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Abstract—In this paper, we investigate the reconfigurable intel-
ligent surface (RIS)-aided terahertz (THz) communication system
with the sparse radio frequency chains antenna structure at the
base station (BS). To overcome the beam split of the BS, different
from the conventional single-layer true-time-delay (TTD) scheme,
we propose a double-layer TTD scheme that can effectively
reduce the number of large-range delay devices, which involve
additional insertion loss and amplification circuitry. Next, we
analyze the system performance under the proposed double-layer
TTD scheme. To relieve the beam split of the RIS, we consider
multiple distributed RISs to replace an ultra-large size RIS. Based
on this, we formulate an achievable rate maximization problem
for the distributed RISs-aided THz communications via jointly
optimizing the hybrid analog/digital beamforming, time delays of
the double-layer TTD network and reflection coefficients of RISs.
Considering the practical hardware limitation, the finite-resolution
phase shift, time delay and reflection phase are constrained. To
solve the formulated problem, we first design an analog beam-
forming scheme including optimizing phase shift and time delay
based on the RISs’ locations. Then, an alternatively optimization
algorithm is proposed to obtain the digital beamforming and
reflection coefficients based on the minimum mean square error
and coordinate update techniques. Finally, simulation results show
the effectiveness of the proposed scheme.

Index Terms—THz communication, double-layer TTD network,
beam split, reconfigurable intelligent surface, hybrid beamform-
ing.

I. Introduction

To achieve data rates of terabits-per-second (Tb/s), the future
sixth-generation (6G) wireless communications are expected to
exploit the terahertz (THz) frequency (0.1-10 THz) due to its
ultra-wide bandwidth [1]-[3]. However, THz signals usually
suffer from the severe path loss and poor diffraction [4] [5],
which leads to the limited coverage. Fortunately, the massive
multiple-input multiple-output (MIMO) and reconfigurable in-
telligent surface (RIS) techniques nowadays are developed [6],
and they can be applied for THz communications to form the
high-gain directional beams and improve the signals’ cover-
age [7]. Furthermore, the virtual line of sight (LoS) link can
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be constructed via the deployment of RISs, and thus the serious
blockage problem can be effectively solved [8]- [10]. Therefore,
it is promising for the applications of RIS-aided massive MIMO
in future THz communications.

A. Related Works

It is well known that the base station (BS) can deploy a large
number of antennas within the limited physical size because of
the small wavelength of THz signals. However, the fully dig-
ital beamforming technique requires a unique radio frequency
(RF) chain connecting to each antenna, and this will lead to
huge power consumption and hardware complexity [11] [12],
which is infeasible in practice. To address this, the hybrid
analog/digital beamforming technique is developed [13] [14],
where the antennas are connected to a few RF chains via
several groups of phase shifters (PSs). It has been proved
that a asymptotically optimal performance can be obtained by
optimizing the analog/digital beamforming in the narrowband
system. However, due to the frequency-independent charac-
teristic of PSs, the beam split will occur for the wideband
THz system, leading to the serious performance loss [15] [16].
Meanwhile, the RIS also faces the similar problem because of
its frequency-independent reflecting elements [17], [18].

Currently, there have been several works studying how to
mitigate the beam split effect. One straightforward solution
combating beam split is to replace all PSs by frequency-
dependent true-time-delays (TTDs) [19], while this will cause
huge power consumption and hardware complexity due to the
use of large numbers of TTDs. Instead, a limited number
of TTDs are inserted between the RF chains and PSs to
solve the beam split [5], [20]-[22], and thus, the traditional
one-dimensional analog beamforming is converted into two-
dimensional analog beamforming via the joint control of PSs
and TTDs. Specifically, a novel THzPrism architecture is de-
signed in [20], where TTDs are arranged in a serial manner.
Since TTDs with the equal number of antennas are utilized,
this architecture will cause a high hardware complexity. Con-
sequently, the authors [5] propose two low hardware complexity
schemes, including the virtual subarray beamforming scheme
and the sparse TTD-based scheme. The former does not need
to add any extra hardware, while its performance is lower
than the latter. Similarly, a TTD-based delay-phase precoding
is proposed in [21], and then the authors extend it to the
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user position by the beam tracking [22]. However, the TTDs
in [5] [21] [22] are arranged in a parallel manner, and each
TTD must be configured independently with the price of
supporting a large-range delay [23] [24], especially for the
large antenna array. In addition, the transceiver RF signal
amplification circuit is needed to compensate the loss of the
large delay line, which increases the hardware cost. In order
to reduce the required delay range, a hybrid TTD architecture
is proposed for fast beam training, where the time delays are
separately realized by analog TTDs and digital TTDs [25].
Nevertheless, the analog phases and delays are fixed such that
the number of required analog TTDs is equal to the number
of antennas. To realize the high energy efficiency, a novel
energy-efficient dynamic-subarray with fixed TTD architecture
is developed [26]. However, the improved performance is very
limited based on the schemes of [25] [26]. Meanwhile, all the
above works assume that TTDs can provide delay with high
resolution or even infinite resolution, and this is power-hungry
and even infeasible in practice.

To overcome the beam split effect with low hardware com-
plexity at the BS, we propose a double-layer TTD scheme. On
the one hand, the proposed scheme can solve the maximum
delay compensation problem observed in the traditional single-
layer TTD scheme. Specifically, implementing a large-range
delay TTD requires serious sacrifices in terms of linearity,
noise, power and area, which increase the complexity of the
design. Besides, the increase of delay range not only reduces
the accuracy, but also deteriorates the nonlinear performance
of the system due to the use of a large number of active
amplifier devices [27]. Thus, minimizing the number of large-
range delay TTDs used in the system would significantly reduce
the hardware cost. On the other hand, based on the practical
hardware limitation, the discrete time delays with different
resolutions at each layer TTD network are considered. In this
way, the TTDs of each layer only need to compensate the
propagation delay across the specific subarray aperture. In
addition, the PSs are used to compensate for the residual phase
shift of the double-layer TTD network and generate a beam
towarding to the target’s physical direction.

Besides, to the best of our knowledge, there has not been
the related work jointly considering the beam split effect and
beamforming design problems in wideband THz RIS commu-
nications. Therefore, we extend the double-layer TTD scheme
to the wideband THz distributed RISs communications system
to cooperatively mitigate the beam split effect. In fact, the beam
split effect of distributed RISs with fewer elements is less severe
than that of the centralized RIS [17] [28].

B. Main Contributions

In this paper, we investigate the antenna structure design and
beamforming optimization in the RIS-aided THz communica-
tions, and the main contributions are summarized as follows.
• To overcome the beam split of the BS with low hard-

ware complexity, we propose a double-layer TTD scheme.
Different from the conventional single-layer TTD scheme,
the required number of large-range delay TTDs is sharply

reduced by bringing an additional small-range delay TTD
network, which effectively reduce the hardware cost. We
analyze the phase compensation error and normalized
array gain under the proposed double-layer TTD scheme.
The results show that the proposed scheme can almost
obtain the same performance with the conventional single-
layer TTD scheme, but the overall hardware cost is effec-
tively decreased.

• Next, we extend the double-layer TTD scheme to the
wideband THz distributed RISs communications system
to cooperatively mitigate the beam split effect. In fact, the
beam gain loss of distributed RISs with fewer elements is
less severe than that of the centralized RIS. Then, we for-
mulate a achievable rate maximization problem via jointly
optimizing the hybrid analog/digital beamforming, time
delays of the double-layer TTD network and reflection
coefficients of RISs. Meanwhile, the finite-resolution phase
shifter, time delay and reflection phase are considered
based on the practical hardware.

