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Abstract

In the realm of wireless communications in 5G, 6G and beyond, deploying unmanned aerial vehicle

(UAV) has been an innovative approach to extend the coverage area due to its easy deployment.

Moreover, reconfigurable intelligent surface (RIS) has also emerged as a new paradigm with the goals

of enhancing the average sum-rate as well as energy efficiency. By combining these attractive features,

an energy-efficient RIS-mounted multiple UAVs (aerial RISs: ARISs) assisted downlink communication

system is studied. Due to the obstruction, user equipments (UEs) can have a poor line of sight to

communicate with the base station (BS). To solve this, multiple ARISs are implemented to assist the

communication between the BS and UEs. Then, the joint optimization problem of deployment of ARIS,

ARIS reflective elements on/off states, phase shift, and power control of the multiple ARISs-assisted

communication system is formulated. The problem is challenging to solve since it is mixed-integer,

non-convex, and NP-hard. To overcome this, it is decomposed into three sub-problems. Afterwards,

successive convex approximation (SCA), actor-critic proximal policy optimization (AC-PPO), and whale

optimization algorithm (WOA) are employed to solve these sub-problems alternatively. Finally, extensive

simulation results have been generated to illustrate the efficacy of our proposed algorithms.
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Aerial reconfigurable intelligent surface (ARIS), deployment, reflective elements on/off, phase

shift, transmit power optimization, successive convex optimization (SCA), actor-critic proximal policy

optimization (AC-PPO), whale optimization algorithm (WOA).

I. INTRODUCTION

A. Background and Motivations

As claimed by Cisco Networking Index (CNI), the number of Internet users reached 3.9 billion

in 2018 and is anticipated to surpass 5.3 billion by 2023 [1]. Rapid growth of multimedia devices

such as the Internet of Things (IoT), video streaming, online gaming, Virtual Reality (VR) and

Augmented Reality (AR) applications, thrives immense challenges for current communication

architecture and motivates to discover new ways to enhance spectral efficiency in both academic

and industrial fields. Numerous ingenious wireless technologies have been developed in the last

several years, which includes deploying unmanned aerial vehicles (UAVs) and Reconfigurable

Intelligent Surfaces (RIS) elements.

Recently, UAVs have achieved a great deal of interests to deploy as a communication and

computing platforms due to their high mobility and ease of deployment. The emplacement of

UAVs can not only save the cost of mobile infrastructure which demands a large budget but

also save time for quick on-demand deployment to provide services in rural regions or disaster

areas or temporary events such as concerts, stadiums where the infrastructure is difficult to come

across. In some scenarios [2], [3], UAVs are implemented with a multi-access edge computing

(MEC) system to deliver the computing resources near to the user equipment (UE) which saves

a considerably large amount of time for uploading, computing and downloading tasks.

The newly recent technology called RIS, which is incited from the recent development of meta-

surfaces, benefits the wireless communications in extending the coverage range and improving

the signal quality at the receiver [4]. RIS is a man-made meta-surface implemented with low-

cost passive elements that can be programmed by integrated electronic circuits to alter the

incoming electromagnetic field into the desirable way [5]. Unlike the traditional collaborative

communications such as decode-and-forward (DF) and amplify-and-forward (AF), RIS does not

require additional power amplifier hence, is more environmental friendly and energy-efficient [6].

Taking into account of its cost efficiency and energy efficiency, RIS technology has acquired a

vast attention in 5G, 6G and beyond communications. Furthermore, since RIS structures consist
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of relatively small hardware components, they can be easily integrated in several communication

environments such as along the surfaces of the building [7].

B. Challenges and Research Contributions

When UAVs are considered as communication and computing platforms , there exists several

challenges in UAVs’ energy consumption as they are energy-constrained devices. On the other

side, even though RIS can enhance the spectral efficiency, setting up RIS structures to achieve

Line-of-sight (LoS) links between UE and RIS is still quite challenging issues. Taking the

advantages of RIS in enhancing spectral efficiency without the requirement of any external

power sources with the aid of UAVs to obtain LoS links between UE and RIS, we propose the

multiple aerial RISs (ARISs)-assisted system to extend the downlink communication links from

the ground base station (BS) to the UEs. In our system, we assume that there is no dominant

LoS links between the BS and UEs due to obstacles. The contributions of our paper can be

organized as following:

• Firstly, we propose the downlink communication system between the BS and UEs, which

is assisted by the multiple ARISs to enhance the spectral efficiency for all UEs since the

dominant LoS links between BS and UEs are blocked by the obstacles. We assume the

BS and ARISs are deployed by the same service operator and thus the BS is responsible

for ARIS deployment and controlling the on/off states and the phase shifts for the ARIS

reflective elements.

• Secondly, we formulate the problem to maximize the energy efficiency of the proposed

system by jointly optimizing the ARISs deployment, ARIS reflective elements on/off states,

phase shift, and power control. We show that the formulated problem is a mixed integer

non-linear programming (MINLP) problem and it is challenging to solve in the polynomial

time.

• To address this challenge, we decompose our formulated problem into three sub-problems:

1) ARISs deployment problem, 2) joint ARIS reflective elements on/off states and phase

shift problem, and 3) power control problem. Then, successive convex approximation (SCA),

actor-critic proximal policy optimization (AC-PPO), and whale optimization algorithm (WOA)

are proposed to solve these sub-problems, alternatively.

• Finally, a comprehensive numerical analysis is integrated to validate efficacy of the overall

performance of our proposed algorithms with several benchmark schemes, such as single-
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ARIS, ARIS with fixed phase shifts (ARIS-NPS), and UAV as relay (UAV-relay) scenarios.

We achieve the improvement in average sum-rate by 24% and 58% compared to the single-

ARIS and the ARIS-NPS scenarios, and 43% and 72% increase in energy-efficiency com-

pared to the single-ARIS and the UAV-relay scenarios, respectively. Moreover, our proposed

multiple ARISs-assisted system achieves 69% increase in average sum-rate compared to the

multiple RISs-assisted system.

The rest of the paper is categorized as follows: we present the related works in Section II. Next,

we present our system model and problem formulation in Section III. Afterwards, the solution

approach is proposed in Section IV, and performance evaluation is performed in Section V.

Finally, Section VI concludes our paper.

II. RELATED WORKS

A. UAV-assisted wireless networks

An overview on the literature related to UAV-assisted wireless networks are discussed in this

section [8]–[14]. The major strength of UAV in enhancing coverage area, energy-efficiency, and

cost-efficiency has received significant attention in recent years [8]. In [9], the authors studied to

maximize the uplink communication where UAVs are served as relays. In [10], the authors studied

a single UAV-assisted device-to-device (D2D) communications and analyse how the appropriate

UAV’s altitude can impact the rate performance and coverage area on the D2D users’ density.

