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A Unified Framework for Multi-Hop Wireless
Relaying with Hardware Impairments

Ehsan Soleimani-Nasab, and Sinem Coleri, Fellow, IEEE

Abstract—Relaying increases the coverage area and reliability
of wireless communications systems by mitigating the fading
effect on the received signal. Most technical contributions in
the context of these systems assume ideal hardware (ID) by
neglecting the non-idealities of the transceivers, which include
phase noise, in-phase/quadrature mismatch and high power
amplifier nonlinearities. These non-idealities create distortion
on the received signal by causing variations in the phase and
attenuating the amplitude. The resulting deterioration of the
performance of wireless communication systems is further mag-
nified as the frequency of transmission increases. In this paper,
we investigate the aggregate impact of hardware impairments
(HI) on the general multi-hop relay system using amplify-and-
forward (AF) and decode-and-forward (DF) relaying techniques
over a general H-fading model. H-fading model includes free
space optics, radio frequency, millimeter wave, Terahertz, and
underwater fading models. Closed-form expressions of outage
probability, bit error probability and ergodic capacity are derived
in terms of H-functions. Following an asymptotic analysis at
high signal-to-noise ratio (SNR), practical optimization problems
have been formulated with the objective of finding the optimal
level of HI subject to the limitation on the total HI level. The
analytical solution has been derived for the Nakagami-m fading
channel which is a special case of H-fading for AF and DF
relaying techniques. The overall instantaneous signal-to-noise-
plus-distortion ratio has been demonstrated to reach a ceiling at
high SNRs which has a reciprocal proportion to the HI level of
all hops’ transceivers on the contrary to the ID.

Index Terms—Hardware impairments, ideal hardware, multi-
hop relaying, H-fading, diversity order.

I. INTRODUCTION

Fifth generation (5G) and sixth generation (6G) wireless
communication systems play a valuable role in increasing the
quality of human life by providing a very high data rate,
very low latency and very high reliability. According to the
recent Ericsson report, the global number of 5G subscriptions
is expected to exceed 5 billion by the end of 2028 with over
300 exabyte (EB) data traffic on mobile subscriptions [1]. To
achieve the aforementioned goals, various frequency bands
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have been regularized by Federal Communications Commis-
sion (FCC) including free space optics (FSO), radio frequency
(RF), millimeter wave (MMW), and Terahertz (THz) tech-
nologies [2]. In these frequency bands, propagation loss and
fading are extremely high, leading to signal blockage due to
the absorption of the signal energy and low transmission power
at higher frequencies. multi-hop (MH) relaying provides a low
cost solution to extend the transmission coverage in wireless
links and diminish fading since the fading variance depends
on the distance between transmitter and receiver. The two
most widely used protocols in cooperative communications
are amplify-and-forward (AF), and decode-and-forward (DF)
where in the former the relay sends the received signal
after amplifying, while in the latter the relay first decodes
the received signal and then sends it toward the destination
[3]. In recent years, several application scenarios for MH
wireless networks have been investigated including (i) cellular
radio/optical networks to extend the coverage range using
relaying; (ii) wireless mesh networks for providing broadband
internet services without the need of expensive cable infras-
tructures, in particular in areas sparsely populated as well as
in urban areas where the cost of laying cables is very high;
(iii) multi-satellite systems for deep space communications;
(iv) vehicular communications with mobile relay nodes, which
is a special case of mobile ad-hoc networks; and (v) wireless
sensor networks as part of internet of things, which offer large
geographical areas with connectivity without having direct
physical access to each sensor node [4].

