
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 1

X-CANIDS: Signal-Aware Explainable Intrusion
Detection System for Controller Area
Network-Based In-Vehicle Network

Seonghoon Jeong, Member, IEEE, Sangho Lee, Hwejae Lee, and Huy Kang Kim, Member, IEEE

Abstract—Controller Area Network (CAN) is an essential
networking protocol that connects multiple electronic control
units (ECUs) in a vehicle. However, CAN-based in-vehicle net-
works (IVNs) face security risks owing to the CAN mecha-
nisms. An adversary can sabotage a vehicle by leveraging the
security risks if they can access the CAN bus. Thus, recent
actions and cybersecurity regulations (e.g., UNR 155) require
carmakers to implement intrusion detection systems (IDSs) in
their vehicles. The IDS should detect cyberattacks and provide
additional information to analyze conducted attacks. Although
many IDSs have been proposed, considerations regarding their
feasibility and explainability remain lacking. This study proposes
X-CANIDS, which is a novel IDS for CAN-based IVNs. X-
CANIDS dissects the payloads in CAN messages into human-
understandable signals using a CAN database. The signals
improve the intrusion detection performance compared with
the use of bit representations of raw payloads. These signals
also enable an understanding of which signal or ECU is under
attack. X-CANIDS can detect zero-day attacks because it does not
require any labeled dataset in the training phase. We confirmed
the feasibility of the proposed method through a benchmark
test on an automotive-grade embedded device with a GPU. The
results of this work will be valuable to carmakers and researchers
considering the installation of in-vehicle IDSs for their vehicles.

Index Terms—CAN database, explainability, in-vehicle intru-
sion detection, self-supervised anomaly detection, UN Regulation
No. 155 (UNR 155)

I. INTRODUCTION

In-vehicle networks (IVNs) are essential for vehicles that are
operated by several electronic control units (ECUs). Among
the various networking protocols that have been designed for
vehicles, Controller Area Network (CAN), which replaces
the mesh-like wiring harness with a bus topology, is the

Manuscript received Jan. 10, 2023; revised Jun. 7, 2023, Aug. 30, 2023, and
October 18, 2023; accepted October 21, 2023. This research was supported by
the 2021 autonomous driving development innovation project of the Ministry
of Science and ICT, “Development of technology for security and ultra-
high-speed integrity of the next-generation internal network of autonomous
vehicles” (No. 2021-0-01348). (Corresponding author: Huy Kang Kim.)

Seonghoon Jeong is with the Institute of Cybersecurity and Privacy, Korea
University, Seoul 02841, Republic of Korea (e-mail: seonghoon@korea.ac.kr).

Sangho Lee is with the Samsung Research, Seoul 06765, Republic of Korea
(e-mail: s35.lee@samsung.com).

Hwejae Lee and Huy Kang Kim are with the School of Cybersecurity,
Korea University, Seoul 02841, Republic of Korea (e-mail: {hwejae94,
cenda}@korea.ac.kr.)

This is the Accepted version of an article for publication in IEEE TVT.
©2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Digital Object Identifier 10.1109/TVT.2023.3327275

most successful. CAN 2.0A, which was released in 1991, is
currently employed in almost all vehicles because it meets the
crucial requirements of IVNs. In particular, the bus topology,
arbitration mechanism, and short frame enable broadcasting,
interconnect multiple ECUs, and prevent medium occupation,
respectively. However, these mechanisms are the root cause of
security risks in CAN-based IVNs, which allow an adversary
to eavesdrop on in-vehicle communication, inject arbitrary
messages, and cause denial of service of a specific ECU [1]
or an entire CAN bus [2].

Until the early 2010s, adversaries were considered negligi-
ble because they must have physical access to a CAN-based
IVN to leverage the security risks. However, this situation has
changed with the widespread use of connected vehicles, as
the connectivity broadens the remote attack surfaces of con-
nected vehicles [3], [4]. Compromised in-vehicle infotainment
systems may allow the adversaries to obtain access to IVNs
remotely. Previous studies supported this concern [5], [6],
[7], [8], [9]. In particular, Miller and Valasek [3] jumpstarted
cybersecurity studies on vehicles with the proof of concepts
of remote hacking into a CAN-based IVN of a Jeep Cherokee.

It is crucial to protect vehicles from cyberattacks to safe-
guard passengers and pedestrians against unexpected vehicle
behavior. Nevertheless, it is impossible to remedy the secu-
rity risks of CAN-based IVNs without revising the protocol
specifications. Intrusion detection systems (IDSs) have been
proposed to identify anomalies in CAN-based IVNs [4], [10].
In the early research stages, statistical approaches and conven-
tional machine-learning algorithms were considered. As deep-
learning techniques have evolved, recent studies have tended
to adapt such techniques for precise intrusion detection. IDSs
are currently becoming an essential component of vehicles.
For example, United Nations Regulation No. 155 (UNR 155),
which is a recent automotive cybersecurity regulation that
will take effect in many countries from 2024, states that “the
vehicle manufacturer shall implement measures for the vehicle
type to (a) detect and prevent cyber-attacks against vehicles
of the vehicle type; (b) support the monitoring capability of
the vehicle manufacturer with regards to detecting threats;
(c) provide data forensic capability to enable an analysis of
attempted or successful cyber-attacks” (see §7.3.5 in [11]).

In this study, we propose a practical IDS named X-CANIDS
to address the following three limitations with respect to IDSs
for CAN-based IVNs. First, previous IDSs did not provide
additional information for forensics. Most carmakers have
their own pattern database to distinguish a malfunction. An
explanation of detection result can help carmakers analyze

ar
X

iv
:2

30
3.

12
27

8v
3

 [
cs

.C
R

]
 1

4
M

ar
 2

02
4

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 2

conducted attacks and prepare a remedy such as updating
their database. Supervised methods (e.g., [12], [13]) have been
designed to distinguish the type of attack. However, they
require ground-truth labels and only distinguish predefined
attack types. Second, the evaluations have lacked a feasibility
perspective. Evaluation is necessary because an IDS works on
an ECU or an in-vehicle component. Regardless of the effec-
tiveness of an IDS, it may be useless owing to bottlenecks.
Finally, limited studies have considered the use of signals
rather than raw payloads. Signals help to improve the detection
performance of an IDS because they reflect the context of
the vehicle. Nevertheless, the use of signals has rarely been
discussed because of a lack of knowledge regarding payload
deserialization methods. To date, two studies have used sensor
values through the on-board diagnostics (OBD)-II feature [14]
and several reverse-engineered signals [15].

The contributions of this study are summarized as follows:
1. Self-supervised intrusion detection with signals. We
propose X-CANIDS, which is a novel method that consists of
a feature generator and intrusion detection model. The feature
generator builds a time-series representation of signals that
are deserialized from the payloads of the CAN messages. We
use a CAN database to train X-CANIDS with 107 signals.
The detection model is trained using an attack-free dataset. X-
CANIDS can detect zero-day attacks, of which we are unaware
at the time of implementation.
2. Explainability. X-CANIDS provides additional information
on which systems (i.e., ECUs) and what data were compro-
mised, even if no ground-truth labels or intrusion datasets are
available in the training phase. The explainability is benefi-
cial for carmakers and incident response teams to analyze
conducted attacks. To this end, we leverage the signalwise
reconstruction error combined with an autoencoder.
3. Feasibility. Our method is benchmarked on our NVIDIA
Jetson AGX Xavier, which is an automotive-grade embedded
device. The benchmark results confirm that X-CANIDS is
promising for real-world use cases. X-CANIDS achieves a
deterministic detection latency of 38.2512–73.2512 ms on the
embedded device with a feature generation frequency and
batch size of 200 Hz and 8, respectively.

The remainder of this paper is organized as follows. In §II,
we provide the background for this study. In §III, we describe
the proposed X-CANIDS. §IV outlines the CAN datasets
that are used in the experiment. The experimental results are
presented and the detection performance, explainability, and
feasibility are discussed in §V. In §VI, we categorize prior
studies based on the features that are used to detect in-vehicle
intrusion. Finally, we conclude the study in §VII.

II. PRELIMINARIES

A. Terminology

We present the terminology used in this paper. The payload
is a bit sequence that is encapsulated in the data field of a CAN
frame (see Fig. 1). The signal indicates a sensor value that is
deserialized from a portion of the payload. A stream is a set
of CAN messages with a particular arbitration ID. The aim of
this study is to develop an explainable and a feasible IDS. We

Start of
frame

Data field ACK
End of
frame

Inter-
frame
space

Control
field

CRCArbitration field

1 bit 0–64 bits 2 bits 7 bits 3 bits6 bits 16 bits12 bits

RTR
1 bit

Identifier
11 bits

data[7]
8 bits

…
data[0]
8 bits

• Sensor values
• Remote procedure calls
• CRC, counter
• Reserved (e.g., zero-padded values)

• Message priority: 000h (highest) – 7FFh (lowest)
• Message type: e.g., 07Fh (central gateway), 200h (engine management)

Fig. 1. CAN 2.0A frame structure. An ECU application refers to the
arbitration and data field.

can state that the proposed IDS is explainable when a detection
result allows us to understand which signal or ECU is affected
by attacks. We can state that the proposed IDS is feasible when
it can evaluate all given inputs within a deterministic latency
on an ECU or an automotive-grade embedded device.

B. CAN Frame

The CAN frame is a communication unit between two in-
vehicle ECUs that are connected by a CAN bus. Fig. 1 depicts
the CAN 2.0A frame structure. Among the fields, the ECU
firmware uses the 11-bit arbitration identifier (AID) field and
a 64-bit data field. The AID is considered as a categorical
value for determining the message type as well as a numerical
value that represents the priority of the message. The data
field contains a payload that represents various signals that
are used to operate vehicles, such as sensor values, Booleans,
inter-ECU procedure calls, cyclic redundancy check values,
sequential counters, and zero padding. As a CAN frame
does not contain a transmission timestamp, the CAN receiver
assigns a timestamp for each inbound CAN message using its
internal clock. In the ECU firmware, a transmitted CAN frame
is represented as a CAN message m → (t, a,p), where the
timestamp t ≥ 0, AID a ∈ {0, 1, · · · , 2047}, and bit sequence
vector of the payload p = {pi |pi ∈ {0, 1} for i = 1..n}, with
n ∈ {0, 8, 16, · · · , 64}.

The ECU firmware serializes one or more signals in the data
field prior to transmission. Each receiver can deserialize the
payload of the data field to use the original values. Researchers
can easily obtain a CAN dataset M = {m1,m2,m3, · · · }
through their CAN nodes by leveraging the broadcast nature
of the CAN. However, it is difficult for them to understand
the specific meaning of m owing to the lack of information
regarding the exact representation of the given a and p. Mean-
while, researchers who wish to build after-market autonomous
driving kits or use in-vehicle signals for specific purposes, such
as building a payload-based IDS for CAN buses [15], are mo-
tivated to reverse engineer CAN message payloads. Because
manual reverse engineering requires substantial effort, several
automated methods have been proposed for this purpose [16],
[17], [18], [19], [20], [21], [22], and increasingly sophisticated
results have been achieved in recent years. However, these
methods remain insufficient for deserializing hundreds of
signals precisely.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 3

BO_ 902 WHL_SPD11: 8 ABS
 SG_ WHL_SPD_FL : 0|14@1+ (0.03125,0.0) [0.0|511.96875] "km/h" _4WD,AFLS,...
 SG_ WHL_SPD_FR : 16|14@1+ (0.03125,0.0) [0.0|511.96875] "km/h" _4WD,ACU,...
 SG_ WHL_SPD_RL : 32|14@1+ (0.03125,0.0) [0.0|511.96875] "km/h" _4WD,AFLS,...
 SG_ WHL_SPD_RR : 48|14@1+ (0.03125,0.0) [0.0|511.96875] "km/h" _4WD,AFLS,...
 SG_ WHL_SPD_AliveCounter_LSB : 14|2@1+ (1.0,0.0) [0.0|3.0] "" _4WD,EMS,LPI,...
 SG_ WHL_SPD_AliveCounter_MSB : 30|2@1+ (1.0,0.0) [0.0|3.0] "" _4WD,EMS,LPI,...
 SG_ WHL_SPD_Checksum_LSB : 46|2@1+ (1.0,0.0) [0.0|3.0] "" _4WD,EMS,LPI,TCU,TMU
 SG_ WHL_SPD_Checksum_MSB : 62|2@1+ (1.0,0.0) [0.0|3.0] "" _4WD,EMS,LPI,TCU,TMU

Bit index | bit length

Signness (+ unsigned, - signed)

Endianness (0 big, 1 little)

[min | max] unit(scale, offset) Other ECUs using the signalSignal name

Fig. 2. Snippet of CAN database hyundai 2015 ccan.dbc [23].