• Since the formulated problem is NP hard, it is difficulty
to directly solve. We first design the analog beamforming
based on the RISs’ locations and phase compensation
principle. Next, we still need to jointly solve the digital
beamforming of the BS and reflection coefficients of the
RISs. We propose an alternatively optimization algorithm
to deal with it. Specifically, the reflection coefficients
are fixed, and we obtain the digital beamforming based
on the minimum mean square error (MMSE) technique.
After that, the reflection coefficients are solved via the
coordinate update approach. The finally solutions are
obtained via repeating the above procedure until conver-
gence. Furthermore, the robustness of the proposed joint
wideband beamforming against the impacts of imperfect
CSI is analyzed.

Notations: Lower-case and upper-case boldface letters repre-
sent vectors and matrices, respectively. (·)T and (·)H denote the
transpose and Hermitian transpose, respectively. | · | denotes the
absolute operator. ∥·∥ is the Frobenius norm. ⌊·⌋ and ⌈·⌉ are the
floor and ceil function, respectively. diag(·) represents diagonal
operation. Cx×y denotes the space of x×y complex matrix. ℜ{·}
denotes the real part of a complex number. CN (A, B) represents
the Gaussian distribution with mean A and covariance B.

II. Basic SystemModel

We consider a distributed RISs-aided THz communication
system as shown in Fig. 1. The THz signals are poor diffrac-
tion and vulnerable to the obstruction due to its ultra-high
frequency [29] [30]. Thus, the direct links between the BS and
users are assumed to be blocked by buildings. We set that the
BS is consisted of an N-antenna uniform linear array (ULA)
and NRF (N ≥ NRF) RF chains to serve K single-antenna users.
Let R = {1, · · · ,R} denote the index set of RISs, we assume
that all RISs own the same size with NRIS = Mx×My elements,
where Mx and My represent the number of rows and columns,
respectively. Let Mx = {1, · · · ,Mx} and My = {1, · · · ,My}
denote the index sets of elements in rows and columns. The
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Fig. 1: The distributed RISs-aided THz system.

orthogonal frequency division multiplexing technique with total
M subcarriers is applied to realize the reliable wideband trans-
mission. The frequency of the m-th carrier can be expressed as
fm = fc + B

M

(
m − 1 − M−1

2

)
,m = 1, 2, · · · ,M, where fc and B

are the central frequency and bandwidth, respectively.
Thus, the equivalent channel hm,k between the BS and the

k-th user on the m-th subcarrier can be expressed as

hm,k =

R∑
r=1

fr,m,kΦrGr,m, (1)

where fr,m,k ∈ C
1×NRIS denotes the channel vector between the r-

th RIS and the k-th user on the m-th subcarrier, Gr,m ∈ C
NRIS×N

represents the channel matrix from the BS to the r-th RIS on the
m-th subcarrier.Φr = diag

(
φr,1,1, · · · , φr,mx,my , · · · , φr,Mx,My

)
, r ∈

R, mx ∈ Mx,my ∈ My, is the diagonal reflection coefficients
matrix of the r-th RIS with φr,mx,my = εr,mx,mye

jϕr,mx ,my . To
maximize the reflection efficiency, we set εr,mx,my = 1 for r ∈ R,
mx ∈ Mx,my ∈ My. We apply the Saleh-Valenzuela channel
model [31], and thus the channel matrix Gr,m can be expressed
as

Gr,m =

L1∑
l1=1

αr
l1 e− j2πτr

l1
fm b

(
ur

l1 , v
r
l1

)
a
(
θrl1

)H
, (2)

where L1 represents the number of paths, αr
l1

and τr
l1

respec-
tively denote the gain and delay of the l1-th path at the r-th
RIS. a

(
θrl1

)
and b

(
ur

l1
, vrl1

)
respectively denote the array response

vectors at the BS and RIS, which can be denoted as

a
(
θrl1

)
=

1
√

N

[
1, . . . , e j2πd fm

c n sin θrl1 , . . . , e
j2πd fm

c (N−1) sin θrl1

)]T

, (3)

and

b
(
ur

l1 , v
r
l1

)
=

1
√

NRIS
[1, . . . , e j2πd fm

c (mx cos ur
l1

sin vrl1+my cos vrl1 )
,

. . . , e j2πd fm
c ((Mx−1) cos ur

l1
sin vrl1+(My−1) cos vrl1 )]T ,

(4)

where c and d are the speed of light and the distance between
two consecutive antennas, respectively. We set d = λc/2, and λc

is the wavelength of the central frequency fc. θrl1 ∈ [−π/2, π/2]
is the physical direction of the l1-th path departing from the BS
to the r-th RIS. ur

l1
and vrl1 ∈ [−π/2, π/2] represent the azimuth

and elevation angles of arrivals (AoAs) of the l1-th path at the
r-th RIS, respectively.

Next, the channel vector from the r-th RIS to the k-th user
on the m-th subcarrier is denoted as

fr,m,k =

L2∑
l2=1

αr,k
l2

e− j2πτr,k
l2

fm b
(
ur,k

l2
, vr,kl2

)
, (5)

where L2 represents the number of paths, αr,k
l2

and τr,k
l2

respec-
tively denote the gain and delay of the l2-th path from the
r-th RIS to the k-th user, b

(
ur,k

l2
, vr,kl2

)
denotes the transmit array

response vector at the RIS, namely

b
(
ur,k

l2
, vr,kl2

)
=

1
√

NRIS
[1, . . . , e j2πd fm

c (mx cos ur,k
l2

sin vr,kl2
+my cos vr,kl2

)
,

. . . , e j2πd fm
c ((Mx−1) cos ur,k

l2
sin vr,kl2

+(My−1) cos vr,kl2
)]T ,

(6)

where ur,k
l2

and vr,kl2
∈ [−π/2, π/2] represent the azimuth and

elevation angles of departures (AoDs) of the l2-th path from
the r-th RIS to the k-th user, respectively.

The above is the basic system model for the distributed
RISs-aided THz communications. Next, we first study how
to mitigate the beam split effect by designing more practical
antenna structure at the BS, and then investigate the joint
beamforming optimization problem.

III. Double-layer TTD Scheme and Performance Analysis

To overcome the beam split effect, existing works mainly
consider the single-layer TTD scheme. However, it requires
each time delay line to provide a large-range delay, especially
for a large antenna array, and TTD with large-range delay
usually has high power consumption, insertion loss, and hard-
ware complexity, which is impractical for TTD circuits [32].
Therefore, to mitigate the beam split effect with low power
consumption and hardware cost, we propose a double-layer
TTD scheme at the BS.

A. Phase Compensation Principle

We first introduce the phase compensation principle. For
convenience, we assume that there is only one RF chain
connecting to N antennas via PSs at the BS as shown in Fig.
2(a), and one single-antenna user is served. Although there are a
few scattering components in THz communications, their power
are much lower than that of the LoS component [33]. Therefore,
we only consider the LoS component here, and thus the channel
vector h̄m ∈ C

1×N of the BS-user link on the m-th carrier can
be expressed as

h̄m = αe− j2πτ fm a (θ0)H , (7)

where α and τ respectively denote the gain and delay, θ0 ∈
[−π/2, π/2] is the AoD, a (θ0) denotes the array response vector
at the BS, namely

a (θ0) =
1
√

N

[
1, . . . , e j2πd fm

c n sin θ0 , . . . , e j2πd fm
c (N−1) sin θ0

)]T
. (8)
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Fig. 2: Three different antenna schemes: (a) PS scheme, (b) Single-layer TTD scheme, (c) Double-layer TTD scheme.