The authors in [11] derived the channel model of the LoS probability for the air-to-ground UAV

communications. There exists several works that studied upon UAV deployment [12]–[15]. The

authors in [12] studied the UAVs deployment for UAV-to-ground communication in arbitrary

spatial distribution for network planning to provide wireless services to the ground users and

the authors in [13] studied the incorporation between UAVs in 3D cellular network. The work

in [14] studied the adaptive UAV deployment for the dynamic users. The authors in [15] studied

DRL-based dynamic UAV control instead of static UAV deployment. In all of the above works,

UAV is considered either as aerial BS or MEC devices or relays, which results in higher energy

consumption.

B. RIS-assisted wireless networks

An overview on the literature related to RIS-assisted wireless networks are discussed in this

section [5], [16]–[23]. In [5], the authors considered to develop the energy-efficient architecture
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for the RIS structures in accordance with power allocation and phase shifting values of RIS

elements while guaranteeing the individual data rate budget for each user. In [16], the authors

proposed the energy-harvesting RIS elements implemented on the facades of the buildings in

order to maximize the spectral efficiency while enabling the transmit power control and RIS

configuration under the indeterminate wireless channel condition. The authors in [17] aimed

to distinguish the principal relationship between the total sum-rate of multiple users and the

required number of RIS reflective elements in wireless communications. They observed the

capacity of the system could no longer efficiently rise as the number of RIS elements reaches

the upper bound limit. They also investigated how the number of phase shifts can effect the

performance on the achievable data rate. The authors in [18] investigated the practical case

study between phase shift and finite-sized RIS to maximize the downlink multi-user system.

In [19], the authors studied about RIS elements to eliminate interference between multiple

D2D uplink communication network. There has also been several studies on RIS-assisted in

the vehicular networks. In [20], the authors investigated the secrecy outage probability upon

vehicular-to-vehicular (V2V) and vehicular-to-infrastructure (V2I). The authors in [21] aimed

to maximize the data rate for each vehicle where the communication links from the road site

unit (RSU) is extended by the RIS technology with discrete phase shift. The authors in [22]

studied deep reinforcement learning (DRL) based RIS-assisted multi-user downlink multiple

input single output (MISO) system. The work in [23] considered to improve the secrecy rate

of users in RIS-assisted system by constructing DRL-based QoS-aware reward function. All of

the aforementioned works only considered the RIS-assisted networks, where RIS elements are

either implemented on the ground level or facades of the building, which is still challenging to

achieve the dominant LoS communication links between the BS-RIS-users.

C. UAV-RIS-assisted wireless networks

An overview on the literature related to UAV-RIS-assisted wireless networks are discussed in

this section [24]–[32]. The authors in [24] examined the adaptive RIS-assisted aerial-terrestrial

downlink communication system between UAVs and multi-users with respect to RIS elements

allocation and reflective coefficients. In [25], the authors looked into UAV-user communication

with RIS assistance in order to maximize the worst-case secrecy rate by taking into account

of the transmitter’s power allocation, RIS’s beamforming and UAV’s trajectory. The authors in

[26] proposed the RIS-assisted UAV communications to maximize the received signal power
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Fig. 1: System model for RIS-mounted UAVs.

at the ground user by considering the passive and active beamforming and UAV’s trajetory.

Furthermore, in [27], the authors minimized the energy consumption problem for both orthogonal

multiple access (OMA) and non-orthogonal multiple access (NOMA) cases by jointly considering

the trajectory for the UAV and passive beamforming of the RIS elements. There also exists

several works on ARIS-assisted system [28], [29]. In [30], the authors considered ARIS-assisted

system to satisfy the constraints of ultra-reliable low latency communication (URLLC). The

authors in [31] studied the several UAVs-RISs-assisted total transmit power minimization for

the heterogeneous networks. They did not consider the energy efficiency of the system. The

authors in [32] considered to maximize energy efficiency for a single ARIS-assisted downlink

communication for single user. They did not consider for the multiple ARISs-assisted scenario.

In this paper, we propose the multiple ARISs in order to maximize the average energy efficiency

for the downlink communication between the BS and the UEs.

III. SYSTEM MODEL

Our system model includes a BS B with multiple antennas, a set N of N ARISs in which

each RIS is implemented on each UAV and each ARIS n ∈ N contains an array of In =

[1n, 2n, . . . , In], reflective elements and a set K of K UEs with single antenna as shown in Fig.

1. The coordinates of the BS is denoted by qB = (xB, yB, zB), where zB is the height of the BS.

Similarly, the positions of each UE k and each ARIS n can be represented as qk = (xk, yk, 0)
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and qn = (xn, yn, zn) respectively, and zn is the height where the RIS-mounted UAV is hovering.

The time horizon of the system can be divided into a discrete set of T = [1, 2, ..., t, ..., T ].

Since ARIS has limited energy, apart from hovering, the ARIS reflective elements need to be

turned off when there is no connection in order to reserve excessive energy. Authors in [33] and

[24] prove that turning off the the whole RIS or some surface area of RIS can preserve energy.

In our work, we define ∆ ∈ R|N |×|In| as the on/off states matrix for all reflective elements |In|

for each ARIS n to decide whether to turn on or off. Therefore, the on/off states of the reflective

element in in each ARIS n are controlled by the decision variable δin as follows:

δin [t] =

 1, if reflective element i of ARIS n is switched on at time t,

0, otherwise.
(1)

A. Communication Model

We adopt both direct and indirect communication links between the BS and the UEs. For the

direct link, we assume there is no dominant propagation along the LoS signal between the BS

and UEs. Therefore, we adopt the Rayleigh fading model and the channel gain for the BS-UE

link at time t can be obtained as follows:

HB,k[t] =
√
κd−αB,k[t]h̃, (2)

where κ is the channel gain at the reference distance 1 m, α ≥ 2 is the path loss exponent,

|dB,k[t]| = ||qB[t]− qk[t]|| is the Euclidean distance between the BS and UE k at time t, and h̃

is the complex Gaussian random scattering component with zero mean and unit variance.