Algorithm 1: Deserialization of a CAN message.
Input: a,p: AID and payload of CAN message
Data: DBC: CAN database
Output: s = {si|i = 1..n}: List of deserialized signals

1 signals ← get signal specification(DBC, a)
2 n← |signals| // Number of signals

3 Initialize a new vector s ∈ R|n|

4 for i← 1 to n do
// Parse the specification of a signal

5 bit idx, bit len, endianness, signness, scale, offset, min,
max ← signali

// Obtain a subset of bit sequence
6 p′ ← {pbit idx, · · · , pbit idx+bit len}

// Decode the bit sequence into an integer
7 si ← int(p′, endianness, signness)

// Scale the signal
8 si ← si/scale + offset
9 if not min ≤ si ≤ max then

10 Raise an error.

C. CAN Database

The CAN database is a network dissector that consists
of formal payload deserialization descriptions. We introduce
the CAN database using a straightforward example, because
signals that are deserialized from CAN messages are crucial
inputs for the proposed method. A CAN database describes
the specification of a certain CAN-based IVN, including the
bitrate, list of ECUs, signals, and Tx-Rx ECU relationships.
The CAN database specifies the bit indices, endianness, sign-
ness, scale, offset, value range, units, and list of ECUs that
refer to each signal. In general, CAN databases are composed
by carmakers at the time of the IVN design.

Recently, Comma.ai, which is a company that develops
after-market autonomous driving kits, released CAN databases
that work with some commercialized vehicles in a public Git
repository known as OpenDBC [23]. The CAN databases are
formatted in the well-known DBC file format that was intro-
duced by Vector Informatik GmbH. Fig. 2 presents a snippet
of a CAN database that was obtained from the repository. The
first line states that an ECU named ABS (i.e., anti-lock braking
system) transmits the message WHL SPD 11, which consists
of a = 902 and |p| = 64 (i.e., 8 bytes). The remainder defines
eight signals of rotation speeds (front left, front right, rear left,
and rear right wheels) that are represented in km/h units, two
checksum values, and two alive counters. The meanings of
the CAN database syntax are annotated at the bottom of the
figure.

The deserialization procedure D is described in Algo-

In-Vehicle
Infotainment system

X-CANIDS

CAN bus

ECUECUECUECU

Physical hacking
via OBD-II port

Remote hacking
via a vulnerable device

Goal. Sabotage the vehicle
How. Inject arbitrary CAN messages

Goal. Detect in-vehicle intrusion
How. Signal reconstruction

...
... ...

...

Signal → → Signal’

Fig. 3. Considered in-vehicle network architecture.

rithm 1. The deserialization procedure can be represented by
D(a,p) = s = {si|si ∈ R for i = 1..n}, where n is the
number of signals that are defined in the given DBC (see
lines 1–2). The output vector s contains human-understandable
signals. The loop (lines 4–10) can be executed concurrently
because si are independent of one another.

D. Adversary and Attack Model

In this study, we consider an adversary who wants to
sabotage a vehicle by injecting arbitrary CAN messages. Fig. 3
depicts the supposed adversary in the CAN-based IVN. The
adversary must obtain access to the target CAN-based IVN
to conduct an attack. The adversary may consider physical
hacking by installing a CAN dongle at the OBD-II port.
The attacker may also consider the remote exploitation of
vehicle-to-everything communication-enabled ECUs, such as
an infotainment system [6], [7], [8], [9]. Once the adversary
obtains access, they can conduct five types of attacks [1],
[15], as follows:

1) Fuzzing Attack: It manipulates various ECUs with ran-
dom payloads and it can be performed with CAN messages
that contain random AIDs and payloads. The attack can cause
a malfunction of the target vehicle even if the adversary does
not have prior knowledge of the in-vehicle communications.

2) Fabrication Attack: A specific ECU is manipulated as
the intention of the adversary, and it can be performed using
well-crafted CAN messages with a specific AID and payload.
As a legitimate ECU periodically transmits CAN messages
with the same AID, an adversary can transmit their CAN
message directly after every benign message.

3) Suspension Attack: It neutralizes an ECU by exploiting
the error-handling mechanism of the CAN [1]. A target ECU
does not transmit any CAN messages during the attack.

4) Masquerade Attack: It is a combination of the fabrica-
tion and suspension attacks. A stream from a specific ECU
is replaced with arbitrary messages that are generated by the
adversary during the attack.

5) Replay Attack: An adversary captures legitimate CAN
messages in a certain period. Then, they transmit the CAN
messages within the CAN bus. The attack can cause a certain
malfunction that the target vehicle have performed in the
capture duration.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 4

CAN bus
Message
receiver

DE

Alert: Benign or abnormal
Explanation: When and what signal

CAN database (*.dbc)

Training phase

Inference phase
ThresholdsPretrained weights

CAN bus

Adversary

Message
receiver

Feature
generator

Intrusion detectorDE

Feature
generator

Threshold
determination

hPcopy S∈[0,1]
S′
∈R

Ls(S,S
′)

Ls(S,S
′)

Backprop. AEAE

Lg(S,S
′)

f(S)

f(S)

Fig. 4. Proposed framework. In the training phase, the proposed framework uses attack-free CAN messages to train the autoencoder and to determine the
threshold. In the inference phase, the proposed framework determines the signal that is affected by the adversary if the CAN bus is under attack.

III. METHODOLOGY

In this section, we present X-CANIDS, which consists of
a message receiver, a feature generator, an autoencoder, and
a decision-maker. As illustrated in Fig. 3, the proposed in-
vehicle IDS is directly connected to the CAN-based IVN
to receive all CAN messages instantly. It is a preferable
architecture for prior CAN IDSs, while maintaining a simple
topological structure. Fig. 4 outlines the proposed framework.
In the training phase, X-CANIDS uses benign CAN messages
to train the autoencoder AE towards small global errors. At
the end of the training phase, X-CANIDS determines the
thresholds using signalwise errors. In the inference phase, X-
CANIDS determines whether a given input is affected by an
adversary using pretrained weights and thresholds. Signalwise
errors are considered to explain the detected attack. The CAN
database is required in both phases for the feature generator
to deserialize the signals from the CAN messages.

A. Message Receiver

The message receiver is connected to the CAN bus to
monitor all CAN messages. The message receiver contains
the matrix P ∈ {∅, 0, 1}|N×M | to cache the latest payload of
each stream, where N is the number of streams in the CAN
bus and M is the maximum length of the payload (64 bits for
the CAN 2.0A bus and 512 bits for the CAN-FD bus).

P =


p1

p2

...
pN

 =


p11 p12 · · · p1M
p21 p22 · · · p2M

...
...

. . .
...

pN1 pN2 · · · pNM

 (1)

In (1), the n-th row of the matrix P represents the latest
payload of a certain stream for each pn. Initially, pn,m =
∅∀n∈{1..N},m∈{1..M}. As the message receiver monitors each
CAN message from the CAN bus, pn,m becomes 0 or 1. It
should be noted that P is volatile because the elements change
continuously upon the arrival of CAN messages.

B. Feature Generator
The feature generator interprets each P into a feature matrix

S, which is fed to the autoencoder. The feature generator
pipeline consists of the following: (1) the payload sampler,
(2) deserializer, (3) feature scaler, and (4) time-series feature
generator.

1) Payload Sampler: The payload sampler captures Pcopy,
which is a static copy of P, from the message receiver in
every time interval t. The payload sampler begins working
when P satisfies pn,1 ̸= ∅∀n∈{1..N}, which means that the
message receiver observes each stream at least once. Each
copy is forwarded to the deserializer.

2) Deserializer: The deserializer converts a given Pcopy

into a vector s ∈ R that contains human-understandable
signals, such as the engine speed and steering wheel angle.
The deserialization procedure for Pcopy can be represented as

Pcopy =


p1

p2

...
pN


D(a1,p1)−−−−−−→
D(a2,p2)−−−−−−→
deserialize−−−−−→

D(aN ,pN)−−−−−−−→


s1
s2
...
sN

 concatenate−−−−−−→ s. (2)

The streamwise deserialization procedure calculates Algo-
rithm 1. Thus, the output vectors s1, s2, · · · , sn are dependent
on the given CAN database and Pcopy. In particular, the CAN
database determines the number of elements in si. The vector
s = ∥Nn=1sn represents the concatenation of all deserialized
signals and is fed to the feature scaler.

3) Feature Scaler: The feature scaler is crucial because
the elements of s have various value ranges. For example,
the engine speed and steering wheel angle can be represented
within [0, 8191] RPM and [−1024, 1023] degrees, respectively.
Furthermore, a binary value (0 or 1) can be used to represent
whether a foot brake is engaged. The variation in signal ranges
may result in unstable training of AE because it can be
considered as a weight (i.e., feature importance).

We design a lightweight feature scaler to achieve robust
performance. The signal scaler is designed to normalize a

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 5

given s to ŝ = {ŝi|ŝi ∈ [0, 1], i = 1..x}, where x = |s| is the
number of concatenated signals. The proposed feature scaling
procedure is presented in (3), where the parameters mini and
maxi are the minimum and maximum values, respectively, of
the i-th signal described in the CAN database.

ŝi =
si −mini

maxi −mini
(3)

Our feature scaler is the same as the conventional min-max
scaler, except for the determination method of the parameters
mini and maxi. If we had applied the min-max scaler, it would
fit the parameters according to observations in the training
phase (i.e., a training set). A downside of the min-max scaler
is that it does not correctly handle outliers that are over the
maximum or under the minimum values that may be observed
in the inference phase. We revised the min-max scaler to this
end. Our feature scaler leverages the minimum and maximum
values that are predefined in the CAN database to overcome
this drawback. Note that a scaled signal ŝi from our feature
scaler is always represented by 0–1 because si satisfies mini ≤
si ≤ maxi (cf. lines 9–10 of Algorithm 1). The scaled vector
ŝ is fed to the time-series feature generator.

4) Time-Series Feature Generator: The time-series feature
generator builds an input for the autoencoder in a sliding-
window manner. It temporarily remembers the most recent
w input vectors and returns a two-dimensional matrix S ∈
[0, 1]w×x by stacking them. The window size w is a parameter
that determines the number of time steps that are contained by
the feature. The time-series feature generator returns S every t
as the payload sampler feeds Pcopy. The matrix representation
helps the autoencoder to understand the time series and lateral
relationships between the signals.

