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Abstract—The concept of age of information (AoI) has been
proposed to quantify information freshness, which is crucial
for time-sensitive applications. However, in millimeter wave
(mmWave) communication systems, the link blockage caused by
obstacles and the severe path loss greatly impair the freshness of
information received by the user equipments (UEs). In this paper,
we focus on reconfigurable intelligent surface (RIS)-assisted
mmWave communications, where beamforming is performed
at transceivers to provide directional beam gain and a RIS
is deployed to combat link blockage. We aim to maximize
the system sum rate while satisfying the information freshness
requirements of UEs by jointly optimizing the beamforming
at transceivers, the discrete RIS reflection coefficients, and the
UE scheduling strategy. To facilitate a practical solution, we
decompose the problem into two subproblems. For the first per-
UE data rate maximization problem, we further decompose it into
a beamforming optimization subproblem and a RIS reflection
coefficient optimization subproblem. Considering the difficulty
of channel estimation, we utilize the hierarchical search method
for the former and the local search method for the latter,
and then adopt the block coordinate descent (BCD) method
to alternately solve them. For the second scheduling strategy
design problem, a low-complexity heuristic scheduling algorithm
is designed. Simulation results show that the proposed algorithm
can effectively improve the system sum rate while satisfying the
information freshness requirements of all UEs.
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I. INTRODUCTION

IN recent years, a variety of novel applications have
emerged, leading to a dramatic increase in mobile data traf-

fic. According to the International Telecommunication Union
(ITU), mobile data traffic is predicted to grow from 62 EB
per month in 2020 to 5,016 EB per month in 2030 [1]. This
puts a compelling need for higher capacity of communica-
tion systems and further intensifies the conflict between the
demands for communication capacity and the scarce spectrum
resources. Therefore, millimeter wave (mmWave) communica-
tion is considered as a promising technology for future cellular
networks due to its large available bandwidth [2–4].

On the other hand, many new time-sensitive applications,
e.g., autonomous driving, depend on timely and reliable in-
formation exchange. Once information is generated, it should
be sent to the receiver for timely processing, and outdated
information could seriously degrade the user’s experience. In
order to capture the information freshness, age of information
(AoI) has been proposed, which is defined as the elapsed
time since the generation of the most recently received status-
update [5, 6]. Receivers wish to receive data with a lower AoI,
so that the received data will be fresher. The data received with
a high AoI could be meaningless or harmful.

In practical communication systems, AoI is generally af-
fected by the scheduling strategy and the quality of the
received signal. However, compared with microwave commu-
nication below 6 GHz, a key challenge of mmWave communi-
cation is that the signal in the mmWave band will experience
more severe path loss due to the short wavelength [7], which
degrades the quality of the received signal. It is necessary to
establish a directional transmission link between transceivers
with the help of large-scale antenna arrays and beamforming,
which can provide high antenna gains for mmWave signals
to compensate for path loss. However, the directional trans-
missions and weak diffraction ability make mmWave signals
vulnerable to blockage, especially in indoor and dense urban
environments [8]. The high AoI due to the blockage nature is
often unacceptable in most time-sensitive applications.

Fortunately, reconfigurable intelligent surface (RIS) can
flexibly configure the propagation environment through soft-
ware programming, which can be used to combat mmWave
link blockage [9]. Specifically, RIS is a device composed of
a large number of passive reconfigurable reflection elements.
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Each element can independently control the amplitude and
phase changes to the incident signal in a software-defined
manner [10]. By a proper design, the passive reflections of all
the reflection elements of RIS can be coherently superposed at
the desired receiver to increase the received signal power, thus
creating a more reliable reflection link and avoiding blockage
of the signal in the direct link. Therefore, deploying RIS in
mmWave systems exhibits the potential to achieve superior
information freshness performance. However, as a passive re-
flective device, RIS is not capable of transmitting, processing,
and receiving signals. The task of channel estimation grows
increasingly challenging as the count of reflection elements
escalates. Besides, compared with other wireless systems,
the large-scale antenna arrays in mmWave systems greatly
increase the difficulty of channel estimation [11]. Therefore,
it is necessary to discuss how to guarantee the information
freshness performance of the system without knowing CSI.

Therefore, in this paper, we study a downlink RIS-assisted
mmWave MIMO system, where the base station (BS) transmits
time-sensitive data to user equipments (UEs). Considering the
difficulty of channel estimation in the system, we assume
that the full CSI is unknown. Different from most of the
existing AoI research on the overall AoI minimization, we
wish to satisfy the information freshness requirement of each
UE in the system, which can provide a better communication
experience for UEs. Besides, we pursue the maximization of
the system sum rate while satisfying the information freshness
requirements, which can further stimulate the potential of
mmWave communication systems. Thus, our work aims to
maximize the system sum rate over a fixed time interval, i.e., a
superframe, while satisfying all the UEs’ information freshness
requirements in the system. Optimization variables include the
beamforming vectors at the BS and UEs, the discrete RIS
reflection coefficients, and the scheduling matrix, all of which
are coupled in the expressions of the sum rate in the objective
function and AoI constraints. The problem is an integer non-
convex optimization problem. To reduce the complexity of the
solution, we decompose the optimization problem into several
subproblems and solve them separately.

The contributions of this paper are summarized as follows:
• We study a downlink RIS-assisted mmWave MIMO sys-

tem, in which a RIS is deployed to provide a reliable
reflection path against the blockage of direct links, and
time-sensitive data is transmitted from the BS to UEs.
Each UE in the system has certain requirement for the
freshness of information.

• We formulate the system sum rate maximization problem
by optimizing the beamforming vectors at the BS and
UEs, the RIS reflection coefficients, and the scheduling
matrix, subject to the AoI constraints of UEs. Since all
the optimization variables are coupled, the complexity
of finding the overall optimal solution by exhaustive
search will be prohibitively high. To address this issue,
we decompose the original problem into a per-UE rate
maximization problem and a scheduling strategy design
problem.

• For the per-UE rate maximization problem, considering
that the full CSI is unknown, the hierarchical search

method and local search method are used for the op-
timization of the beamforming vectors and the RIS
reflection coefficients, respectively. Due to the coupled
beamforming vectors and RIS reflection coefficients, we
use the block coordinate descent (BCD) algorithm to
iteratively update the two sets of optimization variables.
For the scheduling strategy design problem, we propose
a low-complexity heuristic strategy, which maximizes the
system sum rate over a superframe while satisfying the
AoI constraints.

• We evaluate the performance of the proposed algo-
rithm with simulations. Compared with three benchmark
schemes, the simulation results demonstrate that the
proposed algorithm ensures the information freshness
requirements of all UEs, and the system sum rate is
effectively improved.

The rest of the paper is organized as follows. Section II
reviews related work. The system overview and problem
formulation are presented in Section III and Section IV,
respectively. We present the sum rate maximization algorithm
in Section V and discuss our simulation results in Section VI.
Section VII concludes this paper.

II. RELATED WORK

In RIS-assisted communication systems, a key problem of
interest is to jointly devise the RIS reflection coefficients and
the active beamforming vectors at the BS to improve system
performance. Numerous studies have been conducted to solve
this problem under different system setups and assumptions,
some of which are for mmWave MIMO communication sys-
tems. Perovic et al. [12] compared two optimization schemes
in the indoor RIS-assisted mmWave environment without the
line-of-sight (LOS) path. They showed the joint optimization
of the RIS reflection elements and the transmit phase precoder
can effectively enhance channel capacity. Wang et al. [13]
considered a RIS-assisted downlink mmWave system with a
hybrid beamforming structure. A manifold optimization (MO)-
based algorithm was developed to jointly optimize the RIS’s
reflection coefficients and the hybrid beamforming at the
BS for maximization of spectral efficiency. Feng et al. [14]
designed a successive interference cancelation (SIC)-based
method for the bandwidth-efficiency maximization problem. A
greedy method is proposed for the hybrid beamforming design
and a complex circle manifold (CCM)-based method is used
for updating of the RIS elements. Li et al. [15] formulated a
power minimization problem with signal-to-interference-plus-
noise ratio (SINR) constraints in multi-user scenarios. They
proposed a two-layer penalty-based algorithm to decouple
variables in SINR constraints and three different methods to
optimize the BS analog beamforming and the RIS response
matrix in the penalty-based algorithm.