For the indirect communication, there exists two links: BS-ARIS link and ARIS-UE link,

respectively. For the BS-ARIS link, we assume there is only LoS signal between the BS and

ARIS, and thus the channel fading here is assumed to experience the Rician channel fading with

only LoS components. Therefore, the channel gain between the BS and ARIS n at time t can

be defined as:

hB,n[t] =
√
κd−αB,n[t]

√
R̂

1 + R̂
hLoS
B,n[t], (3)

where R̂ is the Rician factor, and |dB,n[t]| = ||qB[t] − qn[t]|| is the distance between the BS

to ARIS n at time t. hLoS
B,n[t] is the deterministic LoS component between the BS and ARIS n

in correspondence with the azimuth angle-of-arrival (AoA) of the link at time t [24]. For the

ARIS-UE link, there are both LoS and non-line-of-sight (NLoS) propagation between ARISs and
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UEs. Consequently, the Rician fading model is adopted and the channel gain for the ARIS-UE

link at time t can be obtained as follows:

hn,k[t] =
√
κd−αn,k[t]

√
R̂

1 + R̂
hLoS
n,k [t] +

√
1

1 + R̂
hNLOS
n,k , (4)

where |dn,k[t]| = ||qn[t]− qk[t]|| is the distance between ARIS n and UE k at time t. hLoS
n,k [t] is

the deterministic LoS component between ARIS n and UE k corresponding with the azimuth

angle-of-departure (AoD) of the link and hNLOS
n,k is the non-LoS component which follows the

identically and independently distributed circularly-symmetric complex Gaussian distribution.

Furthermore, at time t, the incident signals are reflected by each reflective element i of ARIS

n from the feasible range of phase shift values specified by

θin [t] = e(
2πφ

2b
), (5)

where φ is the phase shift index, and b is the phase shift resolution in bits [34]. Therefore, a

vector of θin [t] = [θ1n [t], θ2n [t], . . . , θIn [t]] represents the phase shift values of ARIS n. Following

that, the reflection coefficient matrix can be denoted by

Θn[t] = diag(β1ne
jθ1n [t], β2ne

jθ2n [t], . . . , βIne
jθIn [t]), (6)

where βin ∈ [0, 1] denotes the amplitude reflection coefficient of the i-th reflective element of

the n-th ARIS, and j is the imaginary unit of a complex number. Therefore, the received signal

at UE k can be achieved as follows:

yk[t] =

(
HB,k[t] +

N∑
n=1

In∑
i=1

δin [t]hn,k[t]Θn[t]hB,n[t]

)
x+ ωk, (7)

where x =
∑K

k=1 gk[t]sk is the transmitted signal from the BS with beamforming vector gk[t]

at time t, and the unit-power complex based information symbol sk for UE k, while ωk ∼

CN (0, σ2) denotes the additive white Gaussian noise (AWGN) at UE k. Based on (7), the

signal-to-interference-plus-noise ratio (SINR) received at UE k can be obtained as

γk[t] =

∣∣∣(HB,k[t] +
∑N

n=1

∑In
i=1 δin [t]hn,k[t]Θn[t]hB,n[t]

)
gk[t]

∣∣∣2∑K
l=1,l 6=k |(HB,k[t] +

∑N
n=1

∑In
i=1 δin [t]hn,k[t]Θn[t]hB,n[t])gl[t]|2 + σ2.

, (8)

Afterwards, based on (8), the achievable data rate of UE k can be formulated as follows:

rk[t] = W log2(1 + γk[t]), (9)

where W is the transmission bandwidth available for each UE. Therefore, the sum-rate of all

users can be described as follows:

R[t] =
K∑
k=1

rk[t]. (10)
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B. Power Consumption Model

In our scenario, we need to take account of the power consumption of ARIS hovering. We

assume that ARISs are considered to be hovering at the designated altitude and thus, rotary-wing

UAV is adopted. Therefore, the power consumption for the hovering of the rotary-wing UAV,

PUAV can be obtained as follows [35]:

PUAV =
ν

8
ϕΛηv3a%+ (1 + ι)

w̃3/2

√
2ϕη

, (11)

which contains two terms: power required to rotate the rotor blades, and power required to

endure the induced drag generated by the lift. The symbols ν, ϕ, Λ, η, va, and % represent

the coefficient of the profile drag, density of the air, rotor solidity, disc area of the rotor, blade

angular velocity, and radius of the rotor, respectively. Moreover, ι and w̃ denote the incremental

correction factor, and weight of the aircraft, respectively.

Furthermore, in this work, the BS controls the phase shifts of the ARIS reflective elements.

Hence, the total power of the considered multiple ARISs-assisted downlink system includes: 1)

transmit power of the BS, 2) circuit power of the each UE k, 3) circuit power consumption of

ARIS and 4) hovering power of the rotary-wing UAV [33], and is defined as

P [t] =
K∑
k=1

(ζgk[t]Hgk[t] + P cir
k ) +

N∑
n=1

In∑
i=1

δin [t]InPARIS + PUAV, (12)

where ζ = 1/µ with µ being the transmit power amplifier efficiency, P cir
k is the circuit power

of each user k, and PARIS is the power consumption for each ARIS. The transmit signal power

of the BS has the constraint as follows:

tr(g[t]Hg[t]) ≤ Pmax,∀t ∈ T , (13)

where tr(S) means the trace of square matrix S, g = [g1; . . . ; gk] and Pmax is the maximum

transmission power available at the BS.

C. Problem Formulation

The main objective of this work is to maximize energy efficiency of the system, i.e., to

maximize the average sum-rate R[t] for the UEs under the constraint of the power consumption

P [t] of both ARISs and the BS. To accomplish this, we need to jointly optimize the deployment

of ARIS, ARIS reflective element on/off states, and phase shift, and power control of the BS.

Prior to problem formulation, we define the required constraints as follows:
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Each UE k is necessary to fulfill the demand for the specified data rate at time t, which is

defined as:

rk[t] ≥ rmin
k [t],∀k ∈ K,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (14)

where rmin
k [t] is the minimum data rate requirement for each UE k at time t. The accessible

phase shift value of i-th reflective element n-th ARIS at time t should be between 0 to 2π as

follows:

0 ≤ θin [t] < 2π,∀n ∈ N ,∀i ∈ In,∀t ∈ T . (15)

A safe distance between two adjacent ARISs is necessary to ensure that the coverage area of

each ARIS does not overlap with that of other. Thereby, it can avoid the interference between

different ARIS. We denote dmin[t] as the threshold distance between two adjacent ARISs at time

t, and can be defined as follows:

||qi[t]− qj[t]||2 ≥ dmin[t],∀i, j ∈ N , i 6= j,∀t ∈ T . (16)

Furthermore, each reflective element i of ARIS n can only be either turned on or off at one time

slot and can be given as follows:

δin [t] ∈ {0, 1},∀n ∈ N , ∀i ∈ In,∀t ∈ T . (17)

Given the above mentioned network characteristics, our optimization problem E can be math-

ematically formulated as follows:

P: max
q,∆,Θ, g

E(q,∆,Θ, g) (18a)

s.t.

rk[t] ≥ rmin
k [t],∀k ∈ K,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (18b)

0 ≤ θin [t] < 2π,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (18c)

||qi[t]− qj[t]||2 ≥ dmin[t], ∀i, j ∈ N , i 6= j,∀t ∈ T , (18d)

tr(g[t]Hg[t]) ≤ Pmax,∀t ∈ T , (18e)

δin [t] ∈ {0, 1}, ∀n ∈ N ,∀i ∈ In,∀t ∈ T . (18f)

The objective function in (18a) is shown in (19). The problem P is a mixed integer non-

linear programming (MINLP) problem which is non-convex. Therefore, it is challenging to solve

the whole problem in polynomial time. Furthermore, there are couplings in both the objective
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Fig. 2: Flow diagram of joint ARIS deployment, ARIS reflective elements on/off states, phase shift and power

control problem.

