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Abstract—The 5G standard is aimed at supporting Quality
of Service (QoS)-constrained traffic types, enabling new services
to be reliably built into scenarios such as industrial automation
and smart cities. The support comes via a strong emphasis on
resource virtualization in the form of slices. Due to the strong
QoS constraints of each slice, determining how to actually split
the radio resources among different slices, while considering
simultaneously the priority of slices, network efficiency, and
each slice’s target QoS, is very challenging. In this paper, we
propose a radio resource scheduling scheme, designed on the
basis of a strong theoretical analysis, to address the challenges.
We formulate a Chance-constrained optimum resource alloca-
tion problem, which is then converted into a low complexity
deterministic knapsack problem utilizing the concept of effective
bandwidth. The performance analysis proves that our proposal
is better in efficiency than the existing schemes, under different
network conditions and QoS constraints. Results clearly show
the effectiveness of our scheme in the considered 5G scenarios.

Index Terms—5G, Network slicing, Resource management,
Priority scheduling, Quality-of-service (QoS).

I. INTRODUCTION

IN the last decade, a novel technical evolution known as
virtualization has deeply influenced the modern cellular

systems. Evidently today a new operator can hardly deploy a
full, greenfield nation-wide infrastructure. Instead, it is a com-
mon practice to create virtual operators (aka tenants) using
the physical infrastructure of one or more telecommunication
pipe providers. Virtualization allows a greater flexibility in the
core network, enabling sharing of the core network resources
among different tenants. This step in the virtualization process,
fully embraced in the 5G architecture, is called network
slicing [1]. In this approach, the network resources are not
anymore owned by the tenants. Instead, it is seen as a resource
pool, administrated by a manager super-party, for a set of
tenants. The allocation of slices to the tenants is dynamic, and
each tenant is characterized by its own target QoS. Depending
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Firenze, Firenze, ITALY, (e-mail: tommaso.pecorella@unifi.it).

B. Sardar is with the Department of Information Technology, Jadavpur
University, Kolkata, INDIA, (e-mail: bhaskargit@yahoo.co.in).

T. Rama Rao is with the Department of Electronics & Communication
Engineering, Faculty of Engineering and Technology, SRM Institute of
Science and Technology, Kattankulathur, Tamil Nadu 603203, INDIA, (e-
mail: ramaraotr@gmail.com).

D. Saha is with the Management Information Systems Group, Indian
Institute of Management Calcutta, Kolkata, INDIA, (e-mail: ds@iimcal.ac.in).

Manuscript received xx, xxxx; revised xx, xxxx.

on the tenant’s goal and service model, different network
slicing models are possible in the 5G architecture [2]. It is
interesting to observe that due to non-constant traffic volume
of each tenant, the amount of resources allocated to each slice
must also be dynamically adjusted, taking into consideration
simultaneously the network profit and each tenant’s target
QoS. As a consequence, slicing at inter-cell interference
coordination level or at packet scheduling level [3] is more
suitable in this case.

One of the main problems in packet scheduling is it’s
inability to fulfil the required end-to-end QoS constraints,
mainly because the delays introduced in the Internet are ran-
dom and not predictable. This is in contrast with the classical
approaches, which consider mainly the user movements [4] or
the wireless link variability [5].

The current state of the art makes use of a common
packet scheduling function for all the slices in a cell mostly,
without enforcing slice-specific treatment much. Few existing
schemes use fixed prioritization to deal with heterogeneous
slice types (see Section II). But the Internet induced random
delay and load variation result into poor services for the
slices [1], [3]. It is obvious that fixed prioritization will always
decrease the performance of a higher QoS-driven application
while running under a low priority slice (e.g., a live video
streaming running in a simple video slice). On the other hand,
conventional dedicated resource reservation policy ensures
minimum resources for every slice and minimizes the effect
of random delay and load variation. But, the 3rd Generation
Partnership Project (3GPP) is of the opinion that 5G spectral
efficiency can hardly be achieved this way. Flexible resource
block configuration may improve spectral efficiency; but it is
a very costly technique in terms of power consumption, delay
and traffic overhead in the core.

The scheme proposed in this paper considers multiple slices
with heterogeneous target QoS demands. The goal of our
proposed scheme is set to provide optimum performance of
each slice while strictly maintaining QoS constraints in the
presence of traffic dynamics. We have realized the goal by for-
mulating a Chance-constrained optimum resource allocation
problem [6]. Then we have extended the concept of effective
bandwidth [7] to convert the problem into a deterministic
knapsack problem. Our proposed scheme ensures strict QoS
demand fulfilment of every slice even in high load situation,
allowing each slice to accommodate a large number of users.
With the proposed method, Radio Access Network (RAN)
slicing becomes possible without employing any costly static
allocation process. In our solution, the amount of resources
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to be reserved for each slice is dynamic and is calculated
to satisfy the objective of optimum resources allocation with
slice priority in consideration.

We have studied the performance of our proposed scheme
in 5G-LENA [8], a New Radio (NR) network simulator,
designed as a pluggable module to network simulator 3 (ns-3)
project. We have compared our proposed scheme with the
most relevant extant schemes which can handle heterogeneous
QoS demanding slices, such as QoS aware schemes like Frame
level scheduler (FLS) [9], Intelligent resource scheduling
strategy (iRSS) [10] and Configuration-based assignment and
packing (CBAP) algorithm [11]. Results clearly demonstrate
that our scheme improves significantly the performance of
every slice in terms of goodput and packet loss ratio (PLR)
with respect to the existing schemes under different network
conditions. Here, PLR represents the ratio of the number of
lost packets to the total number of sent packets. A packet
is may be either damaged due to a bad network condition
or expired due to crossing its delay or inter-packet delay
threshold, both of which are considered lost. We have shown
that the priority of a slice can be controlled according to
the current load and QoS demand of different applications,
running under the slice. We have also demonstrated that the
performance of a high priority slice is not affected even when
the load of a low priority slice is increased, ensuring that slices
prioritization is fulfilled always.

The main contributions of this paper are summarized as
follows.

‚ Unlike existing works, we have considered both end-
to-end and inter-packet delay as QoS parameters. Our
scheduler guarantees to schedule a packet before any of
these QoS parameters expire resulting in improved PLR
and throughput compared to the existing schemes.

‚ We have proposed a novel dynamic prioritization scheme
to control the service level of slices at each scheduling
interval. This will allow the tenant operators to imple-
ment fine-grained policies for their designated slices.
Also, to avoid starvation, traffic with varying priorities is
scheduled in a non-sequential manner. Very few schemes
of this kind exist, but they fail to maintain the service
requirement for individual slices.

‚ We have used dissimilar packet sizes, Resource Block
(RB) structures, and Next Generation NodeB (gNB))
configurations in our problem formulation. Accordingly,
we have simulated a 5G heterogeneous network with
overlapped macro and micro cells (operating at mm-wave
bands). The proposed scheme based on this typical 5G
network scenario is very useful for 4G network operators
who want to deploy 5G networks in an incremental
fashion.

‚ We have converted a complex NP-hard scheduling prob-
lem to a simple, deterministic knapsack problem that
can be solved using a linear time complexity-based
approach. On the other hand, the machine learning and
reinforcement learning-based approaches used in existing
literature are avoided due to their slow convergence and
lack of support for specific QoS constraints.

TABLE I: Classification of existing radio resource scheduling
schemes

Sequential Ex-PF [12], M-LWDF [12], QTFDPS [13],
PARS [14], TVS [15], RSESS [16], OCRDF [17],
[18]

Semi-sequential JRNSPSA [19], PPM [20], DARMA [21]

Non-sequential FLS [9], iRSS [10], CBAP [11], JSBO [22],
DOSSSVN [23], DSS [24], Our Proposed
Scheme

The rest of the paper is organized as follows. In Section II,
current state of the art on resource scheduling is presented.
Section III illustrates the system model of our proposed
scheme. In Section IV, our proposed scheme is designed.
Performance analysis by simulation results is reported in
Section V, and finally, conclusions are drawn in Section VI.