The above works rely on full CSI through channel estima-
tion. Considering the difficulty of channel estimation in RIS-
assisted mmWave MIMO systems, some studies focus on the
problem of beam training with the goal of obtaining the angle
of departure (AoD) and angle of arrival (AoA) associated with
the dominant path. Wang et al. [16] developed an efficient
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downlink beam training method for RIS-assisted mmWave or
THz systems. They designed multi-directional beam training
sequences to scan the angular space and proposed an effi-
cient set-intersection-based scheme to identify the best beam
alignment. Wei et al. [17] proposed an effective near-field
beam training scheme by designing a near-field codebook that
matches the near-field channel model for the extremely large-
scale RIS-assisted system. Wang et al. [18] considered a multi-
RIS-assisted mmWave MIMO system and carried out beam
training designs with random beamforming and maximum
likelihood (ML) estimation to estimate the parameters of the
LOS component.

Recently, the importance of information freshness has been
recognized and AoI has been considered in the design of
wireless communication systems. For example, He et al. [19]
designed two scheduling strategies for the system AoI mini-
mization problem in wireless networks. One is based on the
ILP formulation, and the other is the suboptimal but more
scalable steepest age descent algorithm. Kadota et al. [20]
formulated the problem of minimizing the expected weighted
sum of AoI under time-throughput constraints. They designed
four low-complexity scheduling strategies for solving this
problem and found the Max-Weight and the Drift-Plus-Penalty
have better performance in terms of AoI and throughput. Liu
et al. [21] proved that any optimal solution of the maximum
delay minimization problem is an approximate solution of
the AoI minimization problem with bounded optimality loss.
Inspired by this, a framework was developed to solve the
AoI minimization problem in multi-path communications.
Bhat et al. [22] considered the long-term average throughput
maximization problem in fading channels, where the system
average AoI and power are regarded as constraints. They
proposed a simple age-independent stationary randomized
power allocation policy to solve the problem. In addition, the
optimization of AoI has been extended to different application
scenarios, such as multi-access edge computing-assisted IoT
networks [23], unmanned aerial vehicles (UAV) communi-
cations [24], simultaneous wireless information and power
transfer (SWIPT) enabled communications [25], and the joint
radar-communication (JRC) [26], etc.

There were also some related works on AoI optimization
in RIS-assisted wireless communications [27–33]. Sorkhoh
et al. [27] studied the RIS-assisted cooperative autonomous
driving (CAD) systems. They scheduled the resource blocks
and RISs to minimize the average AoI of all streams. Muham-
mad et al. [28] examined the joint optimization of the RIS
phase shifts and the traffic streams scheduling based on
semi-definite relaxation (SDR), and solved the problem of
minimizing the sum AoI in RIS-assisted wireless networks
in single-antenna scenarios. Samir et al. [29] formulated an
optimization problem with the objective of minimizing the
expected sum AoI in an IoT network with the relay of a UAV
equipped with RIS. To solve this problem, they developed
a deep reinforcement learning (DRL) framework to jointly
optimize the UAV height, RIS phase shift, and scheduling
strategy. Fan et al. [30] deployed a RIS between IoT devices
and UAVs to overcome the obstacles of urban buildings, and
designs a DRL scheme to optimize UAV trajectory, discrete

RIS phase shift, and scheduling strategy to minimize the total
AoI of all devices. Feng et al. [31] adopted the DRL algorithm
to jointly optimize the phase-shift matrix of RIS and service
time of packets to solve the problem of minimizing the average
peak information age in RIS-assisted non-orthogonal multiple
access (NOMA) networks. Lyu et al. [32] investigated the sum
AoI minimization in a RIS-assisted SWIPT network, where the
energy harvesting demands of users were considered. They
proposed a successive convex approximation (SCA) based al-
ternating optimization (AO) algorithm to handle the scheduling
problem with joint active and passive beamforming design. Shi
et al. [33] considered the average AoI minimization through
the joint design of the RIS phase shifts, transmit powers, and
transmission rate in hybrid automatic repeat request (HARQ)-
RIS aided IoT networks. However, all of these studies took the
overall AoI minimization as their objective and neglected the
information freshness requirements of UEs. Moreover, the AoI
optimization in RIS-assisted mmWave communications has
not been studied yet. Therefore, in this paper, we focus on sum
rate maximization while satisfying the information freshness
requirements of UEs in RIS-assisted mmWave MIMO systems.

III. SYSTEM OVERVIEW

A. System Model

As shown in Fig. 1, we consider a single-cell mmWave
MIMO communication system, where multiple UEs need to
obtain fresh data from the BS. A typical example is that
UEs require real-time traffic information from the BS for trip
planning. The set of UEs is denoted as K = {1, 2, · · · ,K}.
The BS is equipped with Nt antennas and each UE is equipped
with Nr antennas. Both the BS and the UEs use the uniform
linear array (ULA) antennas. The direct links between the BS
and the UEs are assumed to be blocked by some obstacles,
e.g., high buildings. Thus, a RIS with M passive reflection
elements is deployed to provide a reliable reflection link for
the UEs.

Moreover, time is divided into a series of non-overlapping
superframes. Each superframe consists of two phases: the
scheduling phase and the transmission phase. In the scheduling
phase, the scheduling and network optimization scheme is
computed by a central controller located at the BS, then the
results are sent to the RIS and the UEs. In the transmission
phase, the BS communicates with the UEs with the help of
RIS following the scheme. If the system changes during the
transmission phase causing a transmission failure, UEs will
report the transmission failure to the BS. The system will
advance to the next superframe and the BS will redesign the
scheme.

We focus on the performance of the system in the trans-
mission phase. The transmission phase can be divided equally
into T time slots, denoted as T = {1, 2, · · · , T}. The time-
division multiple access (TDMA) protocol is adopted, which
means that only one UE can be scheduled for each time slot,
so there is no interference between different UEs [30, 34].
At each time slot, the BS side and the scheduled UE side
perform analog beamforming to generate directional antenna
gain. We assume that for each time slot, the BS transmits a
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Fig. 1. An illustration of the system model.

signal with the same power PT . The signal transmitted by the
BS in time slot t can be expressed as xt = wt

√
PT st, where

st denotes the transmitted data at time slot t with E{st} = 0
and E{stsHt } = 1, and wt ∈ CNt×1 denotes corresponding
beamforming vector at the BS. The received signal at the
scheduled UE in time slot t is expressed as

yt = fHt (HH
t xt + nt) = fHt (HH

t wt

√
PT st + nt), (1)

where ft ∈ CNr×1 denotes the beamforming vector at the
UE, nt ∼ CN (0, σ2INr

) is the additive Gaussian white noise
received by the UE, and Ht ∈ CNt×Nr denotes the channel
matrix in time slot t.

Since the direct link is blocked, the transmitted signal
arrives at the UE via the BS-RIS-UE channel. The RIS
is a uniform planar array (UPA) consisting of M passive
reflection elements, each of which can independently adjust
the amplitude and phase of the incident signal. In view of
the severe path loss, we ignore the signals reflected by the
RIS twice and more and consider only the signal reflected for
the first time [35]. Let Gt ∈ CNt×M and Hr,t ∈ CM×Nr

represent the reflection channel matrixes at time slot t from
the BS to the RIS and from the RIS to the UE, respectively.
Thus, the channel matrix Ht can be expressed as

Ht = GtΦtHr,t. (2)

Here, Φt = diag(β1,tejφ1,t , β2,te
jφ2,t , · · · , βM,te

jφM,t) ∈
CM×M denotes the reflection-coefficient matrix of the RIS,
where βm,t ∈ [0, 1] and φm,t ∈ [0, 2π] represent the amplitude
reflection coefficient and phase-shift reflection coefficient of
RIS element m in time slot t, respectively. For simplicity,
each reflection element of RIS is designed to maximize signal
reflection (i.e., βm,t = 1, ∀m, t) [36, 37]. Further, for the
sake of hardware implementation, the phase shift of RIS
takes finite discrete values. We assume that each RIS element
can realize 2b different discrete phase shift values by b-bit
quantization, the set of discrete phase shifts is represented as
F =

{
0, 2π

2b
, · · · ,

(
2b − 1

)
2π

2b−1

}
[38].