E(q,∆,Θ, g) =
1

T

T∑
t=0

R[t]

P [t]
=

∑K
k=1W log2

(
1 +

|(HB,k[t]+
∑N
n=1

∑In
i=1 δin [t]hn,k[t]Θn[t]hB,n[t])gk[t]|2∑K

l=1,l 6=k |(HB,k[t]+
∑N
n=1

∑In
i=1 δin [t]hn,k[t]Θn[t]hB,n[t])gl[t]|2+σ2

)
∑K

k=1(ζgk[t]Hgk[t] + P cir
k ) +

∑N
n=1

∑In
i=1 δin [t]InPARIS + PUAV

(19)

function and constraints between the ARIS deployment, ARIS reflective elements on/off states

and phase shift, and power control of the BS. Therefore, problem P is quite implausible to solve

and there is no effective solution approach to deal with these difficulties.

Thus, we first decompose our optimization problem P into three sub-problems, P1: ARIS

deployment problem, P2: ARIS reflective elements on/off states and phase shift problem, and

P3: power control problem. Then, we solve the sub-problems iteratively until we reach the

convergence and the detailed figure of our proposed solution technique is shown in Fig. 2.
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Ė(q) =
K∑
k=1

W log2

1 +

(
HB,k[t] +

∑N
n=1

∑In
i=1 κδin [t]gk[t]h

T
ab[t]H

′[t]hab[t]
)

∑K
l=1,l 6=k(HB,k[t] +

∑N
n=1

∑In
i=1 κδin [t]gl[t]hTab[t]H

′[t]hab[t] + σ2)


(22)

IV. SOLUTION APPROACH

A. ARIS Deployment Problem

For the given ARIS reflective elements on/off states ∆, phase shift values Θ and power control

g, the sub-problem P1 can be represented as follows:

P1: max
q

E(q) (20a)

s.t. rk[t] ≥ rmin
k [t],∀k ∈ K,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (20b)

||qi[t]− qj[t]||2 ≥ dmin[t], ∀i, j ∈ N , i 6= j,∀t ∈ T . (20c)

The objective function of sub-problem P1 remains non-concave since hn,k[t] and hB,n[t] are

complex and non-linear with respect to ARIS deployment qn. To handle this, we use the

approximation algorithm for hn,k[t] and hB,n[t]. Then, we rewrite our sub-problem P1 as follows:

max
q

Ė(q) (21a)

s.t. rk[t] ≥ rmin
k [t],∀k ∈ K,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (21b)

||qi[t]− qj[t]||2 ≥ dmin[t],∀i, j ∈ N , i 6= j,∀t ∈ T , (21c)

where Ė(qn) is shown in (22), and

hab[t] =

[√
(dn,k[t])−α,

√
(dB,n[t])−α

]T
,

H′[t] =
[
HH
B,k, (h

(̂i−1)
n,k [t])HΘn[t]h

(̂i−1)
B,n [t]

]
[
HH
B,k, (h

(̂i−1)
n,k [t])HΘn[t]h

(̂i−1)
B,n [t]

]H
.
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Ë(r̈) =
K∑
k=1

W log2

1 +

(
HB,k[t] +

∑N
n=1

∑In
i=1 κδin [t]gk[t]r̈[t]

)
∑K

l=1,l 6=k(HB,k[t] +
∑N

n=1

∑In
i=1 κδin [t]gl[t]r̈[t] + σ2)

 (24)

Next, we introduce the slack variables a = {a[t]}Tt=1, b = {b[t]}Tt=1, and r̈ = {r̈[t]}Tt=1, and

the problem (21) is transformed into the following problem as

max
q,a, b, r̈

Ë(r̈) (23a)

s.t. 0 < a[t] ≤
√

(dB,n[t])−α, ∀t ∈ T , (23b)

0 < b[t] ≤
√

(dn,k[t])−α,∀t ∈ T , (23c)

h̃
T

ab[t]H
′[t]h̃ab[t] ≥ r̈[t],∀t ∈ T , (23d)

(20b), (20c). (23e)

where Ë(r̈) is given in (24), and h̃ab = [a[t], b[t]]T . In order to simplify the derivations, we

expand (23b) and (23c) as follows [25]:

x2B + xn[t]2 + y2B + yn[t]2 − 2xBxn[t]− 2yByn[t] + (zB − zn[t])2 − (a[t])−
4
α ≤ 0, (25)

xn[t]2 + xk[t]
2 + yn[t]2 + yk[t]

2− 2xn[t]xk[t]− 2yn[t]yk[t] + (zn[t]− zk[t])2− (b[t])−
4
α ≤ 0. (26)

Still it is discovered that (25) and (26) are in non-convex feasible regions. Therefore, we

apply the SCA method to solve this non-convexity. The SCA approach is advantageous because

it allows for the replacement of the original non-convex function with simpler surrogates to

achieve a suboptimal solution [36]. Firstly, to obtain the global upper bound for the concave

function, we first utilize the first-order Taylor expansion to find the linear approximation of the

function. To do so, firstly, (23a) can be transformed into the difference of two concave functions

as follows [37]:

Ë(r̈) ≈ ĥ(r̈)− l̂(r̈), (27)

where

ĥ(r̈) =
K∑
k=1

log2

(
hB,k[t] +

N∑
n=1

In∑
i=1

κδin [t]gk[t]r̈[t] + σ2

)
, (28)

and

l̂(r̈) =
K∑

l=1,l 6=k

log2

(
hB,k[t] +

N∑
n=1

In∑
i=1

κδin [t]gl[t]r̈[t] + σ2

)
. (29)
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Both the functions ĥ(r̈) and l̂(r̈) are convex. However the difference between them is neither

convex nor concave, as represented in (27). Then, we find the feasible solution r̈′ to problem (23)

by computing the concave lower bound, i.e. the surrogate function of the non-concave objective,

specified in (27). By implementing the first-order Taylor expansion to replace the l̂(r̈), we can

construct its lower bound as follows:

Ë(r̈, r̈′) = ĥ(r̈)− ˆ̂
l ((r̈, r̈′)) , (30)

where
ˆ̂
l ((r̈, r̈′)) , l̂(r̈′)−∇l̂(r̈′)(r̈ − r̈′), (31)

where ∇l̂(r̈′) is the gradient of the l̂(r̈) at the given point r̈′, and ˆ̂
l ((r̈, r̈′)) represents the

first-order Taylor’s approximation of l̂(r̈) near r̈′ in the feasible area of the solution space. The

gradient for ARIS n can be expressed as follows:

∇nl̂(r̈
′) =

∂l̂(r̈′)

∂r̈′
=

1

ln 2

K∑
l=1,l 6=k

∑N
n=1

∑In
i=1 κδin [t]gl[t]

HB,k[t] +
∑N

n=1

∑In
i=1 κδin [t]gl[t]r̈[t] + σ2

. (32)

The surrogate function given in (31) is concave. Next, the upper bound of function l̂(r̈) may

also be found using the first-order Taylor’s expansion.