II. RELATED WORKS

In the RAN slicing model, the virtual RAN infrastructure
provider arranges all spectrum resources into a pool of carriers
(ranging from 1.4 MHz to 400 MHz). The carriers are
distributed for all the RANs on tenant-basis [25], where slicing
is adopted at the spectrum planning level. The tenant-basis dis-
tribution assigns distinct set of carriers to every tenant across
cells. In this way, tenant-specific function (e.g., scheduling
algorithm) and policy can be applied. A complex resource
scheduling scheme is needed to achieve tenant-specific QoS
goals, especially for what concerns traffic prioritization.

Conventional scheduling schemes [12], working for single
slice, are irrelevant here. These schemes include Blind Equal
Throughput (BET), Proportional fair (PF), Exp rule, Log rule,
Fair allocation high throughput (FAHT), etc. These approaches
are exclusively designed for similar QoS demanding flows.
As a consequence, they cannot be directly used as multi-slice
schedulers in the 5G network.

In a network slicing scenario, a tenant will request one or
more slices, and each slice will carry one or more traffic
flows having dissimilar QoS requirements, e.g., VoIP, en-
hanced mobile broadband (eMBB), massive machine type
communication (mMTC), etc. Depending upon the execution
process of different priority slices, the existing radio resource
scheduling schemes, as shown in Table I, can be categorized
as: sequential, semi-sequential and non-sequential.

In the sequential approach, lower priority slice is scheduled
after scheduling the higher priority one with the combination
of the above-mentioned basic schemes. The Exponential PF
(Ex-PF) and Modified largest weighted delay first (M-LWDF)
schemes deal with Real-time (RT) and Non-Real-Time (NRT)
flows differently [12]. These schemes schedule the first one by
PF and the second one by a modified PF scheme, considering
Head-of-line (HOL) delay and PLR as input parameters.
Similarly, the QoS-oriented time and frequency domain packet
scheduler (QTFDPS), proposed in [13], uses BET and PF
for the NRT and RT flows, respectively. Another approach,
Pricing-aware resource scheduling (PARS), proposed in [14],
uses two advanced schemes: FLS [9] and M-LWDF [12] to
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increase operator’s revenue in case of heterogeneous subscrip-
tion level (in terms of price) of users within the same slice.

In the above-mentioned schemes, scheduling is only con-
sidered between RT and NRT, but in 5G, NRT flows are
expected to be low in number. Two-level Virtual Scheduler
(TVS), proposed in [15], and RAN slicing with EDF slice
scheduling (RSESS), proposed in [16], consider multiple RT
slices, but resource scheduling is still sequential.

Another two novel approaches, the Optimal coverage and
rate demand fulfillment (OCRDF) scheme and its extension,
proposed in [17] and [18], respectively, target optimal alloca-
tion of resources among slices while their data rate demands
are heterogeneous with each other. Although the authors take
into account UE’s location and channel condition to determine
the data rate demand of a slice, the variation of demands
at different time intervals due to uneven arrivals of packets
even for the same set of UEs is not considered. Moreover, the
absence of an appropriate strategy to handle QoS parameters,
such as delay and inter-packet delay, sometimes results in
scheduling precious resources to expired packets, and even in
the worst situations, packets that are going to expire soon may
be delayed while those that have sufficient time to expire are
scheduled beforehand. Above all, these two schemes are also
sequential in nature, as the lower priority slice is scheduled
after the higher priority one.

The sequential approaches are efficient in under-loaded
situations, whereas in moderate or overloaded conditions, the
flows of low priority slices compete with each other, thereby
getting very poor service; so these approaches are not suitable
for 5G networks.

The semi-sequential approaches usually work sequentially
but for some specific network conditions, where they work
non-sequentially. In [19], a joint RT and NRT sliced packet
scheduling and RB allocation (JRNSPSA) scheme use Exp
rule [12] as the base scheduling strategy. When RT and
NRT both enjoy medium or good channel condition, the
scheme works sequentially. However, a NRT slice with good
channel condition is scheduled before a RT slice with very bad
channel condition. In [20], the Packet prediction mechanism
(PPM) scheme is proposed, where a user is going to cross
its PLR threshold, a packet of another user having PLR
lower than its threshold can be delayed. Although it is a
sequential approach, the delaying process always gives some
room for the low priority slices over the higher ones and so, it
acts as a non-sequential approach. Another approach, delay-
aware resource management algorithm (DARMA), proposed
in [21], preserves some RBs for RTs before scheduling.
During scheduling of the RT slice, if some of the packets are
very close to expiration, it takes a fraction of RBs from NRT
slice. The conservation of RBs for NRTs makes this scheme
non-sequential. However, high density of RTs does not leave
any RBs for NRTs. PPM may be the best as it executes non-
sequentially most of the time and improves in PLR but cannot
satisfy high requirement of throughput and inter-packet delay
constraints.

One of the basic non-sequential approaches is the two-
level downlink scheduler for RT multimedia services, FLS
is proposed in [9]. It is based on discrete time linear control

theory. It significantly improves the throughput, PLR, fairness,
and Quality of Experience (QoE). Though it considers end-to-
end delay, it ignores inter-packet delay, and does not guarantee
the packet loss of higher priority slices while serving lower
priority slices. A slice-based non-sequential approach, iRSS
is proposed in [10] where optimum resource utilization is
done by intelligent prediction of current resource block allo-
cation from the past statistics through collaborative learning.
Although the deviation of their prediction from the actual
allocation is minimized, they do not consider heterogeneous
QoS.

A delay-sensitive cell-level approach [11] proposed the
CBAP algorithm which targets to minimize the number of
scheduled, but not-served QoS flows by configuring the frame
with dynamic-sized RBs for multiple QoS flows. A similar
non-sequential approach is also proposed in [26], where
mini-slot-based resource allocation is used to accommodate
upcoming URLLC packets inside a large eMBB frame. The
main goal is to maximize the data rate of eMBB users while
satisfying URLLC’s delay constraint. However, they do not
take into account the heterogeneous QoS demands of different
eMBB flows. As they are designed for single cell only and
consider similar kind of QoS flows, it can hardly cope up in
heterogeneous 5G network slicing scenario.

A Joint scheduling and beam-forming optimization (JSBO)
in Software Defined Network (SDN)-based virtual wireless
environments, containing massive number of IoT devices, is
proposed in [22] to minimize power consumption. A non-
cellular Delay optimal stochastic scheduling scheme for vehic-
ular networks (DOSSSVN) is proposed in [23] which targets
to minimize the delay of the vehicular network applications.
They have considered high fluctuation of vehicle arrival rate
and optimize the allocation with respect to delay, but this
strategy does not suit heterogeneous 5G network slicing
scenario.

The dynamic slicing-based scheme (DSS), proposed in [24],
only keeps the minimum resource reservation constraint, al-
locating resources non-sequentially among different slices. It
uses a modified PF scheme considering only fairness among
slices, and channel condition but it does not consider QoS
constraints. Due to non-sequential nature, it can perform better
than the other two approaches but insensitivity to QoS makes
it unsuitable to manage heterogeneous 5G network slices
effectively.

From the above discussion, it becomes clear that none
of the existing schemes is perfectly suitable for handling
heterogeneous 5G network slicing scenarios. To address this
gap, we propose a non-sequential, QoS-aware scheduling
scheme that ensures effective prioritization of slices. Our
scheme comes close to the FLS [9], iRSS [10], and CBAP [11]
schemes. But it differs from each of them in terms of QoS
parameter (e.g., inter-packet delay), dynamic prioritization of
slices, low complexity, cost effectiveness, and flexibility in
service provisioning of slices.

III. SYSTEM MODEL

The system model illustrates the network topology, traffic
model and the statistical distribution used, followed by the
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objective function. They are presented in the following.