To form a beam at direction θ0, the phase Ψc excited by the
n-th PS at center frequency fc should be [34]

Ψc =
2π fc

c
(n − 1)d sin θ0 = ωcτn, n = 1, 2, . . . ,N, (9)

where

τn =
(n − 1)d

c
sin θ0 = (n − 1)Td sin θ0, (10)

is the propagation delay between the first and n-th antenna, ωc

is the angular frequency corresponding to the center frequency
fc, and Td =

d
c is the delay between two consecutive antennas.

Thus, the analog beam fps under the PS scheme can be written
as

fps =
1
√

N

[
1, . . . , e j2π fcnTd sin θ0 , . . . , e j2π fc(N−1)Td sin θ0)

]T
. (11)

Wrapping the phase shift to [0, 2π], we obtain

Ψ′c = Ψc − TRUNC(
Ψc

2π
), (12)

where TRUNC is a function that represents the integral part
of its argument. Due to the frequency-independent property
of PSs, the phase adjusted by each PS is common for all
frequencies. But when the frequency varies from fc to fm, the
ideal phase should be

Ψp = 2π fm(n − 1)Td sin θ0. (13)

Thus, there is a phase difference between the ideal phase and
practical phase, which can be expressed as

∆Ψ = 2π( fm − fc)(n − 1)Td sin θ0. (14)

The phase difference at fm leads to the beam direction moving
to θ

′

0, namely

θ
′

0 = arcsin(
fc
fm

sin θ0). (15)

It is observed that the phase difference increases with the
bandwidth and the number of antennas. Since the beam split es-
sentially results from the propagation delay across the antenna
array aperture, a reasonable approach to tackle this issue is

to compensate the propagation delay. Consequently, the TTD
is introduced to thoroughly eliminate the beam split. Fig. 2
(b) shows a typical TTD antenna structure, where N antennas
are uniformly divided into U subarrays and each one includes
S = N/U antennas. Meanwhile, these antennas are connected
to one TTD via S PSs at each subarray, and then all TTDs
are connected to the RF chain. Next, as shown in Fig. 3, we
define τu as the signal transmission time delay difference from
the first antenna of the first subarray to the first antenna of the
u-th subarray, namely

τu = (u − 1)S Td sin θ0, (16)

where u = 1, 2, . . .U. From (16), we have τu ∈ [0, (U − 1)S Td]
with θ0 ∈ [−π/2, π/2]. For the single-layer TTD scheme, the
transmission signal phase at each antenna is jointly controlled
by the frequency-dependent TTD and frequency-independent
PS [35]. Therefore, the transmission signal phase Ψu,s of the
s-th element in the u-th subarray at the frequency fm can be
written as

Ψu,s = 2π fm (u − 1) S Td sin θ0 + 2π fc(s − 1)Td sin θ0, (17)

where s = 1, 2, . . . S . The corresponding analog beamforming
fttd can be expressed as

fttd =
1
√

N
[1, . . . , e jΨu,s , . . . , eΨU,S ]T . (18)

To achieve unbiased beam synthesis, the ideal phase at fre-
quency fm should be

Ψ̂u,s = 2π fm[(u − 1) S + (s − 1)]Td sin θ0. (19)

Thus, there exists a phase error under the single-layer TTD
scheme, namely

∆Ψu,s = 2π( fm − fc)(s − 1)Td sin θ0. (20)

One can observe that the phase error is related to the subarray
aperture and it increases with the number of elements in each
subarray. Therefore, for reducing the phase error and beam
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Fig. 3: Configuration of the typical single-layer TTD scheme.

split effect, we can increase the subarray number (i.e., TTDs
number), but this will cause a high hardware cost.

Next, to clearly understand the hardware implementation of
TTD, we present an 8-bit TTD with a minimum delay of 1
ps [35] as an example. In order to construct a complete 8-bit
TTD, 8 TTD elements should be cascaded for a total delay of
255 ps, with the least significant bit (LSB) equal to 1 ps and
the most significant bit (MSB) equal to 128 ps, as shown in the
circuit block diagram of Fig. 4. Each discretely unit is realized
by cascaded time delay units, reference units and input and
output single-pole-double-throw (SPDT) switches [26] [36],
which provide different levels of time delay and time delay
selection, respectively. Due to the cascaded structure, the power
consumption, insertion loss, and hardware complexity of the
TTD are summation of those of the time delay units, and
switches. In addition, the insertion loss of the time delay is
increased as the frequency increases [37]. Thus, in the THz
band, fewer bits can reduce the number of time delay units
and switches, which further decreases the power consumption,
insertion loss, and hardware complexity.

τ τ τ

Reference unit Reference unit Reference unit

Time delay unit

1ps TTD

Time delay unit

2ps TTD

Time delay unit

128ps TTD

In Out

4,8,16,32,64ps 

TTD

SPDT SPDT SPDT SPDT SPDT SPDT

Fig. 4: Circuit block diagram of the 8-bit TTD.

B. Proposed Double-layer TTD Scheme

Fig. 2 (c) is our proposed double-layer TTD scheme, where
the second layer includes KH TTDs and each TTD is connected
to KL TTDs of the first layer. Meanwhile, each TTD of the first
layer is connected to P antennas via PSs. We define τkh,kl as the

signal transmission time delay difference from the first antenna
of the first subarray to the first antenna of the kl-th subarray
related to the kh-th TTD of the second layer, namely

τkh,kl = (kl − 1) PTd sin θ0, (21)

where kl = 1, 2, . . .KL, kh = 1, 2, . . .KH. Next, we define τkh

as the signal transmission time delay difference from the first
antenna connecting to the first TTD of the second layer to the
first antenna connecting to the kh-th TTD of the second layer,
namely

τkh = (kh − 1) KLPTd sin θ0. (22)

From (21) and (22), we have τkh,kl ∈ [0, (KL − 1)PTd] and τkh ∈

[0, (KH − 1)KLPTd] with θ0 ∈ [−π/2, π/2], 1 ≤ kl ≤ KL and
1 ≤ kh ≤ KH. Therefore, for the double-layer TTD scheme, the
time delay range of the TTD at the first layer is always smaller
than that of the TTD at the second layer. And the phase of each
antenna is controlled by the double-layer network and PSs. The
corresponding phase value Ψh,l,p of the p-th element in the kl-th
TTD under the kh-th subarray at the frequency fm is

Ψh,l,p = 2π fm (kh − 1) KLPTd sin θ0+
2π fm (kl − 1) PTd sin θ0 + 2π fc(p − 1)Td sin θ0,

(23)

where p = 1, 2, . . . P. The phase error of each element com-
pared to the ideal phase is

∆Ψh,l,p = 2π( fm − fc)(p − 1)Td sin θ0. (24)

The corresponding analog beamforming fmttd excited by the
double-layer TTD scheme can be expressed as

fmttd =
1
√

N
[1, . . . , e jΨh,l,p , . . . , eΨH,L,P ]T . (25)

Next, we respectively derive the normalized array gains under
three different schemes. For the target direction θ0 on the
frequency fm, the array gain under the traditional PS scheme
can be calculated as

gps ( fm, θ0) =
∣∣∣aHfps

∣∣∣
=

1
N

∣∣∣∣∣∣∣
N∑

n=1

e− j2πd fm
c (n−1) sin θ0 e j2πd fc

c (n−1) sin θ0

∣∣∣∣∣∣∣
=

1
N
|ΞN ((ζm − 1) sin θ0)| , (26)

where ζm =
fm
fc

denotes the relative frequency, and ΞN (x) =
sin( πN2 x)
sin( π2 x) is the Dirichlet Sinc function [38] [39]. Next, the array

gain under the single-layer TTD scheme should be

gttd ( fm, θ0) =
∣∣∣aHfttd

∣∣∣
=

1
N

∣∣∣∣∣∣∣
U∑

u=1

S∑
s=1

e j2πd fc
c (s−1) sin θ0 e j 2π fm

c (u−1)S d sin θ0

e− j2πd fm
c [(u−1)S+(s−1)] sin θ0

∣∣∣∣
=

U
N
|ΞS ((ζm − 1) sin θ0)| .