Lemma 1. The first-order Taylor approximation provides the global upper bound of a concave

function or the global lowest bound of a convex function.

Proof. Initially, we define the first-order Taylor series as follows:

f(x0) + f ′(x0)(x− x0). (33)

Afterwards, we have

l̂(r̈) ≤ l̂(r̈′) +∇l̂(r̈′)(r̈ − r̈′). (34)

Therefore, we can derive the observations by examining (27), (30), and (34) as follows:

Ë(r̈) = ĥ(r̈)− l̂(r̈)

≥ ĥ(r̈)−
{
l̂(r̈′) +∇l̂(r̈′)(r̈ − r̈′)

}
≥ ĥ(r̈)− l̂(r̈′)−∇l̂(r̈′)(r̈ − r̈′)

= Ë(r̈, r̈′),

(35)

where (35) denotes that the surrogate function provides the lower bound of the original function.

As a result, at point r̈′, i.e., Ë(r̈, r̈′)|r̈=r̈′ = Ë(r̈′), the two functions are tangent to each other.
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Thereby, our objective function of sub-problem (23) has the lower bound function as obtained

in (35).

Consequently, we replace our objective function in problem (23) which is non-convex, by

its surrogates as presented in (30). Furthermore, we take the first-order Taylor expansions of

(a[t])−
4
α , (b[t])−

4
α , and h̃Tab[t]H

′[t]h̃ab[t] at the given feasible points a0 = {a0[t]}Tt=1, b0 =

{b0[t]}Tt=1, and H̃0ab = {h̃0ab[t]}Tt=1 are expressed as follows:

(a[t])−
4
α ≥ (a0[t])

− 4
α − 4

α
(a0[t])

− 4
α
−1(a[t]− a0[t]), (36)

(b[t])−
4
α ≥ (b0[t])

− 4
α − 4

α
(b0[t])

− 4
α
−1(b[t]− b0[t]), (37)

h̃Tab[t]H
′[t]h̃ab[t] ≥ −h̃0

T

ab[t]H
′[t]h̃0ab[t] + 2<

[
h̃0

T

ab[t]H
′[t]h̃ab[t]

]
. (38)

By combining (25) and (36), (26) and (37), we get

x2B + xn[t]2 + y2B + yn[t]2 − 2xBxn[t]− 2yByn[t]+

(zB − zn[t])2 − (1 +
4

α
)(a0[t])

− 4
α +

4

α
(a0[t])

− 4
α
−1a[t] ≤ 0,

(39)

xn[t]2 + xk[t]
2 + yn[t]2 + yk[t]

2 − 2xn[t]xk[t]− 2yn[t]yk[t]+

(zn[t]− zk[t])2 − (1 +
4

α
)(b0[t])

− 4
α +

4

α
(b0[t])

− 4
α
−1b[t] ≤ 0.

(40)

Similarly, we apply the first-order Taylor expansion to convert ||qi[t] − qj[t]||2 in constraint

(20c) to a linear function since it is a convex function with respect to qi and qj . This can be

expressed as follows:

||qi[t]− qj[t]||2 ≥ 2(qi[t− 1]− qj[t− 1])T (qi[t]− qj[t])− ||qi[t− 1]− qj[t− 1]||2. (41)

Afterwards, we can denote the above equation as follows:

G0[t− 1](qi[t]− qj[t]) , 2(qi[t− 1]− qj[t− 1])T (qi[t]− qj[t])− ||qi[t− 1]− qj[t− 1]||2. (42)

Finally, we can substitute (42) into (20c), and problem (23) can be rewritten as follows:

min
q,a, b, r̈

− Ë(r̈, r̈′) (43a)

s.t. r̈[t] + h̃0
T

ab[t]H
′[t]h̃0ab[t]− 2<

[
h̃0

T

ab[t]H
′[t]h̃ab[t]

]
≤ 0,∀t ∈ T , (43b)

G0[t− 1](qi[t]− qj[t]) ≥ dmin[t], ∀i, j ∈ N , i 6= j,∀t ∈ T , (43c)

(20b), (39), (40). (43d)
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Algorithm 1 SCA algorithm for ARIS deployment

Input: Initial feasible points {q0,a0, b0}, rmin
k [t], dmin[t], iteration index î = 0, îmax, stopping

criterion ε1.

1: repeat

2: Set î← î+ 1.

3: Update q î,aî, bî with given q î−1,aî−1, bî−1.

4: Acquire Ë(r̈, r̈′) = ĥ(r̈)− ˆ̂
l ((r̈, r̈′)) based on (30).

5: Solve (43) to obtain r̈î.

6: until |Ë(r̈î)− Ë(r̈î−1)| ≤ ε1 or î > îmax.

Output: Optimal ARIS deployment q∗.

Problem (43) becomes a convex optimization problem, which we can solve by using CVXPY

solver in python programming. The overall algorithm of the SCA method is shown in Algorithm

1.

B. Joint ARIS Reflective Elements On/off States and Phase Shift Problem

For the given ARIS deployment q and power control g, the sub-problem P2 can be represented

as follows:

P2: max
∆,Θ

E(∆,Θ) (44a)

s.t. rk[t] ≥ rmin
k [t],∀k ∈ K,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (44b)

0 ≤ θin [t] < 2π,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (44c)

δin [t] ∈ {0, 1},∀n ∈ N ,∀i ∈ In,∀t ∈ T . (44d)

This problem is still mixed-integer, non-convex, and quite challenging to solve in polynomial

time, since the information of the environment is unknown. Moreover, the real-time ARIS reflec-

tive elements on/off states requires extensive computation and hardware cost, and conventional

optimization methods cannot be applied. The exhaustive search method can be used to find the

optimal solution, however it is impractical for large-scale networks. Due to these reasons, we

propose DRL approach to solve sub-problem P2. The reason we do not apply DRL for the whole

optimization problem is that the action spaces combined for all ARIS deployment, ARIS reflective

elements on/off states, phase shift, and power control matrices will be too large and demands
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high computational cost. Here, we implement Actor-Critic Proximal Policy Optimization (AC-

PPO) [38] as it always provides an improved policy by using data that are currently accessible

by the agent and thereby ensuring data efficiency and reliable performance. It could also be

utilised in the environments where action spaces are discrete or continuous. Typically, since

DRL is interpreted as Markov Decision Process (MDP), we first need to define state space S,

action space A and reward R̃.