Accordingly, the SNR received by the UE scheduled in time

x

y

z

,

,

,

RIS

BS

LOS path

NLOS path

BS antenna element

RIS reflection element

Fig. 2. An illustration of the BS-RIS channel model.

slot t is given by

γt =

∣∣∣fHt (GtΦtHr,t)
H
wt

√
PT

∣∣∣2
σ2

. (3)

To ensure that the UE can correctly demodulate the signal,
the SNR should be greater than a threshold value γth, i.e.,
γt > γth. Then, the achievable transmission rate in time slot
t can be written as

Rt = log2 (1 + γt). (4)

However, it is worth noting that obtaining the full CSI by
channel estimation is difficult in this system [11]. Moreover,
the RIS in the system is a passive device with no RF chain.
Therefore, it cannot receive, transmit, and process signals
other than just reflecting signals. It cannot directly estimate
the BS-RIS channel and the RIS-UE channel. On the other
hand, the large antenna array and the large number of passive
reflection elements of RIS impose a substantial overhead on
channel estimation. This is very detrimental to the design and
optimization of the system. Therefore, we adopt the beam
training method in the scheduling phase to obtain the AoD and
AoA associated with the reflection path, instead of explicitly
estimating the entire channel. Specially, the beam search space
is represented by a codebook containing multiple codewords.
We denote the codebook of the BS and each UE as Γt and
Γr, respectively. Thus, we have wt ∈ Γt and ft ∈ Γr for ∀t.
In the scheduling phase, the BS consecutively sends beam
training signals to each UE through the reflection of the
RIS. Both the BS and each UE can sweep the beamforming
vectors in the pre-designed codebook, while the different phase
shift of each RIS element is selected from F to change the
reflection beam direction. Then, based on the UE’s feedback,
the combination of beamforming vectors and RIS reflection
coefficients that maximizes the UE’s achievable transmission
rate will be selected.

B. Channel Model

Due to the small wavelength, mmWave signals exhibit weak
diffraction capabilities and suffer from high path loss, which
makes the mmWave channel have limited scattering. The
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number of scatterers is typically substantially fewer than the
number of antennas at the transceiver. Moreover, the dense
configurations of antenna arrays in mmWave transceivers
introduce pronounced antenna correlation. Given this, the
Saleh-Valenzuela (S-V) channel model has been extensively
used the capture the mathematical attributes of the mmWave
channels [39]. In Fig. 2, we present a schematic diagram of
the BS-RIS channel based on the S-V channel model. The
channel matrix between transceivers can be portrayed as a
superposition of multipath components, where different mul-
tipath components have different angles of separation (AoDs)
and angles of arrival (AoAs).

Assume that the channels do not change within a super-
frame. In each time slot t, the BS-RIS channel Gt and the
RIS-UE channel Hr,t can be written as

Gt =

√
NtM

P

P∑
i=1

α̃iar
(
M,ϕrRIS,i, ζ

r
RIS,i

)
aHt

(
Nt, ψ

t
BS,i

)
,

(5)

Hr,t =

√
MNr
L

L∑
i=1

β̃iar
(
Nr, ψ

r
UE,i

)
aHt

(
M,ϕtRIS,i, ζ

t
RIS,i

)
,

(6)
where P is the total number of paths between the BS and
the RIS, L is the total number of paths between the RIS
and the UE scheduled in time slot t. α̃i and β̃i denote the
complex gain of the i-th path. ϕrRIS,i and ζrRIS,i represent
the azimuth and elevation angles of arrival associated with
the RIS, respectively, while ϕtRIS,i and ζtRIS,i represent the
azimuth and elevation angles of departure associated with
the RIS, respectively. ψtBS,i denotes the angle of departure
from the BS and ψrUE,i denotes the angle of arrival to the
scheduled UE. ar(·) and at(·) denote the normalized angle
steering vector functions at transmitter and receiver, respec-
tively. Specifically, for the BS and UEs with an N -element
ULA, the corresponding angle steering vector is expressed as

a(N,ψ) =
1√
N

[1, ej
2πd
λ sin(ψ), · · · , ej 2πd

λ (N−1) sin(ψ)], (7)

and for the RIS with the UPA with M =Ma ×Mb reflection
elements, the corresponding normalized angle steering vector
is expressed as

a(M,ϕ, ζ)=
1√
M

[1, · · · , ej 2πd
λ ((ma−1) sin(ζ) sin(ϕ)+(mb−1) cos(ζ))

· · · , ej
2πd
λ ((Ma−1) sin(ζ) sin(ϕ)+(Mb−1) cos(ζ))].

(8)

C. AoI Definition

We use the AoI to measure the freshness of information
received by UEs. The BS is assumed to follow a per time slot
sampling strategy, i.e., it samples status-update information
and sends a status-update packet at the beginning of each
time slot [29]. Meanwhile, a single packet queue discipline
is considered for the BS, which means the older status-update
packet will be replaced by a newly arrived packet. We use
uk,t ∈ {0, 1} to indicate whether UE k is scheduled to
receive data from the BS in time slot t. If UE k is scheduled,
uk,t = 1, and then the BS sends a status-update packet to UE

k; otherwise, uk,t = 0. The overall scheduling strategy in time
slot t is expressed as ut = [u1,t, u2,t, . . . , uK,t]

T . Note that
in addition to being scheduled, the successful transmission of
the status-update information to UE k requires that the SNR
exceeds the threshold for reliable demodulation. In case the
status-update packet is successfully transmitted to UE k in
time slot t, the AoI of UE k is reset to 1, otherwise, the AoI
is increased by 1. Therefore, the evolution of the AoI of UE
k is given by

Ak,t =

{
1, if uk,t = 1 and γt > γth,
Ak,t−1 + 1, otherwise.

(9)

For simplicity, we assume that the initial AoI Ak,0 = 1,∀k.
The average AoI of UE k during the transmission phase
consisting of T time slots is given by

Ak =
1

T

T∑
t=1

Ak,t. (10)

Considering the requirement of each UE for fresh infor-
mation, we denote the maximum tolerable AoI for UE k as
Ak,max. The AoI of each UE should satisfy Ak ≤ Ak,max,∀k.
In this paper, we focus on the situation in which each UE
receives the same types of service from the BS. Generally, we
assume Ak,max = Amax,∀k.

IV. PROBLEM FORMULATION AND DECOMPOSITION

In this section, we first formulate our optimization problem
based on the above system model, and then decompose the
complex problem in order to efficiently solve it.

A. Sum Rate Maximization Problem Formulation

In this paper, we aim to maximize the sum rate of the
system over T time slots by jointly optimizing the scheduling
strategy, the reflection-coefficient matrix of the RIS, and
the beamforming vector of the BS and UEs. To facilitate
the subsequent presentation, let Φ = [Φ1,Φ2, . . . ,ΦT ]

T

denote the RIS reflection coefficient matrix over T time
slots, W = [w1,w2, . . . ,wT ]

T and F = [f1, f2, . . . , fT ]
T

denote the beamforming vector of the BS and UEs over T
time slots, respectively, and U = [u1,u2, . . . ,uT ]

T represent
the scheduling strategy over T time slots. Then, the joint
optimization problem (P1) can be formulated as

max
U,W,Φ,F

T∑
t=1

Rt (11)

s.t.

K∑
k=1

uk,t = 1, ∀t ∈ {1, 2, · · · , T} , (12)

Ak ≤ Ak,max, ∀k ∈ {1, 2, · · · ,K} , (13)
uk,t ∈ {0, 1} ,∀k ∈ {1, 2, · · · ,K} , t ∈ {1, 2, · · · , T} ,

(14)
φm,t ∈ F , ∀m ∈ {1, 2, · · · ,M} , t ∈ {1, 2, · · · , T} ,

(15)
wt ∈ Γt, ∀t ∈ {1, 2, · · · , T} , (16)
ft ∈ Γr, ∀t ∈ {1, 2, · · · , T} , (17)
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where Constraint (12) indicates that only one UE is scheduled
in each time slot, and Constraint (13) guarantees that the
information freshness of each UE is ensured. Constraint (14)
limits scheduling variables uk,t to 0-1 variables, and Con-
straints (15-17) restrict φm,t, wt, and ft to be discrete values.
The problem is an integer non-convex optimization problem.
Moreover, the four variables, U, W, Φ, and F, are coupled
in both the objective function and Ak. Although the global
optimal solution can be found by exhaustive search, the multi-
variable coupling makes the search space prohibitively large
and consequently, the computational overhead considerable.
Facing these challenges, our goal is to design a low-complexity
algorithm to solve this problem.