A. Network Topology

In this paper, we have considered multiple network slices
in Network Function Virtualization (NFV)/ SDN enabled
integrated mobile network. The mobile network may contain
multiple Base Stations (BSs) with different configuration of
resource blocks (RBs) in terms of their bandwidth and time
span [11]. The spectrum resources of multiple BSs in terms
of RBs are aggregated into a single resource pool. The data
efficiency of a particular RB with respect to a User Equipment
(UE) is a function of received power, intra and inter-cell
interference, Additive White Gaussian noise (AWGN) and the
size of the RB [11]. Let us assume that there exist some
Distributed Radio Resource Management (DRRM) modules,
integrated into the nearby Data Center (DC), to collect the
scheduling and traffic information like delay, inter-packet
delay, packet arrival rate, received power, etc. from the RRM
module of individual BSs.

B. Traffic Model

We have mainly focused on the downlink traffic. A slice
may contain a group of traffic flows requiring different
target QoS demands. Let us denote the set of slices as
C “ t1, .., i, ..., Cu and by U piq, i P C, we denote the subset
of packets belonging to slice i. If U is the set of all packets
under the RAN, we can write:

U “
C
ď

i“1

U piq (1)

We have characterized the QoS of each traffic flow by
end-to-end delay and inter-packet delay parameters. Threshold
values for these QoS parameters for every QoS class are
defined in [12]. In order not to violate the end-to-end delay and
the inter-packet delay constraints, the scheduler must serve its
queued packets within an expiration time threshold, denoted
as ∆. So, a packet will be expired at (T `∆), where T is the
current time. Our system model is dynamic in the sense that a
scheduler is implemented at every time slot, i.e., it implicitly
takes care of the status of active slices, including queued-
up packets, packet delays, and so on. Each packet within the
subset U piq may have different value of ∆ due to previous
delays in the network.

∆ “ min
@q

Q´

t
pqq
thr ´ t

pqq
¯U

(2)

where tpqq and t
pqq
thr are respectively the computed value and

the threshold value of the QoS parameter, q.
The end-to-end delay contains two components: 1) the

delay between the remote server and the 5G gateway (User
Plane Function (UPF)), denoted as dServer,UPF , and 2) the
delay between the UPF and the UE, denoted as dUPF,UE .
Consequently, the following equation holds.

tpPkt´Delayq “ dServer,UPF ` dUPF,UE (3)

The current delay-based resource scheduling schemes [9]
consider only dUPF,UE because 3GPP has specified the delay

TABLE II: List of notations

Symbol Definition

U Set of all downlink packets
Upiq Set of all downlink packet of the ith slice, U i Ď U
T Current time (in DTI)
∆ Expiration time threshold (in DTI) of a packet, 0 ď ∆ ďM
M Maximum value of ∆

U
piq
T`∆ Set of all downlinks packets of ith slice having expiration time

threshold ∆, U iT`∆ Ď U i

µ Mean of a random variable
S Total number of states in the Markov chain of MTC traffic
P State transition probability matrix in MTC
Li Mean sojourn time in state i
W Mean traffic arrival rate of MTC
R Total number of Resource Blocks
R Total capacity of the resource pool, R ą 1

d
piq
j Transmission need of the ith sliceat at jth DTI

ϕ
piq
j,k Average number of packets per subset calculated upto kth subset

at jth DTI for ith slice
β
piq
j,k Number of new packets arrived up to kth subset at jth DTI for ith

slice
W i Mean arrival rate at state, i of MTC traffic
δi Priority value of the ith packet
yi Binary decision variable (Takes value 1 if ith packet is selected,

otherwise takes 0)
bi Required data capacity of ith packet
Hij Data efficiency of ith packet over jth RB
Zi Amount of resource, allocated to ith packet
ψi Allocated resource minus the capacity of ith packet
p Overflow probability
γ Overflow probability while Sample Avg. Approx. is used
ξ Probability of ŜN

γ ą S˚p
N No. of Monte Carlo samples of the capacity constraint of the

objective function

threshold between UPF and UE. But, it can not be considered
as the end-to-end delay threshold.

One-way delay measurement is very challenging due to lack
of cooperation between the remote server/end node and the 5G
network [27]. We have assumed that the UPF can monitor the
delay between itself and the remote server by resorting to ping,
traceroute, or any other means, e.g., by resorting to Real Time
Protocol features, IPv6 Performance and Diagnostic Metrics
(PDM) [28], etc. The delay between the UPF and the UE can
be measured by using a probing technique [27] where every
fragment of a test packet is time stamped at both the UPF and
the UE. Then dUPF,UE can be computed as:

dUPF,UE “ |maxkpTSUPF,kq ´maxkpTSUE,kq| (4)

where TSUPF {UE,k is the time stamp of kth fragment at the
UPF/UE. As the fragments, generated at the UPF, must be
reconstructed at the UE to get back the original datagram,
independent of the routing paths, the maximum values of the
time stamps are used in (4).

The computed value of inter-packet delay in the downlink
direction is the difference between the current time and the
last time packet was received by the UE.

To group packets having same expiration time, we have
defined a new subset, denoted as U

piq
T`∆, which contains

packets having same ∆. Thus, the ith packet group can be
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Fig. 1: Expiration time illustration for different subset

expressed as:

U piq “
M
ď

∆“1

U
piq
T`∆ (5)

where ∆ is a random variable which follows certain dis-
tribution with values ranging from 0 to the maximum, M .
The value of M may have a very high value if the running
application can sustain a very high delay or inter-packet delay
threshold values. However, we assume that the threshold value
is restricted within a certain limit for the selected flows of the
slices. For a packet, ∆ is less than or equal to 0, then it is
already expired and it will be discarded.

The illustration of valid subsets in different time intervals
is shown in Fig. 1. In the pT ` 1qth time interval, the packets
containing in U

piq
T`1 is expired as ∆ “ 0 and hence it is

deleted. A new subset, U piqT`M`1, is included as total M
number of subsets are valid in every time interval.

C. Statistical Distributions Used

The traffic arrival process is often modeled as a simple
Poisson distribution. But arrival of traffic like VoIP (e.g.,
Skype voice call, Google Talk, QQ chat), HTTP (e.g., Google
searching, Facebook) can be modeled as a modified Poisson
distribution [29] or, non-homogeneous Poisson process [30],
while inter-arrival time of video streaming (e.g., YouTube,
Netflix, Hotstar live) can be modeled by Pareto distribu-
tion [31]. The mMTC traffic can be modeled using a Semi-
Markov Model (SMM) [32].

A modified Poisson distribution is a linear transformation of
Poisson distribution as defined in [29]. It can be specified by
three parameters (a, b, λ). If X is a Poisson random variable
with expected rate of occurrences as λ, the modified Poisson
random variable Y is defined as:

Y “ aX ` b (6)

The Probability Density Function (PDF) of Y can be
derived as:

PrtY “ yu “
λ
y´b
a e´λ

y´b
a !

(7)

The mean (µ) of Y can be derived using (7) as follows:

µ “ E rY s “ aλ` b (8)

If Z is a random variable of inter-arrival time following
Pareto distribution, the probability distribution can be given
by:

PrtZ “ zu “

#

αzαm
zα`1 for z ě zm

0 for z ă zm
(9)

where zm is the minimum possible value of Z, and α is a
positive shape parameter. The mean of Z can be given as:

µ “
αzm
α´ 1

, α ą 1 (10)

The mMTC has different traffic patterns. These patterns
can be integrated into a Markov structure with S number of
states [32]. Let P be the state transition matrix, and pi,j be
the transition probability from state i to j. The stationary
state probabilities of the embedded Markov chain Πpeq can
be obtained by the following eigenvalue problem:

Πpeq “ ΠpeqP where
S
ÿ

i“1

Π
peq
i “ 1 (11)

If the mean sojourn time in state i is Li, the actual state
probabilities can be computed by using the following formula:

Πi “
Π
peq
i Li

řS
j“1 Π

peq
j Lj

(12)

We assume that the arrival rate of packets in each state is
a fixed process. If Wi is the arrival rate at state i, the mean
arrival rate W can be calculated as follows:

ĎW “

S
ÿ

i“1

ΠiWi (13)

D. Objective Function
The objective of our proposed scheme is to schedule the

packets of multiple slices in a non-sequential manner such
that every slice gets optimum performance while strictly
maintaining the QoS constraints. We have introduced some
parameters, like Hij , denoting the data efficiency of ith packet
in jth RB, δi denoting the priority of ith packet, xij denoting
a binary decision variable whether jth RB is selected for ith

packet or not, yi denoting a binary decision variable whether
ith packet is selected for scheduling or not and bi to denote
the required data capacity of ith packet. As given in [33], Hij

can be defined as follows:

Hij “ θjη log2p1`
P
prcvq
ij

I
pintq
ij ` P

pawgnq
ij

q (14)

where θj denotes the size of the jth RB, ηp0 ď η ď 1q
is the attenuation factor accounting to implementation, and
p
prcvq
ij , Ipintqij and P pawgnqij are representing received, intra-cell

interference and AWGN power at the UE having ith packet
and located at the BS containing jth RB. Hence the objective
function can be written as follows:

max

|U |
ÿ

i“1

δiyi (15)

subject to
R
ÿ

j“1

Hijxij ě bi,@i, (16)

xij P t0, 1u, (17)
yi P t0, 1u (18)
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The above problem is NP hard and the proof is given in
Appendix A. In (16), to include a packet into our selection
grid, bi must be satisfied by one or more number of RBs from
the resource pool. Let us assume that the amount of radio
resources, allocated to satisfy ith packet’s capacity constraint
minus its actual requirement be a random variable, ψi and the
total capacity of the resource pool is R unit (R ą 1), taken
as a shape parameter. Then the amount of resources allocated
to the ith packet becomes a random variable, denoted as Zi,
which can be defined as follows:

Zi “
bi ` ψi

řR
j“1Hij

R (19)

Now the above optimization problem can be converted into a
Chance-constrained problem [6]. According to the definition
of Chance-constrained problem [6], the above problem can be
approximated as:

S˚p “ max

|U |
ÿ

i“1

δiyi (20)

subject to

Prp

|U |
ÿ

i“1

Ziyi ą Rq ď p (21)

yi P t0, 1u (22)

where p is the probability of the occurrence that the total
resource requirement of the selected packets exceeds the
capacity of the resource pool and S˚p is the optimal value of
the objective function with parameter p. The above problem
would give us the solution vector of the selected packets i.e.,
~Y “ y1, . . . , y|U | with a risk factor of p which is considered
as small as possible.

The priority vector ~δ “ tδ1, . . . , δ|U |u can be modeled as
an input to the objective function. Both static and dynamic
prioritizations are possible. In case of static prioritization, a
packet k P U , can be scheduled before any packet of the
subset Û Ă U if the following inequality holds,

δk ą
ÿ

wPÛ

δw, k R Û (23)

We have used the above inequality for all packets k P U iT`1

and @i P C i.e., the set of packets which will expire if not
scheduled at current DTI. The dynamic prioritization is used
to determine the priority of packets among slices. Instead of
satisfying the above inequality, δk is set at a lower value such
that a slice will also get some room for its packets to be
scheduled before the packets of a higher priority slice. Note
that, in this case δk depends on the objective function itself.
Therefore, we can obtain δk for the packets of different slices
in case of dynamic prioritization through simulation only.

IV. PROPOSED SCHEME

We have developed an efficient algorithm to compute the
optimum allocation of available RBs to all the packets in
Section IV-A. In the Section IV-B, we have discussed the min-
imum transmission need at the current DTI. The complexity
of the proposed scheme is discussed in Section IV-C.

A. The Allocation Algorithm

The main idea is to convert the objective function, defined
in (20), (21) and (22) into a deterministic knapsack problem
by calculating the effective bandwidth [7] of the random
variable Zi, given in (19). Let the effective bandwidth of
the random variable Z is denoted as ΓppZq with overflow
probability p. The standard effective bandwidth of Z is defined
as follows [7]:

ΓppZq “
logErp´Z s

log p´1
(24)

Proposition 1. Let Z1, . . . , Zn be independent random
variables and Z “

ř

iZi. Let g ą h. If
ř

i ΓppZiq ď h,
then PrrZ ě gs ď pg´h.

Proof. If
ř

i ΓppZiq ď h, then from the standard defini-
tion of effective bandwidth, given in (24) we can say that
ř

i logErp´Zis ď log p´h ñ
ś

iErp
´Zis ď p´h.

Now, PrrZ ě gs “ Prrp´Z ě p´gs ď pgErp´Z s

(following Markov’s inequality). Hence, pgErp´Z s “

pg
ś

iErp
´Zis ď pg´h (from the above inequality).

In the inequality, proved in Proposition 1, if we set g “ R,
h “ g ´ 1 and use the condition given below:

ΓppZiyiq ď R´ 1 (25)

we can get, Prr
ř|U |
i“1 Ziyi ą Rs ď p, where ΓppRq “ R´1.

To satisfy the condition, ΓppZiyiq ď pR ´ 1q, we have
considered sample average approximation approach [34]. Let
Zp1q, . . . ,ZpN q be N number of independent Monte Carlo
samples of the random variable Z . Let us denote the optimal
value of the objective function with parameters γ and N
as ŜpN qγ , where γ is the overflow probability while sample
average approximation approach is used [34]. For γ “ r0, 1s,
the problem can be redefined as:

ŜpN qγ “ max

|U |
ÿ

i“1

δiyi (26)

subject to

1

N
N
ÿ

k“1

I

»

–

|U |
ÿ

i“1

Zpkqi y
pkq
i ´ pR´ 1q

fi

fl ď γ (27)

yi P t0, 1u (28)

where Ir.s is the indicator function, such that Ir.s “ 1 if 1.1 ą
0 and Ir.s “ 0 otherwise. Here, we have taken slightly more
risk, i.e., γ ą p. But, we have shown that the solution from this
problem is no worse than the optimal. If the previous problem
is denoted as Prob˚p and the current problem is denoted as
ProbpN qγ , the following theorem proves that by taking a risk
parameter γ ą p in our problem the optimal value, ŜpN qγ , will
be an upper bound to the true optimal, S˚p , with the probability
approaching 1 exponentially fast as N increases.

Theorem 1. Let γ ą p and the Prob˚p has an optimal
solution, then

PrpŜpN qγ ě S˚p q ě 1´ expt´2N pγ ´ pq2u (29)
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Proof. The proof is given in [34].

If we take the value of N sufficiently large such that the
value of the right-side of the inequality (29) becomes close to
1, it could be said that the solution of ProbpN qγ is equivalent to
solution of Prob˚p . Taking a specified a confidence probability
of p1´ξq, we could determine the value of N in the following
proposition.

Proposition 2. The following choice of N ensures ŜpN qγ ě S˚p
with a confidence probability of p1´ ξq, where γ ą p.

N ě
1

2pγ ´ pq2
log

1

ξ
(30)

Proof. If the confidence probability is p1 ´ ξq, from Theo-
rem 1, we can write:
PrpŜ

pN q
γ ě S˚p q ě 1´ expt´2N pγ ´ pq2u ě 1´ ξ

ξ ě expt´2N pγ ´ pq2u
N ě 1

2pγ´pq2 log 1
ξ

Hence, we can determine the lower bound of N , and by
increasing it such the sample values satisfy the condition,
given in (27), we can find an optimal solution for the decision
vector. Assuming a considerable value of the confidence
interval, p1´ξq, the above procedure ensures that the condition
in (25) will be satisfied as proved in Theorem 2.

Theorem 2. Using the capacity constraint, given in (27), we
can prove that Prp

ř|U |
i“1 Ziyi ą bq ď p.

