.
The operators (·)T , (·)∗ and (·)H correspond to the transpose,
conjugate and Hermitian transpose, respectively. tr (A), |A|,
rank (A) and vec(A) stand for the trace, the determinant, the
rank and the vectorization operation of the matrix A, respec-
tively.M (A) denotes the normalized principle eigenvector of
A. A ≻ 0 (A ≽ 0) indicates that A is positive definite (positive
semidefinite). ∥a∥ is the Euclidean norm of the vector a. IM
is a M × M identity matrix. The symbol ⊗ represents the
Kronecker product. CM×N denotes the set of complex-valued
M ×N matrices. ℜ{x} refers to the real parts of a complex
number x. E(·) denotes the statistical expectation. Finally,
x ∼ CN (a,A) means that x follows a complex Gaussian
distribution with mean a and covariance matrix A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the scenario illustrated in Fig. 1, where a co-
located pulsed MIMO radar operates on the same frequency
band as a single-user MIMO communication system. The
communication system is composed of a base station (BS)
and a communication user (CU) equipped with NT and NR

antennas, respectively, where the BS serves the CU with de-
sired rates in the presence of multi-path propagation generated
by far-field scatterers. The radar system is equipped with MT

transmit and MR receive antennas, which detects a point-like
target in the presence of diffuse multi-path. All antennas are
assumed to be deployed in half-wavelength spaced uniform
linear arrays.

The radar pulse signal is transmitted at a duration of K/B,
where B denotes the sampling rate of the radar system. A
burst of P pulses are transmitted at a pulse repetition interval
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Fig. 1. Spectrum sharing between a co-located MIMO radar and a MIMO
communication system in multi-path environments.

(PRI) of K̃/B in a coherent processing interval (CPI), and P
is chosen in such a way that no cell migration takes place in
the CPI [8]. Denote s (k) ∈ CMT×1 as the discrete-time trans-
mitted signal at time instant k for

(
k mod K̃

)
∈ {1, . . . ,K}.

Then, the transmit radar waveform during each PRI can be
represented by S = [s (1) · · · s (K)] ∈ CMT×K .

For the communication system, the BS continuously trans-
mits communication symbols to the CU during the CPI1. The
symbol vector transmitted at time instant k is denoted by
d (k) ∈ CD×1 with D being the number of data streams and
satisfying D ≤ min {NT , NR}. These symbols are assumed
to be independent and identically distributed (i.i.d.), i.e.,
d (k) ∼ CN (0, ID) ,∀k [22]. Denote the precoder for the BS
as V ∈ CNT×D. After precoder, the symbol vectors for the
CU become x (k) = Vd (k) ∈ CNT×1,∀k.

We assume that MIMO radar and MIMO communication
systems are coordinated through a centralized controller [11],
[12], which collects channel state information of the whole
network, designs appropriate transmit signals, and distributes
them to the corresponding systems.

A. Radar Performance

As shown in Fig. 1, the signal backscattered from the target
is received at the radar via a direct LoS path and several
indirect NLoS paths. In general, multi-path propagation may
create virtual targets, which needs to be distinguished from the
real target using their different features such as distance and
signal strength, etc [23], [24]. If the geometric characteristic
of the reflector are known, the multi-path propagation can
be predicted and the target echoes along NLoS paths can
be exploited to enhance the radar sensing2. Here we mainly

1The clocks at the BS and the radar are updated periodically, so that the
clock offset between them can be ignored. The clock information of the CU
can be fed back to the radar through the BS. The radar receiver and the CU
sample their respective received signals with the same sampling rate at the
agreed time, thus realizing the synchronization of the sampling time [11].

2Environmental prior information, e.g., the three-dimension digital map of
the detection area, is essential to obtaining the geometric characteristic. These
information can be acquired by the light detection and ranging (LIDAR) or
synthetic aperture radar (SAR) imagery. Then, the multipath propagation can
be estimated by methods such as the ray tracing method, the parabolic wave
equation method [25] or the finite-difference frequency-domain method [26].

consider the exploitation of first-order reflection that can be
completely separated from the direct target echo in the fast-
time domain. In addition, the radar is also subject to clutter
and communication interference from different regions. To
simplify the exposition and without loss of generality, we
analyze the radar operation in the p-th PRI.

Assume that all delays are integral multiples of 1/B. Then,
the round-trip delay of the target echo along the LoS path
can be denoted as 2k0/B with k0 ∈

{
K, . . . , K̃ −K

}
, i.e.,

the target will be present in an unknown range cell k0 with
k0 ∈

{
K, . . . , K̃ −K

}
. With aid of the reflection surface,

the radar can also detect the target along the NLoS paths.
The scattering from the rough surface can be modeled by
multiple spatially distributed reflections from the patches that
make up the surface. Each reflection is associated with the
formation of a bistatic configuration of ”radar”-”scattering
patch”-”target”, resulting in two types of indirect path return
(see
−→
OP→

−→
PT→

−→
TO and

−→
OT→

−→
TP→

−→
PO in Fig. 1). Moreover,

the signals from different patches are statistically independent
of each other and can be modeled as Gaussian random
processes using the central limit theorem [18], [27]. Suppose
that there exists J patches causing the target returns along
NLoS paths. The paths associated with the j-th patch have a
relative propagation delay of kj compared with the target echo
along the LoS path. After aligning the time delays of each
path, the multi-path returns of the target, denoted by Ym, can
be formulated as3

Ym =α0br (θ0)bT
t (θ0)S +

J∑
j=1

αj

[
br (θ0)bT

t (θj)+

br (θj)bT
t (θ0)

]
S,

(1)

where αj = α0ρj with α0 and ρj ∼ CN
(
0, σ2

ρ,j

)
denoting

the complex amplitude of the target and the j-th patch,
respectively; θ0 and θj denote the azimuth of the target and the
j-th patch, respectively; bt (θ) and br (θ) denote the transmit
steering vector and receive steering vector of the radar at angle
θ, respectively, given by

bt (θ) =
1√
MT

[
1, e−jπ sin θ, . . . , e−jπ(MT−1) sin θ

]T
,

br (θ) =
1√
MR

[
1, e−jπ sin θ, . . . , e−jπ(MR−1) sin θ

]T
.

Assume that the clutter region contains Q elements causing
clutter return, in which the q-th element is located in the
angular direction of θ̃q . Then, the clutter return, denoted by
Yc, can be given by

Yc =

Q∑
q=1

α̃qbr

(
θ̃q
)
bT
t

(
θ̃q
)
SJk̃q

, (2)

where α̃q ∼ CN
(
0, σ2

α̃,q

)
accounts for the complex scattering

coefficient of the q-th element from clutter region; k̃q denotes

3Possible Doppler phase variations can be ignored within a PRI, since one
single PRI duration K̃/B is generally short [28].
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the relative delay compared with the target echo along the LoS
path; and Jk ∈ CK×K is the shift matrix with

Jk (i, j) =

{
1, if i− j = k
0, if i− j ̸= k

.

We also consider G-path channels between the BS and the
radar receiver. Denote the direction of departure (DoD) and
direction of arrival (DoA) of the g-th path by φg

cr and ϕg
cr, re-

spectively. Then, the interference signal of the communication
system on the radar system, denoted by Ycr, can be modeled
by

Ycr =

G∑
g=1

βgbr (ϕ
g
cr) aTt (φg

cr)VDg, (3)

where βg ∼ CN
(
0, σ2

β,g

)
is the gain of the g-th path; at (φ)

denotes the transmit steering vector of the BS at angle φ, given
by

at (φ) =
1√
NT

[
1, e−jπ sinφ, . . . , e−jπ(NT−1) sinφ

]T
;

and Dg ∈ CD×K denotes the communication data segment
received by the radar along the g-th path. Since there is a large
overlap between the communication scenario and the sensing
scenario, it is possible for the radar to receive the signal that
from BS to target to radar. It is difficult to use this part of the
signal carrying target information for sensing. Therefore, we
only treat it as a interference.