B. Problem Decomposition
Considering the multi-variable coupling, we first decompose

the problem. First, it can be noted that only one UE is
scheduled in each time slot in the TDMA system. Let Hr,k,t

denote the channel between RIS and UE k in time slot t.
The corresponding transmit beamforming vector, the receive
beamforming vector, and the RIS phase shift matrix are
represented as wk,t, fk,t, and Φk,t, respectively. The sum rate
can be accordingly rewritten as

T∑
t=1

Rt=

T∑
t=1

K∑
k=1

uk,tlog2

1+
∣∣∣fHk,t(GtΦk,tHr,k,t)

H
wk,t

√
PT

∣∣∣2
σ2


(18)

Then, we assume that the channels are quasi-static and do not
change over T time slots, so we have Gt = G,Hr,k,t =
Hr,k, ∀t ∈ {1, 2, · · · , T}. In this case, the beamforming
vectors and the RIS phase shifts for UE k can be simplified to
be consistent in different time slots, which can be represented
as wk,t = wk, fk,t = fk, and Φk,t = Φk, ∀t ∈ {1, 2, · · · , T}.
Accordingly, the sum rate can be further rewritten as

T∑
t=1

Rt=

T∑
t=1

K∑
k=1

uk,tlog2

1 +

∣∣∣fHk (GΦkHr,k)
H
wk

√
PT

∣∣∣2
σ2


(19)

Let Rk = log2

(
1 +

|fHk (GΦkHr,k)
Hwk

√
PT |2

σ2

)
represent the

transmission rate of UE k. Thus, P1 can be rewritten as

max
U;wk,Φk,fk,∀k

T∑
t=1

K∑
k=1

uk,tRk (20)

s.t.

K∑
k=1

uk,t = 1, ∀t ∈ {1, 2, · · · , T} , (21)

Ak ≤ Ak,max, ∀k ∈ {1, 2, · · · ,K} , (22)
uk,t ∈ {0, 1} ,∀k ∈ {1, 2, · · · ,K} , t ∈ {1, 2, · · · , T} ,

(23)
φm,k ∈ F , ∀m ∈ {1, 2, · · · ,M} ,∀k ∈ {1, 2, · · · ,K} ,

(24)
wk ∈ Γt,∀k ∈ {1, 2, · · · ,K} , (25)
fk ∈ Γr,∀k ∈ {1, 2, · · · ,K} . (26)

Note that the sum rate can also be converted as
T∑
t=1

K∑
k=1

uk,tRk =
K∑
k=1

(
T∑
t=1

uk,t)Rk, where
T∑
t=1

uk,t ≥ 0,∀k ∈

{1, 2, · · · ,K}. Since the transmission rate Rk is related only
to wk, Φk and fk and not to U, and the transmission
rates of different UEs are independent of each other, we can
decompose P1 into K per-UE rate maximization problems and
a scheduling strategy design problem.

1) Per-UE rate maximization problem: This subproblem
aims to maximize the achievable transmission rate of each
UE through the joint optimization of beamforming vectors
and the reflection-coefficient matrix of the RIS. We denote
the achievable transmission rate of UE k as Rk, and the
subproblem can be written as

max
wk,Φk,fk

Rk = log2

1 +

∣∣∣fkHHk
Hwk

√
PT

∣∣∣2
σ2

 (27)

s.t. φm,k ∈ F , ∀m ∈ {1, 2, · · · ,M} , (28)
wk ∈ Γt, (29)
fk ∈ Γr. (30)

In this subproblem, variables wk, Φk, and fk are still coupled,
so we further decompose the subproblem into a beamforming
optimization subproblem and a RIS reflection coefficient opti-
mization subproblem.

For the beamforming optimization subproblem, we assume
that the reflection coefficient matrix of the RIS Φk is fixed and
maximize the transmission rate of each UE by optimizing the
beamforming vectors wk and fk. We can write this subproblem
as

max
wk,fk

Rk = log2

1 +

∣∣∣fkHHk
Hwk

√
PT

∣∣∣2
σ2

 (31)

s.t. wk ∈ Γt, (32)
fk ∈ Γr. (33)

For the RIS reflection coefficient optimization subproblem,
we fix the beamforming vectors and find the efficient reflection
coefficient matrix Φk for the RIS. We can write this subprob-
lem as

max
Φk

Rk = log2

1 +

∣∣∣fkHHk
Hwk

√
PT

∣∣∣2
σ2

 (34)

s.t. φm,k ∈ F , ∀m ∈ {1, 2, · · · ,M} . (35)

2) Scheduling strategy design problem: Based on the
maximum achievable transmission rate of each UE, this sub-
problem is to design the scheduling strategy to maximize the
total transmission rate over T time slots. The subproblem can
be written as

max
U

T∑
t=1

K∑
k=1

uk,tRk (36)
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s.t.

K∑
k=1

uk,t = 1, ∀t ∈ {1, 2, · · · , T} , (37)

Ak ≤ Ak,max, ∀k ∈ {1, 2, · · · ,K} , (38)
uk,t ∈ {0, 1} ,∀k ∈ {1, 2, · · · ,K} , t ∈ {1, 2, · · · , T} .

(39)

In the next section, we will develop effective algorithms to
solve the two decomposed problems and achieve the goal of
sum rate maximization.

V. SUM RATE MAXIMIZATION

In this section, we aim to propose a low-complexity algo-
rithm to solve P1. Based on the decomposition of P1, the pro-
posed solution consists of three parts: First, in Section V-A, we
design a block coordinate descent (BCD)-based algorithm to
solve the per-UE rate maximization problem, which solves the
beamforming optimization subproblem and the RIS reflection
coefficient optimization subproblem iteratively until the algo-
rithm converges. Then, in Section V-B, we propose a heuristic
scheduling algorithm to solve the scheduling strategy design
problem. Finally, in Section V-C, we show the overall sum
rate maximization algorithm for solving P1. The convergence
and complexity analyses are given in Section V-D.

A. Per-UE Rate Maximization

To solve the per-UE rate maximization problem, we first
design algorithms to solve the beamforming optimization sub-
problem and the RIS reflection coefficient optimization sub-
problem. Then we use the BCD algorithm to obtain the overall
suboptimal solution. It is worth noting that we consider the
difficulty of channel estimation in the RIS-assisted mmWave
MIMO system. Thus, different from most existing studies
adopting the BCD-based method [38, 40], we design the BCD
algorithm in the case of unknown CSI.

1) Beamforming Optimization: Given the codebook of the
BS and UE, although exhaustively searching all the transmit-
receive beam pairs in the codebooks can find an efficient beam
pair, we choose the hierarchical search method for reduced
complexity. Specifically, we first design multilevel codebooks
with different beam widths and then perform a divide-and-
conquer search on the different codebook levels. The hier-
archical search shows a tree structure, thereby substantially
enhancing the search efficiency. The details of this method
are given by Algorithm 1.

First, we focus on the design of the hierarchical codebooks
Γt and Γr. There are two criteria to design a hierarchical
codebook [41], which are given as follows.

• Within each layer, the aggregate beam coverage of all
codewords should span the entirety of the angular do-
main, which ensures no miss of any angle during the
beam search.

• The beam coverage of an arbitrary codeword within a
layer should be given by the union of those of several
adjacent codewords in the next layer, which establishes a
tree-fashion relationship between the codewords.

In this paper, we assume that each parent codeword has
2 child codewords, thus forming a binary-tree codebook

structure. Fig. 3 shows a three-layer binary-tree codebook
structure diagram, where w(l, n) denotes the n-th codeword
of the l-th layer codebook. For antenna arrays with N antenna
elements, we assume that there are N codewords covering the
angle range [-1,1] in the last layer and each codeword has
beam width 2/N with different steering angles. Therefore,
the codebook consists of log2(N) + 1 layers, where the k-
th layer consists of 2k codewords with beam width 2/2k for
each codeword.