C. Autoencoder

In the proposed framework, the autoencoder AE is adapted
to model the attack-free state of a moving vehicle. The
autoencoder is a self-supervised neural network that consists
of an encoder and a decoder, as expressed by

AE(S) = Decoder(Encoder(S)) = Decoder(h) = S′ (4)

The encoder compresses the input feature S into a low-
dimensional latent vector h. Subsequently, the decoder at-
tempts to reconstruct the original input data as far as possible
using the latent vector. In the training phase, AE is fitted
with features from benign datasets using backpropagation to
reduce the global mean squared error (MSE). The global MSE
is calculated as follows:

Lg(S,S
′) =

1

wx

w∑
j=1

x∑
i=1

(Sji − S′
ji)

2. (5)

It is also referred to as the reconstruction error in terms
of an autoencoder. The goal of AE is to exhibit a small
reconstruction error in the inference phase, particularly when a
given sample is attack free. However, AE is required to exhibit
a high reconstruction error when the input S is affected by an
adversary.

AE is supposed to be computed on an automotive-grade
embedded device. Therefore, the model complexity should
be considered while minimizing the reconstruction error. We
conceive the six candidate layers for AE as follows: the fully
connected, 1D and 2D convolutional, 1D separable convo-
lutional, long short-term memory (LSTM), and bidirectional
LSTM (BiLSTM) layers. We evaluate the layers using training
and validation datasets.

D. Intrusion Detection and Explanation

The global MSE can be used solely to distinguish anoma-
lies. Nevertheless, we measure the signalwise MSE to obtain
explainable intrusion detection results. In this section, we de-
fine the inference function f(S) that calculates the signalwise
MSE. Thereafter, we introduce the threshold determinator and
intrusion detector.

1) Inference Function: Once AE has been fitted, the sig-
nalwise loss function Ls is combined with AE to formulate
the inference function f(S). Equation (6) presents the infer-
ence function that returns the loss vector l. The element li is
the loss of the i-th signal.

f(S) =Ls(S,AE(S)) = Ls(S,S
′)

=
1

w

w∑
j=1

(Sj − S′
j)

2 = l = {l1, l2, · · · , lx} (6)

2) Threshold Determination: The threshold determinator is
used during the training phase. This module aims to determine
θi for the error rate calculation of the i-th signal and the
detection threshold Θ to raise the alarm.

First, the module calculates a set of loss vectors {l1, l2, · · · }
using the entire training set. Second, θi = li+3σi is considered
for the i-th signal, where li and σi are the mean and standard
deviation of lis in the set, respectively. Third, the module
measures a set of error-rate vectors {r1, r2, · · · } using the
entire validation set. The error rate vector r is derived as
follows:

r = {ri|ri = li/θi for i = 1..x}. (7)

Finally, Θ is determined by the q-th percentile of max(r) for
all rs in the set, where 0.95 ≤ q ≤ 1 and q is a hyperparameter
that determines the detection sensitivity.

3) Intrusion Detection and Explanation: The intrusion
detection module uses the θis and Θ from the threshold
determinator at the beginning of the inference phase. The
intrusion detector obtains r for each S using (6) and (7).
The module raises an alarm if r satisfies max(r) > Θ. If
an intrusion is identified, the intrusion detector identifies the
affected signal index i using argmax(r).

IV. DATASETS

The datasets used in the experiment are discussed in this
section. Publicly available CAN intrusion datasets (e.g., [2],
[24]) exist. However, they could not be utilized because the
datasets were stationary or prepared using a dynamometer.
Therefore, we captured CAN messages from the Hyundai LF
Sonata 2017. We used a Kvaser Memorator Pro 2xHS to

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 6

TABLE I
LIST OF CAN DATASETS.

Dataset # CAN msg. Duration Context Used for
M1 3,123,784 23 m 52 s Driving (18.7 km) Training
M2 4,134,495 31 m 35 s Driving (19.3 km) Training
M3 3,233,752 24 m 42 s Driving (19.4 km) Training
M4 4,761,315 36 m 23 s Driving (21.7 km) Training
M5 2,915,969 22 m 17 s Driving (18.8 km) Validation
M6 4,279,902 32 m 42 s Driving (18.8 km) Testing
M7 4,817,589 36 m 54 s Stationary (0 km) Training

leverage the high-precision embedded clock while capturing
the in-vehicle CAN messages. The device was connected to
our vehicle through an OBD-II port, which allowed us to
access the chassis–CAN bus. We prepared the seven CAN
datasets that are listed in Table I. We captured six datasets
while driving a vehicle on urban roads in Seoul, Republic
of Korea. One dataset was captured while the vehicle was
stationary. The datasets are listed in chronological order. For
instance, M2 was collected after we have collected M1.

As shown in Fig. 4, X-CANIDS consists of the training and
inference phases. In the training phase, pre-captured datasets
are used to train an autoencoder. In the inference phase, the
trained model processes a live stream. In this paper, we try
not to merge entire datasets and conduct an N-fold cross-
validation, in which subsets of Mi∀i∈{1..6} are used in both
training and testing. Instead, we selected old datasets M1–
M4 as the training set, new dataset M5 as the validation set,
and the newest M6 as the test set. We believe such a selection
can reflect a real-world use case.

We used the CAN database hyundai 2015 ccan.dbc that is
available on OpenDBC [23] to deserialize the payloads of the
datasets into signals. We manually confirmed that the CAN
database allowed us to acquire appropriate sensor values, such
as the steering wheel angle, temperature, velocity, tire pressure,
and door open state.

1) Overview of Datasets: The dataset M1 is summarized
in Table II to introduce our CAN datasets. The chassis–CAN
bus consisted of 62 unique streams. We denote the name
of the transmitting ECU using the CAN database for each
stream. The ECU names; for example, engine management
system (EMS), transmission control unit (TCU), and motor-
driven power steering system (MDPS), imply that the streams
take charge of the communications among critical vehicular
applications.

We measured the mean and standard deviation of the mes-
sage intervals for each stream. ECUs transmit their messages
periodically through a well-known mechanism. Thus, it can
be observed that the mean time intervals of the streams were
approximately one of 0.01, 0.02, 0.05, 0.1, 0.2, 1, and 2 s.
However, several streams consisted of nonperiodic messages,
namely 044h, 52Ah, 541h, and 553h (where the standard
deviation ≥ 0.01). These streams may not be covered by time-
interval-based intrusion detection methods (e.g., [25], [26],
[27], [27], [28]) that leverage the periodicity.

The number of signals that were defined in each stream is
also summarized. In total, there were 688 types of signals.
Furthermore, the number of unique payloads for each stream

TABLE II
SUMMARY OF M1 THAT CONSISTS OF 62 STREAMS.

AID Sender ECU Mean ∆t Std. ∆t DLC # signals # uniq. p
042h DATC12 1.00 0.000261 8 7 1
043h DATC13 1.00 0.000261 8 24 1
044h DATC11 0.96 0.180892 8 6 14
07Fh CGW5 1.00 0.000124 8 25 1
080h EMS DCT11 0.01 0.000304 8 10 105,446
081h EMS DCT12 0.01 0.000356 8 6 1,000
111h TCU11 0.01 0.000191 8 13 555
112h TCU12 0.01 0.000201 8 12 6,083
113h TCU13 0.01 0.000203 8 18 441
153h TCS11 0.01 0.000132 8 29 15
162h TCU DCT13 0.01 0.000207 3 3 6,185
164h VSM11 0.01 0.000220 4 6 16
18Fh EMS H12 0.01 0.000449 8 21 2,117
200h EMS20 0.01 0.000370 6 3 348
220h ESP12 0.01 0.000211 8 14 130,706
251h MDPS12 0.01 0.000311 8 11 116,572
260h EMS16 0.01 0.000664 8 15 41,585
2B0h SAS11 0.01 0.000683 5 5 17,265
316h EMS11 0.01 0.000823 8 13 63,371
329h EMS12 0.01 0.000352 8 19 7,776
381h MDPS11 0.02 0.000530 8 13 32,040
383h FATC11 0.02 0.000395 8 19 320
386h WHL SPD11 0.02 0.000399 8 8 61,540
387h WHL PUL11 0.02 0.000418 6 9 60,269
410h CGW USM1 0.20 0.000522 8 17 1
436h PAS11 0.05 0.000661 4 12 1
47Fh ESP11 0.02 0.000256 6 11 256
490h EPB11 0.05 0.000515 7 14 1
492h EMS19 0.05 0.000460 8 13 4
4F1h CLU11 0.02 0.000446 4 12 14,476
500h ACU14 0.10 0.000504 1 3 1
502h TCU14 0.10 0.000374 4 7 1
507h TCS15 0.10 0.000288 4 11 1
50Ch CLU13 0.10 0.000463 8 17 1,484
520h CGW3 0.10 0.000850 8 4 1
522h GW IPM PE 1 0.20 0.000558 8 10 1
52Ah CLU15 0.10 0.076209 8 15 94
533h — 0.10 0.000706 8 — 29
534h — 0.10 0.000704 8 — 517
535h — 0.10 0.000674 8 — 1,249
541h CGW1 0.10 0.014478 8 43 4
544h — 0.20 0.000422 8 — 1
545h EMS14 0.10 0.000335 8 8 234
547h EMS15 0.10 0.000545 8 12 38
549h BAT11 0.10 0.000570 8 9 6,635
54Ch TCU DCT14 0.20 0.000385 8 2 1
553h CGW2 0.20 0.013671 8 41 6
555h FPCM11 0.10 0.000507 8 9 670
556h EngFrzFrm11 0.10 0.000578 8 6 11,649
557h EngFrzFrm12 0.10 0.000587 8 6 4,932
559h CGW4 0.20 0.000655 8 23 1
57Fh HU MON PE 01 2.00 0.000782 8 1 1
587h TMU11 0.20 0.000347 8 8 15
58Bh LCA11 0.10 0.001104 8 18 7
593h TPMS11 0.20 0.000554 6 12 11
5A0h ACU11 1.00 0.001139 8 14 2
5B0h CLU12 1.00 0.000780 4 1 184
5B4h — 1.00 0.000776 8 — 1
5BEh — 1.00 0.000834 8 — 1
5C0h GW Warning PE 1.00 0.000810 8 7 1
5D3h HU DATC PE 00 1.00 0.000806 8 3 1
5FAh ODS11 1.00 0.000965 8 10 1

is presented. Interestingly, although we captured M1 while
we drove the vehicle for more than 18 km, certain streams
(e.g., 042h, 043h, and 5D3h) had a static payload.

2) Payload Dynamics: We expected that the payloads in
the CAN messages would change more dynamically when
the vehicle moved. To prove this hypothesis, we calculated
the bitwise Hamming distance vector d for each stream, as
follows:

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 7

0.0 0.2 0.4 0.6 0.8 1.0
Hamming distance d

0 8 16 24 32 40 48 56
Bit index of payload

DATC12 042h
DATC13 043h
DATC11 044h

CGW5 07Fh
EMS DCT11 080h
EMS DCT12 081h

TCU11 111h
TCU12 112h
TCU13 113h
TCS11 153h

TCU DCT13 162h
VSM11 164h

EMS H12 18Fh
EMS20 200h
ESP12 220h

MDPS12 251h
EMS16 260h
SAS11 2B0h
EMS11 316h
EMS12 329h

MDPS11 381h
FATC11 383h

WHL SPD11 386h
WHL PUL11 387h
CGW USM1 410h

PAS11 436h
ESP11 47Fh
EPB11 490h
EMS19 492h
CLU11 4F1h
ACU14 500h
TCU14 502h
TCS15 507h

CLU13 50Ch
CGW3 520h

GW IPM PE 1 522h
CLU15 52Ah

533h
534h
535h

CGW1 541h
544h

EMS14 545h
EMS15 547h
BAT11 549h

TCU DCT14 54Ch
CGW2 553h

FPCM11 555h
EngFrzFrm11 556h
EngFrzFrm12 557h

CGW4 559h
HU MON PE 01 57Fh

TMU11 587h
LCA11 58Bh

TPMS11 593h
ACU11 5A0h
CLU12 5B0h

5B4h
5BEh

GW Warning PE 5C0h
HU DATC PE 00 5D3h

ODS11 5FAh

(a) Stationary dataset M7 with 764 bits flipped. ΣΣd = 105.91.