(27)
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Finally, the array gain under the double-layer TTD scheme can
be expressed as

gmttd ( fm, θ0) =
∣∣∣aHfmttd

∣∣∣
=

1
N

∣∣∣∣∣∣∣∣
KH∑

kh=1

KL∑
kl=1

P∑
p=1

e jπ fm
fc

(kh−1)KLP sin θ0 e jπ fm
fc

(kl−1)P sin θ0

e jπ(p−1) sin θ0 e− jπ fm
fc

[(kh−1)KLP+(kl−1)P+(p−1)] sin θ0
∣∣∣∣

=
KHKL

N

∣∣∣∣∣∣∣∣
P∑

p=1

e− jπ(p−1)( fm
fc
−1) sin θ0

∣∣∣∣∣∣∣∣
=

KHKL

N
|ΞP ((ζm − 1) sin θ0)| . (28)

From (26)-(28), one can observe that the difference of the
array gains under three different schemes mainly own to their
different elements number of each subarray. In the proposed
double-layer TTD scheme, by introducing an additional small-
delay TTD network, the required number of large-range delay
TTDs can be effectively reduced. Fig. 5 shows the phase
compensation of each antenna under different schemes, and
we set fc = 300 GHz, B = 30 GHz, θ0 = π/4 and N = 128.
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Fig. 5: Phase compensation of each antenna.

In the single-layer TTD scheme, we set the number of TTDs
U = 32. In the double-layer TTD scheme, we consider two
configurations, i.e., KH = 8,KL = 4 and KH = 8,KL = 2.
Without considering the quantization error of the TTD device,
we can find that the phase compensation under the single- and
double-layer TTD schemes is almost the same for KH = 8,KL =

4. However, the required number of large-range delay TTDs
in the double-layer TTD scheme is sharply reduced. When
KH = 8,KL = 2, the performance is slightly lower, but the
total number of TTDs is further reduced. Fig. 6 depicts phase
error of each antenna under different schemes. One can observe
that the phase error under the single- and double-layer TTD
schemes is periodic and the period becomes shorter when the
number of subarray antennas is smaller. Nevertheless, the phase
error under the PS scheme increases linearly antenna index.
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Fig. 7: Normalized array gain.

Fig. 7 illustrates the normalized array gain of each subcarrier
under different schemes. It can be observed that the gain under
single- and double-layer TTD schemes can almost obtain the
high performance across the entire bandwidth. Although the
gain under the double-layer TTD scheme with KH = 8 and KL =

2 is a little lower, the number of large-range delay TTDs is
smaller. Whereas, the gain loss under the PS scheme is largest,
which seriously effects the system performance.

Furthermore, considering the practical hardware limitation,
the TTD can only realize the limited discrete time delays.
Therefore, we assume that the TTD under the first layer and
second layer owns 2PL and 2PH discrete values, respectively,
where PL and PH denote the bit number. Thus, the set of
discrete time delay τkh,kl and τkh can be given by

τkh,kl ∈ T1 = {0,D, 2D, · · · , (2PL − 1)D}, (29)

τkh ∈ T2 = {0,D, 2D, · · · , (2PH − 1)D}, (30)

where D is the time delay step.
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Without loss of generality, we first consider the time delay
step as D = Tc. To ensure that the maximum time delay interval
between P array elements is within Tc and each array element
can obtain the required optimal time delay, P, PL and PH should
satisfy the following conditions [40]

τn+P−1 (θ0) − τn (θ0) < Tc, (31a)

τn+P(KL−1) (θ0) − τn (θ0) <
(
2PL − 1

)
Tc, (31b)

τN−PKL (θ0) − τ0 (θ0) <
(
2PH − 1

)
Tc. (31c)

Then, the required bit at each layer and minimum array
elements are calculated as

P ≤ ⌊
Tc

Td sin θ0
⌋, (32a)

PL ≥ ⌈log2
(KL − 1) PTd sin θ0

Tc
⌉, (32b)

PH ≥ ⌈log2
(N − PKL) Td sin θ0

Tc
⌉, (32c)

where ⌊x⌋ and ⌈x⌉ are the floor and ceil function, respectively.
If PL = 0 and KL = 1, double-layer TTD scheme degrades
to the single-layer TTD scheme. The required bit Ps for the
single-layer TTD should be

Ps ≥ ⌈log2
(U − 1) S Td sin θ0

Tc
⌉. (33)

Next, we compare these two schemes. It is obvious that the
hardware complexity of the TTD device and the antenna system
mainly depends on the number of bits in an individual TTD de-
vice and the total number of TTDs, respectively. Consequently,
the bit ratio can be used to measure the degree of reduction in
hardware cost of the double-layer TTD scheme relative to the
single-layer TTD scheme, which is defined as

η =
(KHPH + KHKLPL)

UPs
. (34)

We assume N = 128, fc = 300 GHz, θ0 = π/4, U = 32, KH = 8,
KL = 4, and then have Ps ≥ 6, PH ≥ 6, PL ≥ 3 according to (32)
and (33). To minimize the hardware cost, we set Ps = 6, PH = 6
and PL = 3. Then, we can calculate that the total bits under
single- and double-layer TTD schemes are Bs = UPs = 192
and Bm = KHPH + KHKLPL = 144, respectively. Therefore, the
bit ratio is η = 75%. By introducing an additional small-range
delay TTD network, it is obvious that the total required bits of
TTD and the number of large-range delay TTDs are reduced
under the double-layer TTD scheme, and thus hardware cost is
reduced effectively.

IV. Problem Formulation and Solutions

In this section, we investigate the joint beamforming op-
timization problem for the distributed RISs-aided THz com-
munications based on the proposed double-layer TTD scheme.
Based on the practical hardware limitation, we consider the
finite-resolution phase shift and time delay. We assume that
the number of RF chains NRF is equal to the number of RISs,
i.e., NRF = R, and the fully connect structure is considered as
shown in Fig. 8.
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Fig. 8: Fully connect antenna structure with double-layer TTD
scheme.