Finally, the received space-time signal, denoted by Y ∈
CMR×K , can be modeled as

Y = Ym + Yc + Ycr + Yn, (4)

where Yn denotes the additive noise, the entries of which are
modeled as independent complex Gaussian random variables
with zero mean and variance σ2

r . We can recast Y in vector
form as

y =

J∑
j=0

αjHjs +
Q∑

q=1

α̃qH̃qs +
G∑

g=1

βgHg
cr(IK ⊗ V)dg + yn,

(5)
where H0 = IK ⊗

(
br (θ0)bT

t (θ0)
)
; Hj =

IK ⊗
(
br (θ0)bT

t (θj) + br (θj)bT
t (θ0)

)
; H̃q =

JT
k̃q
⊗
(
br

(
θ̃q
)
bT
t

(
θ̃q
))

; Hg
cr = IK ⊗

(
br (ϕ

g
cr) aTt (φg

cr)
)
;

s = vec (S); dg = vec (Dg) and yn = vec (Yn).
The SINR can be used to measure the detection performance

of the radar system [29]–[31]. In order to achieve the best
detection performance, we combine the multi-path returns to
maximize the output SINR4. After y being filtered by a space-
time filter w ∈ CMRK , the SINR can be constructed as (6),

4The detection probability monotonically increases with respect to (w.r.t.)
the output SINR under Gaussian conditions [32], [33].

as shown at the top of next page, where σ2
α,0 = |α0|2 and

σ2
α,j = |α0|2σ2

ρ,j , j = 1, . . . , J and

R (V, s) =
G∑

g=1

σ2
β,gHg

cr (IK ⊗ V) D̃g

(
IK ⊗ VH

)
(Hg

cr)
H
+

Q∑
q=1

σ2
α̃,qH̃qssHH̃

H

q + σ2
rIMRK

(7)
with D̃g = E

{
dgdH

g

}
. It can be observed from (6) that

the optimal w for the space-time filter can be obtained by
maximizing the generalized Rayleigh quotient of Ψ (s) =∑J

j=0 σ
2
α,jHjssHHH

j and R (V, s), i.e.,

w⋆ = arg max
w

wHΨ (s)w
wHR (V, s)w

=M
(
R−1 (V, s)Ψ (s)

)
. (8)

Then, using (8), SINR (w, s,V) can be reformulated as

SINR (s,V) =

J∑
j=0

σ2
α,j

sHHH
j wwHHjs

sHR̃s + r (V)
, (9)

where R̃ =
∑Q

q=1 σ
2
α̃,qH̃

H

q wwHH̃q and r (V) =

wH
(∑G

g=1 σ
2
β,gHg

cr (IK ⊗ V) D̃g

(
IK ⊗ VH

)
(Hg

cr)
H

+

σ2
rIMRK

)
w. Since we assume that the sampling rate of the

communication system is the same as that of the radar system
and the data symbols at different times are i.i.d., we have
D̃g = IKD.

In the special case of J = 0, i.e., the radar LoS detection,
SINR (w, s,V) can be rewritten as

SINR (s,V) = σ2
α,0sHHH

0 R−1 (V, s)H0s,

which has the same form as that in [34], [35].
We assume that σ2

α,0 is known,
{
θj , σ

2
ρ,j

}J
j=1

,{
θ̃q, σ

2
α̃,q

}Q
q=1

and
{
φg
cr, ϕ

g
cr, σ

2
β,g

}G
g=1

can be acquired
by cognitive paradigm [10]–[13], [36]. These channel
conditions are assumed to be unchanged within a CPI. It
is worth mentioning that multipath not only improves the
detection probability of radar, but also helps parameter
estimation. Specifically, on the one hand, the multipath
structure information can be used to obtain higher-precision
parameters such as DoA, compared with traditional subspace
based DoA estimators [37]. On the other hand, the multipath
echoes can be used to enhance the SINR, which will also
bring higher-precision distance and angle measurements [38].

B. Communication Performance

The signal received by the CU in the p-th PRI is subject to
intermittent radar interference and noise. Then, the received
signal at time instant k can be modeled by

r (k) = rm (k) + rrc (k) + rn (k) , (10)

where rm (k) denotes the desired communication multi-path
signal, rrc (k) denotes the interference of the radar system
on the communication system, and rn (k) denotes the additive
noise. The entries of rn (k) are independent complex Gaussian
random variables with zero mean and variance σ2

c .
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SINR (w, s,V) =

E


∣∣∣∣∣wH

J∑
j=0

αjHjs

∣∣∣∣∣
2


E


∣∣∣∣∣wH

Q∑
q=1

α̃qH̃qs

∣∣∣∣∣
2
+ E


∣∣∣∣∣wH

G∑
g=1

βgHg
cr(IK ⊗ V)dg

∣∣∣∣∣
2
+ σ2

rwHw

=

J∑
j=0

σ2
α,j

wHHjssHHH
j w

wHR (V, s)w
. (6)

Denote L as the number of paths between the BS and
the CU. The DoD and DoA of the l-th path are represented
by ϑl

t and ϑl
r, respectively. Since the delay of each path

will distort the received communication symbols at the CU,
we assume that the effect can be perfectly pre-compensated
at the BS with given estimated delay parameters by using
existing compensation methods [16], [17]. Then, rm (k) can
be formulated as

rm (k) =

L∑
l=1

υlGlx (k), (11)

where υl ∼ CN
(
0, σ2

υ,l

)
and Gl = ar

(
ϑl
r

)
aT
t

(
ϑl
t

)
denote the

gain and the transmit-receive steering matrix of the l-th path,
respectively, while ar (ϑ) is the receive steering vector of the
CU at angle ϑ, given by

ar (ϑ) =
1√
NR

[
1, e−jπ sinϑ, . . . , e−jπ(NR−1) sinϑ

]T
.

Assuming I scatterers reflecting the radar pulses towards
the CU, rrc (k) can be expressed as

rrc (k) =
I∑

i=1

γiar
(
φi
rc

)
bT
t

(
ϕi
rc

)
s
(
k − k̃irc

)
, (12)

where γi ∼ CN
(
0, σ2

γ,i

)
accounts for the gain of the i-th

scattering path; φi
rc, ϕi

rc and k̃irc ∈
{
0, . . . , K̃ − 1

}
are the

DoA, DoD and the delay of the i-th path, respectively. The in-
termittent nature of the radar interference can be characterized
by the following matrix Li [13]

Li =

{[0K,k̃i
rc

IK 0K,K̃−K−k̃i
rc

]
, if k̃irc ∈ K1[

JK̃−k̃i
rc

0K,K̃−2K J−K+K̃−k̃i
rc

]
, if k̃irc ∈ K2

,

where K1 =
{
0, . . . , K̃−K

}
, K2 =

{
K̃−K+1, . . . , K̃−1

}
.

Then, we have s
(
k − k̃irc

)
= SLie

(
k −

(
p − 1

)
K̃
)

=(
eT
(
k − (p− 1) K̃

)
LT
i ⊗ IMT

)
s, where e (n) ∈ CK̃ is a

direction vector whose n-th entry is one, while all the other
entries equal to zero. Thus, the radar interference rrc (k) can
be rewritten as

rrc (k) =
I∑

i=1

γiGi
rc (k) s, (13)

where Gi
rc (k) = ar

(
φi
rc

)
bT
t

(
ϕi
rc

) (
eT
(
k− (p− 1) K̃

)
LT
i ⊗

IMT

)
.

Using (10), (11) and (13), the achievable transmission rate
at time instant k can be calculated as

MIk (s,V) = log

∣∣∣∣∣
(

L∑
l=1

σ2
υ,lGlVVHGH

l

)(
Rk

c (s)
)−1

+ INR

∣∣∣∣∣ ,
(14)

where Rk
c (s) = σ2

c INR
+
∑I

i=1 σ
2
γ,iG

i
rc (k) ssH

(
Gi

rc (k)
)H

.
Due to the intermittent radar interference onto the commu-
nication link, the radar system presents different interference
covariance matrix Rk

c (s) at each time instant of communica-
tion data transmission. Then, the average communication rate
during the p-th PRI is given by

MI (s,V) =
1

K̃

K̃∑
k=1

MIk (s,V). (15)

It is worth mentioning that we assume here that the sampling
rate of the communication system is the same as that of the
radar system, which is reasonable in some CRC scenarios,
e.g., the coexistence of surveillance radar and MIMO com-
munication [28]. When coexisting with radar with high range
resolution, the sampling rate of communication system will
be much lower than that of radar system. Assume that a total
of C̃ communication symbols sent within a PRI. Then, the
sampling rate of the communication system is C̃B/K̃. Thus,
MI (s,V) can be formulated as

MI′ =
1

C̃

C̃∑
c̃=1

log

∣∣∣∣∣
(

L∑
l=1

σ2
υ,lGlVVHGH

l

)(
R̄c̃

c (s)
)−1

+ INR

∣∣∣∣∣,
(16)

where

R̄c̃
c (s) =

∑I

i=1
σ2
γ,iG

i
rc

(
(c̃− 1)K̃/C̃ + 1

)
ssH(

Gi
rc

(
(c̃− 1)K̃/C̃ + 1

))H
+ σ2

c INR
.