0 8 16 24 32 40 48 56
Bit index of payload

DATC12 042h
DATC13 043h
DATC11 044h

CGW5 07Fh
EMS DCT11 080h
EMS DCT12 081h

TCU11 111h
TCU12 112h
TCU13 113h
TCS11 153h

TCU DCT13 162h
VSM11 164h

EMS H12 18Fh
EMS20 200h
ESP12 220h

MDPS12 251h
EMS16 260h
SAS11 2B0h
EMS11 316h
EMS12 329h

MDPS11 381h
FATC11 383h

WHL SPD11 386h
WHL PUL11 387h
CGW USM1 410h

PAS11 436h
ESP11 47Fh
EPB11 490h
EMS19 492h
CLU11 4F1h
ACU14 500h
TCU14 502h
TCS15 507h

CLU13 50Ch
CGW3 520h

GW IPM PE 1 522h
CLU15 52Ah

533h
534h
535h

CGW1 541h
544h

EMS14 545h
EMS15 547h
BAT11 549h

TCU DCT14 54Ch
CGW2 553h

FPCM11 555h
EngFrzFrm11 556h
EngFrzFrm12 557h

CGW4 559h
HU MON PE 01 57Fh

TMU11 587h
LCA11 58Bh

TPMS11 593h
ACU11 5A0h
CLU12 5B0h

5B4h
5BEh

GW Warning PE 5C0h
HU DATC PE 00 5D3h

ODS11 5FAh

(b) Driving dataset M1 with 968 bits flipped. ΣΣd = 135.45.

Fig. 5. Bitwise Hamming distance measurements to compare the payload dynamics of two CAN datasets captured during idling and driving. Each cell
represents a value [0, 1] calculated by the number of bits flipped over the observation count. A dark cell means that a bit was flipped nearly every time a
message arrived. A light green cell means that a bit was flipped only once or several times. A blank cell indicates no bit flips. A comparison of the two
datasets reveals that the payloads changed more dynamically while the vehicle moved.

d =
1

n− 1

n∑
i=2

(pi ⊕ pi−1) . (8)

where ⊕ is the bitwise XOR operator, pi is the payload of the
i-th message in a stream, and n is the number of messages in a
stream. For comparison, we measured the Hamming distance
using the stationary dataset M7 and driving dataset M1. The
measurements are shown in Fig. 5. Note that M7 contains
more CAN messages than M1. However, a higher Hamming
distance can be observed for M1. Specifically, 968 bits were
flipped once or more while the vehicle was moving, whereas
only 764 bits were flipped while the vehicle was stationary.
Moreover, the sum of the Hamming distance differed; ≈ 23%
of bit flips occurred more frequently while the vehicle was
moving.

V. EXPERIMENTAL RESULTS

The detection performance, feasibility, and explainability of
X-CANIDS are discussed in this section. First, the parameters
used in the experiment are described. Table II displays 62
streams and a maximum DLC of 8. Thus, we set N = 62 and
M = 64 for the message receiver. Considering that the mini-
mum and maximum values of the average time intervals were
0.01 s and 2 s, we initially assigned t = 0.01s and w = 200
as baseline parameters. As noted in the previous section, there
were 688 signal types. Thus, we initially achieved a 200×688-
sized S every 0.01 s.

We observed that X-CANIDS did not need to examine
all signals in our vehicles to detect intrusions. Many static
signals (e.g., the 10 signals of stream 5FAh in Table II) can be
inspected using a simple rule, whether or not a change occurs.
Moreover, certain signals contain checksums or sequential
counters that are easily predictable. We excluded static signals
and signals that contained the following keywords: sum, alive,
msgcount, msgcnt, paritybit, and mul code. After excluding
these signals, we obtained 107 signals from the 35 streams.
Thus, the final feature shape of S was 200× 107.

A. Parameters

1) Autoencoder Layer: First, we examine the optimal layer
for AE. We used six types of layers to implement the
autoencoders and trained them for up to 2,000 epochs with
an early-stopping patience of 50 epochs. The Adam optimizer
fitted the models with a learning rate of 0.0001. A smaller
MSE indicated better performance provided by a layer to AE.
The experimental results are presented in Fig. 6. The BiL-
STM layer enabled the best performance in our experiment,
followed by the LSTM and Conv2D layers.

2) Feature Generation Parameters: At the beginning of this
section, we heuristically assigned t = 0.01s and w = 200 as
baseline parameters. Two parameters can affect the detection
performance and process time of X-CANIDS. Therefore, two
parameters need to be chosen carefully. While both are im-
portant factors, in this section, we explore optimum values

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 8

10−3

10−2

Tr
ai

ni
ng

lo
ss

(M
SE

) BiLSTM
LSTM
Conv2D

SepConv1D
FCN
Conv1D

0 200 400 600 800
Epochs

10−3

10−2

V
al

id
at

io
n

lo
ss

(M
SE

)

Fig. 6. Learning curves of six types of autoencoders. Each training run was
terminated using the early-stopping strategy. The BiLSTM-based autoencoder
exhibited the smallest reconstruction error of 4.686e-4, at epoch 948.

for these two parameters toward high intrusion detection
performance. For the payload sampler (§III-B1), we consider
the candidate time intervals as t ∈ {0.001 s, 0.002 s, 0.005
s, 0.01 s, 0.02 s, 0.05 s, 0.1 s}. For the time-series feature
generator (§III-B4), we consider the candidate window sizes
as w ∈ {25, 50, 75, 100, 150, 200, 300, 400}. We prepared a
test set with six attacks to compare the detection performances.
The reader is referred to §V-F for further information regarding
the attacks. As outputs from X-CANIDS are real numbers, we
use the AUC—area under the receiver operating characteristic
(ROC) curve, which was rendered while adjusting the detec-
tion threshold Θ—as the primary evaluation metric.

Fig. 7 shows the validation losses and intrusion detection
performances with the candidate parameters. For Fig. 7(a)–(d),
we tested the candidate parameters with training sets from
M3–M4. The experimental results show a clear trend—the
smaller the value we choose, the smaller the reconstruction
error an AE provides. However, setting a very small number
for two parameters might not be a good solution because a
feature S becomes representing a status of a very small time
gap. Figures Fig. 7(b) and (d) support our concern that a too-
small value shows a poor AUC score. Instead, in Fig. 7(b),
we confirmed the best AUC of 0.975423 with t = 0.005 s.
Also, in Fig. 7(d), we confirmed the best AUC of 0.975440
with w = 150.

Fig. 7(e)–(f) compares two parameter combinations with the
baseline parameters. In two figures, the entire training sets
(i.e., M1–M4) were used. Our baseline parameters (t = 0.01s
and w = 200) exhibited the moderate intrusion detection
performance with the AUC of 0.9715. By changing t to 0.005
from 0.010, we confirmed the better AUC of 0.9838. We also
confirmed the improved AUC of 0.9929 when we change w to
150 from 200 as well as t = 0.005 s. Considering X-CANIDS
is an unsupervised method, the performance that we confirmed
would be acceptable. Therefore, we will utilize (t = 0.005 s
and w = 150) for the rest of the paper.

TABLE III
LAYOUT OF BILSTM-BASED AE.

Layer # parameters Output shape Symbol
Input 0 150× 107 S
BiLSTM 184,040 150× 214
BiLSTM 340,000 250 h
Repeat input 150 times 0 150× 250
BiLSTM 306,448 150× 214
BiLSTM 275,632 150× 214
Time-distributed dense 23,005 150× 107 S′

TABLE IV
INTRUSION DETECTION PERFORMANCE AGAINST FUZZING ATTACKS.

Fuzzing rate Bus load (%) Precision Recall F1-score
10 msg./s 100.4584 0.999195 0.911456 0.953311
20 msg./s 100.9168 0.999251 0.992880 0.996055
30 msg./s 101.3752 0.999266 0.998621 0.998943
40 msg./s 101.8336 0.999261 0.999735 0.999498
50 msg./s 102.2920 0.999267 0.999927 0.999597
60 msg./s 102.7504 0.999262 0.999979 0.999620
70 msg./s 103.2088 0.999267 0.999969 0.999618
80 msg./s 103.6672 0.999194 0.999938 0.999566
90 msg./s 104.1256 0.999126 0.999974 0.999550

100 msg./s 104.5840 0.999121 0.999984 0.999553
200 msg./s 109.1681 0.999126 0.999984 0.999555
300 msg./s 113.7521 0.999121 0.999990 0.999555
400 msg./s 118.3362 0.998405 0.999990 0.999197
500 msg./s 122.9202 0.999023 0.999984 0.999503

1,000 msg./s 145.8404 0.998322 0.999995 0.999158
1,500 msg./s 168.7606 0.998322 0.999995 0.999158
2,000 msg./s 191.6808 0.998322 0.999995 0.999158

3) Model: Table III outlines the BiLSTM-based AE, which
was used for the remainder of the experiments. The encoder
compresses a 150× 107-sized matrix S into a 250-sized
latent vector h (compression rate ≈ 1.56%). The decoder
reconstructs S′ using h. We assigned the parameter Θ = 28.2
(where q = 0.993) for the intrusion detection.

B. Intrusion Detection Performance

We tested the proposed method using the test set M6. We
conducted attack simulations in the period 480–1440 s, half of
the capture period of the test set, to obtain a label-balanced test
set. We denoted the ground-truth labels as “attack” if a given S
was affected by the attack. As each input was generated every
t = 0.005 s, the detection result was also labeled every 0.005
s. We used precision, recall, and F1-score as the performance
evaluation metrics. Our evaluation strategy was to simulate
multiple attacks on the designated period and feed each
dataset to X-CANIDS. Regarding the fuzzing attack, we built
17 intrusion datasets with various fuzzing rates. Regarding
the fabrication, masquerade, and suspension attacks, we tried
each attack on every single stream that contributed to the
feature creation. To this end, we built 105 intrusion datasets.
Regarding the replay attack, we built four intrusion datasets
with different capture durations. Consequently, we conducted
126 experiments with different datasets.

1) Fuzzing: Our evaluation starts with the fuzzing attack.
As discussed in §II-D, the adversary injects CAN messages
with random a and p. The adversary defines a with one of
AIDs listed in Table II. We also tried various fuzzing rates.
A fuzzing rate means the number of injected CAN messages

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 9

0 200 400 600 800

Epochs

10−4

10−3

10−2

V
a
li
d
a
ti
o
n
lo
ss

(M
S
E
)

t = 0.001 s
t = 0.002 s

t = 0.005 s

t = 0.010 s

t = 0.020 s

t = 0.050 s

t = 0.100 s

(a) Learning curves with sampling rate t

0.001 0.002 0.005 0.010 0.020 0.050 0.100

Sampling rate t [s]

0.93

0.94

0.95

0.96

0.97

A
U
C

AUC=0.975423

(b) AUC with sampling rate t

0 250 500 750 1000 1250

Epochs

10−4

10−3

10−2

V
a
li
d
a
ti
o
n
lo
ss

(M
S
E
)

w = 25 w = 50

w = 75

w = 100

w = 150

w = 200 w = 300

w = 400

(c) Learning curves with window size w

25 50 75100 150 200 300 400

Window size w

0.93

0.94

0.95

0.96

0.97

A
U
C

AUC=0.975440

(d) AUC with window size w

0 200 400 600 800

Epochs

10−4

10−3

10−2
V
a
li
d
a
ti
o
n
lo
ss

(M
S
E
)

t = 0.010 s
w = 200

t = 0.005 s
w = 200

t = 0.005 s
w = 150

(e) Learning curves with selected parameters

t = 0.010 s
w = 200

t = 0.005 s
w = 200

t = 0.005 s
w = 150

Parameters

0.90

0.92

0.94

0.96

0.98

1.00

A
U
C

(f) AUC with selected parameters

Fig. 7. Validation losses and AUCs with parameters. In (a), (c), and (e), smaller values result in smaller validation losses. On the other hand, two parameters
(t = 0.005 s, w = 150) showed the best intrusion detection performances in (b) and (d), respectively. Using two values exhibited the AUC of 0.9929 in (f).

per s. Table IV presents the intrusion detection performance
against fuzzing attacks with various fuzzing rates. The bus load
column indicates the change in the number of CAN messages
during the fuzzing attack. Note that the average number of
CAN messages per second was ≈ 2181.48 in the CAN bus. It
can be observed that the overall detection performance was
outstanding. In particular, X-CANIDS distinguished small-
scale attacks with a fuzzing rate of 10 messages per second.
Even when 0.4584% of the bus load increased compared with
the attack-free state, the proposed method achieved a recall of
0.911456. As the fuzzing rate increased, X-CANIDS identified
nearly all intrusions, with a recall of ≈ 1. The precision was
always higher than 0.998, indicating a false positive rate of
less than 0.002.