For the design of N codewords in the last layer, since
the steering vector a(N,ψ) in (7) can be defined as having
a 2/N beam width centered on the steering angle ψ, we
adopt the steering vectors with N angles evenly sampled
within [-1,1] [41]. The n-th codeword exhibits the maximal
beam gain along the angle −1 + 2n−1

N . Thus, we have
w(log2(N), n) = a(N,−1 + 2n−1

N ), n = 1, 2, · · · , N . Then,
for the design of codewords in the other layers, we use the
joint sub-array and deactivation approach [41]. Specifically,
to broaden the beam, we divide the N -antenna array into
Q sub-arrays. Each sub-array is equipped with NS antennas.
Taking the first codeword of each layer (i.e., w(l, 1)) as an
example, the codeword of the q-th sub-array can be represented
as wq = [w(l, 1)](q−1)NS+1:qNS

. Among these sub-arrays, the
number of the activated sub-arrays is denoted by NA. Since the
beams of these activated sub-arrays are pointed in sufficiently
spaced directions, they can be aggregated into wider beams.
We define the codeword of the q-th activated sub-array as
wq = ejθqa(NS ,−1 + 2q−1

NS
) with ejθq representing a scalar

coefficient with the unit norm for the q-th sub-array. To reduce
beam fluctuations, the intersection points between each sub-
array coverage area are required to have high beam gain, which
is modeled as the problem (27) in [41]. Based on the solution
for the problem, we have θq = −qNS−1

NS
π. For the deactivated

sub-arrays, the antennas in these sub-arrays are turned off, i.e.,
wq = 0NS×1. Thus, the codeword of each sub-array can be
given by

wq =

 e
−jqNS−1

NS
π
a
(
NS ,−1 + 2q−1

NS

)
, q = 1, 2, ..., NA

0NS×1, q = NA + 1, NA + 2, ..., Q,
(40)

and the beam width of the sub-array codeword is 2NA

NS
. In

addition, according to Corollary 1 in [41], after obtaining the
first codeword of each layer (i.e., w(l, 1)), we can obtain all
the other codewords in the same layer through rotating w(l, 1)

by 2(n−1)
2l

, n = 2, 3, ..., 2l, respectively. The beam rotation can
be realized by

w(l, n) = w(l, 1) ◦
√
Na(N,

2(n− 1)

2l
), n = 2, 3, · · · , 2l

(41)
where ◦ represents entry-wise product.

The details of the codebook design are presented in Algo-
rithm 2. First, for the last layer of the codebook, the steering
vectors with N angles evenly sampled within [-1,1] are used
for codewords as in lines 2-3. Next, the joint sub-array and
deactivation approach is adopted to generate the codewords
for other layers as in lines 5-14. We first separate w(l, 1) into
Q = 2⌊(p+1)/2⌋ sub-arrays with p = log2(N) − l in lines
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Algorithm 1 Hierarchical Search Method for Beamforming Opti-
mization
Input: Nt; Nr; the designed hierarchical codebooks Γt and Γr

Output: wk; fk
Initialization: cwt = cwr = 0
1: Fix the BS to be in an omni-directional mode;
2: for each layer lr in Γr do
3: Compare the data rate of the (2cwr − 1)-th codeword with

that of the (2cwr)-th codeword and record the index of the
codeword with a higher data rate as cw∗

r ;
4: cwr = cw∗

r ;
5: end for
6: fk = Γr(Lr, cwr);
7: Fix the UE to the directional mode with fk;
8: for each layer lt in Γt do
9: Compare the data rate of the (2cwt − 1)-th codeword with

that of the (2cwt)-th codeword and record the index of the
codeword with a higher data rate as cw∗

t ;
10: cwt = cw∗

t ;
11: end for
12: wk = Γt(Lt, cwt);

5-6 and determine whether to activate half or all of the sub-
arrays based on the parity of p in lines 7-11. Then, in line 12,
the codebook for each sub-array can be obtained by (40) and
we can get w(l, 1) accordingly. In the end, based on w(l, 1),
we can derive all the other codewords in each layer by (41)
in line 13. The hierarchical codebook design is finished after
normalizing w(l, n) in line 14.

Algorithm 2 Hierarchical Codebook Design
1: for each layer l do
2: if l = log2(N) then
3: w(l, n) = a(N,−1 + 2n−1

N
), n = 1, 2, · · · , N ;

4: else
5: p = log2(N)− l;
6: Separate w(l, 1) into Q = 2⌊(p+1)/2⌋ sub-arrays with

wq = [w(l, 1)](q−1)NS+1:qNS
, q = 1, 2, · · · , Q;

7: if p is odd then
8: NA = Q/2;
9: else

10: NA = Q;
11: end if
12: Calculate wq according to (40) for q = 1, 2, · · · , Q and

obtain w(l, 1);
13: Obtain all the other codewords in layer l through (41);
14: Normalize w(l, n);
15: end if
16: end for

After obtaining the codebooks Γt and Γr, we first fix the
BS in the omnidirectional mode and perform a binary tree
search in Γr to find the efficiently received codeword for
the UE, as in lines 1-6 in Algorithm 1. Specifically, in each
layer, we select the codeword with a higher data rate, and
the two adjacent codewords in the next-layer codebook within
the beam coverage of this codeword are used as candidate
codewords for the choice of the next layer. Then we fix the
UE in the directional mode corresponding to the codeword and
perform the same binary tree search in Γt to find the efficient
transmit codeword for the BS in lines 7-12.

2) RIS Reflection Coefficient Optimization: For the RIS
reflection coefficient optimization subproblem, we need to

-1

( )0,1w

( )1,1w ( )1, 2w

( )2,1w ( )2,2w ( )2,3w ( )2,4w

( )3,1w ( )3,2w ( )3,3w ( )3,4w ( )3,5w ( )3,6w ( )3,7w ( )3,8w

Layer

1

2

3

Angle Domain

0

1

Fig. 3. Beam coverage of a 3-layer codebook.

select the appropriate phase shift for each RIS element from a
finite set of discrete phase shifts. Considering the complexity,
we will use the local search method to solve the subproblem
as shown in Algorithm 3. Specifically, we optimize each RIS
element successively while keeping the phase shifts of the
remaining M−1 elements fixed. For each element, we traverse
all the possible phase shifts and select the phase shift giving
the maximum UE transmission rate as the optimized phase
shift for the element. Then we use it for the phase shift
optimization of other RIS elements until all the phase shifts
are optimized.

Algorithm 3 Local Search Method for RIS Reflection Coefficient
Optimization
Input: M ; b
Output: Φk

1: for m = 1 : M do
2: R∗

k = 0;
3: for ps = 1 : 2b do
4: Update Φk with φm,k = (ps − 1) 2π

2b−1
;

5: Obtain the transmission rate Rk;
6: if Rk > R∗

k then
7: R∗

k = Rk, φ∗
m,k = φm,k;

8: end if
9: end for

10: Update Φk with φ∗
m,k;

11: end for

3) Joint Optimization for Per-UE Rate Maximization:
In order to solve the per-UE rate maximization problem, we
apply the BCD method to alternately optimize the beamform-
ing vectors and the RIS phase shift matrix. Specifically, as
Algorithm 4 shows, we randomly initialize the beamforming
vectors and the RIS phase shift matrix in the beginning. In
each iteration, we first fix the RIS phase shift matrix to the
last updated value and use Algorithm 1 to update beamforming
vectors. If the data rate of UE k after the beamforming
update is more than that before this update, the results of
this update are retained; otherwise, the beamforming vectors
are not updated. Then, we update the RIS phase shift matrix
based on Algorithm 3 with updated beamforming vectors.
If the ratio of the difference in the data rate between two
consecutive iterations is less than a certain threshold, i.e.,
|Rτk −Rτ−1

k |/Rτ−1
k < δ, we consider the algorithm has

converged.