It can be observed that (16) has the same form as that of (15).
Thus, the difference in the time scales of the two systems
does not have much impact on the forms of their respective
performance metrics.

Similar to the radar system, we also assume that{
Gl, σ

2
υ,l

}L
l=1

and
{
φi
rc, ϕ

i
rc, σ

2
γ,i

}I
i=1

can be estimated. These
channel conditions are assumed to be unchanged within a CPI.

C. Problem Formulation

For the radar system, the relevant figure of merit is the
output SINR defined in (9). We can see that the communication
interference brings challenges to the radar system to combine
the target return along the LoS path and J NLoS paths. For
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the communication system, the relevant merit is the transmis-
sion rate given by (15). The radar system presents different
interference covariance matrix Rk

c (s) at each time instant
of communication data transmission. This non-homogeneous
interference increases the difficulty of L communication paths
combining. To effectively suppress the mutual interference, we
jointly design the radar waveform s and the communication
precoder V to maximize the radar SINR while guaranteeing a
minimum required communication transmission rate, denoted
by MI0. The corresponding optimization problem is formu-
lated as follows.

P0: max
s,V

J∑
j=0

σ2
α,j

sHHH
j wwHHjs

sHR̃s + r (V)

s.t. MI (s,V) ≥ MI0 (17a)

tr
(
VVH

)
≤ PB (17b)

∥s∥2 ≤ PR, (17c)

where PB and PR denote the maximum transmit power of the
BS and the radar, respectively.

Before proceeding to solve P0, we compare our formulated
problem with those of the existing works related to radar-
centric CRC. In [10], the authors study the co-design of the
MIMO-MC radar sampling scheme and the communication
covariance matrix to reduce mutual interference. However,
the proposed communication design cannot generalize to the
multi-path scenarios we consider. In [12], [13], the radar
waveform, receive filter and communication codebook are
jointly designed to achieve the tradeoff between radar SINR
and communication rate. However, the multi-path combining
of useful signals for each system is not considered and the pro-
posed communication codebook and radar waveform design
algorithms don’t work for P0. In our constructed problem, the
radar SINR and the communication rate have more complex
forms than those in previous works, which makes it more
difficult to deal with the non-concave objective function and
non-convex constraint (17a). We can adopt the alternating
optimization method to decouple V and s. Specifically, we
will decompose P0 into two sub-problems for V and s,
respectively. Multi-path propagation becomes a challenge to
solving each non-convex sub-problem. We will then develop
fast algorithms with a polynomial computational complexity
to get high-quality solutions.

III. COMMUNICATION PRECODER DESIGN

In this section, we will consider the optimization of the
communication precoder V with fixed radar waveform s, that
is,

P1: min
V

r (V)

s.t. (17a), (17b).
(18)

P1 is challenging due to the non-convex constraint (17a).
When L = 1, P1 has a similar form to the communication
space-time covariance matrix design in [10], [12]. Using the
Lagrange dual-decomposition method and ellipsoid method
can effectively design the communication precoder in this
special scenario. When L > 1, multi-path propagation and the

dynamic interference make it difficult to deal with the non-
convexity. In the following, we will obtain a general precoder
by solving P1 with the SCA and ADMM.

A. Sub-Optimal Solution Based on SCA

This subsection focuses on approximating P1 by a series of
convex QCQP problems. We first need to construct a surrogate
function to approximate MI (s,V) defined in (15), so that the
SCA method can be used to eliminate the non-convexity of
(17a). Since MI (s,V) is non-convex w.r.t. V, it is challenging
to derive its minorizer using the first-order Taylor expansion.
To proceed, we resort to the following lemma to convert
MI (s,V) to a tractable form.

Lemma 1 (Transformation of MI (s,V)): MI (s,V) can be
equivalently rewritten as

MI (v) =
1

K̃

K̃∑
k=1

log
∣∣∣C(Ek (v))

−1CH
∣∣∣, (19)

where v = vec (V), C = [INRNTD, 0NRNTD×NR
] and

Ek (v)

=

[
INRNTD ∆

1
2 (INR

⊗ v∗)(
INR
⊗ vT

)
∆

1
2 Rk

c (s) +
(
INR
⊗ vT

)
∆ (INR

⊗ v∗)

]
.

(20)
with ∆ defined in (54).

Proof: See Appendix A.
Define f (v) = MI0−MI (v). Constraint (17a) is equivalent

to f (v) ≤ 0. Note that MI (v) is convex w.r.t. Ek (v) [39].
Then, we can use its first-order condition to approximate the
constraint f (v) ≤ 0, given by a series of convex constraints
given as follows.

Lemma 2 (SCA-Based Transformation of Constraint (17a)):
(17a) can be successively approximated by the following
convex quadratic constraint

f̄ (v |v̄ ) = vHΓ̄22 (v̄) v− 2R
(
Γ̄12 (v̄) v

)
+MI (v̄) ≤ 0, (21)

where Γ̄22 (v̄), Γ̄12 (v̄) and MI (v̄) are defined in (64), (65)
and (61), respectively, with v̄ being the solution in the previous
SCA iteration. In the case of v = v̄, f̄ (v |v̄ ) satisfies f (v̄) =
f̄ (v̄ |v̄ ).

Proof: See Appendix B.
Similar to constraint (21), we also need to convert

the objective function r (V) into a convex one w.r.t.
v. Before doing so, we first define W = wwH and
partition it into a block matrix, i.e., W = (Wij)K×K ,
where Wij ∈ CMR×MR can be calculated by Wij =
w ((i− 1)MR + 1 : iMR)wH ((j − 1)MR + 1 : jMR) for(
i, j
)
∈
{
1, . . . ,K

}2
. Then, r (V) can be transformed to a

convex quadratic function in the following lemma.
Lemma 3 (Transformation of r (V)): r (V) can be equiva-

lently rewritten as
r̃ (v) = vHΠv, (22)

where Π = ID ⊗
(∑G

g=1

∑K
i=1 σ

2
β,g(T

g
cr)

HWiiTg
cr

)
with

Tg
cr = br (ϕ

g
cr) aTt (φg

cr).
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Proof: After removing the term unrelated to V, r (V) can
be rewritten as

r̃ (V) = wH

(
G∑

g=1

σ2
β,gHg

cr

(
IK ⊗ VVH

) (
Hg

cr

)H)w

(a)
= wH

(
G∑

g=1

σ2
β,gIK ⊗

(
Tg
crVVH

(
Tg
cr

)H))w

=

G∑
g=1

σ2
β,gtr

((
IK ⊗

(
Tg
crVVH

(
Tg
cr

)H))W
)

=

G∑
g=1

σ2
β,g

K∑
i=1

tr
(

Tg
crVVH

(
Tg
cr

)HWii

)
= tr

(
VVH

(
G∑

g=1

K∑
i=1

σ2
β,g

(
Tg
cr

)HWiiTg
cr

))
(b)
= vHΠv,

(23)

where the procedure (a) comes from Hg
cr = IK ⊗

br (ϕ
g
cr) aTt (φg

cr) and the procedure (b) uses the identity
that tr (A1A2A3A4) = vecT (A4)

(
A1 ⊗ AT

3

)
vec
(

AT
2

)
. It is

easy to verify that Π is Hermitian positive semidefinite.
Combining the above lemmas, we have the following propo-

sition.
Proposition 1 (SCA-Based Transformation of P1): P1 can

be successively approximated by the following QCQP problem

P1.1
(
v̄
)
: min

v
vHΠv

s.t. (21)

vHv ≤ PB .

(24)

Denoting the s-th solution of the SCA procedure as v(s), we
can obtain v(s+1) by solving P1.1

(
v(s)
)
.

Proof: With Lemma 3, we give a convex quadratic
representation of original objective function r (V). By ap-
plying Lemma 1 and Lemma 2, we convert the non-convex
constraint (17a) into a convex one. By using the identity that
tr
(
AH

1 A2

)
= vecH (A1) vec (A2), we convert the constraint

(17b) to vHv ≤ PB . Thus, P1.1
(
v̄
)

is a convex QCQP
problem.
P1.1

(
v̄
)

can be cast as a second-order cone pro-
gramming (SOCP) problem and solved by the interior-
point methods (IPM) [40]. Solving the SOCP problem re-
quires O (2 log (1/ε)) iterations to converge, where ε de-
notes the relative accuracy and each iteration has a com-
putational complexity of O

(
(DNT )

3
+ DNT

(
(DNT )

2
+

(DNT + 1)
2)) [41]. Denote Ns1 as the number of iterations

for the SCA method. Then, the total complexity of solv-
ing P1 is O

(
2 log (1/ε)Ns1

(
(DNT )

3
+ DNT

(
(DNT )

2
+

(DNT + 1)
2))). Since the IPM will increase the computation

burden in large-scale MIMO systems, we will leverage the
ADMM in [42] to more efficiently solve P1.1

(
v̄
)

next.