2) Fabrication, Masquerade, and Suspension: Table V
presents the intrusion detection performance against the fab-
rication, masquerade, and suspension attacks. Regarding the
fabrication and masquerade attacks, X-CANIDS showed out-
standing performances with the F1-score ≥ 0.99, except for
four streams—044h, 381h, 5A0h, and 5B0h. Even though X-
CANIDS successfully identified intrusions on streams 044h,
5A0h, and 5B0h with high recalls ≥ 0.992, smaller precision
confirmed that there were some false positive cases. Mean-
while, X-CANIDS did not detect intrusions on stream 381h.
Based on average scores, we can rely on X-CANIDS to protect
a vehicle from potential fabrication and masquerade attacks.

Our experimental results confirmed that X-CANIDS is less
effective for suspension attacks. Although we could achieved

the high precision scores, small recall scores imply that X-
CANIDS missed suspension attacks. The proposed method
exhibited poor performance because a suspension of a certain
stream does not compromise values in the buffer P. As a
result, Pcopy will contain legitimate values even during a
suspension attack. Fortunately, considering the nature of the
suspension attack, we can detect a suspension attack easily
through a measurement of the number of messages in each
stream. Since the precision scores are moderate, We can utilize
X-CANIDS as a secondary network monitor.

3) Replay: We conducted four further experiments to eval-
uate the detection performance against replay attacks. Table VI
lists the capture durations for these experiments. For each
experiment, an adversary captures a series of all legitimate
CAN messages broadcasted on a CAN bus. Then, the adver-
sary replays the series repeatedly during the designated attack
period (i.e., 480–1440 s). For instance, in the first experiment,
the content of the replayed series corresponds to a subset of
the test set M6 in the period of 0–120 s. All streams were
captured in the series. During the replay attack, the number
of transmitted CAN messages per second doubled. However,
the injected payloads originated from legitimate ECUs. The
results in Table VI demonstrate that X-CANIDS is effective
against replay attacks even though legitimate ECUs in our
vehicle have generated all injected payloads.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 10

TABLE V
INTRUSION DETECTION PERFORMANCE AGAINST FABRICATION, MASQUERADE, AND SUSPENSION ATTACKS.

Target AID Fabrication attack Masquerade attack Suspension attack
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

044h 0.755961 0.999993 0.861020 0.755971 0.999993 0.861027 0.707935 0.038682 0.073356
080h 0.999267 0.999979 0.999623 0.999262 1.000000 0.999631 0.998766 0.594153 0.745073
081h 0.999262 1.000000 0.999631 0.999267 0.999984 0.999625 0.999085 0.801305 0.889332
111h 0.999267 0.999979 0.999623 0.999267 0.999995 0.999631 0.999034 0.758901 0.862566
112h 0.999267 0.999979 0.999623 0.999267 1.000000 0.999633 0.999111 0.824626 0.903521
113h 0.999267 0.999979 0.999623 0.999267 0.999995 0.999631 0.998593 0.520752 0.684531
162h 0.999267 0.999979 0.999623 0.999267 0.999995 0.999631 0.998267 0.422766 0.593981
18Fh 0.999267 0.999979 0.999623 0.999262 1.000000 0.999631 0.998264 0.421860 0.593086
200h 0.999262 1.000000 0.999631 0.999267 0.999984 0.999625 0.982244 0.040593 0.077965
220h 0.999267 0.999979 0.999623 0.999262 1.000000 0.999631 0.982360 0.040865 0.078465
251h 0.999267 0.999922 0.999594 0.999267 0.999922 0.999594 0.982237 0.040578 0.077937
260h 0.999262 1.000000 0.999631 0.999267 0.999984 0.999625 0.998275 0.424670 0.595860
2B0h 0.999267 0.999818 0.999542 0.999267 0.999886 0.999576 0.982228 0.040557 0.077898
316h 0.999267 0.999984 0.999625 0.999256 1.000000 0.999628 0.999098 0.818234 0.899666
329h 0.999267 1.000000 0.999633 0.999262 1.000000 0.999631 0.999147 0.859115 0.923854
381h 0.982246 0.040600 0.077976 0.982246 0.040600 0.077976 0.982246 0.040600 0.077976
383h 0.999256 0.999995 0.999625 0.999251 1.000000 0.999625 0.982235 0.040574 0.077928
386h 0.999256 1.000000 0.999628 0.999251 0.999979 0.999615 0.999044 0.778066 0.874816
387h 0.999266 0.999630 0.999448 0.999266 0.999662 0.999464 0.980727 0.037341 0.071943
47Fh 0.999266 0.999365 0.999316 0.999266 0.999521 0.999394 0.982657 0.041578 0.079781
4F1h 0.999262 0.999979 0.999620 0.999251 1.000000 0.999625 0.999009 0.750446 0.857070
50Ch 0.999178 0.999995 0.999586 0.999267 0.999901 0.999584 0.982237 0.040584 0.077947
52Ah 0.999074 0.999792 0.999433 0.999064 1.000000 0.999532 0.998850 0.809012 0.893964
541h 0.999267 0.999938 0.999602 0.999267 0.999740 0.999503 0.998442 0.470205 0.639326
545h 0.999173 0.999995 0.999584 0.999173 0.999995 0.999584 0.981965 0.039957 0.076789
547h 0.999178 0.999984 0.999581 0.999199 0.999979 0.999589 0.996630 0.217033 0.356444
549h 0.999173 0.999995 0.999584 0.999168 1.000000 0.999584 0.982251 0.040612 0.078000
553h 0.999266 0.999172 0.999219 0.999266 0.998751 0.999008 0.998449 0.472302 0.641263
555h 0.999168 0.999995 0.999581 0.999173 0.999990 0.999581 0.982217 0.040536 0.077859
556h 0.999168 1.000000 0.999584 0.999173 0.999984 0.999579 0.999010 0.835478 0.909955
557h 0.999209 0.999932 0.999571 0.999173 0.999995 0.999584 0.986437 0.053375 0.101270
58Bh 0.999267 0.999984 0.999625 0.999178 0.999891 0.999534 0.978268 0.033034 0.063911
593h 0.999266 0.999755 0.999511 0.999085 0.999984 0.999534 0.978354 0.041413 0.079462
5A0h 0.822140 0.992078 0.899150 0.822323 0.994221 0.900139 0.748007 0.041658 0.078921
5B0h 0.749149 0.999951 0.856569 0.749131 1.000000 0.856575 0.727525 0.040083 0.075980

Average 0.979597 0.972277 0.962327 0.979596 0.972341 0.962353 0.968263 0.328901 0.407648

TABLE VI
INTRUSION DETECTION PERFORMANCE AGAINST REPLAY ATTACKS.

Capture duration (s) Precision Recall F1-score
0–120 0.999266 0.998954 0.999110

120–240 0.999178 0.999990 0.999584
240–360 0.999204 0.999781 0.999493
360–480 0.999262 0.993266 0.996255

C. Performance Comparison with Prior Research

As it is difficult for researchers to obtain CAN databases,
previous payload-based studies [29], [30], [13], [12], [31]
used the raw payloads of CAN messages as inputs. For a
comparison of the detection performance with prior research,
we implemented a method known as CANnolo proposed by
Longari et al. [31] because the concept of the study is similar
to that of our method. They proposed a self-supervised IDS
using an LSTM-based autoencoder. CANnolo is supposed
to be trained with benign time-series payloads in the bit
representation. Consequently, we trained the model using our
training set.

Fig. 8 depicts five receiver operating characteristic (ROC)
curves, each of which was rendered while adjusting the
detection threshold Θ. Curves 1 and 2 represent the detection
performances of X-CANIDS and CANnolo, respectively. X-

0.00 0.25 0.50 0.75 1.00
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

po
si

tiv
e

ra
te

1. Proposed method (AUC = 0.9929)
2. CANnolo (Longari et al.) (AUC = 0.8993)
3. CANnolo + BiLSTM (AUC = 0.9517)
4. Trained w/ stationary set M7 (AUC = 0.6100)
5. Trained w/ stationary set M7, w/o CAN DB (AUC = 0.4699)

Fig. 8. ROC curves. X-CANIDS (curve 1) exhibited better intrusion detection
performance compared to the previous work (curve 2) [31].

CANIDS was superior to CANnolo, with a 0.0936 gain in
the area under the curve (AUC). Furthermore, we revised

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 11

CANnolo by replacing the LSTM layers with BiLSTM layers
as BiLSTM exhibits a smaller reconstruction error than LSTM
(see Fig. 6). A comparison of curves 2 and 3 reveals that
the BiLSTM layer helped CANnolo to detect anomalies more
accurately. However, X-CANIDS still performed better than
the revised CANnolo. We conclude that the signals that were
deserialized from the raw payloads were more helpful in
detecting anomalies.

D. Advantages of Using Driving Dataset and Signals

The proposed method should be trained with a driving
dataset rather than a stationary or simulated dataset to ensure
high detection performance. We conducted further experiments
with a stationary dataset to confirm the importance of using
the driving dataset in the training phase. In Fig. 8, curve 4
indicates the performance of X-CANIDS when it was trained
with M7. A comparison of curves 1 and 4 demonstrates
that the use of the driving dataset significantly improved the
detection performance.

Moreover, we assume that it is necessary to train AE with
raw payloads, owing to the lack of a CAN database. Curve
5 shows the detection performance under this assumption. A
comparison of curves 4 and 5 confirms that the signals aided
in achieving better detection performance.

E. Feasibility Consideration

It is necessary to ensure that no bottleneck occurs owing
to the computation time. The computation time is dependent
on the complexity of the method and the computational power
that is provided by an in-vehicle component. We selected an
NVIDIA Jetson AGX Xavier, which is an automotive-grade
embedded device equipped with a GPU and CAN shield, to
investigate the feasibility. This device is plausible because
it is used to compute automotive applications in both the
vehicle industry and academia (e.g., [32]). We implemented
X-CANIDS on the device. The device could monitor the CAN
bus in the vehicle using the CAN shield. The GPU allowed us
to compute f(·) concurrently with a small batch of features.
Owing to the device supporting TensorFlow natively, we could
port the pretrained weights of f(·) from our PC.