A. Problem Formulation

The received signal of the k-th user on the m-th subcarrier
can be written as

ym,k = hm,kFdm,k sm,k +

K∑
j=1, j,k

hm,kFdm, jsm, j + nm,k, (35)

where F = FAFLFH is the analog beamforming matrix realized
by double-layer TTD network and PSs. FA ∈ C

N×KLKHNRF =

diag([F1, · · · ,Fnrf , · · · ,FNRF ]), where Fnrf ∈ C
PKLKH×KLKH =

diag([cnrf ,1,1, · · · , cnrf ,kh,kl , · · · , cnrf ,KH,KL ]), and cnrf ,kh,kl ∈ C
P×1

denotes the beamforming vector generated by P PSs connecting
to the nrf-th RF chain via the kl-th subarray related to the
kh-th TTD of the second layer. FL ∈ C

KLKHNRF×KHNRF denotes
the frequency-dependent phase shifts realized by the first-layer
TTD network, and satisfies

FL = diag
([

e j2π fmτ1,1 , e j2π fmτ1,2 , · · · , e j2π fmτNRF ,KH

])
, (36)

where τnrf ,kh ∈ C
KL×1 =

[
τnrf ,kh,1, τnrf ,kh,2, · · · , τnrf ,kh,KL

]T is the
time delay vector realized by KL TTD elements connecting to
the kh-th TTD of the second layer under the nrf-th RF chain.
FH ∈ C

KHNRF×NRF denotes the frequency-dependent phase shifts
realized by the second-layer TTD network, and satisfies

FH = diag
([

e j2π fmτ1 , e j2π fmτ2 , · · · , e j2π fmτNRF

])
, (37)

where τnrf ∈ C
KH×1 =

[
τnrf ,1, τnrf ,2, · · · , τnrf ,KH

]T is the time delay
vector realized by the second-layer TTD network connecting
to the nrf-th RF chain. In addition, dm,k ∈ C

NRF×1 denotes the
digital beamforming vector. nm,k ∼ CN

(
0, σ2

m,k

)
is the additive

zero average white Gaussian noise (AWGN) with variance of
σ2

m,k at the k-th user on the m-th subcarrier, and sm,k denotes
the transmit symbol for the k-th user on the m-th subcarrier
with E

[∣∣∣sm,k

∣∣∣2] = 1.
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Then, the SINR of the k-th user on the m-th subcarrier can
be calculated as

γm,k =

∣∣∣hm,kFdm,k

∣∣∣2∑K
j=1, j,k

∣∣∣hm,kFdm, j

∣∣∣2 + σ2
m,k

, (38)

and the achievable sum rate Rsum can be expressed by

Rsum =

K∑
k=1

M∑
m=1

log2
(
1 + γm,k

)
. (39)

Let b denote the number of bits, and thus 2b indicates the
number of phase shift levels. Then, the set of discrete phase
shifts generated by PSs can be expressed as

C =
1
√

P
{e j0, e j 2π

2b , · · · , e j 2π
2b (2b−1)}. (40)

Similarly, the set of discrete reflection coefficient of RISs can
be written as

F = {e j0, e j 2π
2Q , · · · , e j 2π

2Q (2Q−1)}, (41)

where Q indicates the bit number. Finally, we formulate the
joint beamforming optimization problem as follows

P1 : max
Θ,FA,FL,FH,dm,k

Rsum (42a)

s.t.
K∑

k=1

M∑
m=1

∥∥∥FAFLFHdm,k

∥∥∥2
≤ Pmax, (42b)

τnrf ,kh ∈ {0,D, 2D, · · · , (2PH − 1)D}, (42c)

τnrf ,kh,kl ∈ {0,D, 2D, · · · , (2PL − 1)D}, (42d)

cnrf ,kh,kl ∈
1
√

P
{e j0, e j 2π

2b , · · · , e j 2π
2b (2b−1)}, (42e)

φr,mx,my ∈ {e
j0, e j 2π

2Q , · · · , e j 2π
2Q (2Q−1)}, (42f)

where Θ = diag (Φ1, . . . ,ΦR) and Pmax is the maximum
available transmit power. (42b) is the total transmit power
constraint, (42c) and (42d) are the discrete time delay constraint
for each TTD, (42e) is the phase shift constraint for each PS,
and (42f) represents the discrete reflection coefficient constraint
for each RIS element. P1 aims to maximize the achievable
rate by jointly optimizing the reflection coefficient matrix
Θ, frequency-independent beamforming matrix FA, frequency-
dependent phase shifts FH and FL, and digital beamforming
vector dm,k. Note that the constraint in (42b) is non-convex
due to the coupling of FA, FH, FL, and dm,k. Furthermore, the
constraints in (42c)-(42f) restrict the optimization parameters
to be discrete values. Thus, P1 is generally NP-hard, and there
is no standard method to obtain its globally optimal solution
efficiently. Next, we propose an effective algorithm to deal
with it.

B. Problem Solution

In this section, we propose a joint beamforming framework
to solve P1. Firstly, based on RISs’ locations, we design the
analog beamforming, including phase shifts and time delays.
Then, we propose an alternatively optimization algorithm to
obtain the digital beamforming and reflection coefficients.

1) Design of Analog Beamforming F: The analog beam-
forming is defined as F = FAFLFH, and thus we need to
design FA, FL and FH via optimizing the phase shifts and time
delays. To compensate the severe array gain loss caused by
the beam split, the analog beamforming should generate beams
aligned with the target physical direction at all subcarriers.
The key idea of the double-layer TTD scheme is that the time
delays are elaborately designed to make beams over different
subcarrier frequencies toward the target’s physical direction,
and PSs are used to compensate for the remaining phase shift
of the TTD network to generate beams aligned with target’s
physical direction at the central frequency.

Therefore, we first design the time delays via the double-
layer TTD network. Based on the analysis in Sec. III-B, the
optimal time delay of the kl-th TTD at the first layer connected
to the kh-th TTD at the second layer under the nrf-th RF chain
can be calculated as

τnrf ,kh,kl = (kl − 1) PTd sin θrl . (43)

Similarly, the optimal time delay of the kh-th TTD at the second
layer connected to the nrf-th RF chain can be expressed as

τnrf ,kh = (kh − 1) KLPTd sin θrl , (44)

where θrl is the physical direction of the LoS path from the BS
to the r-th RIS. Then, we can obtain the discrete time delay
τ
′

nrf ,kh,kl
and τ

′

nrf ,kh
according to the following approximation,

τ
′

nrf ,kh,kl
= argmin

τ1∈T1

∣∣∣τnrf ,kh,kl − τ1
∣∣∣ , (45)

τ
′

nrf ,kh
= argmin

τ2∈T2

∣∣∣τnrf ,kh − τ2
∣∣∣ . (46)

After obtaining the time delay τ
′

nrf ,kh,kl
, the time delay vector

τ̂nrf ,kh realized by KL TTD elements connecting to the kh-th
TTD of the second layer under the nrf-th RF chain is given by

τ̂nrf ,kh ∈ C
KL×1 =

[
τ
′

nrf ,kh,1, τ
′

nrf ,kh,2, · · · , τ
′

nrf ,kh,KL

]T
. (47)

The corresponding frequency-dependent phase shifts FL real-
ized by the first layer is calculated as

FL = diag
([

e j2π fmτ̂1,1 , e j2π fmτ̂1,2 , · · · , e j2π fmτ̂NRF ,KH

])
. (48)

Similarly, the time delay vector τ̂nrf realized by KH TTDs
connecting to the nrf-th RF chain can be expressed as

τ̂nrf ∈ C
KH×1 =

[
τ
′

nrf ,1, τ
′

nrf ,2, · · · , τ
′

nrf ,KH

]T
. (49)

The frequency-dependent phase shifts FH realized by the sec-
ond layer is formulated as

FH = diag
([

e j2π fmτ̂1 , e j2π fmτ̂2 , · · · , e j2π fmτ̂NRF

])
. (50)

Here, the design of the time delay only depend on the RISs’s
locations and BS antenna structure.