B. Low-Complexity Design through ADMM

In this subsection, we find the optimal solution to P1.1
(
v̄
)

by the ADMM. More specifically, we first transform P1.1
(
v̄
)

to the following equivalent problem by introducing auxiliary
variables vi ∈ CDNT , i = 1, 2.

P1.2
(
v̄
)
: min

v,{vi}
vHΠv (25a)

s.t. v = vi, i = 1, 2 (25b)

vH
1 v1 ≤ PB (25c)

vH
2 Γ̄22 (v̄) v2 − 2R

(
Γ̄12 (v̄) v2

)
≤ −MI (v̄) .

(25d)

Let C1 and C2 denote the feasible regions of (25c) and (25d),
respectively. Define the indicator functions as

ICi
(vi) =

{
0, if vi ∈ Ci
+∞, otherwise

, i = 1, 2. (26)

Then, using (26), we can incorporate the constraints (25c)
and (25d) into (25a) and construct the following ADMM
reformulation of P1.1

(
v̄
)

P1.3
(
v̄
)
: min

v,{vi}
vHΠv +

2∑
i=1

ICi (vi)

s.t. (25b).

(27)

The augmented Lagrangian of P1.3
(
v̄
)

is given by

L (v, {vi} , {ci})

= vHΠv +

2∑
i=1

ICi
(vi) +

ρ̄

2

2∑
i=1

∥vi − v + ci∥2,
(28)

where ci is the scaled dual variable associated with the
constraint v = vi, and ρ̄ ≥ 0 denotes the penalty parameter.
We can observe that L (v, {vi} , {ci}) can be minimized by
updating {vi} and v, alternatively. The detailed steps are listed
as follows.

1) v1 update: The optimization problem w.r.t. v1 can be
expressed as

min
v1
∥v1 − (v− c1)∥2

s.t. (25c).
(29)

Its closed-form solution is given by

v1 = min

{ √
PB

∥v− c1∥2
, 1

}
(v− c1) . (30)

2) v2 update: The optimization problem w.r.t. v2 can be
expressed as

min
v2
∥v2 − (v− c2)∥2

s.t. (25d).
(31)

Using eigen-decomposition, Γ̄22 (v̄) becomes Γ̄22 (v̄) =
QΛ̃QH . Define ṽ2 = QHv2, t̃ = QH (v− c2) and Γ̃12 (v̄) =
Γ̄12 (v̄)Q. Then, we can rewrite problem (31) as

min
ṽ2

∥∥ṽ2 − t̃
∥∥2 (32a)

s.t. ṽH2 Λ̃ṽ2 − 2R
(
Γ̃12 (v̄) ṽ2

)
≤ −MI (v̄) . (32b)

Setting the gradient of the Lagrangian of problem (32) to
zero, we derive the optimal solution as

ṽ2 =
(

INTD + λ̃Λ̃
)−1 (

t̃ + λ̃
(
Γ̃12(v̄)

)H)
, (33)
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Algorithm 1 Communication Precoder Design.

Initialization: Initialize v̄ = vec
(
V̄
)

with V̄ being the result
of the previous outer iteration. Set the parameter ρ̄ and
calculate the inverse of the matrix Π+ ρ̄IDNT

.
Repeat [SCA Step]

Update Γ̄22 (v̄), Γ̄12 (v̄) and MI (v̄).
Perform eigen-decomposition on Γ̄22 (v̄).
Initialize ci ← 0,∀i and v = v̄.
Repeat [ADMM Step]

Update v1 and v2 according to (30) and (35).
Update v according to (37).
Update the dual variables ci ← ci + vi − v, i = 1, 2.

Until ADMM convergence criterion is met.
Update v̄ = v.

Until SCA convergence criterion is met.

where λ̃ ≥ 0 denotes the Lagrange multiplier. If t̃ satisfies
the constraint (32b), we have λ̃ = 0 and t̃ is the optimal
solution. Otherwise, we have λ̃ > 0 and the constraint (32b)
is satisfied with equality at the optimality of problem (32).
To find the optimal λ̃, we substitute (33) into the equality
constraint ṽH2 Λ̃ṽ2 − 2R

(
Γ̃12 (v̄) ṽ2

)
= −MI (v̄) and obtain

the following equation

f̃
(
λ̃
)
=

DNT∑
k=1

µ̃k

∣∣∣∣∣ t̃k + λ̃κ̃k
12

1 + λ̃µ̃k

∣∣∣∣∣
2

− 2R

{
DNT∑
k=1

(
κ̃k
12

)∗ t̃k + λ̃κ̃k
12

1 + λ̃µ̃k

}
+MI (v̄) = 0,

(34)
where t̃k and κ̃k

12 are the k-th element of vectors t̃ and(
Γ̃12(v̄)

)H
, respectively; and {µ̃k} denote the eigenvalues of

Γ̄22 (v̄). Since f̃
(
λ̃
)

decreases monotonically, the solution of
f̃
(
λ̃
)
= 0 is unique. Then, the optimal λ̃ can be obtained

using the bisection search. After finding λ̃, the optimal v2 can
be calculated as

v2 = Qṽ2. (35)

3) v update: The optimization problem w.r.t. v can be
expressed as

min
v

vHΠv +
ρ̄

2

2∑
i=1

∥vi − v + ci∥2. (36)

Setting the gradient of the objective function in (36) to zero,
the optimal v is given by

v = (Π+ ρ̄IDNT
)
−1

(
ρ̄

2

2∑
i=1

(vi + ci)

)
. (37)

Finally, the overall algorithm for solving P1 is summarized
in Algorithm 1.

Algorithm 1 is guaranteed to converge to a finite value
of P1. Firstly, the ADMM to the convex problem P1.1

(
v̄
)

is convergent [43]. Secondly, the iterative optimization of
P1.1

(
v̄
)

in the SCA procedure is non-increasing and the

objective function r (V) is lower bounded by 0. Specifically,
suppose that in the (s+1)-th iteration, the optimal solution
and the optimal value of P1.1

(
v(s)
)

are respectively
v(s+1) and obj

(
v(s+1)

∣∣v(s) ) = (v(s+1))HΠv(s+1). Since
f̄
(
v(s+1)

∣∣v(s+1)
)

= f
(
v(s+1)

)
≤ f̄

(
v(s+1)

∣∣v(s)
)
≤ 0,

v(s+1) is a feasible solution of P1.1
(
v(s+1)

)
. Thus, we

have obj
(
v(s+1)

∣∣v(s+1)
)
≥ obj

(
v(s+2)

∣∣v(s+1)
)
. Further

combining obj
(
v(s+1)

∣∣v(s+1)
)
= obj

(
v(s+1)

∣∣v(s)
)
, we have

obj
(
v(s+1)

∣∣v(s) ) ≥ obj
(
v(s+2)

∣∣v(s+1)
)
. Therefore, in the

SCA procedure, the objective function value is non-increasing
and converge to a finite value.

Remark 1 (Complexity Analysis for Algorithm 1): The first
computation complexity comes from performing the eigen-
decomposition on Γ̄22 (v̄) with a complexity of O((DNT )

3
),

which can be done before the ADMM. The second compu-
tation complexity comes from performing the matrix inverse
on Π+ ρ̄IDNT

with a complexity of O((DNT )
3
), which can

be done before the SCA procedure. The third computation
complexity comes from performing the matrix-vector multi-
plication with a complexity of O((DNT )

2
) when updating v2

and v. Denote Na1 as the number of iteration for the ADMM.
Then, the total computational complexity of Algorithm 1 is
O
(
(Ns1 + 1)(DNT )

3
+ 2Ns1Na1(DNT )

2), which is much
less than that of the IPM.

IV. RADAR WAVEFORM DESIGN

In this section, we optimize the radar waveform s with fixed
communication precoder V, that is,

P2: max
s

J∑
j=0

σ2
α,j

sHHH
j wwHHjs

sHR̃s + r (V)

s.t. (17a), (17c).

P2 is hard to tackle due to the non-convex constraint (17a)
and non-concave fractional objective function. Considering the
application scene and the hardware limitation, some common
waveform constraints (e.g., the similarity and PAPR con-
straints) should also be incorporated into waveform design.
Different constraints will introduce different challenges. Since
the waveform design previously developed for single path
detection is not applicable to solving P2 [12], [44], we will
develop effective waveform design algorithms using the SCA
and SDP methods in the following.