1) Throughput: We first measure the throughput of our
AE on the device. Note that we chose t = 0.005 s. It
means that the feature generator generates 200 features per s.
Consequently, the throughput must be equal to or greater than
200 samples per s. We tried 11 batch sizes and summarized
the result in Table VII. We denote the batch size as B. We
confirmed that the device can process up to ≈ 2, 010 samples
per s when we use B = 1024. In order to minimize the batch
completion time as well as the detection latency, we decide
the B = 8.

2) Detection latency: The detection latency is the time gap
between the attack and alert. When B = 8 was selected, the

TABLE VII
THROUGHPUT AND INFERENCE TIME ON NVIDIA JETSON AGX XAVIER.

Batch size B
Throughput
(samples/s)

Inference time tβ
(ms/sample)

4 114.6033 8.7258
8 239.1564 4.1814

16 476.0859 2.1005
32 870.1233 1.1493
64 1,257.3287 0.7953

128 1,526.7854 0.6550
256 1,773.3477 0.5639
512 1,928.1721 0.5186

1,024 2,010.5995 0.4974
2,048 1,881.2511 0.5316
4,096 1,234.2686 0.8102

detection latency was derived as follows:

Detection latency = zt+ tα +Btβ

= z · 5 ms + 4.8 ms + 8 · 4.1814 ms

=

{
38.2512 ms, if z = 0, the batch is full on arrival.
73.2512 ms, if z = 7, the batch is empty.

(9)
In the above, tα = 4.8 ms stands for the time consumption
that the feature generator takes, and tβ stands for the inference
time per sample (see Table VII). Also, z ∈ {0..(B − 1)}
is the number of inputs required to complete a batch; thus,
zt represents the batch completion time. We conclude that
X-CANIDS provides an intrusion alert with a deterministic
latency of no greater than 73.2512 ms.

The deterministic latency is high compared to the minimum
time intervals of existing streams in our vehicle (i.e., 10 ms,
see Table II). Carmakers considering installing an intrusion
response system (IRS) should note that while X-CANIDS
can be used for intrusion detection, it cannot be seamlessly
integrated with their IRS to mitigate identified cyberattacks in
time without further optimizing the detection latency. We have
deferred the optimization to future work.

3) CPU, RAM and GPU usage: We utilized the embedded
device only to evaluate the feasibility of X-CANIDS. However,
the device may run other processes along with X-CANIDS
in a real-world scenario. For those who are considering
the scenario, we measured the CPU and RAM usage on
our device. Our inference program—implemented using C++
with standard template library—takes the CPU utilization of
≈150% (100% per core, 8 cores total) and the memory space
of ≈2.7GB including deep learning libraries. We expect the
CPU and RAM requirements steady in other environments
because X-CANIDS does not rely on sparse data (e.g., one-
hot vector) or dynamic memory allocation. The bus load of
a CAN-based IVN does not affect the performance either
because the feature generator builds an S every designated t
s. We had no choice but to use two threads since tα = 4.8 ms
was nearly equal to the feature creation interval t; one thread
generates features, and another thread deals with the rest—the
batch compilation, feeding a batch to the model, and measure
the error rate. Finally, the GPU utilization was measured as
≈63% on average when B = 8.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 12

F. Explanation of Detection Results
In this section, we discuss the explainability of our proposed

framework. A heatmap that plots the error rates of the 107
signals over time is presented in Fig. 9. We conducted six
attacks on our test set and measured their error rates. The
figure shows only the error rates that exceeded the detection
threshold Θ = 28.2. That is, the marked points in the
figure represent the predicted intrusions. The attack period and
description are indicated at the top of the heatmap. The moving
average of the detection accuracy is also provided.

1) Period 1—Fuzzing: An intensive fuzzing attack was con-
ducted during 480–720 s and the error rate exceeded the detec-
tion threshold for almost all signals. The argmax(r) function
continuously pointed out signal 5B0 CF Clu Odometer. Nev-
ertheless, an expert who is responsible for incident response
would be able to identify the type of attack as fuzzing because
of the multiple simultaneous errors. Unfortunately, during this
period, the proposed framework did not work for the fol-
lowing signals: 112 VS TCU DECIMAL, 220 YAW RATE,
and 4F1 CF Clu VanzDecimal.

2) Period 2—Fabrication: We considered an adversary who
attempts to fabricate a portion of the payloads for signal
556 PID 0Ch during 840–960 s. The signal is part of the
OBD-II freeze frame containing the parameter ID 0Ch. That is,
the signal represents the current engine RPM [33]. The exper-
imental results showed that 556 PID 0Ch reached the highest
error rate of ≈ 104 during this period. Three signals repre-
senting the RPM, namely 080 N, 162 Cluster Driving RPM,
and 316 N, also exhibited high error rates.

3) Period 3—Fabrication: An adversary who injects CAN
messages with a=162h was assumed during 1080–1200 s. We
can see that three signals belonging to stream 162h exhibited
high error rates. In particular, argmax(r) successfully pointed
out signal 162 Cluster Enging RPM.

4) Period 4—Masquerade: We considered an adversary
who attempts to report a fraudulent current velocity to the
driver via an instrumental cluster. For this purpose, we simu-
lated a masquerade attack that changes signal 316 VS during
1320–1440 s. As shown in the figure, the signal exhibited
the highest error rate. Furthermore, other speed-related signals
exhibited high error rates simultaneously, including the four
wheel speed signals that are defined in stream 386h.

5) Period 5—Suspension: We performed a suspension at-
tack for stream 556h during 1560–1680 s. As demonstrated
in Table V, the proposed method is ineffective against sus-
pension attacks. The figure also supports the weakness of X-
CANIDS. We observed that the detection accuracy increased
and decreased during this period. The proposed framework
identified anomalies in signal 556 PID 0Dh, which represents
the current velocity (see the description of parameter ID 0Dh
in [33]). The error rate of the signal exceeded the detection
threshold when the vehicle velocity differed from 68 km/h
(cf., the red-filled area in the velocity chart and change in the
moving accuracy).

6) Period 6—Fabrication: Finally, motivated by previous
works [15], [24], we considered a max coolant temperature
attack. In our dataset, signal 329 TEMP ENG deals with the
engine coolant temperature. Thus, we conducted a fabrication

TABLE VIII
PREVIOUS WORK THAT PROPOSED IN-VEHICLE IDSS FOR CAN BUSES.

Research Ti
m

es
ta

m
p

A
ID

se
qu

en
ce

Pa
yl

oa
d

Si
gn

al

Output In
fe

re
nc

e
tim

e

Müter and Asaj [34] ✔ ✔ Binary —
Kang and Kang [29] ✔ Binary 2–5 ms†
Marchetti and Stabili [35] ✔ Binary —
Taylor et al. [36] ✔ ✔ Binary —
Song et al. [25] ✔ Binary 1 ms†
Taylor et al. [30] ✔ Binary —
Marchetti et al. [37] ✔ Binary —
Stabili et al. [38] ✔ Binary —
Markovitz and Wool [22] ✔ Binary —
Wasicek et al. [14] ✔ Real number —
Tomlinson et al. [26] ✔ Binary —
Olufowobi et al. [27] ✔ Binary 9–10 ms†
Young et al. [28] ✔ Binary —
Katragadda et al. [39] ✔ Binary 151 ms‡

Song et al. [40] ✔ Binary 5–6.7 ms†
Longari et al. [31] ✔ Binary —
Hossain et al. [12] ✔ ✔ Category —
Tariq et al. [13] ✔ ✔ ✔ Category 14–73 ms†
Song and Kim [41] ✔ Binary —
Shahriar et al. [15] ✔ Real number —
Hoang and Kim [42] ✔ Binary 0.63 ms†

X-CANIDS (this work) ✔ Real number 4.18 ms‡∗
†per CAN message ‡per feature ∗measured on an embedded device

attack on the signal. It can be observed that argmax(r)
successfully pointed out the exact target signal during this
period.

VI. RELATED WORKS

In this section, related works on in-vehicle IDSs for CAN
buses are reviewed. Table VIII lists 21 previous studies, with
the input type used to detect the intrusion, output type, and in-
ference time presented in the respective paper. In many cases,
an IDS returns a binary for each input to indicate whether
the vehicle is attacked. Meanwhile, two studies [12], [13]
proposed IDSs that return a categorical value. This category
refers to the type of attack. These IDSs require labeled training
sets to recognize the attack type. Two signal-aware IDSs ([14],
[15]) return a real number that can be used as the detection
result and confidence score.

The primary goal of an in-vehicle IDS is to detect anomalies
effectively. Moreover, an IDS should be implemented on an
ECU or embedded device that provides limited computational
power. Therefore, IDSs should be tested on these devices
to confirm their feasibility. In particular, the inference time
should be compared with the feature-creation frequency. How-
ever, excluding this work, only seven studies measured the
inference time. Moreover, none of the studies mentioned that
the inference time was measured using an embedded device.

An in-vehicle IDS assesses the in-vehicle traffic using
the timestamp, AID sequence, payload, and/or signal. In the
remainder of this section, we categorize the related studies
according to the input type.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 13

0
50

100Velocity
(km/h)

0

1Accuracy
(window = 5 s)

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920
Time [s]

5B0 CF Clu Odometer
5A0 CF Acu Dtc

593 PRESSURE RR
593 PRESSURE RL
593 PRESSURE FR
593 PRESSURE FL

58B CF Lca IndBriRight
58B CF Lca IndBriLeft

58B CF Lca IndRight
58B CF Lca IndLeft

58B CF Lca Stat
557 PID 23h
557 PID 0Bh
556 PID 11h
556 PID 0Dh
556 PID 0Ch
556 PID 05h
556 PID 04h

555 CR Fpcm LPActPre
553 CF Gway IntTailAct

553 CF Gway ExtTailAct
553 CF Gway AvTail

553 CF Gway AutoLightValue
549 BAT SNSR Temp

549 BAT SNSR V
549 BAT SOC

549 BAT SNSR I
547 IntAirTemp
547 ECGPOvrd

545 TEMP FUEL
545 VB

545 BAT Alt FR Duty
545 AMP CAN

541 CF Gway TurnSigRh
541 CF Gway HeadLampLow

541 CF Gway TurnSigLh
52A CF Clu VehicleSpeed

50C CF Clu DTE
50C CF Clu AvgFCI

4F1 CF Clu DetentOut
4F1 CF Clu Vanz

4F1 CF Clu VanzDecimal
47F ROL CNT ESP
387 WHL PUL RR
387 WHL PUL RL
387 WHL PUL FR
387 WHL PUL FL
386 WHL SPD RR
386 WHL SPD RL
386 WHL SPD FR
386 WHL SPD FL

383 CR Fatc OutTempSns
383 CR Fatc OutTemp
381 CR Mdps StrAng

329 PV AV CAN
329 TPS

329 BRAKE ACT
329 CLU ACK

329 MAF FAC ALTI MMV
329 TEMP ENG

316 VS
316 TQFR

316 TQI
316 N

316 TQI ACOR
316 PUC STAT
2B0 SAS Speed
2B0 SAS Angle

260 CF Ems AclAct
260 TQI MAX

260 TQI TARGET
260 TQI

260 TQI MIN
251 CR Mdps OutTq
251 CR Mdps StrTq

220 YAW RATE
220 CYL PRES

220 LONG ACCEL
220 LAT ACCEL

200 FCO
18F R NEngIdlTgC

18F TQI B
18F R PAcnC

162 Cluster Engine RPM Flag
162 Cluster Engine RPM

162 Clutch Driving Tq
113 CF Tcu ActEcoRdy

113 CF Tcu ShfPatt
113 CF Tcu TarGr
113 SLOPE TCU

112 VS TCU DECIMAL
112 N INC TCU

112 VS TCU
111 SWI CC

111 TQI TCU
111 SWI GS

111 TQI TCU INC
081 CR Ems IndAirTemp
081 CF Ems EngOperStat

081 BRAKE ACT
080 TQI

080 TQFR
080 TQI ACOR

080 N
080 PV AV CAN

044 CF Datc IncarTemp
044 CR Datc OutTempC

Si
gn

al
na

m
e

1. Fuzzing
rate = 1500 msg./s

2. Fabrication
556 PID 0Ch

3. Fabrication
AID = 162h

4. Masquerade
316 VS

5. Suspension
AID = 556h

6. Fabrication
329 TEMP ENG

102

103

104

Fig. 9. Error rates over test dataset M6. The error rates are depicted as 28.2 = Θ ≤ blue ≤ 102 ≤ green ≤ 103 ≤ red ≤ 104+. We conducted attacks
in six periods. In attack period 1, the error rates were exceeded on many signals owing to intensive fuzzing. In attack periods 2–6, we could distinguish the
exact target signals showing a maximum error rate at a certain time. The reader is referred to the color version of this page for interpretation of the figure.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 14

A. Time Interval-Based IDS

A timestamp is not an officially supported field in the CAN
frame. Nevertheless, an ECU can measure the relative time
of the transmission itself because every ECU that shares the
same medium is time synchronized bit by bit. ECUs tend
to report their status periodically. Time-interval-based IDSs
exploit these mechanisms. The measurement of timestamps is
an efficient means of detecting anomalies. This also enables
the detected intrusions to be understood. In contrast, a time-
interval-based IDS does not work for the sporadic transmission
of CAN messages.