1) State Space: For each state at time t, st ∈ S can be expressed as the tuples of the users’

locations and ARISs’ locations, the channel gain of the direct link, the channel gain of the ARIS-

UE link and BS-ARIS link, and power control at time t, respectively, and can be represented

by st = {qk[t], qn[t],HB,k[t],hn,k[t],hB,n[t], gk[t],∀k ∈ K,∀n ∈ N ,∀i ∈ In}.

2) Action space: The action at time t, at ∈ A contains the combination of the ARIS reflective

elements on/off states variable δin [t], and phase shift values θin [t] at time t, and can be denoted

as at = {δin [t], θin [t],∀n ∈ N ,∀i ∈ In}

3) Reward: Since the goal of our system is to maximize the energy efficiency, our reward

function is defined as

R̃t(st|at) =

 −1, if
∑K

k=1 rk[t] < rmin
k [t],

E(∆,Θ), otherwise.
(45)

As shown in Fig 3, in our AC-PPO algorithm, the states information, st from the environment is

obtained by the agent at the BS, and the agent observes and monitors the status of the location

of the users and ARISs, channel gain of the links, and power control for each user. The agent

includes the actor model and the critic model [39]. The actor model has the stochastic policy

model πψ(at|st) with its own parameter ψ and learns to take which action under the observation

of the input states. The policy πψ(at|st) takes the observed states st from the environment as an

input and suggests actions at to take as an output, and calculates the immediate reward R̃t(st|at)

depending on the action taken. The reward then provides as feedback to the agent, and the new

state information s(t + 1) is obtained. Taking into account of the requirements for the users,

under given policy πψ(at|st) and reward function R̃t(st|at), the cumulative discounted reward

function at time t can be denoted as follows:

V πψ(st) = Êt

[
T−1∑
t′=t

ξt
′−tR̃t′(st′|at′)

]
,∀st ∈ S, (46)

where 0 < ξ < 1 is the discount factor to prevent the total reward from reaching to infinity.
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Fig. 3: AC-PPO Algorithm for joint ARIS reflective elements on/off states and phase shift.

Moreover, the critic model contains the advantage function, Ât which is the estimate of the

relative value of the selected action in the current state is defined as [40]:

Ât = V πψ(st)− b(st),∀s ∈ S, (47)

where b(st) is the baseline estimate value function which provides the estimate of the discounted

return starting from the current state st.

The surrogate objective function of AC-PPO is to find the policy that maximizes the total

rewards from the environment and can be expressed as follows [38]:

LCLIP (ψ) = Êt
[
min

(
rt(ψ)Ât, clip(rt(ψ), 1− ε, 1 + ε)Ât

)]
, (48)

where

rt(ψ) =
πψ(at|st)
πψold(at|st)

,

means the probability ratio. Given the states and actions, rt(ψ) > 1 is the action is more plausible

currently than it was in the old version of the policy, and 0 < rt(ψ) < 1 if it is less plausible,

and ε is the clipping parameter. The clipping part of the objective function ensures that the PPO

does not always favor actions with positive advantage and/or consistently avoid actions with

negative advantage. The overall algorithm of the AC-PPO algorithm is described in Algorithm

2.
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Algorithm 2 AC-PPO algorithm for ARIS reflective elements on/off states and phase shift
Input: Network states st, learning rate, discount factor ξ, clipping parameter ε;

1: Initialization Base policy πψ(at|st) with random parameters ψ and clipping parameter ε and

initial value function V πψ(st)

2: for k ∈ K do

3: for each episode t̂ ∈ T̂ do

4: Collect the network observations: ARIS deploy-

ments q from Algorithm 1 and power control g

from Algorithm 3 to achieve the initial state s0

5: for each t ∈ T do

6: Forward the network states st ∈ S to the AC-

PPO algorithm

7: Observe the input states st and run the actor

network

8: Select action at ∈ A based on policy πψ(at|st)

9: Obtain the reward R̃t(st|at) and st+1

10: Calculate the probability ratio, rt

11: Compute Ât based on current V πψ(st) at the

critic network according to (47)

12: Compute LCLIP (ψ) according to (48)

13: Update πψold ← πψ

14: end for

15: end for

16: end for

Output: Optimal AC-PPO network with ∆∗,Θ∗.
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C. Power Control Problem

For the fixed ARIS deployment q, ARIS reflective elements on/off states ∆, and phase shift

Θ, sub-problem P3 can be represented as follows:

P3: max
g

E(g) (49a)

s.t. rk[t] ≥ rmin
k [t], ∀k ∈ K,∀n ∈ N ,∀i ∈ In,∀t ∈ T , (49b)

tr(g[t]Hg[t]) ≤ Pmax,∀t ∈ T . (49c)

Sub-problem P3 is still a non-convex and NP-hard problem due to constraint (49b). Therefore,

it is challenging to obtain the solutions in the polynomial time. Therefore, we adopt Whale

Optimization Algorithm (WOA) to solve sub-problem P3. The WOA is a meta-heuristic algorithm

which mimics the whales hunting strategy. The WOA has substantial advantages. First, unlike

gradient-based algorithms, which involve computing and updating the gradients and step size

throughout every iteration of the optimization process, WOA allows for such computation to

be relaxed. Second, WOA is not influenced by the initial feasible solutions, which might have

a significant impact on the convergence. Therefore, it has recently gained popularity among

research community due to it being efficient optimizer. The WOA algorithm includes two states:

1) the exploitation state (the encircling prey method and spiral bubble-net attacking method),

and 2) the exploration state (the searching prey method). The detail explanation of each state

can be further described in the following subsections [41]–[43].

1) Exploitation State: The exploitation state of WOA includes two fundamental methods: the

encircling prey method, and the spiral bubble-net attack method, which are discussed as follows:

Encircling Prey Method. Once the whales detect the location of their preys, they encircle

them. Theoretically, the location of the prey is unknown in the search space, therefore, WOA

assumes that the current best search agent is the target prey (optimum or close to optimum).