Proof. Applying Proposition 1 in Theorem 1, we have proved
the optimal solution in ProbpN qγ is equivalent to the optimal
solution obtained from Prob˚p with a confidence probability
p1´ξq. So, the effective bandwidth of these two problems are
equal with a confidence of p1´ ξq. For k P N , if ξ ! 1, we
can write,

|U |
ÿ

i“1

Γpp
Ziyi
R´ 1

q «

|U |
ÿ

i“1

Γγp
Zpkqi yi
R´ 1

q

“

|U |
ÿ

i“1

logpErγ´
Zpkq
i

yi
R´1 sq

logpγ´1q

(31)

By using Jensen’s inequality, we can write,

|U |
ÿ

i“1

logpErγ´
Zpkq
i

yi
R´1 sq

logpγ´1q
ď

|U |
ÿ

i“1

Erlogpγ´
Zpkq
i

yi
R´1 qs

logpγ´1q

“

|U |
ÿ

i“1

ErZpkqi yis

pR´ 1q

(32)

Now, the expected value of Zpkqi yi over all the samples of N
is at most pR´ 1q, as γ ! 1. So, we can write,

|U |
ÿ

i“1

ΓppZiyiq ď R´ 1 (33)

According to the Proposition 1, we can write,
Prp

ř|U |
i“1 Ziyi ą Rq ď p

Our problem can now be converted to a 0{1 Knapsack
problem:

S˚p “ max

|U |
ÿ

i“1

δiyi (34)

subject to
|U |
ÿ

i“1

ΓppZiqyi ď R´ 1 (35)

yi P t0, 1u (36)

To solve the above problem, we may use dynamic program-
ming approach. But, due to pseudo polynomial time complex-
ity of this kind of approach, we shall use a modified Linear
Programming relaxation-based approach as given in [35],
which has the time complexity Op|U |q.

B. Determination of Transmission Need

The transmission need, denoted as dT , is the minimum
number of packets to be selected at current DTI from the set
U , such that no packet of this set will be dropped in future
DTIs due to QoS constraints. So, we can write,

dT “
C
ÿ

i“1

d
piq
T (37)

where dpiqT is the transmission need of the ith slice.
Let ϕpiqj,k, j ă k ď j `M be the partial average of packets,

i.e., the average number of packets per subset calculated up
to kth subset at jth DTI for ith slice. ϕpiqj,k can be expressed as:

ϕ
piq
j,k “

1

k ´ j

k
ÿ

n“j`1

|U piqn | (38)

As the arrival process of packets in different subsets are
dynamic with respect to time (DTI), the derivation of dpiqT is
complex. So we divide the derivation in two consecutive steps.

1) Step 1: Here, we have assumed no arrival of packets
in future DTIs. Now, if all the packets of the subset U piq

are scheduled, i.e., dpiqT “
ˇ

ˇU piq
ˇ

ˇ, our scheme would become
sequential, i.e., higher priority slice will be scheduled fully
before going for lower priority slice. The novel purpose of
non-sequential scheduling cannot be achieved by this way.

As
ˇ

ˇ

ˇ
U
piq
T`1

ˇ

ˇ

ˇ
is the number of packets that will expire at pT`

1qth DTI, they must be scheduled in T th DTI. So, the following
inequality must hold:

d
piq
T ě

ˇ

ˇ

ˇ
U
piq
T`1

ˇ

ˇ

ˇ
(39)

To achieve the goal of minimum packet selection, we could
select the average over all the subsets of the set U piq, i.e.,
ϕ
piq
T,T`M . However, this may be less than

ˇ

ˇ

ˇ
U
piq
T`1

ˇ

ˇ

ˇ
. Hence, it

would lead to packet loss at the current DTI. To avoid such
losses, we can select the maximum between ϕ

piq
T,T`M and

ˇ

ˇ

ˇ
U
piq
T`1

ˇ

ˇ

ˇ
. Now, let us assume the following inequality,

ϕ
piq
T,T`2 ą max

´ˇ

ˇ

ˇ
U
piq
T`1

ˇ

ˇ

ˇ
, ϕ
piq
T,T`M

¯

(40)
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i.e., the partial average up to pT ` 2qth subset is greater than
what we have selected in the current DTI. Hence, it is obvious
that the selection at pT ` 1qth DTI will be greater than the
selection at T th DTI. Thus, if the value of ϕpiqT,T`2 is very
high, we may not be able to accommodate all the packets due
to shortage of resources. Thus, the selection may increase in
future DTIs, like at pT ` 12q, pT ` 3q, and so on. In this
case, to make our scheme smoother, a bigger allocation can
be started from the current DTI.

The above selection becomes invalid because of different
values of the partial averages, ϕpiqT,k, T ă k ď T `M . As the

distribution of packets in different subset is dynamic,
ˇ

ˇ

ˇ
U
piq
j

ˇ

ˇ

ˇ
,

T ă j ď T`M , is also different. Hence, it is obvious that the
partial average will be different and may be greater than the
overall average. As a consequence, choosing the maximum
partial average would be a better option than the previous
choice. We need to prove that there is no packet loss in
future DTIs using this selection process. This proof considers
dynamic arrival of packets with respect to time.

Lemma 1. If transmission need is the maximum partial
average, then for k ě T ,

k
ÿ

l“T

d
piq
l ě

k`1
ÿ

l“T`1

ˇ

ˇ

ˇ
U
piq
l

ˇ

ˇ

ˇ
`

k
ÿ

l“T`1

β
piq
l,k`1 (41)

where βpiqm,n is the number of new packets arrived up to nth

subset at mth DTI for ith slice. βpiqm,n “ 0 if m ě n.

Proof. At lth DTI, dpiql denoting the maximum partial aver-
age, is always greater than or equal to any partial average,
evaluated at that DTI. Hence, the following inequality must
hold:

d
piq
l ě ϕ

piq
l,k`1, for l ď k (42)

For l “ T , l “ T ` 1 and l “ T ` 2, ϕpiql,k`1 can be written
as follows.

ϕ
piq
T,k`1 “

řk`1
l“T`1 |U

piq
l |

k ´ T ` 1
(43)

ϕ
piq
T`1,k`1 “

řk`1
l“T`1 |U

piq
l | ` β

piq
T`1,k`1 ´ d

piq
T

k ´ T
(44)

ϕ
piq
T`2,k`1 “

1

k ´ T ´ 1

˜

k`1
ÿ

l“T`1

|U
piq
l | ` β

piq
T`1,k`1`

β
piq
T`2,k`1 ´ d

piq
T ´ d

piq
T`1

¸ (45)

Deriving up to kth DTI, we can write,

ϕ
piq
k,k`1 “

k`1
ÿ

l“T`1

|U
piq
l | `

k
ÿ

l“T`1

β
piq
l,k`1 ´

k´1
ÿ

l“T

d
piq
l (46)

By substituting l with k in (42) and using (46), it can be
proved that

k
ÿ

l“T

d
piq
l ě

k`1
ÿ

l“T`1

|U
piq
l | `

k
ÿ

l“T`1

β
piq
l,k`1 (47)

2) Step 2: In this step, we consider dynamic arrival of
packets and their distribution in different subsets. It is proved
in the above Lemma 1 that the total number of packets
scheduled up to kth DTI, where k ě T , is always greater than
or, equal to the total number of packets that must be scheduled
within kth DTI before their expiration. So, it is proved that
maximum partial average can be a suitable parameter as it
fulfils the goal of not dropping any packet in future.

Lemma 2. If transmission need is the maximum partial
average and mth indexed partial average is selected at current
DTI T (m ą T ), then dpiqj ě d

piq
l , where T ď l ă j ď m.

Proof. Let us assume that at lth DTI, sth indexed partial
average is selected, where s ą l. Now, at pl ` 1qth DTI, the
new selection metric is always greater than or equal to any
partial average, computed at that DTI. The sth indexed partial
average at pl ` 1qth DTI exist if s ą pl ` 1q and it can be
computed as follows:

ϕ
piq
l`1,s “ d

piq
l `

β
piq
l`1,s

s´ l ´ 1
(48)

The following inequality must hold.

d
piq
l`1 ě ϕ

piq
l`1,s (49)

As s ą pl ` 1q and βpiql`1,s ě 0, using (48) and (49), we can
write dpiql`1 ě d

piq
l where pl ` 1q ď m. Similarly, it can also

be proved that dpiql`2 ě d
piq
l`1 when pl` 2q ď m and so on. As

j ą l, it is now proved that

d
piq
j ě d

piq
l (50)

where T ď l ă j ď m.