Most early studies leveraged the periodic transmission
mechanism. For example, in 2011, Müter and Asaj [34]
explored the applicability of the entropy-based anomaly detec-
tion method. The proposed method takes advantage of the pe-
riodicity of IVN traffic. They measured the normal probability
distribution of attack-free CAN data and compared it with that
of abnormal CAN data. However, the study lacked an explicit
threshold determination method or evaluation result, such as
the detection accuracy. In 2016, Song et al. [25] proposed
a rule-based intrusion detection method that measures the
time interval of two adjacent CAN messages. When the time
interval of a new CAN message is shorter than the threshold,
the proposed IDS considers the message as an intrusion. The
experimental results demonstrated high detection performance
with handcrafted thresholds. However, the method for de-
termining the threshold remains to be improved. Marchetti
et al. [37] proposed an entropy-based anomaly detector for
CAN buses. Tomlinson et al. [26] adopted the ARIMA model
and Z-score to identify CAN message timing anomalies in
a time window. Olufowobi et al. [27] proposed an intrusion
detection method known as SAIDuCANT, which leverages the
periodic message behavior in the CAN bus. Young et al. [28]
adopted fast Fourier transform to measure CAN message
update frequency in a stream.

B. Sequence-Based IDSs

Sequence prediction is a well-known machine-learning
problem. A sequence predictor predicts the next symbol based
on previously observed categorical data. A sequence of AIDs
can be used as sequence predictors to model the attack-free
state of IVNs for in-vehicle traffic monitoring. Sequence-
based IDSs can be used in all types of CAN-based IVNs
because it is easy to compile AID sequences. However, these
methods exhibit several drawbacks. Particularly, it is difficult
to understand why a given sequence is classified as abnormal.
Moreover, an adversary may falsify a legitimate sequence by
conducting an intensive replay attack.

Marchetti and Stabili [35] compiled a transition matrix to
represent the recurring patterns of two adjacent AIDs. The
transition matrix is used to evaluate the CAN bus stream
in the inference phase. Katragadda et al. [39] proposed a
message sequence-based anomaly detection method that builds
a frequent sequence tree, where each node represents a
subsequence and each edge measures an observation count.
The sequence length should be carefully selected because
detection performance and feasibility are dependent thereon.

Tariq et al. [13] combined the benefits of rule-based models
and neural networks. They claimed that their heuristic model
works for known attack signatures, whereas neural networks
can cope with unknown attacks. This is the only work that
simultaneously examined the timestamp, payload, and AID
sequences. Indeed, their method requires a substantially longer
inference time than those of other approaches. Song et al. [40]
proposed a CNN that is a variation of Inception-ResNet to
examine AID sequences. Their detection model outperformed
conventional detection methods. However, a limitation of the
proposed method is that it requires a labeled dataset to
train the model. To overcome this drawback, they proposed
another training method [41] to train their CNN model in
an unsupervised manner. Hoang and Kim [42] proposed an
adversarial autoencoder that attempts to reconstruct 29 × 29-
sized features, which represent 29 continuous AIDs in bits.

C. Payload-Based IDSs

Payload-based IDSs evaluate the payloads in CAN mes-
sages, where each payload is represented as bit sequences.
The training set needs to be carefully prepared to use payload-
based IDSs in real-world scenarios; otherwise, the payload
dynamics could cause false alarms.

Taylor et al. [36] measured the number of packets and
average Hamming distance of the CAN message payloads in
a sliding window. The statistical features that were derived
from these two values were used to train a one-class support
vector machine. Their experimental results were dependent
on the window size for feature generation. Unfortunately, the
unsupervised method exhibited a considerable false positive
rate with the incorrect window size. Kang and Kang [29]
proposed a binary intrusion detection method based on a
fully connected neural network, which uses 64-dimensional bit
sequences (i.e., a payload of CAN messages) and then returns a
logistic value of 0 or 1. They used a packet generator known as
OCTANE to evaluate the proposed method. Despite the high
performance of the experimental results, this work exhibits
two limitations: (1) the method was evaluated using only three
streams and (2) the simulated payloads that were used in the
experiment may not reflect real-world situations. Taylor et
al. [30] proposed an intrusion detector that consists of LSTM-
based models for each stream. Each model uses a 20×64-sized
matrix that comprises 20 subsequences of CAN payloads in
the bit representation. Subsequently, the model predicts the
next payload of a stream. They considered five loss metrics
to measure the anomaly score. Stabili et al. [38] measured
the Hamming distance for each stream. They classified each
stream into the no distance, small distance, and mid-distance
ranges. When a stream exceeds a given distance range in the
inference phase, it is classified as an anomaly. However, the
method was evaluated using only fuzzing attacks. Hossain et
al. [12] developed a supervised IDS using an LSTM model
that considers the raw payloads of a CAN message. Longari et
al. [31] deployed an anomaly detection system based on LSTM
autoencoders. They implemented an LSTM model for each
stream to reconstruct a time-series bit sequence of payloads.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 15

D. Signal-Aware IDSs

To the best of our knowledge, Markovitz and Wool [22]
were the first to use portions of the payload in CAN messages
to detect intrusions, as opposed to using an entire payload.
They divided a 64-bit payload into several fields, each of which
was assigned as a constant, categorical, counter, or sensor type.
A rule-based detection algorithm was considered for each data
type. Wasicek et al. [14] proposed an IDS that uses 54 types
of signals that are obtained via OBD-II PIDs. They reported
that a fully connected network with a bottleneck can be used
to measure the anomaly score (i.e., the reconstruction error).
In 2022, Shahriar et al. [15] proposed a signal-aware IDS,
named CANShield. A 2D CNN was designed to reconstruct
the signals that were deserialized from raw payloads. They
used CAN-D [16], which is an automatic dissector for CAN
traffic, to obtain these signals.

E. Comparison with related works

In the literature, two related works [14], [15] and X-
CANIDS are closely aligned in that “an autoencoder takes
signals to detect in-vehicle intrusion.” In this section, we
provide a comparative analysis to discuss the advantages of
X-CANIDS in terms of signal processing and the detection
model.
Signal process. The method in [14] takes signals from OBD-II
responses, while X-CANIDS and CANShield [15] use signals
from CAN messages. OBD-II responses are an alternative
source to obtain signals without a CAN database. However,
these signals primarily reflect powertrain-related sensor values,
as the main objective of OBD-II is vehicle diagnosis. As
a result, the method in [14] is insufficient to protect non-
powertrain applications. Another limitation is that an OBD-II
response will yield compromised signals once the powertrain
has been compromised. Therefore, signals from CAN mes-
sages are more beneficial as they can reflect attempted attacks
instantly. Meanwhile, CANShield has two limitations in signal
processing. First, the method only analyzes a few pre-selected
signals while ignoring the rest by design. Second, the order
of signals can affect learning efficacy since the signals are
converted into a 2D image. Compared to these related works,
X-CANIDS has the following advantages: (1) it uses signals
from CAN messages, (2) it can analyze all available signals,
and (3) it ensures robust learning efficacy regardless of the
order of signals.
Model. The methods in [14], [15] use an FCN- and a Conv2D-
based autoencoder, respectively. In addition to these types
of layers, we have tested six different layers to implement
autoencoders. Our experimental results, using real driving
datasets, show that the BiLSTM layer is superior to the FCN
and Conv2D layers for the signal reconstruction problem (refer
to §V-A1 and Fig. 6). Investigating the most effective layer is
also a key contribution of this work.

VII. DISCUSSION AND CONCLUSIONS

A. Limitation

We here discuss three limitations as well as remediation
strategies for them. First, we used only one vehicle to evaluate

X-CANIDS. We found it difficult to arrange another car owing
to the lack of a CAN database. To tackle the issue, we encour-
age carmakers to share their CAN databases with academia
for research purposes. Otherwise, providing an application
programming interface that allows researchers to obtain signals
can be an alternative solution.

Second, X-CANIDS is insufficient for detecting suspension
attacks. To this end, our future work will expand the proposed
method to examine time-interval-based features along with
signal features. Except for the masquerade attack, the rest
of the attacks can be conducted by injecting or suppressing
CAN messages. Therefore, analyzing a transmission period
per stream would be a promising approach. The transmission
period can also be considered an intuitive explanation because
an expert can easily compare a current one with an expected
one.

Finally, X-CANIDS takes some time to process the input
and raise the alarm. Many streams have an update interval
of 10 ms. However, we confirmed the detection latency of
73.2512 ms in the worst case. It implies there is a time
gap exposed to the attack without awareness. To tackle the
issue, we could get prompt detection results by considering a
lightweight autoencoder or dedicated hardware that accelerates
the autoencoder. IDSs with substantial computational demands
may not be appropriate for all vehicle tiers, from low- to high-
end. To achieve real-time detection at a reasonable cost, there
is a compelling need for more lightweight IDS mechanisms.

B. Remarks and Conclusion

Recent vehicles are driven by software and have a broad
attack surface. So far, many studies have been proposed for the
precise detection of intrusions on in-vehicle networks. How-
ever, due to the lack of information on payload serialization,
only a few studies have considered analyzing signals of CAN
messages. Also, feasibility considerations are lacking. In re-
sponse, cybersecurity regulations, including UNR 155, enforce
the installation of an IDS inside vehicles and the analysis of
cyberattacks. Therefore, the feasibility and explainability of
in-vehicle IDSs are important for vehicle industries.

In this study, we have proposed X-CANIDS, in which the
feature generator is designed to process live streams and create
a time-series representation of the signals. A CAN database is
combined with X-CANIDS to deserialize the signals from the
CAN message payloads. We tested six types of autoencoders.
The LSTM layer has often been considered in the literature
[30], [13], [12], [31]. A Conv2D-based autoencoder has also
been employed to model signals [15]. However, we demon-
strated that the BiLSTM-based autoencoder outperformed the
LSTM and 2D-CNN autoencoders. Then, we explored two
parameters regarding feature generation. X-CANIDS expects
an onboard AI-inference device to leverage the model. In case
of a lack of such a device, a driver may consider installing
a device like an after market autonomous driving kit of
Comma.ai.

In summary, the experimental results suggest that X-
CANIDS detects zero-day intrusions that are not observed
during the training phase. In particular, the proposed method

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 16

offers an advantage for masquerade attacks that cannot be de-
tected by time-interval- or sequence-based IDSs. X-CANIDS
also offers outstanding performance against fuzzing, fabrica-
tion, and replay attacks.