The first set of relaying based studies assume ideal hardware
(ID), where the hardware impairments (HI) in the hardware
of the RF and FSO link, including phase noise [5], [6],
in-phase/quadrature (I/Q) mismatch [7], [8] and high power
amplifier (HPA) nonlinearities [9], [10], are ignored. In [11],
the performance of relay-assisted MH systems has been stud-
ied for the configuration where multiple RF and FSO links
were cascaded using either AF or DF relaying with ID.
[12] derives the analytical expressions of outage probability
(OP) and bit error probability (BEP) performance for the
MH relaying assuming F distributed atmospheric turbulence
with pointing errors (PE) along with high signal-to-noise ratio
(SNR) analysis of the OP and BEP. [13] provides the closed-
form expressions of the OP and BEP of MH THz wireless
relaying systems. Also, the diversity order through an asymp-
totic analysis of the OP and BEP was obtained. [14] studies the
MH relaying of underwater fading over mixture Exponential-
generalized Gamma (mEGG) distribution, where exact and
asymptotical expressions of OP and BEP are presented for
both type of detection techniques (i.e., heterodyne detection
(HD) and direct detection (DD)). However, assuming ID by
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neglecting hardware impairment distortion can cause very
deceitful results in the analysis of high-rate systems due to the
destructive effects of HI on the instantaneous signal-to-noise-
plus-distortion ratio (SNDR). Among the HI, when a signal is
frequency multiplied, the phase noise increases around six dB
for every doubling. I/Q mismatch rotates the phase and attenu-
ates the amplitude of the desired constellation. Furthermore, an
image interference is created by the mirrored subcarrier, which
causes a bit-error-rate (BER) floor. In comparison to linear
HPAs, HPA non-linearities increase the BER; for extreme non-
linearities, an irreducible error floor appears.

The second set of relaying based studies incorporate HI
into their analysis due to the wide deployment of inexpensive
hardware and the usage of higher frequency bands. [15] con-
siders a generalized system model to characterize the impact
of HI in dual-hop relay networks over Nakagami-m fading
channels. Closed-form expressions are derived for the OP and
the ergodic capacity (EC) followed by high SNR analysis
based on the derived SNDR. Some design guidelines for both
AF and DF relaying systems based on the fundamental limits
in the HI systems are also discussed. In the context of mixed
RF and FSO systems, [16] evaluates the impact of the HI
on a dual-hop RF-FSO relay network. Assuming Rayleigh
fading and Malaga turbulence with PE respectively for the
RF and FSO links, the closed-form expressions for the OP
and BEP along with high SNR analysis including the diver-
sity gains are presented. [17] studies dual-hop mixed THz-
FSO relaying systems assuming the non-ID for AF relaying
systems. The exact and asymptotic OP of the systems are
derived over α − µ fading and double generalized Gamma
(DGG) turbulence with the PE along with the analytical
expression of the diversity gain. The effect of RF impairments,
which is modeled as independent and identically distributed
(i.i.d.) additive Gaussian noise, is investigated in [18]–[22]. In
[18], authors investigate the effects of I/Q imbalance at the
Tx/Rx over N∗ Nakagami-m fading channels. Closed-form
expressions of OP for single and multi-carrier communication
systems have been derived in the terms of H-function. In [19],
a secrecy analysis of multi-hop hardware-impaired relaying
system with DF relaying is given for Rayleigh fading channels.
Exact closed-form expressions and the asymptotic OP for three
selection protocols are derived. In [20], authors present an
analysis of dual-hop CSI-assisted AF relaying communications
assuming F-distribution. The approximated OP, BEP, EC, and
the effective capacity are further obtained in closed-form. [21]
gives a performance analysis of I/Q mismatch with HI Over
H-fading channel. Closed-form expressions and asymptotic
expressions for the OP, BEP, and EC are obtained. [22]
studies the performance of a cognitive radio network with
multiple DF relays under the impact of HI. Exact closed-form
expression for the OP employing selection cooperation over
i.n.i.d. Rayleigh fading channels are derived. In the context
of MH relaying, [23] proposes a MH full-duplex communica-
tion systems under hardware manufacturing defects and self
interference over independent but non-identically distributed
(i.n.i.d.) Nakagami-m fading channels. The approximated OP,
BEP, and EC based on the Euler numerical technique are
derived. While these studies have improved our knowledge

on the performance characterization of relaying systems with
HI, they are limited in terms of the number of hops and fading
channel models. [15]–[17] consider the aggregate impact of HI
for the dual-hop relaying without considering MH relaying.
On the other hand, [23] provides an analytical framework
for the MH relaying considering Nakagami-m fading only,
which does not necessarily apply to the FSO, MMW and THz
frequency bands.