Then, we present the frequency-independent beamforming
matrix FA, which is realized by PSs. The PSs can be used
to compensate for the remaining phase shift of the former
TTD network and generate beams aligned with RISs’ physical
directions. The beamforming vector cnrf ,kh,kl generated by P PSs
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connecting to the nrf-th RF chain via the kl-th TTD and kh-th
TTD is given by

cnrf ,kh,kl =
1
√

P

[
1, . . . , e j2π fc pTd sin θrl , . . . , e j2π fcTd(P−1)Td sin θrl )

]T
.

(51)

Similarly, we obtain the discrete c′nrf ,kh,kl
(p), p = 1, 2, · · · , P

according to the following approximation

c
′

nrf ,kh,kl
(p) = argmin

c∈C

∣∣∣cnrf ,kh,kl (p) − c
∣∣∣ , (52)

where c is element in set C. Then, Fnrf can be expressed as

Fnrf = diag

[c′nrf ,1,1, c
′

nrf ,1,2, · · · , c
′

nrf ,kH,kL︸                           ︷︷                           ︸
KHKL columns

]

 . (53)

Finally, we can obtain the frequency-independent beamforming
matrix FA, namely

FA = diag([F1, · · · ,Fnrf , · · · ,FNRF ]). (54)

2) Optimization of dm,k with Fixed Θ: So far, we obtain
the analog beamforming F, and next we solve the digital
beamforming and reflection coefficients. Based on the obtained
F, the original problem P1 can be reformulated as follows

P2 : max
Θ,dm,k

Rsum (55a)

s.t.
K∑

k=1

M∑
m=1

∥∥∥FAFLFHdm,k

∥∥∥2
≤ Pmax, (55b)

φr,mx,my ∈ {e
j0, e j 2π

2Q , · · · , e j 2π
2Q (2Q−1)}. (55c)

However, P2 is still difficult to solve due to the non-convex
complex objective function. Next, we propose an alternatively
optimization algorithm to deal with it.

Firstly, for given the reflection coefficient matrix Θ, we
propose an iterative algorithm based on the MMSE technique
to obtain the digital beamforming dm,k. The equivalent channel
vectors for the k-th user on the m-th subcarrier can be written as
ĥm,k = hm,kF. Besides, based on the extension of the Sherman-
Morrison-Woodbury formula [41], we have

(
1 + γm,k

)−1
= 1 −

∣∣∣ĥm,kdm,k

∣∣∣2∑K
j=1

∣∣∣ĥm,kdm, j

∣∣∣2 + σ2
m,k

. (56)

The MMSE-receive combining filter at the k-th user on the m-th
subcarrier is given as

χ∗m,k = arg min
χm,k
ξm,k, (57)

where ξm,k = E
[∥∥∥χm,kym,k − sm,k

∥∥∥2
2

]
is the MSE. Substituting

(35) into ξm,k, the MSE ξm,k can be written as

ξm,k =

K∑
j=1

∣∣∣χm,kĥm,kdm, j

∣∣∣2 − 2ℜ
{
χm,kĥm,kdm,k

}
+

∣∣∣χm,k

∣∣∣2 σ2
m,k + 1.

(58)

Then, taking the partial derivatives to (58) with respect to χm,k

and setting the result to zero, the optimal receive combining

filter χ∗m,k at the k-th user on the m-th subcarrier can be
expressed as

χ∗m,k =
ĥm,kdm,k∑K

j=1

∣∣∣ĥm,kdm, j

∣∣∣2 + σ2
m,k

. (59)

Substituting (59) into (58), the MMSE can be obtained as

ξ∗m,k = 1 −

∣∣∣ĥm,kdm,k

∣∣∣2∑K
j=1

∣∣∣ĥm,kdm, j

∣∣∣2 + σ2
m,k

, (60)

which is equal to
(
1 + γm,k

)−1, i.e.,(
1 + γm,k

)−1
= min

um,k
ξm,k. (61)

Then, the achievable rate of the k-th user on the m-th subcarrier
can be transformed as

log2
(
1 + γm,k

)
= max
χm,k

(
− log2 ξm,k

)
. (62)

Based on [43] [44], we can obtain

log2
(
1 + γm,k

)
= max
χm,k

max
ϖm,k>0

(
−
ϖm,kξm,k

ln 2
+ log2ϖm,k +

1
ln 2

)
, (63)

where ϖm,k is the weight of the data for the k-th user on the
m-th subcarrier and the optimal ϖm,k is ϖ∗m,k =

1
ξm,k

. Next, P2
can be transformed to the MSE minimization problem, namely

P3 : max
dm,k

K∑
k=1

M∑
m=1

max
χm,k

max
ϖm,k>0

(
−
ϖm,kξm,k

ln 2
+ log2ϖm,k +

1
ln 2

)
(64a)

s.t.
K∑

k=1

M∑
m=1

∥∥∥FAFLFHdm,k

∥∥∥2
≤ Pmax. (64b)

To address P3, an iterative optimization algorithm is proposed.
Based on the obtained d(i−1)

m,k at the (i − 1)-th iteration, χ(i)
m,k at

the i-th iteration can be expressed as

χ(i)
m,k =

ĥm,kd(i−1)
m,k∑K

j=1

∣∣∣∣ĥm,kd(i−1)
m, j

∣∣∣∣2 + σ2
m,k

. (65)

And the optimal ϖ(i)
m,k at the i-th iteration can be obtained by

ϖ(i)
m,k =

1
ξ∗(i)m,k

, where

ξ∗(i)m,k = 1 −

∣∣∣∣ĥm,kd(i−1)
m,k

∣∣∣∣2∑K
j=1

∣∣∣∣ĥm,kd(i−1)
m, j

∣∣∣∣2 + σ2
m,k

. (66)

Finally, the problem P3 is transformed as

P4 : min
d(i)

m,k

K∑
k=1

M∑
m=1

ϖ(i)
m,kξ

(i)
m,k

ln 2
− log2ϖ

(i)
m,k −

1
ln 2

 (67a)

s.t.
K∑

k=1

M∑
m=1

∥∥∥∥FAFLFHd(i)
m,k

∥∥∥∥2
≤ Pmax. (67b)

We find that P4 can be solved by numerical convex program
solvers. Particularly, since the obtained d(i)

m,k, ϖ(i)
m,k, χ(i)

m,k are the



10

Algorithm 1: Coordinate Update Algorithm for Opti-
mizing Reflection Coefficients Matrix

1 Input: Channels fr,m,k, Gr,m, analog beamforming F,
digital beamforming vector dm,k, maximum iterations Io.

2 Initialization: φ(0)
nris = +1 for nris = 1, 2, · · · ,RNRIS, i = 0.

3 while 0 ≤ i<Io do
4 for nris = 1 : RNRIS do
5 φ(i)

nris = −1;

6 ϕ1 =
[
φ(i)

1 , φ
(i)
2 , · · · , φ

(i)
nris−1, φ

(i)
nris , φ

(i−1)
nris+1 · · · , φ

(i−1)
RNRIS

]T
;

7 Transform the vector ϕ1 to the reflection matrix Θ1;
8 φ(i)

nris = +1;

9 ϕ2 =
[
φ(i)

1 , φ
(i)
2 , · · · , φ

(i)
nris−1, φ

(i)
nris , φ

(i−1)
nris+1 · · · , φ

(i−1)
RNRIS

]T
;

10 Transform the vector ϕ2 to the reflection matrix Θ2;
11 q = arg maxq=1,2

{
Rsum(Θq)

}
;

12 Θ = Θq;
13 end for
14 end while
15 Output: Reflection coefficients matrix Θ.

optimal solutions of P4 at the i-th iteration and the objective
function is lower bound and monotonically decreases with
iterations. Consequently, it can converge to at least a local
optimal solution.