B. Scheduling Strategy Design

1) Motivation and Main Idea: After obtaining the maxi-
mum achieved rate of each UE with Algorithm 4, we need
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Algorithm 4 BCD Method for Joint Optimization of Beamforming
and RIS Phase Shift
Input: M ; b; Nt; Nr; the designed hierarchical codebooks Γt and

Γr

Output: Φ∗
k; w∗

k; f∗k ; R∗
k; γ∗

k

Initialization: τ = 0; R0
k = Rbf = 0; δ = 3 × 10−3; randomly

generate Φ0
k, w0

k and f0k ; Φ∗
k = Φ0

k; w∗
k = w0

k; f∗k = f0k
1: repeat
2: Obtain fτ+1

k and wτ+1
k with fixed Φτ

k using Algorithm 1;
3: Obtain data rate Rbf with Φτ

k , fτ+1
k and wτ+1

k ;
4: if Rτ

k > Rbf then
5: fτ+1

k = fτk , wτ+1
k = wτ

k ;
6: end if
7: Obtain Φτ+1

k with fixed fτ+1
k and wτ+1

k using Algorithm 3;
8: Obtain Rτ+1

k and SNR γτ+1
k with Φτ+1

k , fτ+1
k and wτ+1

k ;
9: Update τ = τ + 1;

10: until |Rτ
k −Rτ−1

k |/Rτ−1
k < δ

11: Update R∗
k = Rτ

k , γ∗
k = γτ

k , Φ∗
k = Φτ

k , w∗
k = wτ

k , f∗k = fτk .

to design a scheduling strategy U to solve the scheduling
strategy design problem. The difficulty in solving this problem
lies in how to maximize the system sum rate while meeting
the information freshness requirement of each UE. It should
be noted that only when the SNR exceeds the threshold for
reliable demodulation, can the AoI be reduced. Scheduling
the UE with SNR below the threshold will not contribute to
the information freshness requirement satisfaction and the sum
rate enhancement. Thus, we filter UEs based on SNR and only
schedule UEs with SNR above the threshold.

To schedule these filtered UEs, we design two scheduling
phases. First, in Scheduling Phase I, we wish to ensure that
the information freshness requirement of each UE is satisfied.
Since we assume each UE receives the same types of service
from the BS, which typically means the same information
freshness requirements, we adopt a uniform and fair schedul-
ing strategy. We schedule each UE in turn in the descending
order of data rate. Each of the K UEs is scheduled once
every K timeslots. Within a limited time T , this uniform and
fair scheduling strategy can ensure that the time slot interval
between two adjacent scheduling time slots is consistent for
each UE, the difference in the number of scheduling time slots
between UE with maximum rate and UE with minimum rate is
not greater than once, and the maximum AoI of each UE over
T timeslots will not exceed the number of UEs K. Therefore,
each UE has similar AoI performance. Besides, according to
Proposition 1 in [30], this uniform and fair scheduling strategy
achieves the lower bound of the average episodic AoI, which is
defined as 1

K

∑K
k=1 Ak. Motivated by these facts, we use the

fair scheduling strategy to obtain better information freshness
guarantees.

Then, in Scheduling Phase II, we wish to enhance the
system sum rate as much as possible based on the scheduling
result in Phase I. The main idea is to schedule UEs with the
highest data rate as many times as possible without violating
the AoI constraint of other UEs. Specifically, we select the
UE with the highest data rate as the target UE and traverse
all time slots. In each time slot, we replace the scheduled UE

with the target UE and test the AoI of the originally scheduled
UE. Only if the AoI satisfies the constraint (38), is the current
replacement adopted.

2) Heuristic Scheduling Algorithm: The pseudocode of the
heuristic scheduling algorithm is presented in Algorithm 5.
For ease of presentation, we use R to denote the set of
maximum achievable data rates for UEs without violating SNR
constraints. The set of UEs without violating SNR constraints
is represented by Ku. The mapping between UE k and its
data rate R∗

k is denoted by k = K(R∗
k) and Kt is used to

represent the scheduled UE in time slot t. First, we allocate
time slots to UEs that can reliably demodulate the received
signal in descending order of their data rates in Scheduling
Phase I, which corresponds to lines 1-8. Specifically, in each
time slot, we schedule the UE with the highest data rate in set
Rt, as in lines 2-3. In line 4, the data rate of the scheduled
UE is removed from Rt. In lines 5-7, if Rt is an empty set,
which means that all UEs have been scheduled for one round,
reinitialize Rt to R for the next round of scheduling. Next,
we adjust the scheduling strategy to maximize the system
sum rate as much as possible in Scheduling Phase II, as in
lines 9-20. Specifically, we denote the UE with the maximum
achievable data rate as kmax. For each timeslot t, if UE kmax is
not scheduled, we replace the scheduled UE Kt to UE kmax,
as in lines 11 and 12. In lines 13-18, we calculate the AoI of
UE Kt and determine whether the AoI constraint is satisfied.
If yes, then the adjustment is applied; otherwise, it is not
applied. After completing the adjustments of all the timeslots,
we obtain the final scheduling strategy.

Algorithm 5 Scheduling Strategy Design
Input: R; Ku; T ; Ak,max,∀k
Output: U∗

Initialization: uk,t = 0,∀k, t; Kt = 0,∀t; R1 = R
1: for each time slot t do
2: k̄ = K(max(Rt));
3: uk̄,t = 1, Kt = k̄;
4: Rt+1 = Rt − {R∗

k̄};
5: if Rt+1 = ∅ then
6: Rt+1 = R;
7: end if
8: end for
9: Treat the UE in Ku with the highest achievable data rate as the

target UE, which is denoted as kmax.
10: for each time slot t do
11: if ukmax,t = 0 then
12: ukmax,t = 1, uKt,t = 0;
13: Calculate the AoI of UE Kt;
14: if AKt>AKt,max then
15: ukmax,t = 0, uKt,t = 1;
16: else
17: Kt = kmax;
18: end if
19: end if
20: end for

C. Sum Rate Maximization

Following the design of the algorithms for the decomposed
problems, we propose the sum rate maximization algorithm to
solve P1. The algorithm is given by Algorithm 6. First, we
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generate the hierarchical codebooks for BS and each UE by
Algorithm 2. Then we use Algorithm 4 to obtain the maximum
achievable rate and the optimized variables for each UE. As
in lines 5-8, we check the SNR of each UE to find the UEs
which can achieve successful demodulation. The set R and Ku
are obtained as the input of Algorithm 5 to get the scheduling
strategy. In the end, since we have obtained Φ∗

k, w∗
k, f∗k for

each UE k, we can easily obtain W∗, Φ∗ and F∗ according
to the scheduling strategy U∗.

Algorithm 6 Sum Rate Maximization
Input: M ; b; K; T ; Nt; Nr; Ak,max,∀k; γth
Output: U∗; W∗; Φ∗; F∗

Initialization: R = ∅; Ku = ∅
1: Generate the hierarchical codebook Γt for BS using Algorithm 2;

2: for each UE k do
3: Generate the hierarchical codebook Γr for UE k using Algo-

rithm 2;
4: Obtain Φ∗

k, w∗
k, f∗k , R∗

k and γ∗
k using Algorithm 4;

5: if SNR γ∗
k > γth then

6: R = R∪ {R∗
k};

7: Ku = Ku ∪ {k};
8: end if
9: end for

10: Obtain U∗ using Algorithm 5;
11: Obtain W∗, Φ∗ and F∗ based U∗;

D. Algorithm Analysis

1) Convergence Analysis: In Algorithm 6, we can see that
the number of iterations for the scheduling algorithm (i.e.,
Algorithm 5) is fixed, while the number of iterations required
to obtain the maximum achievable data rate for each UE (i.e.,
Algorithm 4) is uncertain. Thus, we focus on the convergence
of Algorithm 4.

First, Theorem 1 shows that the objective function of
the original optimization problem is non-decreasing in Algo-
rithm 4.

Theorem 1. In Algorithm 4, R(Φτ+1
k ,wτ+1

k , fτ+1
k ) ≥

R(Φτ
k,w

τ
k , f

τ
k ).