In this paper, we propose a unified framework to the impact
of aggregate HI on the performance of the MH relaying in 5G
and 6G networks over high frequency bands by considering
the generalized i.n.i.d. H-fading model, for the first time
in the literature. Since the framework considers a general
fading model which consists many fading models in RF, THz,
FSO, and MMW systems, arbitrary receiver types, arbitrary
number of links, and arbitrary level of impairment, we call
the proposed model as unified. The aggregate HI considers the
phase noise, I/Q mismatch and HPA nonlinearities considering
soft envelope limiter, solid state power amplifier, traveling
wave tube amplifier and ideal soft-limiter amplifier models
altogether. H-fading model has been demonstrated to represent
accurately many of the fading channels at high frequency
bands, including RF, FSO, THz and MMW bands, and cover-
ing DGG plus PE, Fisher-Snedecor F , extended generalized-K
(EGK), α−µ plus PE, Malaga plus PE, mEGG [24] and N∗
Nakagami-m channels [25]. New closed-form expressions are
derived for the OP and EC under aggregate HI.1 The original
contributions of this paper are given as follows:

• We propose a generalized framework for the inclusion
of aggregate HI and H-fading model in the performance
analysis of the MH relaying systems over high frequency
bands, for the first time in the literature.

• We derive the closed-form expressions of the instanta-
neous end-to-end (E2E) SNDR, E2E OP and EC for
both AF and DF MH relaying, for the first time in
the literature. These expressions are derived considering
both the inductive argument method and Cauchy’s residue
theorem where the performance of a n+ 1-hop relaying
system is characterized by that of an n-hop relaying
system for n = 2, ..., N .

• We derive the dependence of the diversity gain of the AF
relaying on the parameters of the H-fading and number
of links, for the first time in the literature. The diver-
sity gain expression is derived at high SNRs based on
an asymptotic OP expression employing both inductive
argument method and Cauchy’s residue theorem.

• Using the proposed framework, we formulate the opti-
mization problem with the objective function of mini-
mizing the OP, decision variables of the HI levels of the
nodes and constraint on the total HI levels for AF and
DF relaying techniques, for the first time in the literature.
The cost of the hardware determines the level of hardware
impairment such that the lower the cost, the higher the HI.

1Each metric has been used to quantify the performance gains/impairments
and to comprehend how factors arising from design/implementation (e.g.
transmitter noise, channel noise, receiver noise, diversity, multipath fading)
affect overall system performance. In the context of relaying, these metrics
were frequently used in the literature (Please see [11]- [25] for more details).
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We obtain closed-form analytical solutions of the optimal
level of HI for Nakagami-m fading channels, which is a
special case of H-fading.

We organize the rest of the paper as follows. Section II
describes the system model. Section III and IV provide the
OP, BEP, and EC performance of the MH system for AF and
DF relaying protocols, respectively. Section V describes the
formulation of the optimization problem for determining the
optimal level of HI to minimize the OP. Section VI presents
some numerical results. Finally, Section VII concludes the
paper.

Notation: Throughout this paper, the operator Pr(.) denotes
probability, while E{.}{.} stands for expectation operator.
Γ(n) =

∫∞
0

e−ttn−1 dt is the Gamma function [26, Eq.
(8.310.1)], and Γ is the average SNR. CN (µ, σ2) shows a
complex Gaussian random variable (RV) with mean of µ and
variance of σ2, and the operator ∼ means distributed as.

II. SYSTEM MODEL

We consider a MH cooperative system over H-fading chan-
nel using DF and AF protocols. The source node S establishes
a link with the destination node D = RN via multiple relay
nodes Ri for i = 1, ..., N − 1 (see Fig. 1). Multiple relays are
used to deliver the transmitted signal from source to the final
destination. The received signal at the ith receiver is given by
[15]

yi = (hi)
ri
2 (si + ηi,t) + ηi,r + vi, ∀i = 1, ..., N, (1)

where s1 and si+1 ∀i = 1, ..., N − 1 are respectively
the transmitted signals from the source and ith relay, with
average signal power Pi = Esi{|si|2} ∀i = 1, ..., N ; hi

is the channel coefficient of the ith link; yN is the received
signal at the destination; ηi,t and ηi,r for i = 1, ..., N are
distortion noises of transmitter and receiver of the ith hop,
respectively and are modeled as ηi,t ∼ CN (0;κ2