A. Waveform Design under Similarity Constraint

The similarity constraint uses a known waveform s0 as a
benchmark and forces s to share some good properties of s0,
e.g., good ambiguity characteristics, range resolution, sidelobe
level, and envelope constancy. It can be written as [45]

∥s− ςs0∥2 ≤ ϵPR, |ϵ|2 ≤ 1, (38)

where s0 satisfies ∥s0∥2 = PR, ϵ determines the level of the
similarity and ς can be used to modulate the power of s0. (38)
is equivalent to

sH
(

IKMT
− s0sH0

PR

)
s ≤ ϵPR, (39)
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which is a convex quadratic constraint.
To tackle the non-convexity of constraint (17a), we intro-

duce the following lemma.
Lemma 4 (SCA-Based Transformation of Constraint (17a)):

(17a) is non-convex w.r.t. s and can be successively approxi-
mated by the following convex quadratic constraint

sHΓ̂
(
S̄
)

s ≤ M̂I
(
S̄
)
, (40)

where S̄ = s̄s̄H with s̄ being the solution in the previous SCA
iteration.

Proof: Define S̃ = ssH , Rv =
∑L

l=1 σ
2
υ,lGlVVHGH

l

and Rk
c

(
S̃
)

= σ2
c INR

+
∑I

i=1 σ
2
γ,iG

i
rc (k) S̃

(
Gi

rc (k)
)H

.
The function MI (s,V) can be rewritten as MI

(
S̃
)

=
1
K̃

∑K̃
k=1

(
log
∣∣∣Rv + Rk

c

(
S̃
)∣∣∣− log

∣∣∣Rk
c

(
S̃
)∣∣∣ ). MI

(
S̃
)

is con-

vex w.r.t. S̃ and its first-order condition can be given by

MI
(
S̃
)
≥ MI

(
S̄
)
− tr

(
Γ̂
(
S̄
) (

S̃− S̄
))

, (41)

where [12]

Γ̂
(
S̄
)
=−

(
∂MI

(
S̃
)

∂S̃

)T

S̃=S̄

=
1

K̃

K̃∑
k=1

( I∑
i=1

σ2
γ,i

(
Gi

rc (k)
)H

[(
Rk

c

(
S̄
))−1 −

(
Rv + Rk

c

(
S̄
))−1

]
Gi

rc (k)

)
(42)

is the gradient of MI
(
S̃
)

at S̄. Thus, the constraint (17a) can
be transformed to

MI
(
S̄
)
− tr

(
Γ̂
(
S̄
) (

S̃− S̄
))
≥ MI0. (43)

Define

M̂I
(
S̄
)
= MI

(
S̄
)
+ tr

(
Γ̂
(
S̄
)

S̄
)
−MI0. (44)

The constraint (43) is equivalent to (40), which is convex due
to the positive semidefinite matrix Γ̂

(
S̄
)
.

Next, we will deal with the non-concavity of the objective
function. Note that the Dinkelbach-Type method in [12], [44]
can be used for the fractional programming. However, it was
only developed for single-ratio fractional program with quasi-
concave objective functions and cannot apply for P2 due
to the lack of quasi-concavity of the sum-form fractional
programming. Moreover, tedious iterations will reduce the
efficiency of the algorithm. Thus, we develop a non-iterative
SDP-based method to design radar waveform at a lower cost.
Specifically, using Lemma 4, P2 with similarity constraint
(39) can be approximated by a series of fractional SDP
problems, i.e.,

P2.1
(
S̄
)
: max

S̃

tr
(
Ψ̃S̃
)

tr
(
R̃S̃
)
+ r (V)

s.t. tr
(
S̃
)
≤ PR (45a)

tr
(
Γ̂
(
S̄
)
S̃
)
≤ M̂I

(
S̄
)

(45b)

tr

((
IKMT

− s0sH0
PR

)
S̃
)
≤ ϵPR (45c)

rank(S̃) = 1 (45d)

S̃ ≽ 0, (45e)

where Ψ̃ =
∑J

j=0 σ
2
α,jHH

j wwHHj .
After relaxing the rank-one constraint (45d), P2.1

(
S̄
)

can be
solved with the Charnes-Cooper transformation [46]. However,
this method can not guarantee an optimal solution to P2.1

(
S̄
)
.

To optimally solve it, we construct the following dual problem

P2.2
(
S̄
)
: min

S̃
tr
(
S̃
)

s.t.
tr
(
Ψ̃S̃
)

tr
(
R̃S̃
)
+ r (V)

≥ p̃

(45b), (45c), (45e)

(46)

and explore the relationship between the two problems, where
p̃ is a non-negative constant. For the SDP problems P2.1

(
S̄
)

and P2.2
(
S̄
)
, we have the following result.

Proposition 2 (Optimal Solution of P2.2
(
S̄
)

under Multi-
path Detection): If p̃ equals to the optimal value of P2.1

(
S̄
)

after relaxing (45d), the rank-one optimal solution of P2.2
(
S̄
)

exists and is also optimal to P2.1
(
S̄
)
.

Proof: After relaxing (45d), P2.1
(
S̄
)

can be converted to

P2.3
(
S̄
)
: max

S̃

tr
(
Ψ̃S̃
)

tr
(
R̃S̃
)
+ r (V)

s.t.(45a), (45b), (45c), (45e).

(47)

Let p̃ and S̃1 be the optimal value and optimal solution to
P2.3

(
S̄
)
, respectively. We further solve P2.2

(
S̄
)

to obtain its
optimal value q̃ and optimal solution S̃2.

We first prove that P2.2
(
S̄
)

and P2.3
(
S̄
)

share the same op-
timal solutions. Specifically, it is easy to verify that S̃1 is a fea-
sible solution to P2.2

(
S̄
)
. Then, we have tr

(
S̃2

)
≤ tr

(
S̃1

)
≤

PR. Thus, S̃2 is a feasible solution to P2.3
(
S̄
)
, which implies

that tr
(
Ψ̃S̃2

)
/
(
tr
(
R̃S̃2

)
+ r (V)

)
≤ p̃. Since S̃2 is the optimal

solution to P2.2
(
S̄
)
, we have tr

(
Ψ̃S̃2

)
/
(
tr
(
R̃S̃2

)
+ r (V)

)
≥

p̃. Hence, tr
(
Ψ̃S̃2

)
/
(
tr
(
R̃S̃2

)
+ r (V)

)
= p̃ holds, i.e., the

optimal solution to P2.2
(
S̄
)

is also optimal to P2.3
(
S̄
)
.

Using the conclusion in [47, Theorem 3.2], we can conclude
that P2.2

(
S̄
)

has a optimal solution satisfying rank2(S̃) ≤ 3,
i.e., there exists a rank-one optimal solution to P2.2

(
S̄
)
, which

is also optimal to P2.3
(
S̄
)

and P2.1
(
S̄
)

Notice that Proposition 2 only states the existence of a
globally optimal rank-one solution to P2.2

(
S̄
)
. In general, the

global optimal solution may not be unique, and the convex
optimization solvers may not provide a rank-one solution. If
rank(S̃2) ≥ 2, we can exploit the rank reduction procedures
proposed in [47] to generate a rank-one optimal solution.
Moreover, in a special case that the radar detects the target
only along the LoS path, i.e., J = 0, the optimal solution
of P2.2

(
S̄
)

is always rank one, as shown in the following
corollary.

Corollary 1 (Optimal Solution of P2.2
(
S̄
)

under LoS
Detection): When J = 0, the optimal solution of P2.2

(
S̄
)

is always rank one.
Proof: See Appendix C.

It can be found that multipath combining makes optimally
solving P2.1

(
S̄
)

more complicated compared with target
detection along LoS path.

Finally, the overall algorithm is summarized in Algorithm
2.
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Algorithm 2 Waveform Design under Similarity Constraint.

Initialization: Initialize S̄ = s̄s̄H with s̄ being the solution of
the previous outer iteration.
Repeat [SCA]

Solve P2.3
(
S̄
)

to find its optimal value p̃.
Solve P2.2

(
S̄
)

to find its optimal solution S̃2.
Evaluate R̃ = rank(S̃2).
While R̃ > 1 do [Rank Reduction]

Decompose S̃2 = Ũ2Ũ
H

2 , Ũ2 ∈ CKMT×R̃.
Find a nonzero solution Λ of linear equations

tr
(

Ũ
H

2

(
p̃R̃−Ψ

)
Ũ2Λ

)
= 0

tr
(

Ũ
H

2 Ũ2Λ
)
= 0

tr

(
Ũ

H

2

(
IKMT

− s0sH0
PR

)
Ũ2Λ

)
= 0

,

where Λ is a R̃× R̃ Hermitian matrix.
Evaluate the eigenvalues δ̃1, . . . , δ̃R̃ of Λ.
Determine

∣∣δ̃r̃0∣∣ = max
{∣∣δ̃r̃∣∣ : 1 ≤ r̃ ≤ R̃

}
.