Proof. In line 2 of Algorithm 4, with Φτ
k given in the τ -th it-

eration, the beamforming vectors are obtained by Algorithm 1.
It is worth noting that for Algorithm 1, an early search stage
with weak beamforming gains is likely to experience relatively
low SNR. This may lead to a higher probability of failing to
find the best beam pair in the early search phase, resulting
in subsequent misalignment at higher levels [42]. Considering
this, in lines 4-6 of Algorithm 4, we compare Rτk and Rbf and
decide whether to adopt the results of the hierarchical search.
Therefore, R(Φτ

k,w
τ+1
k , fτ+1

k ) ≥ R(Φτ
k,w

τ
k , f

τ
k ). Then, in

line 7 of Algorithm 4, Φk is updated using Algorithm 3 with
the beamforming vectors fixed. The local search algorithm
aims at maximizing the sum rate and searches for better
phase shift values for each RIS element on the basis of Φτ

k.
Therefore, the performance of Φτ+1

k output by Algorithm 4
is better than or equal to the performance of Φτ

k, which can
be expressed as R(Φτ+1

k ,wτ+1
k , fτ+1

k ) ≥ R(Φτ
k,w

τ+1
k , fτ+1

k ).

TABLE I
SIMULATION PARAMETERS

Parameter Value

Transmit power PT 45 dBm
Noise power σ2 −90 dBm
Carrier frequency fc 28 GHz
Termination iteration threshold δ 3× 10−3

SNR threshold value γth 2 dB
Number of path for BS-RIS channel P 4
Number of path for RIS-UE channel L 4

Thus, R(Φτ+1
k ,wτ+1

k , fτ+1
k ) ≥ R(Φτ

k,w
τ
k , f

τ
k ). This com-

pletes the proof.

In addition, the number of discrete phase shifts and code-
words for transmit and receive beamforming are limited, and
the scheduling parameter is 0-1 variables, which makes the
problem of maximizing the sum rate bounded and the output
solutions guaranteed. Therefore, we have completed the proof
of the convergence of the sum rate maximization algorithm.

2) Complexity Analysis: Since Algorithm 6 contains two
parallel parts: the per-UE rate maximization and the schedul-
ing strategy design, we analyze their complexity separately.
First, for the per-UE rate maximization in lines 1-9, the for
loop in line 2 has K iterations. In line 4, the complexity of Al-
gorithm 4 is not only related to the number of iterations for the
BCD method, which can be represented as Nouter to achieve
the convergence condition |Rτk −Rτ−1

k |/Rτ−1
k < δ, but also

related to the complexity of the beamforming optimization
subproblem and RIS reflection coefficient optimization sub-
problem. For the former, two codewords are searched for at
each layer of codebooks at both BS and UE. The complexity
of the hierarchical search method is O(2 log2Nt+2 log2Nr).
For the latter one, the local search algorithm selects the best
one among 2b phase shifts for each element while keeping
the phase shifts of the remaining elements unchanged. Since
the RIS contains M elements, the complexity of this part is
O(M ∗ 2b). Therefore, we get the complexity of Algorithm 4
as O(Nouter ∗ (2 log2Nt + 2 log2Nr + M ∗ 2b)), and the
complexity of the per-UE rate optimization is O(K ∗(Nouter ∗
(2 log2Nt+2 log2Nr+M ∗2b))). Then, The scheduling strat-
egy design corresponds to Algorithm 5. Both the for loops in
line 1 and line 10 have T iterations, and The two for loops are
parallel. Therefore, the complexity of Algorithm 5 is O(T ).
In summary, the complexity of the sum rate maximization
algorithm is O(max(K ∗ (Nouter ∗ (2 log2Nt + 2 log2Nr +
M ∗ 2b)), T )). By simulation tests, Nouter ranges from 3 to
6. Such low complexity of the algorithm makes it suitable for
practical implementation.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
algorithm under various representative parameters. We also
compare the performance of the proposed scheme with sev-
eral baseline schemes and investigate the impact of different
parameters on system performance.
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Fig. 4. Locations of communication nodes in the simulation.

A. Simulation Setup

In the simulation, we establish a Cartesian coordinate sys-
tem to describe the locations of communication nodes. As
shown in Fig. 4, the coordinates of the BS and the RIS are
given by (2 m, 0 m) and (0 m, 40 m), respectively. UEs are
uniformly distributed in a circle centered at (10 m, 40 m) with
a radius of 5 m. The height of the BS, the RIS, and the UEs
is set to 10 m, 2.5 m, and 1.5 m, respectively. The BS-RIS
channel and the RIS-UE channel are generated according to
the aforementioned SV model in LOS scenarios, which can
be further written as

G =

√
NtM

P

(
α̃1ar

(
M,ϕrRIS,1, ζ

r
RIS,1

)
aHt

(
Nt, ψ

t
BS,1

)
+

P∑
i=2

α̃iar
(
M,ϕrRIS,i, ζ

r
RIS,i

)
aHt

(
Nt, ψ

t
BS,i

))
,

(42)

Hr,t =

√
MNr
L

(
β̃1ar

(
Nr, ψ

r
UE,1

)
aHt

(
M,ϕtRIS,1, ζ

t
RIS,i

)
+

L∑
i=2

β̃iar
(
Nr, ψ

r
UE,i

)
aHt

(
M,ϕtRIS,i, ζ

t
RIS,i

))
,

(43)

where α̃1 (β̃1) ∼ CN (0, 10−0.1κ) denotes the complex gain
with the LOS component, α̃i (β̃i) ∼ CN (0, 10−0.1(κ+µ))
denotes the complex gain with the i-th NLOS path, and κ
is the pathloss given by [43]

κ = a+ 10b log10(d̃) + ξ, (44)

in which d̃ is the distance between the transmitter and receiver,
and ξ ∼ N (0, σ2

ξ ). The values of a, b and σξ are set as a =
61.4, b = 2, and σξ = 5.8dB as suggested by LOS real-world
channel measurements [43]. The Rician factor µ is set to 10,
which is defined as the ratio of the energy in the LOS path to
the sum of the energy in other NLOS paths [13, 44]. In the
following simulations, unless specified otherwise, we assume
K = 6, Ma =Mb = 10, Nt = Nr = 64, b = 3, T = 100, and
Ak,max = Amax = 9,∀k. All simulation curves are averaged
over 100 independent channel realizations. Other parameters
are set as listed in Table I.

To validate the system performance of the proposed algo-

rithm, we compare it with the following baseline algorithms:
1) Random-RIS: this algorithm randomly selects a fea-

sible phase shift for each RIS element and keeps on
using these phase shifts. Then, beamforming vectors
are obtained by the hierarchical search method and the
scheduling strategy is determined by Algorithm 5.

2) Random-BF: this algorithm randomly chooses the code-
words from the codebooks for beamforming at both
the BS side and the scheduled UE side. The codebook
consists of all the code words in the last layer of the
hierarchical codebook. Then, the RIS reflection coeffi-
cients are adjusted by the local research method and the
scheduling strategy is computed by Algorithm 5.

3) Round-Robin scheduling: the only difference between
this scheme and the proposed algorithm is the schedul-
ing strategy. This scheme allocates time slots to UEs
in descending order of data rates as in lines 1-7 of
Algorithm 5, but it does not make further adjustments
to the scheduling strategy.

B. Performance Evaluation

1) Impact of Maximum Tolerable AoI: In Fig. 5 and Fig. 6,
we study the impact of the maximum tolerable AoI Amax
on the performance of the four schemes, which indicates
the information freshness requirement of UEs. Specifically,
Fig. 5 compares the sum rates of these schemes over T time
slots under different Amax, and Fig. 6 compares the average
system AoI of these schemes under different Amax, which is
defined as the average AoI of all UEs, (i.e., 1

K

∑K
k=1 Ak).

There are several important observations. First, the Round-
Robin scheduling algorithm achieves the lowest average AoI,
but the sum rate and the average AoI do not change with Amax.
The reason is that it cannot adjust the time slot allocation
according to the information freshness constraint. In other
words, the scheduling strategy is consistent under different
information freshness requirements, which limits the sum rate.
In contrast, the proposed algorithm improves the sum rate
performance at the cost of increasing the AoI while ensuring
that the AoI constraints are satisfied. As Amax is increased, the
algorithm can increase AoI accordingly to obtain a larger sum
rate. In addition, for the Random-BF scheme and Random-
RIS scheme, both the data rates and the average AoI beyond
Amax are poor. This is because the random beamforming
or random RIS reflection coefficients severely degrades the
received signal quality, and even makes most UEs unable
to demodulate the transmit signal. In this case, we treat the
data rates of these UEs as zero. Accordingly, these UEs
cannot be scheduled and the AoI of these UEs keeps on
accumulating over time, which results in poor sum rate and
AoI performance.