i,tPi), and
ηi,r ∼ CN (0;κ2

i,rPi|hi|ri) where κi,t, κi,r ≥ 0 signalize
respectively the HI’ level in the transmitter and receiver
of the ith hop; vi ∼ CN (0;σ2

i ) represents the Gaussian
noise for the ith hop’s receiver; ri = 1 and ri = 2
represent the detection mode of HD and DD, respectively.
Combining the HI at both the transmitter and the receiver

and since Eηi,t,ηi,r

{∣∣∣(hi)
ri
2 ηi,t + ηi,r

∣∣∣2} = Pi|hi|riκ2
i with

κ2
i = κ2

i,t + κ2
i,r, we obtain

yi = (hi)
ri
2 (si + ηi) + vi, ∀i = 1, ..., N (2)

where ηi ∼ CN (0;κ2
iPi) is the aggregated distortion noise

for the ith hop. Note that, when κi = κi,t = κi,r = 0, the
investigated model corresponds to the ideal transmitter and
receiver. Assuming Γi = Pi|hi|ri/σ2

i for the SNR of ith hop
and Γi = PiE|hi|ri{|hi|ri}/σ2

i for the average SNR of the ith

hop, each relay either amplifies or decodes the received signal
and forwards it to the next relay for AF and DF relaying,
respectively.

The AF relaying protocol essentially amplifies the sig-
nal yi that was received at the relay (Ri) to create the
transmitted signal si+1 at the relay (i.e., si+1 = Giyi for

i = 1, ..., N − 1), where Gi is the amplification gain of the
ith relay. For the semi-blind fixed-gain (FG) AF relaying, the
input signal at each relay should be normalized, therefore
G2

i = Pi+1

Es1,v1,η1,h1,...,vi,ηi,hi{y2
i}

for i = 1, ..., N − 1. For
blind FG AF relaying, Gi does not depend on any parameter
and is an arbitrary fixed constant. For the channel state
information (CSI)-assisted AF relaying, the relay knows the
instantaneous information of the fading channel and hence
G2

i = Pi+1

Es1,v1,η1,...,vi,ηi{y2
i}

for i = 1, ..., N−1. In addition, the
sent signal si+1 at the relay, as specified by the DF relaying
protocol, must correspond to the signal’s initial value si.

The source transmits its signal to a relay node. Assuming the
FG AF relaying, the ith relay amplifies the signal with a FG
Gi and sends it to the next relay. This keeps happening until
the data from the source reaches the destination. Therefore,
the received signal at the ith receiver ∀i ∈ [1, N − 1] and the
destination node (i = N ) for the AF relaying is expressed as

yi =

i∏
j=1

Gj−1h
rj
2
j s1 +

i∑
j=1

[
vj + ηjh

rj
2
j

] i∏
k=j+1

Gk−1h
rk
2

k (3)

for i = 1, ..., N . For the DF relay, the received signal at the
ith receiver can be written as

yi = (hi)
ri
2 (s′i + ηi) + vi, ∀i = 1, ..., N (4)

where s′i is the retrieved signal at the ith receiver.
The probability density function (PDF) of ith link’s instan-

taneous SNR with H-distribution is defined as [27, Eq. (1)]

fΓi
(γ) =

αi∑
li=1

ρi
ϱiγ

Hmi,ni
pi,qi

[
ϱi

Γi

γ

∣∣∣∣ (ai, Ai)
(bi, Bi)

]
(5)

where Hmi,ni
pi,qi [.] is the H-function defined in [28, Eq. (1.2)],

while αi, ρi, ϱi, mi, ni, pi, qi, Γi, ai, Ai, bi, and Bi are the
parameters of the distribution corresponding to the ith hop.

The cumulative distribution function (CDF) of ith link
instantaneous SNR with H-distribution by applying [28, Eqs.
(2.53, 2.54)] to (5) is derived as

FΓi
(γ) =

αi∑
li=1

ρi
ϱi
Hmi,ni+1

pi+1,qi+1

[
ϱi

Γi

γ

∣∣∣∣ ([1, ai], [1, Ai])
([bi, 0], [Bi, 1])

]
(6)

At high SNRs, when Γi ≫ 1, the CDF in (6) can be
approximated by employing [29, Eqs. (1.8.4, 1.8.5)] as