The other whales (search agents) update their locations towards to the best search agent. This

behaviour can be mathematically implemented as follows [41]:

~D =
∣∣∣~C · ~g∗(ĵ)− ~g(ĵ)

∣∣∣ , (50)

~g(ĵ + 1) = ~g∗(ĵ)− ~A · ~D, (51)

where ~g∗ is the location of the best search agent, ĵ is the current iteration, |·| is the absolute

value. ~C and ~A are coefficient vectors, and are computed as follows:

~A = 2~a · ~r − ~a, (52)
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~C = 2 · ~r, (53)

where ~r is the random vector between 0 to 1, and ~a is the control parameter vector linearly

declining from 2 to 0 over the iterations, both in exploitation and exploration states. The aim

of (52) and (53) is to balance between exploitation and exploration. When A ≥ 1, WOA will

perform exploration, and exploitation is done when A < 1.

Spiral Bubble-net Attack Method. This method combines both shrinking encircling mech-

anism and spiral movement mechanism of whales. Its purpose is to update the new location to

fall between the current agent’s location and the best search agent. To mimic the helical shape

movement of the whales, the equation can be expressed as

~D′ =
∣∣∣~g∗(ĵ)− ~g(ĵ)

∣∣∣ , (54)

~g(ĵ + 1) = ~D′ · ebj · cos(2πl) + ~g∗(ĵ), (55)

where ~D′ indicates the distance between the current search agent and the target prey. Moreover,

b is the constant for defining the shape of the logarithmic spiral, and l is the random number

between −1 and 1. Here, coefficient vector ~A is updated by setting random values in [−1, 1].

Conventionally, once the whales locate the prey, they approach it using either shrinking encir-

cling method or spiral bubble-net method synchronously. To imitate this synchronous behaviour,

we set the 50% probability to choose between these two methods to update the location of the

whales for the optimization. Mathematically, it can be modeled as follows:

~g(ĵ + 1) =

~g
∗(ĵ)− ~A · ~D, if p < 0.5,

~D′ · ebj · cos(2πl) + ~g∗(ĵ), if p ≥ 0.5.
(56)

where p = [0, 1] is the random number to represent the probability to choose between two

mechanisms. When p < 0.5, WOA chooses the shrinking encircling mechanism, and if p ≥ 0.5,

WOA chooses the sprial movement mechanism.

2) Exploration State: : The exploration state of WOA includes the searching for prey method.

This state is necessary to prevent the solution from being trapped at the local optimum, and failing

to achieve the global optimum.

Searching for Prey Method. This approach is similar to encircling prey method in exploitation

state, but instead of claiming the location of best search agent, and here, a random location is
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Algorithm 3 WOA for power control
Input: Current power control g, given q, ∆, and Θ;

1: Initialization At iteration ĵ = 1, initialize the total number of whale population gu, where

u = {1, . . . , U}, and maximum number of iteration ĵmax.

2: According to (59), calculate the fitness of the search agents gu and identify the best search

agent ~g∗(0).

3: repeat

4: for u← 1 to U (the number of whales) do

5: Update a,A,C, l and p.

6: if p < 0.5 then

7: if |A| < 1 then

8: Update ~D by (50) and ~g by (51).

9: else

10: Select a random ~grand and update ~D by

(57).

11: Update the location ~g by (58).

12: end if

13: else

14: Update ~D by (54) and ~g by (55).

15: end if

16: end for

17: Calculate the fitness of each search agent by (59).

18: Update the location of the best search agent ~g∗(ĵ).

19: Update ĵ ← ĵ + 1.

20: until ĵ > ĵmax

Output: Optimal power control g∗.

selected to update the locations of other search agents. It can be mathematically represented as

follows:
~D =

∣∣∣~C · ~grand(ĵ)− ~g(ĵ)
∣∣∣ , (57)

~g(ĵ + 1) = ~grand(ĵ)− ~A · ~D, (58)
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Algorithm 4 Proposed joint ARIS deployment, ARIS reflective elements on/off states, phase

shift, power control optimization algorithm
1: Initialization: At τ = 0, initialize the variables, q(0),∆(0),Θ(0), g(0);

2: repeat

3: By applying Algorithm 1, solve problem P1 for given ∆(τ),Θ(τ), g(τ) to obtain q(τ + 1).

4: By applying Algorithm 2, solve problem P2 for given q(τ + 1), g(τ) to obtain ∆(τ + 1),Θ(τ + 1).

5: By applying Algorithm 3, solve problem P3 for given q(τ + 1),∆(τ + 1),Θ(τ + 1) to obtain g(τ + 1).

6: Update τ ← τ + 1.

7: until objective value (18) reaches convergence.

where ~grand(ĵ) is the location of the search agent randomly selected from the search space.

Since WOA algorithm is designed only for unconstrained optimization, we apply the penalty

method to our sub-problem P3 in order to deal with the minimum achievable date rate constraint

(49b) in the problem [43]. In our scenario, UEs are considered as a search agent, and the power

control of the BS g represents the location of the search agents. At each iteration ĵ, the power

control g can be updated by either the encircling prey method, spiral bubble-net attack method,

or searching for prey method. The fitness function of our problem which chooses the optimal

search agent can be expressed as follows:

Fitness(g) = −R(g)

P (g)
+$

K∑
k=1

Fk(fk(g))f 2
k (g), (59)

where fk(g) = rmin
k [t]− rk[t] is the inequality function, and $ is the penalty factor coefficient.

Since our sub-problem P3 is the maximization problem, we add the negative sign ahead of the

objective function to convert into a minimization problem. The index function Fk(fk(g)) = 1 if

fk(g) < 0, and Fk(fk(g)) = 0 if fk(g) ≥ 0. The pseudo-code of our WOA based power control

can be described as in Algorithm 3.

D. Overall Algorithm Complexity Analysis

The overall iterative algorithm for solving our optimization problem (18) is described in

Algorithm 4 with the aforementioned proposed solutions to three sub-problems. According to

the results in [25], [37] and [43], the complexity of our solutions can be obtained by each

algorithm for each sub-problem. For ARIS deployment sub-problem, the SCA is adopted as

in Algorithm 1. Since there are K users, the computational complexity of the SCA method is
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obtained as O1 (K3.5 log(1/ε1)) where ε1 is the variable to control the accuracy of the SCA

algorithm. For the AC-PPO algorithm for ARIS reflective elements on/off states and phase shift

as in Algorithm 2, the computational complexity is O2 (a2K), where a ∈ A is the total number

of actions taken by the agent. With WOA for power control as in Algorithm 3, the computational

complexity is O3

(
ĴU(m+K)

)
, where Ĵ is the number of iterations for WOA, U = 30 denotes

the number of whale populations, and m represents the number of inequality constraints in sub-

problem P3. Henceforth, the overall computational complexity for solving (18) can be acquired

as O
(
τ̂K3.5 log(1/ε1) + τ̂ a2K + τ̂ ĴU(m+K)

)
, where τ̂ denotes the number of iterations for

Algorithm 4.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed technique of energy-efficient multiple ARISs-assisted

downlink communication system via numerical analysis. The network design comprises of 12

UEs uniformly distributed within 100 m × 100 m square region and the BS with 15 multiple

antennas located at the center of the coverage area. There are 4 ARISs to support communication,

and each ARIS is integrated with 10 reflective elements. The ARISs can hover at a maximum

altitude of 100 m. The simulation parameters can be observed in Table I. To evaluate our

proposed algorithm, we compare our method with four benchmark schemes, which are explained

as follows:

• Single-ARIS: In this scheme, we implement a single ARIS instead of using multiple ARISs

to support the downlink communications from BS. The optimization problem is then solved

by using our proposed algorithms.