We have considered the feasibility and explainability. To
the best of our knowledge, these characteristics have not
been considered in the previous works for CAN IDSs. Our
feasibility evaluation confirms that X-CANIDS is able to
be implemented on an embedded device to monitor live in-
vehicle traffic while driving. The explainability provides an
explicit hint about target ECUs or compromised signals. The
explainability of X-CANIDS will help incident response teams
analyze conducted cyberattacks. For that, X-CANIDS requires
a CAN database. We claim that our method will be valuable
to all carmakers because they can access CAN databases for
their vehicles.

REFERENCES

[1] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proc. ACM CCS ’16, 2016, pp. 1044–1055.

[2] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion
detection system for in-vehicle network by using remote frame,” in Proc.
PST ’17, 2017.

[3] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” in Proc. Black Hat USA ’15, Aug. 2015, pp. 1–91.

[4] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity
for autonomous vehicles: Review of attacks and defense,” Computers &
Security, vol. 103, p. 102150, 2021.

[5] H. J. Jo, W. Choi, S. Y. Na, S. Woo, and D. H. Lee, “Vulnerabilities
of Android OS-based telematics system,” Wireless Personal Communi-
cations, vol. 92, no. 4, pp. 1511–1530, 2017.

[6] S. Gayou, “Jailbreaking Subaru StarLink,” https://github.com/sgayou/
subaru-starlink-research, Nov. 2018.

[7] “Tesla car hacked at Pwn2Own contest,” https://www.zdnet.com/article/
tesla-car-hacked-at-pwn2own-contest/, Mar. 2019.

[8] G. Costantino and I. Matteucci, “CANDY CREAM - hacking infotain-
ment Android systems to command instrument cluster via CAN data
frame,” in Proc. IEEE CSE ’19, 2019, pp. 476–481.

[9] Tencent Keen Security Lab, “Mercedes-Benz MBUX security re-
search report,” https://keenlab.tencent.com/en/whitepapers/Mercedes
Benz Security Research Report Final.pdf, Tech. Rep., May 2021.

[10] H. J. Jo and W. Choi, “A survey of attacks on Controller Area Networks
and corresponding countermeasures,” IEEE Transactions on Intelligent
Transportation Systems, pp. 6123–6141, Jul. 2022.

[11] “UN Regulation No. 155 - cyber security and cyber security management
system,” E/ECE/TRANS/505/Rev.3/Add.154, Apr. 2021.

[12] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi,
“LSTM-based intrusion detection system for in-vehicle CAN bus com-
munications,” IEEE Access, vol. 8, pp. 185 489–185 502, 2020.

[13] S. Tariq, S. Lee, H. K. Kim, and S. S. Woo, “CAN-ADF: The Controller
Area Network attack detection framework,” Computers & Security,
vol. 94, p. 101857, 2020.

[14] A. Wasicek, M. D. Pesé, A. Weimerskirch, Y. Burakova, and K. Singh,
“Context-aware intrusion detection in automotive control systems,” in
Proc. 5th ESCAR USA ’17, 2017, pp. 21–22.

[15] M. H. Shahriar, Y. Xiao, P. Moriano, W. Lou, and Y. T. Hou,
“CANShield: Signal-based intrusion detection for Controller Area
Networks,” 2022. [Online]. Available: https://arxiv.org/abs/2205.01306

[16] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield, and M. D.
Iannacone, “CAN-D: A modular four-step pipeline for comprehensively
decoding Controller Area Network data,” IEEE Transactions on Vehic-
ular Technology, vol. 70, no. 10, pp. 9685–9700, 2021.

[17] C. Young, J. Svoboda, and J. Zambreno, “Towards reverse engineering
Controller Area Network messages using machine learning,” in Proc.
IEEE WF-IoT ’20, 2020, pp. 1–6.

[18] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and
K. G. Shin, “LibreCAN: Automated CAN message translator,” in Proc.
ACM CCS ’19, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 2283–2300.

[19] T. U. Kang, H. M. Song, S. Jeong, and H. K. Kim, “Automated reverse
engineering and attack for CAN using OBD-II,” in Proc. IEEE VTC-Fall
’18, 2018, pp. 1–7.

[20] M. Verma, R. Bridges, and S. Hollifield, “Actt: Automotive CAN
tokenization and translation,” in Proc. CSCI ’18, 2018, pp. 278–283.

[21] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel, and
P. Hellinckx, “Automatic reverse engineering of CAN bus data using
machine learning techniques,” in Proc. 3PGCIC ’18, F. Xhafa, S. Ca-
ballé, and L. Barolli, Eds. Cham: Springer International Publishing,
2018, pp. 751–761.

[22] M. Markovitz and A. Wool, “Field classification, modeling and anomaly
detection in unknown CAN bus networks,” Vehicular Communications,
vol. 9, pp. 43–52, 2017.

[23] Comma.ai, “OpenDBC,” https://github.com/commaai/opendbc, 2017.
[24] M. E. Verma, M. D. Iannacone, R. A. Bridges, S. C. Hollifield,

P. Moriano, B. Kay, and F. L. Combs, “Addressing the lack of
comparability & testing in CAN intrusion detection research: A
comprehensive guide to CAN IDS data & introduction of the ROAD
dataset,” 2020. [Online]. Available: https://arxiv.org/abs/2012.14600

[25] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system
based on the analysis of time intervals of CAN messages for in-vehicle
network,” in Proc. ICOIN ’16, 2016, pp. 63–68.

[26] A. Tomlinson, J. Bryans, S. A. Shaikh, and H. K. Kalutarage, “Detection
of automotive CAN cyber-attacks by identifying packet timing anomalies
in time windows,” in Proc. IEEE DSN-W ’18, 2018, pp. 231–238.

[27] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “SAIDuCANT:
Specification-based automotive intrusion detection using Controller Area
Network (CAN) timing,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, pp. 1484–1494, 2020.

[28] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
intrusion detection based on constant CAN message frequencies across
vehicle driving modes,” in Proc. AutoSec ’19, ser. AutoSec ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp. 9–14.

[29] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PLOS ONE, vol. 11,
no. 6, pp. 1–17, 06 2016.

[30] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in Proc. IEEE DSAA ’16, 2016, pp. 130–139.

[31] S. Longari, D. H. Nova Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“CANnolo: An anomaly detection system based on LSTM autoencoders
for Controller Area Network,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1913–1924, 2021.

[32] K. Yang, X. Tang, S. Qiu, S. Jin, Z. Wei, and H. Wang, “Towards
robust decision-making for autonomous driving on highway,” IEEE
Transactions on Vehicular Technology, vol. Early access, pp. 1–13, 2023.

[33] “OBD-II PIDs (Wikipedia),” https://en.wikipedia.org/wiki/OBD-II
PIDs, accessed Jan. 1, 2023.

[34] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” in Proc. IEEE IV ’11, 2011, pp. 1110–1115.

[35] M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages
through analysis of ID sequences,” in Proc. IEEE IV ’17, 2017, pp.
1577–1583.

[36] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” in Proc. WCICSS ’15, 2015,
pp. 45–49.

[37] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, “Evaluation of
anomaly detection for in-vehicle networks through information-theoretic
algorithms,” in Proc. 2nd IEEE RTSI ’16. IEEE, 2016, pp. 1–6.

[38] D. Stabili, M. Marchetti, and M. Colajanni, “Detecting attacks to internal
vehicle networks through hamming distance,” in Proc. AEIT ’17, 2017,
pp. 1–6.

[39] S. Katragadda, P. J. Darby, A. Roche, and R. Gottumukkala, “Detecting
low-rate replay-based injection attacks on in-vehicle networks,” IEEE
Access, vol. 8, pp. 54 979–54 993, 2020.

[40] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Vehicular Commu-
nications, vol. 21, p. 100198, 2020.

[41] H. M. Song and H. K. Kim, “Self-supervised anomaly detection for in-
vehicle network using noised pseudo normal data,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 2, pp. 1098–1108, 2021.

[42] T.-N. Hoang and D. Kim, “Detecting in-vehicle intrusion via semi-
supervised learning-based convolutional adversarial autoencoders,” Ve-
hicular Communications, vol. 38, p. 100520, 2022.

https://github.com/sgayou/subaru-starlink-research
https://github.com/sgayou/subaru-starlink-research
https://www.zdnet.com/article/tesla-car-hacked-at-pwn2own-contest/
https://www.zdnet.com/article/tesla-car-hacked-at-pwn2own-contest/
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://arxiv.org/abs/2205.01306
https://github.com/commaai/opendbc
https://arxiv.org/abs/2012.14600
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/OBD-II_PIDs

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 3, 2024 17

Seonghoon Jeong received a Ph.D. degree in infor-
mation security from the School of Cybersecurity,
Korea University, Seoul, Republic of Korea. He is
currently a Postdoctoral Researcher with the Institute
of Cybersecurity and Privacy, Korea University. His
research has focused on in-vehicle network security,
including intrusion detection systems for Controller
Area Networks and automotive Ethernet.

Sangho Lee received the B.S. degree in electronic
engineering from the Soongsil University in 2018,
and the M.S. degree in information security from
the School of Cybersecurity, Korea University in
2023. He is a security engineer at Samsung Research
of Samsung Electronics since 2018. His research
interests include data-driven security, user behavior
analysis, and privacy.

Hwejae Lee received a B.S. degree in mechanical
engineering from Kyung Hee University in 2020 and
is a Ph.D. student in information security at the
School of Cybersecurity, Korea University, Seoul,
Republic of Korea. His research interests include
vehicle security, data-driven security, intrusion de-
tection, machine learning, and deep learning.

Huy Kang Kim received a Ph.D. degree in industrial
and system engineering from the Korea Advanced
Institute of Science and Technology (KAIST), Re-
public of Korea. He founded A3 Security Consulting
in 1999 and AI Spera, which is a data-driven cyber
threat intelligence service company, in 2017. He is
a Professor at the School of Cybersecurity, Korea
University, Republic of Korea. His recent research
has focused on intrusion detection in intelligent
transportation systems and in-vehicle networks using
machine-learning techniques.

	Introduction
	Preliminaries
	Terminology
	CAN Frame
	CAN Database
	Adversary and Attack Model
	Fuzzing Attack
	Fabrication Attack
	Suspension Attack
	Masquerade Attack
	Replay Attack

	Methodology
	Message Receiver
	Feature Generator
	Payload Sampler
	Deserializer
	Feature Scaler
	Time-Series Feature Generator

	Autoencoder
	Intrusion Detection and Explanation
	Inference Function
	Threshold Determination
	Intrusion Detection and Explanation

	Datasets
	Overview of Datasets
	Payload Dynamics

	Experimental Results
	Parameters
	Autoencoder Layer
	Feature Generation Parameters
	Model

	Intrusion Detection Performance
	Fuzzing
	Fabrication, Masquerade, and Suspension
	Replay

	Performance Comparison with Prior Research
	Advantages of Using Driving Dataset and Signals
	Feasibility Consideration
	Throughput
	Detection latency
	CPU, RAM and GPU usage

	Explanation of Detection Results
	Period 1—Fuzzing
	Period 2—Fabrication
	Period 3—Fabrication
	Period 4—Masquerade
	Period 5—Suspension
	Period 6—Fabrication

	Related Works
	Time Interval-Based IDS
	Sequence-Based IDSs
	Payload-Based IDSs
	Signal-Aware IDSs
	Comparison with related works

	Discussion and Conclusions
	Limitation
	Remarks and Conclusion

	References
	Biographies
	Seonghoon Jeong
	Sangho Lee
	Hwejae Lee
	Huy Kang Kim