FΓi
(γ) ≈

αi∑
li=1

mi∑
j=1

Di,j

(
γ

Γi

)βi,j

, ∀i = 1, ..., N (7)

where βi,j ≜
bi,j
Bi,j

is the j-th element of βi, and

Di,j ≜
ρi

ϱibi,j

mi∏
k=1,k ̸=j

Γ
(
bi,k − bi,jBi,k

Bi,j

)
pi∏

k=ni+1

Γ
(
ai,k − bi,jAi,k

Bi,j

)

×

ni∏
k=1

Γ
(
1− ai,k +

bi,jAi,k

Bi,j

)
qi∏

k=mi+1

Γ
(
1− bi,k +

bi,jBi,k

Bi,j

) (ϱi)βi,j (8)
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Figure 1. System model of multi-hop relaying with HI

Some Special cases of H-distribution, by dropping the in-
dex i, are given in Table I, where DGG, EGK, α − µ,
F , Malaga, mEGG, N∗ Nakagami-m distribution parameters
are defined respectively in [30], [31], [13], [12], [32], [14],
and [25]. The defined distributions in Table I also contain
many distributions. DGG includes K channel, Double Weibull,
Gamma-Gamma, and Log-Normal. EGK includes Weibull,
Generalized Nakagami-m, Generalized Gamma, Generalized-
K, double Nakagami-m. α−µ fading contains Nakagami-m,
Gamma, Weibull, and Rayleigh. Malaga contains shadowed
Rician, Rice-Nakagami, Gamma-Rician. EGG is a special case
of mEGG. Finally, double Nakagami-m and triple Nakagami-
m are special cases of N∗ Nakagami-m.

III. PERFORMANCE ANALYSIS OF AF RELAYING

In this section, we derive the E2E instantaneous SNDR
statistics of FG, and CSI-assisted N -hop AF relaying. Based
on the SNDR expression, we obtain the CDF of dual-hop and
MH FG AF relaying with HI in terms of H-function. Then,
the asymptotic CDF of N -hop FG AF relaying with HI, the
SNDR ceiling and the diversity order of both blind and semi-
blind cases are derived. Additionally, the OP and EC of MH
relaying with HI, the capacity ceiling and the BEP of ID are
given in closed-form expressions.
The SNDR of N -hop AF relaying using (3) can be written
as (9), with X ∈ {F, V } where “F ” represents the FG AF
relaying and “V ” denotes the CSI-assisted or variable gain
AF relaying.

Theorem 1. The SNDR for N -hop FG AF relaying is given
by

ΓF =

d1 +

N∑
i=1

λi+1

i∏
j=1

CRj−1

Γj

−1

(10)

where di = λi − 1 ∀i = 1, ..., N − 1, λi ≜
N∏
j=i

(
1 + κ2

j

)
,

λN+1 = 1, CR0
= 1. For the FG, CRi

≜
(
1 + κ2

i

)
E {Γi}+1

for i = 1, ..., N − 1, whereas in the blind case, CRi is a fixed
constant.

Proof. The expression is derived by putting the expressions
for ith relay amplification gain into (9), using the variance of
the distortion and receiver noises of all hops, and employing

the instantaneous SNR expression for each hop. See Appendix
I for a detailed proof.

For the CSI-assisted relaying, CRi
≜
(
1 + κ2

i

)
Γi + 1

∀i = 1, ..., N − 1. Therefore, for the CSI-assisted relaying

ΓV =

(∏N
i=1 (1 + Γ′

i)∏N
i=1 (Γi)

− 1

)−1

(11)

where Γ′
i ≜

(
1 + κ2

i

)
Γi, ∀i = 1, ..., N .

Note that, when κi = 0 ∀i = 1, ..., N ; (10) and (11)
respectively simplify to the SNR of FG and CSI-assisted AF
relaying with the ID.

Theorem 2. The CDF of dual-hop FG AF relaying with HI
over H-fading is given by (12), where H0,n1:m2,n2,m3,n3

p1,q1:p2,q2:p3,q3 [.] is
bivariate H-function defined in [28, Eq. (2.57)]. The CDF in
(12) can be approximated as in (13).

Proof. See Appendix II.