• ARIS (NPS): In this approach, we deploy 4 ARISs with the fixed phase shifts. The ARIS

deployment problem is solved by SCA, the ARIS reflective elements on/off states problem is

solved by AC-PPO, and transmit power allocation problem is solved by WOA alternatively.

• Random: In this design, we randomly deploy the ARISs, fixed the reflective elements

ON/OFF states, and fixed the transmit power of the BS.

• UAV-Relay: In this method, ARIS is not used. Instead, 4 UAVs are deployed as relays and the

incident signal is linearly processed, and re-transmit them toward the required destination.

The optimization problem is then solved by using our proposed algorithms.

Fig. 4 compares the average sum-rate of users with our proposed DRL-based algorithm towards

the above-mentioned benchmark schemes. In all circumstances, the average sum-rate increases
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TABLE I: Simulation parameters

Parameter Value

Number of reflective elements on ARIS n, In 10

Bandwidth W 2 MHz

Noise power σ2 -174 dBm

Path loss exponent α 4

Channel gain at reference distance κ -40 dBm

Rician factor R̂ 10

Circuit power of each RIS element PRIS 10 dBm [33]

BS power amplifier efficiency µ 0.8 [33]

Circuit power of each user P cir
k 10 dBm [33]

Clipping parameter ε 0.2

Learning rate 0.0002

Discount factor ξ 0.9

Mini batch size 64

Number of episodes 1,000

Number of time steps 300,000

Fig. 4: Performance comparison of sum-rate for different

transmit power.

Fig. 5: Performance comparison of energy efficiency for

different transmit power.

as the maximum transmit power rises. Our proposed algorithm outperforms ARIS (NPS) by 24%

and single-ARIS by 58%, respectively. This demonstrates how the multiple ARISs can achieve

better outcomes than a single ARIS since it can provide several paths between the BS and UEs.

Our algorithm outperforms most benchmark schemes in average sum-rate except for the UAV-

relay scenario. UAV-relay provides the highest performance since it processes and re-transmits
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Fig. 6: Performance comparison of cumulative rewards

for different Pmax.

Fig. 7: Performance comparison of cumulative rewards

for different learning rate.

Fig. 8: CDF of sum-rate with different number of ARIS

reflective elements for RIS and proposed system.

Fig. 9: CDF of energy-efficiency with different number of

ARIS.

the incident signal using a dedicated power source. As a consequence, it consumes more energy

which can be observed in Fig. 5.

Fig. 5 depicts the comparison of the energy efficiency under different algorithms. The smooth

data is demonstrated by the solid curved line, which represents the Savitzky-Golay filter. In all

scenarios, energy efficiency increases faster until the transmit power of the BS reaches to 10

dBm. Since then, the energy efficiency hasn’t improved much as the function does not increase

monotonically with respect to to transmit power. Our proposed algorithm achieves 72% increase

compared to the UAV-relay scenario and 43% increase compared to the single-ARIS scenario.
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Fig. 10: CDF of energy-efficiency with different number of UEs.

Next, we evaluate the convergence of our proposed AC-PPO algorithm with different values

of Pmax ranging from 0 dBm to 40 dBm. As shown in Fig. 6, it can be observed that in all cases,

the convergence of our cumulative rewards increases with respect to increase in transmit power.

We can see a significant difference in the performance when Pmax is low, and the performance

difference becomes lesser as Pmax becomes higher. This suggests that SINR has significant

impact on the overall performance of the cumulative rewards.

Following that, we examine how various learning rates affect on our cumulative rewards,

ranging from the set of {0.02, 0.002, 0.0002, 0.00002}. As seen in Fig. 7, a higher learning

rate does not enable our cumulative reward to converge faster but provides less performance.

Although it takes longer to converge, the learning rate of 0.0002 delivers better performance

than 0.002 and 0.00002. In this case, we chose a learning rate of 0.0002 since it produces the

highest cumulative rewards for our proposed method.

Furthermore, we compare the spectral efficiency of our proposed multiple ARISs-assisted

system to that of multiple RISs-assisted systems. In this approach, we employ 4 RISs on the

ground level rather than mounted on the UAVs. Fig. 8 demonstrates the cumulative distribution

function (CDF) values of average sum-rates. As seen in Fig. 8, our proposed system achieved 69%

performance increase compared to RISs-assisted system. This is because our proposed system

takes into account the deployment of UAVs, which provides improved LOS communications

between the BS and UEs. Concurrently, we experiment the performance of spectral efficiency

with different numbers of reflective elements. In all scenarios, the results show that as the number

of reflective elements increases, so do the UEs’ average sum-rates. This indicates that the spectral
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efficiency will be improved by increasing the number of reflective parts.

Finally, we examine the energy efficiency with various ARIS numbers and different numbers of

UEs, respectively. As shown in Fig. 9, we can observe that the energy efficiency improves as the

number of ARIS components increases. Moreover, when the number is low, the energy efficiency

improvement is significantly more compared to a larger number of ARIS. This indicates that

for the small cell network with 12 UEs, we do not need to install a large amount of ARISs.

Next, as shown in Fig. 10, we can observe that the energy efficiency almost linearly increases

with increasing number of UEs between 6 to 12. We can perceive that more ARISs and more

UEs help improve the energy efficiency of the multiple ARISs-assisted downlink communication

system.

VI. CONCLUSION

In this paper, we have studied an energy-efficient multiple ARISs-assisted downlink commu-

nication system. To maximize energy efficiency, we formulated a joint ARIS deployment, ARIS

reflective elements on/off states, phase shift, and power control problem. As the formulated

problem is MINLP and NP hard, we decompose our problem into three sub-problems: ARIS

deployment problem, joint reflective elements ON/OFF states and phase shift problem, and power

control problem. We then proposed SCA approach, AC-PPO method and WOA to solve our sub-

problems, alternatively. Through extensive numerical analysis, we have proved that by integrating

multiple ARISs in the downlink communication system, it can significantly outperform several

benchmark schemes; especially in spectral efficiency compared to a multiple RISs-assisted

scenario and energy efficiency compared to a single ARIS-assisted scenario.
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