Compute S̃2 = Ũ2

(
IR̃ −

(
1/
∣∣δ̃r̃0∣∣)Λ)ŨH

2

Evaluate R̃ = rank(S̃2).
End while
Update S̄ = S̃2.

Until SCA convergence criterion is met.
Perform eigen-decomposition on S̄ as S̄ = ssH .

We can guarantee the convergence of Algorithm 2. Firstly,
each convex approximation problem in the SCA procedure
can be solved optimally, which guarantees the iterative opti-
mization of P2.1

(
S̄
)

is non-decreasing. Secondly, the optimal
value of P2 is upper-bounded, i.e.,

J∑
j=0

σ2
α,j

sHHH
j wwHHjs

sHR̃s + r (V)
≤ sHΨ̃s

r (V)
≤ µ̂

PR

r (V)
,

where µ̂ denotes the maximum eigenvalue of Ψ̃. Thus, the
proposed algorithms can converge to a finite value.

Remark 2 (Complexity Analysis for Algorithm 2): The
computational overhead mainly comes from solving the SDP
problems P2.2

(
S̄
)

and P2.3
(
S̄
)
. Exploiting the IPM to solve

each SDP problem requires O
(√

3 log (1/ε)
)

iterations to
converge, where ε denotes the relative accuracy and each iter-
ation has a computational complexity of O

(
M3.5

T K3.5
)

[40].
Denote Ns2 as the number of iteration of the SCA method
in Algorithm 2. Then, the total computational complexity is
O
(
2
√
3Ns2M

3.5
T K3.5 log (1/ε)

)
.

B. Waveform Design under PAPR Constraints

High PAPR values require linear amplifiers with large
dynamic range, which is unrealistic in modern radar systems.

Thus, we bound the PAPR value at each antenna by the
following constraints [35], [48].

∥s∥2 = PR (48a)

max
1≤n≤KMT

{
|sn|2

}
≤ ηPR

KMT
, (48b)

where η controls the maximum allowable PAPR value and sn
denotes the n-th element of the waveform s. In particular, when
η = 1, the PAPR constraint reduces to the constant modulus
constraint. Define Fn ∈ CKMT×KMT with the (n, n)-th
element being KMT / (ηPR) and other elements being 0.
Then, the constraint (48b) can be rewritten as

sHFns ≤ 1,∀n = 1, . . . ,KMT . (49)

The waveform design problem is thus given by

P3: max
s

J∑
j=0

σ2
α,j

sHHH
j wwHHjs

sHR̃s + r (V)

s.t. (17a), (48a), (49),

which is hard to tackle due to the non-concave objective
function and non-convex constraints (17a) and (48a). We can
solve P3 by the same SCA procedure in Algorithm 2. During
each iteration, we need to solve the following fractional SDP
problem

P3.1
(
S̄
)
: max

S̃

tr
(
Ψ̃S̃
)

tr
(
R̆S̃
) (50a)

s.t. tr
(
Γ̃
(
S̄
)

S̃
)
≤ 1 (50b)

tr
(
S̃
)
= PR (50c)

tr
(
F̃nS̃

)
≤ 1,∀n (50d)

rank(S̃) = 1 (50e)

S̃ ≽ 0, (50f)

where (50a) comes from the original objective function and
(48a) with R̆ = R̃+(r (V)/PR) IKMT

; (50b) comes from (40)
and (48a) with Γ̃

(
S̄
)

=
(
Γ̂
(
S̄
)
+ IKMT

)
/
(
M̂I
(
S̄
)
+ PR

)
;

and (50d) comes from (49) and (48a) with F̃n =(
Fn + IKMT

)
/
(
1 + PR

)
,∀n. It is easy to verify that R̆, Γ̃

(
S̄
)

and {F̃n}
KMT

n=1 are all positive definite.
After relaxing the rank-one constraint (50e), P3.1

(
S̄
)

can be
solved by exploiting the Charnes-Cooper transformation. How-
ever, due to the large number of linear constraints on S̃, the
convex relaxation of P3.1

(
S̄
)

does not guarantee the existence
of a rank-one optimal solution. Thus, eigen-decomposition and
randomization are required to obtain a rank-one sub-optimal
solution. Since randomization based methods can sometimes
lead to prohibitively high computational complexity, we pro-
vide a more efficient design.

We first consider P3.1
(
S̄
)

without constraints (50d), i.e.,

P3.2
(
S̄
)
: max

S̃

tr
(
Ψ̃S̃
)

tr
(
R̆S̃
)

s.t. (50b), (50c), (50e), (50f).

(51)
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Algorithm 3 Waveform Design under PAPR Constraints.

Initialization: Initialize S̄ = s̄s̄H with s̄ being the solution of
the previous outer iteration.
Repeat [SCA]

Solve Q3.2
(
S̄
)

to find its optimal solution (T̂
⋆
, t̂⋆).

Decompose T̂
⋆
/t̂⋆ = s̃3s̃H3 .

Solve (53) to obtain s̄ satisfying PAPR constraints.
Update S̄ = s̄s̄H .

Until SCA convergence criterion is met.
Perform eigen-decomposition on S̄ as S̄ = ssH .

After Charnes-Cooper transformation and the relaxation of
rank-one constraint (50e), P3.2

(
S̄
)

can be converted to

Q3.2
(
S̄
)
: max

T̂,t̂
tr
(
Ψ̃T̂
)

s.t. tr
(
Γ̃
(
S̄
)

T̂
)
≤ t̂

tr
(
R̆T̂
)
≤ 1

tr
(
T̂
)
= t̂PR

T̂ ≽ 0, t̂ ≥ 0.

(52)

For the problems P3.2
(
S̄
)

and Q3.2
(
S̄
)
, we have the follow-

ing result.
Proposition 3 (Optimal Solution of P3.2

(
S̄
)
): There exits

an optimal solution (T̂
⋆
, t̂⋆) for Q3.2

(
S̄
)

that makes T̂
⋆
/t̂⋆

optimal for P3.2
(
S̄
)
.

Proof: Similar to P2.2
(
S̄
)
, Q3.2

(
S̄
)

also has an optimal
solution T̂

⋆
of rank one. Perform rank reduction procedures

can obtain the solution. Since Charnes-Cooper transformation
is a equivalent conversion, T̂

⋆
/t̂⋆ is optimal for P3.2

(
S̄
)
.

Upon obtaining the optimal solution S̃3 = s̃3s̃H3 of P3.2
(
S̄
)
,

we need to project s̃3 into PAPR constraints, i.e.,

min
s
∥s− s̃3∥ s.t. (48a), (49). (53)

This is a matrix nearness problem and we can exploit the
alternating projection method in [49] to solve it. We omit it
here for conciseness.

In the special case of LoS detection, the optimal solution
to P3.1

(
S̄
)

can be found by the following corollary.
Corollary 2 (Optimal Solution of P3.1

(
S̄
)

under LoS
Detection): We can solve the rank-one semidefinite convex
relaxation of P3.1

(
S̄
)

to obtain its optimal solution.
Proof: The optimal solution to P3.1

(
S̄
)

after relaxing the
rank-one constraint can be calculated based on the Charnes-
Cooper transformation. Applying the conclusion in [50, Propo-
sition 2], we can prove that the solution is rank-one.

It can be found that the multipath combining makes
P3.1

(
S̄
)

only sub-optimally solved compared to detecting
objects along the LoS path.

Finally, the overall algorithm is summarized in Algorithm
3. The convergence analysis is similar to that of Algorithm 2.

Remark 3 (Complexity Analysis for Algorithm 3): The
computational overhead mainly comes from solving the SDP
problem Q3.2

(
S̄
)
. Denote Ns3 as the number of iteration of

the SCA method in Algorithm 3. Then, the total computational
complexity is O

(√
3Ns3M

3.5
T K3.5 log (1/ε)

)
.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we will provide numerical examples to
evaluate the performances of the proposed algorithms. The
number of antennas at the radar transmitter, the radar receiver,
the BS and the CU are MT = 8, MR = 18, NT = 10
and NR = 4, respectively. The radar system has the PRI of
K̃ = 60, the pulse duration of K = 4 and maximum transmit
power of PR = 10 walts. The communication system has the
number of data streams of D = 4 and maximum transmit
power of PB = 1 walt. The channel parameter settings in the
simulations are provided as follows:

• The target is located in the angular direction of θ0 = 20◦.
There are J = 3 scattering patches causing indirect path
returns, which are located in the direction of θ1 = −10◦,
θ2 = −17◦ and θ3 = −25◦, respectively. The signal-
to-noise ratio along the direct path, given by SNRr,d =
PRσ

2
α,0/σ

2
r , is set as 20dB, and that along indirect paths,

denoted by SNRr,id = PRσ
2
α,j/σ

2
r ,∀j, is set as 18dB.