If we select the above metric where mth indexed partial
average is maximum at T th DTI, it has been proved in
Lemma 2 that the function d

piq
j becomes a non-decreasing

function for T ď j ă m. The non-decreasing nature of the
function occurs because of the future arrival of packets up to
mth subset, i.e.,

řm´1
l“T`1 β

piq
l,m. Hence, serving equally these

future packets along with the maximum partial average in each
DTI can make fairer scheduling than only maximum partial
average selection. To determine average number of packets
that will arrive in future, we use a prediction mechanism using
the basic probability distributions as given in Section III-C.
The mean number of packets that will arrive between T th and
pk ´ 1qth DTIs and will be included up to kth subset will
be denoted as fpT, kq. Accordingly, dpiqT can be written as
follows:

d
piq
T “

T`M
max
k“T`1

ˆ

ϕ
piq
T,k `

f pT, kq

k ´ T

˙

(51)

In Appendix B, we have determined the value of fpT, kq
on the basis of the arrival process of the packet in the ith

slice, which is tied to the kind of traffic the slice is carrying.
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According to (57), (58) and (59), we can rewrite fpT,kq
k´T for

voice, video, and MTC applications respectively as:

f pT, kq

k ´ T
“

$

’

&

’

%

nµpk´T`1q
2M for voice traffic

pk´T`1q
2µM for video traffic

pk´T`1qĎW
2M for MTC traffic

(52)

Note that this process can be extended to other traffic types
too.

In Proposition 1, provided in Appendix C, we have demon-
strated that the transmission need parameter calculated us-
ing (51) is a decreasing function with respect to time under
the assumption that the same number of packets are included
in each subset in each DTI. The case of dynamic traffic arrival
is illustrated by simulation in Section V.

C. Complexity Analysis

In our proposed scheme, we have suggested to use the
algorithm, given in [35], to solve the basic 0{1 knapsack
problem whose time complexity is Op|U |q. The transmission
need computation as given in Section IV-B is taken as input
to this problem. The per slice transmission need computation,
given in (51). The number of logical operations is M times
the number of computations to determine the per-slice metric,
fpT, kq. Any object-oriented design will follow a recursive
process to compute it. First, We fetch the size of a subset. Then
the number of computations needed to calculate the partial
average, ϕpiqT,k, is given as follows:

#computation “
r pk ´ T ´ 1q ` s

k ´ T
` v (53)

where r is the partial average up to pk´1qth subset, s is the size
of the kth subset and v is the parameter as provided in (52).
The computation of r and s can be performed when the queue
is updated, and can be neglected in the complexity analysis.
The above equation contains 11 arithmetic operation and 2
fetching operations. So, the selection metric determination
requires 13 ˆM number of operations in total which equals
to O pMq. The physical allocation of RBs takes OpR2Nq
times [12] where R and N are total number of RBs and total
number of users respectively. Hence, the total time complexity
becomes OpM `|U |`R2Nq, which is closer to the basic PF
algorithm [12].

V. PERFORMANCE ANALYSIS

We have analyzed the effectiveness of our proposed sched-
uler in 5G-LENA [8], a New Radio (NR) network simulator,
designed as a pluggable module to ns-3. In the following, we
have demonstrated the simulation scenario and model. Then,
we determine the values of the configuration parameters N
and ~δ. We have analyzed the performance analysis of our
scheme based on the 3GPP recommended 5G RAN slicing
scenarios [36].

Fig. 2: Simulation scenario and typical cell-level parameters

TABLE III: 5G System Parameters

Parameter Value
Duplex mode TDD
Channel Quality Indica-
tor (CQI) table

Table 5.2.2.1-3 of [31]

Propagation loss model Outdoor urban and indoor urban prop-
agation loss model of ns-3

MIMO mode 2ˆ 2
Modulation Coding
Scheme (MCS) table

Table 5.1.3.1-1 and Table 5.1.3.1-2
of [31]

Mobility model Random way-point model of ns-3

A. Simulation Scenarios

The simulation scenario and the cell-level typical param-
eters are shown in Fig. 2. The scenario is compatible with
the 3GPP specified 5G Urban macro and Dense urban use
cases [36]. Here, 80% users are at indoor coverage with
a speed of 3km/h and the remaining 20% are at outdoor
coverage moving with 100km/h speed. A UE can connect
with more than one gNB while running multiple flows of
different types, e.g., either MTC, or VoIP, or Video streaming.
Hence multi-gNB scheduling becomes an effective way to
increase the spectral efficiency of the system. This kind of
cell-planning is generally seen in the Urban macro and Dense
urban scenarios [36] to reduce the capital expenditures of
the tenant operators. However, a scenario such as integrated
terrestrial and non-terrestrial 5G and beyond networks [37]
may not be appropriate for the study of our proposed scheme,
since satellite links remain primarily unstable, making it
impossible to calculate the data efficiency parameter (Hij)
correctly at each time interval. The QoS parameter values
(such as delay) between cellular and satellite networks also
differ significantly, making it impossible to accurately calcu-
late the expiration time threshold (∆). Other typical 5G system
parameters considered are shown in Table III.

We have considered three slices: Slice1 having MTC flows,
Slice2 having VoIP flows and Slice3 having Video flows.
For video flows, we have adopted H.265 video codec with
frame rate of 30 fps and resolution of 3840ˆ 2160 4k UHD,
requiring 15 Mbps bandwidth. The MTC flows run TCP echo
application, implemented in ns-3. The service period for both
VoIP and video flows are constant (120 s), whereas MTC
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service period is continuous throughout the entire simulation
time. The delay threshold for all kind of flows is set to 100 ms
and the inter-packet delay threshold for VoIP and video flows
are set to 40 ms while for MTC it is set to 1 ms. The PLR
thresholds for MTC, VoIP and video flows are set to 10´2,
10´2 and 10´6 respectively, where the throughput threshold
are set to 20 Kbps, 12.65 Kbps and 15 Mbps respectively
following constant packet generation at the source. The value
of dServer,UPF is considered as exponentially distributed with
mean 20 ms and dUPF,UE is fixed at 5 ms. To simulate the
impact of delay variation of each packet due to diverse routing
path, a delay variation of ˘5 ms is also considered. The traffic
pattern of each MTC device can be defined by four states: OFF
(no packet transmission), Periodic Update, Event-driven and
Payload exchange [32]. The values of MTC traffic parameters,
used to derive the mean packet arrival rate (W ), are S “ 4,
P “ rp0, 0.5, 1, 1q, p0.5, 0, 0, 0q, p0.5, 0.5, 0, 0q, p0, 0, 0, 0qsT ,
L “ r1s, 0.5s, 0.5s, 0.5ss and W “ r0, 55{s, 50{s, 0s.

To measure the QoS performance of each slice, we have
defined a new parameter, named service rate. Service rate of
a flow is the ratio of the number of default averaging window
(2s, as recommended by 3GPP) in which QoS requirement
of the flow is met over the total number of default averaging
window in the entire service duration of the flow. Service rate
of a slice is the average of service rates of all the flows under
that slice. The QoS performance of a flow is measured as
the average goodput performance of the flow in the averaging
window, where goodput “ throughputˆ p1´ PLRq. In the
PLR calculation, we have considered both lost and expired
packets in the network.

In order to eliminate the initial transient states, we have
taken all simulation results after 1200s of simulation run.
The FLS scheduling algorithm [9] assumes discrete-time filter
coefficient, Ckpmq P r0..1s for kth slice and mth DTI [9],
with Ckpm` 1q ă Ckpmq,m P r1...10s. One possible way to
satisfy the condition is to set Ckp1q “ 1 and Ckpm ` 1q “
Ckpmq{2. The configuration parameters of iRSS and CBAP
schemes are taken from in [10] and [11] respectively. The
value of M is taken as the maximum between the end-to-end
delay and inter-packet delay threshold in the corresponding
simulation.

B. Determination of N and ~δ
In the objective function, given in Section III-D, we need

to take samples of the random variable Zi,@i, which has one-
to-one dependency with the random variable, ψi. We take
samples of Zi,@i by varying ψi. To simplify the sampling
process, we have assumed same packet size for a particular
flow/application and ψi follows an uniform distribution from
0 to one-forth size of the packet of that flow. Every sample
has |U | number of elements. Samples are generated in such a
way that the inequality (27) is satisfied.