3) Optimization of Θ with Fixed dm,k: After obtaining the
digital beamforming dm,k, we apply the coordinate update al-
gorithm [42] to obtain the reflection coefficients matrix. Due to
hm,k =

∑R
r=1 fr,m,kΦrGr,m, we transform (55) into the following

optimization problem:

P5 : max
Θ

Rsum (68a)

s.t. φr,mx,my ∈ {e
j0, e j 2π

2Q , · · · , e j 2π
2Q (2Q−1)}. (68b)

Considering the discrete nature of the reflection coefficients,
the optimal solution for P5 can be obtained by searching
all possible vectors. However, even when Q = 1 bit, such
exhaustive search algorithm requires to search 2RNRIS candidate
vectors, which involves unaffordable complexity for a large
NRIS. Therefore, we employ the coordinate update algorithm
and it only requires 2RNRISIo search complexity to obtain a
suboptimal solution. Specifically, by fixing any RNRIS−1 phase
shifts in each iteration, we alternately optimize each of the
RNRIS phase shifts via one-dimensional search over F in an
iterative manner until convergence.

To simplify the expression, we assume φnris =

φr,mx,my and define a vector ϕ ∈ CRNRIS×1 =[
φ1, φ2, · · · , φnris−1, φnris , φnris+1, · · · , φRNRIS

]T , nris =

1, 2, · · · ,RNRIS. Without loss of generality, we set Q = 1 bit.
The optimization problem is transformed as

P6 : max
ϕ

Rsum (69a)

s.t. φnris ∈ {1,−1}. (69b)

Algorithm 2: The Proposed Algorithm for Solving P1

1 Input: Channels fr,m,k, Gr,m.
2 Initialization: Digital beamforming vector d(0)

m,k and
reflection coefficients matrix Θ(0).

3 Calculate the analog beamforming matrix F according
to (48), (50) and (54).

4 while 0 ≤ i<Imax do
5 Obtain digital beamforming vector dm,k by solving

P4;
6 Obtain reflection coefficients matrix Θ by solving P6;
7 end while
8 Output: Analog beamforming matrix F, digital

beamforming vector dm,k, reflection coefficients matrix
Θ.

Based on the coordinate update algorithm, the optimal phase
shift of the nris-th element is given by

φnris = arg max
φnris∈{1,−1}

{
Rsum(e jφnris )

}
. (70)

We summarize the procedure for solving reflection coefficients
in Algorithm 1. Note that problem P1 is the original problem
formulation. P2-P6 are the intermediate problems obtained by
transformation and simplification in the solving process. The
digital beamforming vector and reflection coefficients matrix
can be obtained by solving P4 and P6, respectively.

So far, the analog beamforming F, the digital beamforming
dm,k and reflection coefficients matrix Θ are all obtained. In the
process of solving P1, based on the RISs’ locations, we first
design the analog beamforming, including PSs’ phase shifts
and time delays of the double-layer TTD network. Then, we
propose an alternatively optimization algorithm to obtain the
digital beamforming and reflection coefficients. Specifically,
given fixed reflection coefficients, the MMSE technique is
applied to obtain the digital beamforming. Next, we employ the
coordinate update algorithm to slove the reflection coefficients.
The above procedure is repeated until convergence. The details
of the proposed optimization framework are summarized in
Algorithm 2, which can obtain a sub-optimal solution to
balance the performance and computation complexity.

C. Computational Complexity

In this subsection, we analyze the computational complexity
of the proposed algorithm, which is mainly induced by MMSE
algorithm and coordinate update algorithm. Specifically, to
obtain the digital beamforming vector dm,k, the computational
complexity is O

(
Id MN2

)
, where Id is the required number

of iterations of the MMSE algorithm. The computational
complexity is O

(
Io2QKNRNRIS

)
for solving the reflection

coefficients matrix Θ, where Io is the required number of
iterations of the coordinate update algorithm. The overall
computational complexity of the proposed Algorithm 1 is
O

(
Imax(Id MN2 + Io2QKNRNRIS)

)
, where Imax is the required

iteration number of the outer iteration.
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V. Numerical Results

In this section, simulation results are presented to evaluate
the performance of the proposed schemes. We assume that the
BS is located at (50m, 0m, 3m) and K = 4 users are randomly
distributed in a circle centered at (0, 85m, 0) with radius of
1m. In addition, we deploy R = 4 distributed RISs and their
locations are (0, 80m, 6m), (0, 80m, 8m), (0, 85m, 6m) and
(0, 85m, 8m), respectively. Since THz communication mainly
relies on the LoS path, we set L1 = L2 = 1 [33]. The other
default simulation parameters are listed in Table I.

TABLE I: System parameters

Parameters Value
Number of antennas N = 128

Central frequency fc = 300 GHz
Bandwidth B = 30 GHz

Number of subcarriers M = 8
Bit of the TTD at the first layer PH = 8

Bit of the TTD at the second layer PL = 4
Number of RISs R = 4

Number of RIS elements NRIS = 16
Number of users K = 4

Number of RF chains NRF = 4
Maximum transmit power Pmax = 10 dBm

Noise power σ2
m,k = −85 dBm
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Fig. 9: Achievable rate versus the BS transmit power under
different time delay steps.

Fig. 9 plots the achievable rate versus maximum transmit
power Pmax with different time delay steps. Here, we first con-
sider the infinite-resolution phase shift at PSs. In addition, we
mainly focus on the performance of the proposed double-layer
TTD scheme at the BS, and thus the RIS is not considered in
this simulation. For the single- and double-layer TTD schemes,
we set U = 32, KH = 8, KL = 4, Ps = 8, PH = 8, PL = 4. The
time delay step D includes ideal case (continuous), 0.15Tc, and
0.25Tc. One can observe that the achievable rate of the single-
and double-layer TTD schemes increases with the time delay
step decreases. The reason is that the accuracy of the TTD
becomes poor with a large time delay step, which results in the

beam misalignment. Moreover, we find that the double-layer
TTD scheme can almost obtain the same performance with the
single-layer TTD scheme, but the number of large-range delay
TTDs and the total number of bits can be effectively reduced.
In addition, it is obvious that the PS scheme is the worst due
to the serious beam split effect.

Fig. 10 (a) and Fig. 10 (b) show the convergence performance
of the proposed inner iterative algorithm for solving the digital
beamforming and reflection matrix, respectively, i.e., lines 5
and lines 6 in Algorithm 2. We set KH = 8, KL = 4 in the
double-layer TTD scheme. Besides, we assume D = 0.15Tc,
PH = 8, PL = 4, Ps = 8, Q = 1 and infinite-resolution phase
shift at PSs. The legend “n-th iteration” in Fig. 10 stands for the
outer iteration number. One can observe that the inner iterative
algorithm tends to converge after five iterations for each outer
iteration. In addition, it can be found that the gap is small
between the second and third iterations, but large between the
first and second iterations. This means that outer iterative loop
(i.e., Algorithm 2) also converges rapidly.
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Fig. 10: Achievable rate versus iteration for solving (a) the
digital beamforming, (b) the reflection coefficients matrix.