• There are Q = 5 scatterers causing clutter returns with
k̃q and θ̃q randomly chosen in

{
−K+1, . . .K − 1

}
and

(0◦, 10◦), respectively. The clutter-to-noise ratio, denoted
by CNRr = PRσ

2
α̃,q/σ

2
r ,∀q, is set as 30dB.

• There are G = 6 paths between the BS and the radar
receiver with ϕg

cr and φg
cr randomly chosen in (30◦, 50◦)

and (−90◦, 90◦), respectively. The interference-to-noise
ratio, denoted by INRr = PBσ

2
β,g/σ

2
r ,∀g, is set to 20dB.

• There are L = 3 paths between the BS and the CU
with ϑl

r and ϑl
t randomly chosen in (−90◦, 90◦) and

(−90◦, 90◦), respectively. The signal-to-noise ratio at the
CU, denoted by SNRc = PBσ

2
υ,l/σ

2
c ,∀l, is set as 25dB.

• There are I = 6 paths between the radar and
the CU with k̃irc, φi

rc and ϕi
rc randomly chosen in{

0, . . . K̃− 1
}

, (−10◦, 20◦) and (30◦, 70◦), respectively.
The interference-to-noise ratio at the CU, denoted by
INRc = PRσ

2
γ,i/σ

2
c ,∀i, is set as 40dB.

In the alternating optimization algorithms, we set ρ̄ = 100,
MI0 = 7 [nats per symbol], ϵ = 0.7 and η = 3. The orthogonal
linear frequency modulation waveform is chosen as the initial
radar waveform, denoted by s0, whose space-time matrix is
given by [12], [51]

S0 (m, k) =

√
PRe

j2πm(k−1)/MT ejπ(k−1)2/MT

√
MTK

,

where m = 1, · · · ,MT and k = 1, · · · ,K. Then, we can
obtain s0 = vec (S0). The initial communication precoder
is given by V0 =

√
PB/D

[
ID 0D×(NT−D)

]T
. Thus, the

initial radar space-time filter can be calculated as w0 =
M
(
R−1 (V0, s0)Ψ (s0)

)
. The proposed algorithms terminate

when the successive difference of the objective function values
is less than 10−3.

We evaluate the convergence performance of the proposed
algorithms in Fig. 2 and Fig. 3. It can be observed from Fig. 2
that the objective function values in P1 decrease continuously
during the iteration until Algorithm 1 converges. Additionally,
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Fig. 2. Objective function values in P1 versus the number of iterations of
Algorithm 1 when MI0 = 8.0, 8.2, 8.4 and 8.6 nats per symbol.
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Fig. 3. The radar output SINR versus the number of iterations of Algorithm
2 and Algorithm 3, respectively.

Fig. 2 clearly shows that relaxing the communication rate
constraint will result in a smaller objective function value.
This is because a smaller MI0 will bring larger feasible sets for
the optimization problem P1. Fig. 3 verifies the convergence
of Algorithm 2 and Algorithm 3. As expected, combining
multi-path (MP for short) echoes yields higher SINR values
than using single-path (SP for short) detection alone. This is
because the existence of multi-path provides extra information
on the target and thus increases the spatial diversity of the
radar.

In Fig. 4, we compare the performance of Algorithm 2 and
existing method when designing waveform under the similarity
constraint. The existing method, named Algorithm 4, is an
constrained concave convex procedure (CCCP)-based iterative
algorithm developed for the fractional programming problems
[52]. It can be found that the proposed Algorithm 2 has
fewer iterations and better performance. This is because that
Algorithm 4 requires iteratively approximating the fractional
objective function with a series of convex functions, and our
proposed design avoids this operation. We can also observe
that the change of similarity level ϵ has a greater impact on
Algorithm 4.
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Fig. 4. Comparison of Algorithm 2 and Algorithm 4 under different similarity
level ϵ.

Fig. 5 and Fig. 6 compare the radar SINR performance of
the optimal joint design of V, s and w (alternating exploitation
of Algorithm 1, Algorithm 2 and formula (8)) with the follow-
ing benchmarks under different INRr and CNRr, respectively.

• Sub-optimal design with fixed V: We design s and w by
iteratively exploiting Algorithm 2 and updating (8). The
communication precoder is fixed as V0.

• Sub-optimal design with fixed s: We design V and w by
iteratively exploiting Algorithm 1 and updating (8). The
radar waveform is fixed as s0.

• Sub-optimal design with fixed w: We design s and V by
iteratively exploiting Algorithm 2 and Algorithm 1. The
radar space-time filter is fixed as w0.

It is shown that the output SINR of the optimal joint design is
the highest and can be maintained in a wide range of CNRr’s
and INRr’s. We can also observe that the performance of the
sub-optimal design with fixed V and the optimal joint design
are almost the same when INRr is low, which indicates that
the communication interference can be ignored in this case.
The performance gap between these two designs increases
with INRr. This is because, when INRr is high, the optimal
joint design can mitigate the communication interference by
allocating the transmit power of the BS to the appropriate
direction with the precoder design. As expected, the sub-
optimal design with fixed s and the sub-optimal design with
fixed w perform poorly, mainly due to the lack of designs
for s and w, respectively, which is crucial for the radar SINR
maximization.

In Fig. 7, we compare the radar beampatterns of the above
optimal joint design with MP detection and the optimal joint
design with SP detection. The beampattern can be defined as
[53]

P (θ) =

∥∥wHH0 (θ) s
∥∥2

MTMR∥w∥2∥s∥2
.

We can observe that the beampattern for the MP combining
peaks at the target and multi-path scatterer location, which
illustrates the spatial diversity of multi-path propagation.

Fig. 8 analyzes the radar SINR performance of above
optimal joint design under different similarity level ϵ and MI0.
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s0 is selected as the reference waveform. We can observe that
the SINR increases with ϵ and decreases with MI0. This is
mainly due to a larger feasible set brought by a larger ϵ or a
smaller MI0.

Finally, in Fig 9, we investigate the effect of PAPR con-
straints on the radar SINR performance. The optimal joint
design of V, s and w is realized by exploiting Algorithm 1,
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Fig. 8. The radar SINR under different ϵ and MI0.
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Fig. 9. The radar SINR under different η and MI0.

Algorithm 3 and formula (8) iteratively. As expected, relaxing
the PAPR constraints will lead to a larger SINR value. When
η is larger than 6.0, further increasing it will not significantly
improve the radar SINR.

VI. CONCLUSION

In this work, we have considered the coexistence of the
co-located MIMO radar and single-user MIMO communica-
tion systems in multi-path environments. The communication
precoder, radar transmit waveform and receive filter have
been jointly designed to suppress the mutual interference
between the two systems while combining the multi-path
signals received by each system. The system design has been
conducted with the goal of maximizing the radar SINR, while
accounting for the constraints on the transmit power of both
systems, radar waveform and the transmission rate at the BS.
The formulated non-convex problem has been sub-optimally
solved by an iterative algorithm based on the alternating
maximization. Simulation results have demonstrated that the
proposed algorithm can effectively utilize multi-path signals
to achieve better performance and mitigate the interference
between the two systems.
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APPENDIX A
PROOF OF LEMMA 1

Define ãq

(
ϑl
r, ϑ

l
t

)
= 1√

NR
e−jπ(q−1) sinϑl

rat
(
ϑl
t

)
, ∆l

q1q2 =

ã∗q2
(
ϑl
r, ϑ

l
t

)
ãT
q1

(
ϑl
r, ϑ

l
t

)
and

∆ =

L∑
l=1

σ2
υ,l


ID ⊗

(
∆l

11

)T
· · · ID ⊗

(
∆l

1NR

)T
...

. . .
...

ID ⊗
(
∆l

NR1

)T
· · · ID ⊗

(
∆l

NRNR

)T
.