We have assumed the configuration parameters of (30) as
ξ “ e´2, γ “ 2p which gives us N ě p´2. So the number
of samples actually defines the upper bound of the overflow
probability.

In Fig. 3, we have shown the radio resource utilization in
terms of spectral efficiency for different number of samples.
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Fig. 3: Effect of number of samples on spectral efficiency

TABLE IV: Priority vector according to the target service rate

Cases different target
service rate

Scenario1 - priority
vectors 1

Scenario2 - priority
vectors 2

Slice1 = 100%,
Slice2 = 100%,
Slice3 = r90, 100s%

δSlice1 “ 28,
δSlice2 “ 0.05,
δSlice3 “ 1

δSlice1 “ 1.5,
δSlice2 “ 33,
δSlice3 “ 1

Slice1 = 100%,
Slice2 = r95, 100s%,
Slice3 = r90, 100s%

δSlice1 “ 28,
δSlice2 “ 0.04,
δSlice3 “ 1

δSlice1 “ 1.5,
δSlice2 “ 32.45,
δSlice3 “ 1

Slice1 = r99, 100s%,
Slice2 = r95, 100s%,
Slice3 = r90, 100s%

δSlice1 “ 27.4,
δSlice2 “ 0.04,
δSlice3 “ 1

δSlice1 “ 1.47,
δSlice2 “ 32.45,
δSlice3 “ 1

1 Scenario1: Slice1(MTC) ą Slice2(VoIP) ą Slice3(Video)
2 Scenario2: Slice1(MTC) ą Slice2(Video) ą Slice3(VoIP)

If we increase N , p will decrease, resulting in more accuracy
in determining packet size in our objective function and more
number of packets can be scheduled with the available re-
sources. As a consequence, the spectral efficiency is increased
while increasing N . To increase the randomness of Channel
Quality Indicator (CQI) reporting by UEs, we vary the traffic
density in the small cell area. Instead of diverse values of Zi in
different cases, our algorithm accurately predicts the required
amount of resources for every packets. Decreasing the traffic
density decreases the number of CQI reporting as the chance
of physical distribution in the larger rectangular area becomes
higher and so the overall spectral efficiency also decreases
as shown in Fig. 3. The spectral efficiency remains almost
unchanged even we increase N beyond 104, irrespective of
the traffic density. Therefore we can choose this value as a
reference in our following simulation.

The lower bound of service rate of a slice can be fixed
by tuning ~δ for its packets. The values of ~δ for different
slices in case of different service rate requirements are given
in Table IV. After setting δ to an appropriate value for all
packets, our algorithm ensures that if we increase the load in
the system, the service rate of a slice will not fall below its
required level unless the service rates of all low priority slices
become zero. In the following simulations, we set ~δ as given
in Table IV dynamically according to the slice priorities and
their service rate requirements. If the system load increases
beyond its capacity, it first affects the service rate of the lowest
priority slice i.e., Slice3. We can prevent the service rate of
Slice3 from going down its required level by setting ~δ of Slice1
and Slice2 as given in Table IV such that the service rates of
Slice1+2 still remain above the required level. This dynamic
setting of ~δ during scheduling gives us more flexibility to
support heterogeneous service demands of multiple slices. In
an online system, the priority vector ~δ can also be dynamically
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adjusted to match the required service rate as given in Table
IV though online control systems.

C. Comparative Analysis

We have considered Scenario1 of Table IV and compared
our proposed scheme with iRSS [10], CBAP [11] and FLS [9]
schemes with respect to load of slices. In Fig. 4 and Fig. 5,
we keep the load of Slice3 and Slice1 constant while varying
the load of other two slices such that total radio resource of
the system is fully utilized by all the slices. The iRSS scheme
performs better than CBAP and FLS in terms of maximum
load support. But, iRSS does not consider QoS of slices and
static size of RBs while scheduling. It allocates a chunk of
radio resources for an entire slice only, avoiding the mapping
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TABLE V: Values of QoS parameters

Slice no. (prior-
ity: top-down)

Application
supported

Parmaeters

Slice1 URLLC Throughput: 10 Mbps
Delay: 1 ms
Inter-packet delay: 1 ms
PLR: 10´6

Service rate: 100%
Slice2 MTC Throughput: 10 Mbps

Delay: 100 ms
Inter-packet delay: 1 ms
PLR: 10´6

Service rate: 98%
Slice3 VoIP, Video Throughput: 50 Mbps

Delay: 100 ms
Inter-packet delay: 40 ms
PLR: 10´2

Service rate: 90%
Slice4 VoIP, Video Throughput: 50 Mbps

Delay: 100 ms
Inter-packet delay: 40 ms
PLR: 10´2

Service rate: 80%

of its selected radio resource into physical RB units, resulting
into more resource demand than its predicted value. Whereas
we have considered both of these issues in our system model
and therefore our scheme performs much better than the iRSS
scheme. CBAP and FLS are both QoS-aware scheme, but they
are not designed to support optimum resource utilization in
multi-gNB scenario. Also they consider only end-to-end delay
as QoS parameter in their algorithm. Although FLS consider
end-to-end delay, CBAP considers only framing delay of the
packets and therefore, FLS performs slightly better than CBAP
scheme.

A more realistic scenario in the perspective of 5G tenant-
level operator is also considered. The required QoS of dif-
ferent slice flows are listed in Table V. Here a UE may
subscribe to a particular slice to achieve the mentioned QoS
requirements, independent of number of flows and types
(VoIP/Video/etc.). The URLLC traffic is generated in a nearby
cloud server and to maintain its end-to-end delay within 1
ms range we use the frame level delay reducing technique,
CBAP [11]. In terms of supported load, our scheme out-
performs other three schemes and the performance is almost
same as shown in Fig. 4 and Fig. 5. As the Internet is highly
dynamic, the delay and inter-packet delay also become highly
unstable. Hence, measuring the performance of a slice in
terms of service rate while varying the mean of exponentially
distributed delays, would be very interesting. In Fig. 6 and
Fig. 7, we have shown the comparative performance of three
schemes namely, proposed scheme, CBAP and FLS. We do
not consider iRSS as it is QoS-insensitive. As can be seen from
Fig. 6 and Fig. 7, our proposed scheme outperforms CBAP
and FLS. This is due to the fact that CBAP and FLS do not
consider the inter-packet delay constraint. Besides FLS is a
probabilistic approach and no further packet loss is guaranteed
while scheduling current packets. The CBAP scheme only
considers framing delay of packets without taking into account
the end-to-end delay.

The above analysis shows that in a medium/high dense ur-
ban scenario, our scheme outperforms the existing scheduling
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schemes of 5G RAN slicing. We are able to support spectral
efficiency of approximately 5.6 bits/s/Hz, which is higher than
the recommended value in the 5G 3GPP specification. The
service rate of every slice can be controlled using ~δ while the
load of different slices vary dynamically with respect to time.
The QoS of a higher priority slice can never go down a pre-
defined service rate, even when the load of a lower priority
slice is increased. Additionally, our scheme can handle packets
having high delay and inter-packet delay where these two
delays are highly dynamic due to diverse internet condition. In
static condition with a low end-to-end delay and inter-packet
delay, the proposed scheme performs almost same as others,
but in the dynamic condition it performs much better than
others due to their insensitivity to these delays.

VI. CONCLUSIONS

Our proposed scheme is ideal for the scenarios which need
to ensure a minimum QoS for every slice, even though traffic
arrival is random. In such scenarios, current literature adopts
static resource reservation strategies; but these are costly
approaches, as the overall spectral efficiency of the system
is reduced. Our non-sequential allocation strategy gives every
slice a fair chance to access a minimum amount of resources at
each scheduling interval, even though the slices are unevenly
loaded. The priority of a slice can also be changed during the
scheduling process in order to provide more flexibility in ser-
vice provisioning. For example, a video slice subscriber might
need higher bandwidth while watching a live video than while
downloading a video. Hence, the priority of the live video
sub-slice can be upgraded, while the priority of the video
sub-slice can be downgraded. Similarly, road safety messages
may need to be prioritized over other vehicular applications
within a Heterogeneous Vehicular Network (HetVNet) Slice
from time to time. Thus flexible prioritization technique gives
more options to the tenant-level operators to use fine-grained
policies for their designated slices.