Fig. 11 shows the achievable rate versus outer iterations
Imax under different schemes. We set U = 32 in the single-
layer TTD scheme serves as the performance upper bound.
The classical PS scheme is adopted as the baseline. And we
set KH = 8, KL = 4 and KH = 8, KL = 2 two cases in the
double-layer TTD scheme. Meanwhile, we assume D = 0.15Tc,
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TABLE II: Hardware complexity and performance comparison

Number of large- Achievable
Architecture Delay range range delay TTDs Total number of TTDs Total number of bits rate

Single-layer TTD scheme
(U = 32) τu ∈ [0, 62Tc] NRFU = 128 NRFU = 128 NRFUPs = 1024 3.36 bit/s/Hz

Double-layer TTD scheme τnrf ,kh ∈ [0, 56Tc]
(KH = 8, KL = 4) τnrf ,kh ,kl ∈ [0, 6Tc] NRFKH = 32 NRF(KH + KHKL) = 160 NRF(KHPH + KHKLPL) = 768 3.34 bit/s/Hz

Double-layer TTD scheme τnrf ,kh ∈ [0, 56Tc]
(KH = 8, KL = 2) τnrf ,kh ,kl ∈ [0, 4Tc] NRFKH = 32 NRF(KH + KHKL) = 96 NRF(KHPH + KHKLPL) = 512 2.93 bit/s/Hz
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Fig. 11: Achievable rate versus the iteration.

PH = 8, PL = 4, Ps = 8, Q = 1 and infinite-resolution phase
shift at PSs. One can observe that the achievable rate tends to
convergence after 3 iterations, which proves the effectiveness
of the proposed algorithm. Besides, when the number of large-
range delay TTDs KH is fixed, the achievable rate increases with
the increased number of small-range delay TTDs. Specifically,
the proposed double-layer TTD scheme with KL = 2 small-
range delay TTDs can significantly enhance the performance.
And when KL = 4, the double-layer TTD scheme is almost
the same with that of the single-layer TTD scheme, which
proves that the double-layer TTD scheme is another hardware-
efficient approach to solve beam split effect. The reason is that
the proposed small-range delay TTDs only need to compensate
the propagation delay across the small subarray aperture.

Next, we compare the hardware complexity and the achiev-
able rate under single- and double-layer TTD schemes as shown
in TABLE II. One can observe that the number of large-range
delay TTDs reduces from 128 under the single-layer TTD
scheme to 32 under the proposed double-layer TTD scheme,
which is down by 75%. In addition, the total number of bits
is down by 25% for KH = 8 and KL = 4, but the achievable
rate is only down by 0.6% for the proposed scheme. When
KH = 8 and KL = 2, there is a more obvious advantage.
For example, the total number of bits is down by 50% while
the achievable rate is a little decrease. Furthermore, although
an additional small-range delay TTD network is introduced,
its required delay range is much smaller compared to large-

range delay TTD network. Therefore, the proposed scheme
can effectively reduce the hardware cost by sacrificing a little
achievable rate.

In Fig. 12, we present the achievable rate versus the BS
transmit power under different schemes. We set D = 0.15Tc,
PH = 8, PL = 4, Ps = 8, Q = 1, and infinite-resolution
phase shifter at PSs. One can observe that the achievable
rate increases with the transmit power under all schemes. In
addition, the double-layer TTD scheme with KH = 8 and
KL = 4 can almost obtain the same performance with the
single-layer TTD scheme, while the achievable rate of the
double-layer TTD scheme with KH = 8 and KL = 2 has a
little decrease. However, according to TABLE II, comparison
with single-layer TTD scheme, the decreasing percentage of the
hardware complexity is much larger than that of the achievable
rate for the proposed double-layer TTD scheme.
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Fig. 12: Achievable rate versus the BS transmit power under
different schemes.

Fig. 13 shows the achievable rate versus BS transmit power
with different number of RIS elements Rtotal. Here, we set
D = 0.15Tc, PH = 8, PL = 4, Ps = 8, Q = 1, and infinite-
resolution phase shift at PSs. It is obvious that more RIS
elements can obtain a higher rate under the same conditions.
Besides, it demonstrates that the proposed framework can be
applied to any number of RIS elements. Fig. 14 plots the
achievable rate versus iterations Imax, where we set D = 0.15Tc,
PH = 8, PL = 4, Ps = 8, Q = 1, b = 1. One can observe that
the achievable rate also tends to convergence after 3 iterations,
which proves the effectiveness of the proposed method. In
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addition, it can be observed that the achievable rate is a little
lower than that of the infinite-resolution phase shift at PSs
presented in Fig. 11. However, it is acceptable for a little
degradation in achievable rate to obtain a large reduction in
hardware complexity and cost.
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Fig. 13: Achievable rate versus the BS transmit power with
different RIS elements.
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Fig. 14: Achievable rate versus the iteration with b = 1.

Furthermore, we analyze the robustness of the proposed joint
wideband beamforming against the impacts of imperfect CSI.
We consider CSI uncertainties that can be modeled as

h̃ = h + e, (71)

where h̃ and h denote estimated and real channel, respectively, e
represents the independent estimation error following complex
Gaussian distribution with zero mean, i.e. e ∼ CN

(
0, σ2

e

)
. We

assume that the variance σ2
e , i.e. the error power, satisfies

σ2
e ≜ δ|h|

2 where δ denotes the ratio of the error power σ2
e to

the channel gain |h|2, which characterizes the level of CSI error.
We assume D = 0.15Tc, PH = 8, PL = 4, Ps = 8, Q = 1

and b = 1. Then, the achievable rate per subcarrier versus the

CSI error parameter δ is shown in Fig. 15. One can observe
that the performance loss grows with the increasing of δ. The
reason is that the accuracy of the estimation angles becomes
poor with a large error, which results in the beam misalignment.
For example, for the “Double-layer TTD scheme, KH = 8, KL =

4”, compared with the perfect CSI without error (i.e. δ = 0), the
system performance suffers a loss of 6% when the error power
δ = 0.1, and a loss of 30% when δ = 0.3. Besides, the proposed
double-layer TTD scheme always outperforms the frequency-
independent PS scheme without TTD and close to the single-
layer TTD scheme at any CSI estimation error, which validates
the effectiveness and robustness of our proposed joint wideband
beamforming to deal with beam split.
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Fig. 15: Average achievable rate per subcarrier versus δ.

VI. Conclusions

In this paper, we proposed a double-layer TTD scheme
with low hardware cost to overcome the beam split of the
BS and solve the maximum delay compensation problem
observed in the traditional single-layer TTD scheme. We first
analyzed the phase compensation error and normalized array
gain under the double-layer TTD scheme. Then, based on
the proposed scheme, we investigated the beamforming opti-
mization problem for the multiple distributed RISs-aided THz
communications and formulated a achievable rate maximiza-
tion problem via jointly optimizing the hybrid analog/digital
beamforming, time delays of the double-layer TTD network
and reflection coefficients of the RISs. Theoretical analysis
and simulation results demonstrated that the double-layer TTD
scheme can almost obtain the same performance with the
single-layer TTD scheme, while the overall hardware cost is
effectively decreased. In our future work, to further reduce
the time delay range of the TTD at the BS, we will extend
the proposed double-layer TTD network to the sub-connected
hybrid beamforming architecture. Besides, to solve the beam
split at the RIS, we will introduce TTDs to RIS elements and
research how to reduce the beam split effect.
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