(54)
It is easy to verify that the matrix ∆ is Hermitian positive
semidefinite. Then, the component

∑L
l=1 σ

2
υ,lGlVVHGH

l in
MI (s,V) can be reformulated as (55), as shown at the top
of next page. Subsequently, the function MIk (s,V) defined in
(14) can be rewritten as

MIk (v) = log
∣∣∣(INR

⊗ vT
)
∆ (INR

⊗ v∗)
(
Rk

c (s)
)−1

+ INR

∣∣∣
(a)
= log

∣∣∣∆ 1
2 (INR

⊗ v∗)
(
Rk

c (s)
)−1 (

INR
⊗ vT

)
∆

1
2 + INRNTD

∣∣∣
(b)
= log

∣∣∣C(Ek (v))
−1CH

∣∣∣ ,
(56)

where the procedure (a) is due to |I + A1A2| = |I + A2A1|,
the procedure (b) uses the inversion lemma of a partitioned
matrix, and the matrix Ek (v) is given by (20) [54]. Thus, the
function MI (v) = 1

K̃

∑K̃
k=1 MIk (v) is equivalent to MI (s,V).

APPENDIX B
PROOF OF LEMMA 2

Since the function log
∣∣∣C(Ek (v))

−1CH
∣∣∣ in Lemma 1 is

convex w.r.t. Ek (v) [39], we have the following first-order
condition

log
∣∣∣C(Ek (v))

−1CH
∣∣∣ ≥ log

∣∣∣C(Ek (v̄))
−1CH

∣∣∣
+ tr (Γk (v̄) (Ek (v)− Ek (v̄))) ,

(57)
where

Γk (v̄) = −(Ek (v̄))
−1CH

(
C(Ek (v̄))

−1CH
)−1

C
(
Ek (v̄)

)−1

(58)
is the gradient of log

∣∣∣C(Ek (v))
−1CH

∣∣∣ at Ek (v̄). Thus, the
constraint (17a) can be converted to

1

K̃

K̃∑
k=1

(
log
∣∣∣C(Ek (v̄))

−1CH
∣∣∣+ tr (Γk (v̄) (Ek (v)− Ek (v̄)))

)
≥ MI0.

(59)
Let Γk (v̄) be partitioned as

Γk (v̄) =
[
Γ11
k (v̄) Γ12

k (v̄)
Γ21
k (v̄) Γ22

k (v̄)

]
.

Then, we can obtain that

tr (Γk (v̄)Ek (v)) = tr
(
Γ11
k (v̄)

)
+ tr

(
Γ22
k (v̄)Rk

c (s)
)

+ 2R
(
tr
(
Γ12
k (v̄)

(
INR
⊗ vT

)
∆

1
2

))
+ tr

(
Γ22
k (v̄)

(
INR
⊗ vT

)
∆ (INR

⊗ v∗)
)
.

Thus, the constraint (59) can be rewritten as

2R
(
tr
(
Γ12 (v̄)

(
INR
⊗ vT

)
∆

1
2

))
+ tr

(
Γ22 (v̄)

(
INR
⊗ vT

)
∆ (INR

⊗ v∗)
)
≥ MI (v̄) ,

(60)

where Γ12 (v̄) = 1
K̃

∑K̃
k=1 Γ

12
k (v̄), Γ22 (v̄) =

1
K̃

∑K̃
k=1 Γ

22
k (v̄) and

MI (v̄) = MI0 −
1

K̃

K̃∑
k=1

(
log
∣∣∣C(Ek (v̄))

−1CH
∣∣∣−

tr (Γk (v̄)Ek (v̄)) + tr
(
Γ11
k (v̄)

)
+ tr

(
Γ22
k (v̄)Rk

c (s)
) )

.

(61)
By using tr

(
AT

1 A2

)
= vecT (A1) vec (A2) and

tr (A1A2A3A4) = vecT (A4)
(

A1 ⊗ AT
3

)
vec
(
AT

2

)
, we

can convert (60) to

vHPH
(
Γ22 (v̄)⊗∆T

)
Pv + 2R

(
vecT

(
∆

1
2Γ12 (v̄)

)
Pv
)

≥ MI (v̄) ,
(62)

where P = [P1,P2, . . . ,PNR
]
T with Pi = ẽTi ⊗INTD denoting

a NTD × NTDNR matrix for i = 1, 2, . . . , NR and ẽ (n) ∈
CNR being a direction vector similar to e (n). As a result, we
can successively approximate the original constraint (17a) by

vHΓ̄22 (v̄) v− 2R
(
Γ̄12 (v̄) v

)
≤ −MI (v̄) , (63)

where
Γ̄22 (v̄) = −PH

(
Γ22 (v̄)⊗∆T

)
P (64)

and
Γ̄12 (v̄) = vecT

(
∆

1
2Γ12 (v̄)

)
P. (65)

Since Ek (v) is positive definite, Γk (v̄), Γ22
k (v̄) and Γ22 (v̄)

are all negative semidefinite. Hence, Γ̄22 (v̄) is positive
semidefinite and the constraint is convex. Based on the equiv-
alence of (59) and (63), further combining (57), we can derive
that f (v̄) = f̄ (v̄ |v̄ ).

APPENDIX C
PROOF OF COROLLARY 1

In the case of LoS detection, we have rank(Ψ̃) = 1. The
Lagrangian of P2.2

(
S̄
)

can be given by

L
(
S̃2, {λk}3k=1, Ỹ

)
= tr

(
S̃2

)
+ λ1

(
p̃tr
(
R̃S̃2

)
+ p̃r(V)−

tr
(
Ψ̃S̃2

))
+ λ2

(
tr
(
Γ̂
(
S̄
)
S̃2

)
− M̂I

(
S̄
) )

+ λ3

(
tr
((

IKMT

− s0sH0
PR

)
S̃2

)
− ϵPR

)
− tr

(
ỸS̃2

)
= tr

((
IKMT

+ λ1p̃R̃−

λ1Ψ̃+ λ2Γ̂
(
S̄
)
+ λ3

(
IKMT

− s0sH0
PR

)
− Ỹ

)
S̃2

)
+ λ1p̃r(V)

− λ2M̂I
(
S̄
)
− λ3ϵPR,

where λ1, λ2, λ3 and Ỹ denote the Lagrange multipliers.
Setting the gradient of L

(
S̃2, {λk}3k=1, Ỹ

)
to zero, we obtain

IKMT
+λ1p̃R̃−λ1Ψ̃+λ2Γ̂

(
S̄
)
+λ3

(
IKMT

− s0sH0
PR

)
−Ỹ = 0.
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L∑
l=1

σ2
υ,lGlVVHGH

l =

L∑
l=1

σ2
υ,lar

(
ϑl
r

)
aT
t

(
ϑl
t

)
VVH

(
ar
(
ϑl
r

)
aTt
(
ϑl
t

))H
=

L∑
l=1

σ2
υ,l


tr
(

VVH∆l
11

)
· · · tr

(
VVH∆l

1NR

)
...

. . .
...

tr
(

VVH∆l
NR1

)
· · · tr

(
VVH∆l

NRNR

)


=

L∑
l=1

σ2
υ,l


vT

(
ID ⊗

(
∆l

11

)T)
v∗ · · · vT

(
ID ⊗

(
∆l

1NR

)T)
v∗

...
. . .

...

vT
(

ID ⊗
(
∆l

NR1

)T)
v∗ · · · vT

(
ID ⊗

(
∆l

NRNR

)T)
v∗



=

L∑
l=1

σ2
υ,l

(
INR
⊗ vT

)


ID ⊗
(
∆l

11

)T
· · · ID ⊗

(
∆l

1NR

)T
...

. . .
...

ID ⊗
(
∆l

NR1

)T
· · · ID ⊗

(
∆l

NRNR

)T
 (INR

⊗ v∗)

=
(
INR
⊗ vT

)
∆ (INR

⊗ v∗)
(55)

Define Ξ = IKMT
+λ1p̃R̃+λ2Γ̂

(
S̄
)
+λ3

(
IKMT

− s0sH0
PR

)
=

Ỹ + λ1Ψ̃. We have Ξ ≻ 0 and rank (Ξ) = KMT . On the
one hand, since S̃2 ̸= 0 and ỸS̃2 = 0, we can easily infer that
λ1 > 0 and rank

(
Ỹ
)
≤ KMT − 1. On the other hand, since

rank (Ξ) = rank
(
λ1Ψ̃ + Ỹ

)
≤ rank

(
λ1Ψ̃

)
+ rank

(
Ỹ
)
=

1+rank
(
Ỹ
)
, we have rank

(
Ỹ
)
≥ KMT−1. Thus, we obtain

rank
(
Ỹ
)
= KMT − 1. Combined with ỸS̃2 = 0, it follows

that rank
(
S̃2

)
≤ 1. Based on S̃2 ̸= 0, it can be inferred that

rank
(
S̃2

)
= 1.
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