Currently, the new orientation of the flexible resource block
configuration technique is becoming inefficient due to high
power consumption, delay, and control overhead. In an overlay
network environment, our proposed scheme can smartly map
a packet to a resource block of appropriate size and increase
resource utilization. In this context, in scenarios like massive
and critical cellular IoT networks where most of the traffic
flows contain packets of sizes much smaller than a radio
resource unit, testing the performance of our proposed scheme
can be an interesting future work.

On the other hand, while roadside units (RSUs) take charge
of resource allocation in a HetVNet environment, dedicated
resources are allocated for vehicle-to-vehicle (V2V) side links.
It results in a poor data rate for V2V links. With the co-
operation of RSUs, the cellular base station can apply our
proposed scheme to allocate resources dynamically to V2V
links according to their demands, thereby improving the data
rate. To accommodate more radio resources for a single V2V
link, reusing the same radio resources for different V2V links
under the same cellular region can be a good option. Our
proposed scheme does not take this possibility into account,

and hence it will be an interesting future work if we also
consider the reuse factor in our system model. During a
handoff period, resource scheduling of vehicular traffic can be
done by the nearby cellular base station instead of the short-
range RSUs. Our proposed scheme can instantly schedule
them by prioritizing them over other cellular traffic. Hence, a
seamless handoff experience can be realized in a HetVNet
environment. Therefore, the proposed resource scheduling
scheme can be considered a significant contribution towards
fulfilling 5G RAN slicing requirements.

However, some challenges may appear while deploying the
proposed scheme in a real-world scenario. One of the key
issues is the seamless mobility management requirement for
UE between two SDN controllers while the allocation of
radio resources is going on from both of them at different
time intervals. This issue may become more complex if the
RANs under the SDN controllers use different radio access
technologies. Another issue to overcome is that the security
and privacy policies of a particular slice must not be breached
while allocating radio resources to another slice.

APPENDIX A

To prove that our problem is NP hard, we reduce the known
NP hard subset sum problem to our problem. We use proof
by contradiction. A special instance, Q of our problem can be
obtained if we suppose that each RB has the same size inde-
pendent of packet identity, i.e., Hij “ H,@i, j. The capacity
constraint of Q can be expressed as H

řR
j“1 xij ě bi,@i.

Now, a decision version of Q can be stated as follows: Does
there exist a solution of Q such that

řR
j“1 xij ě bi,@i and

ř|U |
i“1 δiyi ě D, where D is an arbitrary profit value?
First, we can prove that Q is NP. The verification process

is to compute H
řR
j“1 xij ě bi,@i and

ř|U |
i“1 δiyi ě D which

takes polynomial time in proportion to the size of the input.
Second, we can show that there is a polynomial time

reduction from the subset sum problem to Q. The subset
sum problem can be given as c1, c2, . . . , c|U | and V where
we need to find yi,@i such that

ř|U |
i“1 ciyi “ V . If there

exists an efficient algorithm to solve Q, the total capacity
constraint, i.e.,

ř|U |
i“1 biyi ď RH , must be met. Now let us

assume the following process of converting the subset sum
problem to Q in polynomial time: δi “ ci,@i, bi “ ci,@i,
D “ V and H “ V {R. Now the solution of Q must satisfy
these inequalities:

ř|U |
i“1 ciyi ď V and

ř|U |
i“1 ciyi ě V which

implies that
ř|U |
i“1 ciyi “ V . Therefore, yi,@i is the desired

solution of the subset sum problem. This establishes the NP
completeness of our problem.

APPENDIX B

Here, Our goal is to determine the value of fpT, kq. The
distributions given in the Section III-C is used to compute
fpT, kq.

Moreover the end-to-end delay and inter-packet delay vary
depending upon routing path, hop distance, packet generation
rate, queuing or processing delay, etc. In the 5G network,
these delays are evenly distributed within a certain range and
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therefore they can be modeled as a Uniform Distribution [38].
Following (2), it can be stated that ∆ has a Uniform Distri-
bution with a discrete probability distribution function:

Prt∆ “ ju “

#

1
M , 0 ď j ďM

0, j ă 0 or j ąM
(54)

Traffic arrival from a single voice application follows mod-
ified Poisson distribution [29]. As the sum of independent
modified Poisson-distributed random variables also follows a
modified Poisson distribution, the mean of the random variable
for multiple voice applications, Ŷ p“

řn
i“1 yiq is nµ, where

µ is the mean of the random variable, yi. The value of µ can
be obtained from (8).

At T th DTI, a packet will be included in between pT`1q to
kth subset if p∆q is less than or equal to pk´T q. Using (54),
the probability distribution of number of packets included up
to kth subset in T th DTI can be derived as follows:

PrtT, ku “
8
ÿ

y“x

ˆ

y

x

˙

`

Prt∆ ď k ´ T u
˘x

`

Prt∆ ą k ´ T u
˘y´x

(55)

PrtŶ “ yu “ e´γ
γx

x!
(56)

where γ “ nµpk´T q
M . It is also following the modified Poisson

distribution. So, the event of packet arrival from T to pk ´
1qth DTI would follow the summation of the above modified
Poisson distribution. Therefore, fpT, kq can be calculated as
follows,

fpT, kq “
k´1
ÿ

i“T

nµpk ´ iq

M
“
nµpk ´ T qpk ´ T ` 1q

2M
(57)

The inter-arrival time of video packets follows Pareto
distribution [39]. As Pareto process does not hold summation
and multiplication property like modified Poisson, it would be
very difficult to determine the joint probability distributions.
So, first we calculate the mean number of packets that will
be included up to kth subset at T th DTI as k´T

M
1
µ . Following

up to pk ´ 1qth DTI, fpT, kq can be calculated as follows,

fpT, kq “
pk ´ T qpk ´ T ` 1q

2µM
(58)

where the Pareto parameters zm and α can be estimated
directly from the data samples (see [40] for example).

Similarly, fpT, kq can be calculated for the SMM as:

fpT, kq “
pk ´ T qpk ´ T ` 1qnĎW

2M
(59)

So, the mean number of packets, which will arrive up
to kth subset in between T and pk ´ 1qth DTI can be
calculated using (57), (58) and (59) for voice, video and MTC
applications respectively.

APPENDIX C

Proposition 3. If mean number of packets arrive in each DTI
and mean number of packets included in each subset, then
the transmission need pdpiqj q, calculated using (51), becomes
a decreasing function with respect to j.

Proof. Let us assume that kth and sth indexed subsets are the
highest selection metrics according to (51) at T th and pT`1qth

DTI respectively, where k ą T and s ą T ` 1. We can also
assume the mean number of packets included in each subset
at each DTI as mi. According to (52), mpvoiceq “ nµ and
mpvideoq “ 1

µ . So, we can write the following equations.

d
piq
T “ ϕ

piq
T,k `

pk ´ T ` 1qmpiq

2M
(60)

d
piq
T`1 “ ϕ

piq
T`1,si`

ps´ T qmpiq

2M
(61)

As kth indexed subset is the highest metric at T th DTI, it
will be greater than or equal to the selection metric calculated
for sth subset at that DTI. The inequality can be written as,

d
piq
T ě ϕ

piq
T,s `

ps´ T ` 1qmpiq

2M
(62)

The value of ϕpiqT`1,s can be calculated as follows:

ϕ
piq
T`1,s “

ps´ T qϕ
piq
T,s ` ps´ T ´ 1qm

piq

M ´ d
piq
T

s´ T ´ 1
(63)

By putting the value of ϕpiqT`1,s in (61), we can calculate the
value of dpiqT`1. Applying the inequality (62) and s ą pT `1q,
the following inequality is proved.

d
piq
T ą d

piq
T`1 (64)

Similarly, we can also prove, dpiqT`1 ą d
piq
T`2, dpiqT`2 ą d

piq
T`3

and so on. It concludes that the transmission need d
piq
j , is

a decreasing function with respect to j under the above-
mentioned assumption.
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