In Fig. 7, we focus on the proposed algorithm and show
the average AoI performance of each UE under different
Amax. Among all UEs, UE 2 has the highest data rate. First,
we observe that the average AoI of each UE for different
Amax does not exceed Amax. Then, the larger the Amax, the
smaller the average AoI of UE 2 and the larger the average
AoI of other UEs. This is because as Amax is increased,
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Fig. 5. Sum rate over T time slots versus Amax.
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Fig. 6. System average AoI under different Amax.

fewer time slots are needed to meet the information freshness
requirements, so the proposed algorithm can allocate more
time slots to UE 2 to enhance the sum rate over T time slots,
which reduces the AoI of UE 2. This further explains the
increases of the sum rate and average AoI of the proposed
algorithm in Fig. 5 and Fig. 6 with increased Amax.

In Fig. 8, we consider the case where there are two
optional service types on UEs, which correspond to different
information freshness requirements. According to the ser-
vice type of each UE, We divide UEs into two categories
according to their information freshness requirements: UEs
with high requirement and UEs with low requirement. The
high-requirement corresponds to Ak,max = 4 and the low-
requirement corresponds to Ak,max = 9. We plot the sum
rate over T time slots while varying the number of UEs with
high requirement from 0 to 6. When there are more high-
requirement UEs in the system, the proposed algorithm needs
to spend more time slots to satisfy the information freshness
requirements, resulting in a lower sum rate. However, the
proposed scheme still achieves the best performance among
all the schemes.
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Fig. 7. Average AoI of each UE under different Amax.
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Fig. 8. Sum rate over T time slots versus the number of UEs with high
requirement.

2) Impact of Other Parameters: In Fig. 9, we examine the
rate performance of each UE under the different number of
iterations in Algorithm 4. We can see that the rate of all UEs
converges to a stable value, which validates our convergence
analysis in Section V-D. Besides, the number of iterations
required for convergence is no more than 6, indicating that
the BCD algorithm has a very fast convergence rate. Similar
convergence rates can be seen in other related papers using
the BCD algorithm, such as Fig. 3 and Fig. 4 in [45] and Fig.
3 in [46]. Such a fast convergence rate allows the algorithm
to have reduced complexity.

In Fig. 10, we vary the number of UEs from 4 to 14 and
compare the four schemes in terms of the sum rate over T time
slots. Under the different number of UEs, we always set UE 2
as the UE with the highest rate. It is observed that the proposed
algorithm achieves the highest sum rate. As the number of UEs
is increased, the sum rate of the proposed algorithm shows
a decreasing trend. This is because the scheduling strategy
needs to meet the information freshness requirements for more
UEs within T time slots, and the number of additional time
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Fig. 10. Sum rate over T time slots versus the number of UEs.

slots allocated to the UE with the highest data rate is reduced
accordingly. In contrast, the Round-Robin scheduling scheme
does not take into account the information freshness of UEs,
so the changes in the sum rate are only related to the rate
performance of the added UEs. In general, when the number
of UEs is 14, the performance gap between the proposed
algorithm and Round-Robin scheduling is 6.28%. Further,
a noticeable difference is observed between the proposed
scheme and the other two schemes, i.e., Random-RIS and
Random-BF, revealing the importance of jointly optimizing
both RIS reflection coefficients and beamforming.

In Fig. 11, we plot the sum rates of the four schemes
over T time slots while increasing the bit-quantization number
from 1 to 6. As seen from the given results, the proposed
algorithm outperforms the baseline schemes. The sum rates
of the proposed scheme and the Round-Robin scheduling
scheme gradually increase as b grows from 1 to 3, and then
basically remain unchanged from 3 to 6. This shows that the
system performance tends to be saturated when the number of
quantization bits exceeds 3. The performance of the Random-
RIS scheme is similar to that of the proposed scheme when
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Fig. 11. Sum rate over T time slots versus the number of quantization bits
b.

b is 1. However, with the increase of b, it is more difficult to
obtain an effective reflection coefficients matrix by Random-
RIS. So the gap with the proposed algorithm widens when
b > 1, and the sum rate fluctuates around a lower value. In
addition, for Random-BF, when b = 1, the sum rate is close
to 0, which means there are few UEs in the system which
can reliably demodulate the transmit signal. As b increases,
RIS can provide performance gain for reliable demodulation.
However, due to the random beamforming, the beams between
BS, RIS, and the scheduled UE are not well aligned, which
impedes the growth of the sum rate.

In Fig. 12, we plot the sum rates over T time slots of
the four schemes versus the number of RIS elements M . We
see that the proposed algorithm outperforms the others as M
is increased from 36 to 256. Then, all these four schemes
show an increasing trend with M , which indicates that we
can enhance the system sum rate by deploying RIS with more
elements. Note that the increase of the Random-RIS scheme
is due to the aperture gain of the RIS. The larger the RIS
aperture, the more signal power in the BS-RIS link can be
collected by the RIS. Further, the gaps between the proposed
algorithm and the other two schemes, i.e., Random-RIS and
Random-BF, gradually widen as M is increased. Therefore,
we need to design the joint RIS and beamforming optimization
more carefully when more RIS elements are available.

In Fig. 13, we plot the sum rate over T time slots versus
the number of transmit antenna Nt at the BS, which is varied
from 16 to 512. It can be seen that the sum rate increases
with the number of transmit antennas for the proposed algo-
rithm, the Round-Robin scheduling scheme, and the Random-
RIS scheme. The growths slow down with further increased
number of antennas. When Nt is less than 128, the increase
of Nt results in the most significant improvement in the
sum rate. However, since the Random-BF scheme cannot
provide a stable beamforming gain for the system, the increase
in the number of transmit antennas has little impact on its
performance. From this figure, we observe that the proposed
algorithm has the highest sum rate than the other schemes.
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Fig. 12. Sum rate over T time slots versus the number of RIS elements M .
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Fig. 13. Sum rate over T time slots versus the number of transmit antennas
Nt.

In general, when the number of transmit antennas is 512, the
performance gap between the proposed algorithm and the three
baseline schemes is 9.5%, 231.7%, and 5039.3%, respectively.

In Fig. 14, we vary T from 50 to 300 and compare the
four schemes in terms of the sum rate over T time slots.
We can see that except for the Random-BF scheme, where
the beams cannot be well aligned, the sum rates of all the
other schemes increase linearly with T . The average sum
rate of T time slots for the three schemes, i.e., 1

T

∑T
t=1Rt,

can be calculated as 5.97 bit/s/Hz, 5.69 bit/s/Hz, and 1.07
bit/s/Hz, respectively. Apparently, the proposed algorithm has
the best sum rate performance. The reason is that the proposed
scheme can schedule the UE with the highest data rate as many
times as possible compared to Round-Robin scheduling, and
it can achieve the joint optimization of beamforming and RIS
reflection coefficients compared to Random-BF and Random-
RIS.
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Fig. 14. Sum rate over T time slots versus T .

VII. CONCLUSIONS

In this paper, we investigated the sum rate maximization
problem in RIS-assisted mmWave MIMO communication sys-
tems, where the information freshness requirements of all UEs
should be satisfied. To solve this problem, we adopted the
BCD method to jointly optimize RIS reflection coefficients
and beamforming, and the heuristic scheduling algorithm to
design the scheduling strategy. In particular, considering the
difficulty of channel estimation in such systems, we utilized
the hierarchical search method to update beamforming and
the local search method to update RIS reflection coefficients.
Simulation results showed that our algorithm can not only
ensure the information freshness of UEs but also have the
best sum rate performance. In future work, we will consider
the case of scheduling multiple UEs in each time slot, where
we will jointly design beamforming vectors, RIS phase shifts,
and scheduling strategies to combat inter-user interference and
satisfy the requirements of information freshness. In addition,
we will extend this work to multi-cell multi-RIS scenarios in
the future. With the joint design and optimization for multiple
BSs and RISs, the information freshness requirement of UEs
can be more effectively satisfied, and the system sum rate can
be further improved.
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