Special cases: It can be shown that when we set ms →
∞,β = βs = 2 in EGK fading of Table I, the CDF in (13)
simplifies to [15, Eq. (27)] earlier obtained for dual-hop AF
relaying HI systems over Nakagami-m channels. Moreover, it
can be shown that if we set r1 = r2 = N = 2 and consider α-
µ+PE fading for the THz link and DGG with PE for the FSO
link, the CDF in (12) reduces to [17, Eq. (34)] earlier obtained
for dual-hop THz-FSO relaying systems with HI. It can be
shown that if we consider Malaga+PE fading for the FSO link,
the CDF in (13) simplifies to [16, Eq. (27)] earlier obtained
for dual-hop RF-FSO relaying systems with HI over Rayleigh-
Malaga channels with partial relay selection and outdated CSI.
In another special case that considers the ID in all nodes, i.e.,
κ1 = κ2 = 0, over Nakagami-m, i.e., ms → ∞,β = βs = 2,
and Gamma-Gamma, i.e., α1i = Ω1i = α2i = Ω2i = 1, the
CDF expression in (13) is reduced to [33, Eq. (8)]. For ID,
the CDF is derived by setting λ1 = λ2 = 1 in (12) and (13).

Theorem 3. The CDF of N -hop FG AF relaying with HI
over H-fading is given by (14), and approximated as (15),

where Λi ≜

{
λi,i+1 if i = 1, ..., N − 2
λi+1 if i = N − 1, N

, and λi,i+1 ≜

λi+1 +CRi
(1− λi+1) ,∀i = 1, ..., N − 1, ai,...,j ≜ ai, ..., aj ,

Ai,...,j ≜ Ai, ..., Aj , bi,...,j ≜ bi, ..., bj , Bi,...,j ≜ Bi, ..., Bj .

Proof. See Appendix III.
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Table I
SOME SPECIAL CASES OF H-DISTRIBUTION.

H-fading Parameters ρ , ϱ α, m, n, p, q a ; A b ; B

DGG+PE α1,β1,Ω1, r A3ϱ , (σ2
si + 1)C1/v 1, u, 0, r, u κ3 ; v−11r κ4 ; v−11u

[30] α2,β2,Ω2, ξ

EGK m,ms,
ϱ

Γ(m)Γ(ms)
, bbs 1, 2, 0, 0, 2 - ; - [m,ms] ;

[
2
β
, 2
βs

]
[31] β,βs

α-µ+PE α,µ, ξ 2ϱ
α

A1

(A2)
ξ2

α

, (A2)
2
α 1, 2, 0, 0, 2 1 + ξ2

α
; 2

α
[µ, ξ2

α
] ; [ 2

α
, 2
α
]

[13]

F +PE σ2
lnS , σ

2
lnL,

ϱξ2

Γ(a)Γ(b) , ar(b−1)−r

(1+ξ−2)r
1, 2, 1, 2, 2 [1− b, 1 + ξ2] ; [r, r] [a, ξ2] ; [r, r]

[12] r, ξ

Malaga +PE ρ, b0,Ω,α,β, ϱrξ2Abl
2r

, (σ2
si + 1)Br β, 3, 0, 1, 3 1 + ξ2 ; r [ξ2,α, l] ; [r, r, r]

[32] ϕA, ϕB , ξ, r

mEGG [14] λ, ω, a, b, c, r ϱs , 1
θ

2, 1, 0, 0, 1 - ; - α ; v

N∗ Nakagami-m mi,Ωi, N
ϱ∏N

i=1 Γ(mi)
,
∏N

i=1 mi 1, N , 0, 0, N 1 ; 1 m1,...,mN ; 1N

[25]

ΓX =

Es1,v1,η1,...,vN ,ηN

{∣∣∣∣∣ N∏
j=1

Gj−1 (hj)
rj
2 s1

∣∣∣∣∣
2}

Ev1,η1,...,vN ,ηN

{∣∣∣∣∣ N∑
j=1

vj
N∏

k=j+1

Gk−1 (hk)
rk
2 +

N∑
j=1

ηj (hj)
rj
2

N∏
k=j+1

Gk−1 (hk)
rk
2

∣∣∣∣∣
2} (9)

FHI,dual
ΓF (γ) =

α1∑
l1=1

ρ1
ϱ1

Hm1,n1+1
p1+1,q1+1

[
ϱ1λ2

1− d1γ

γ

Γ1

∣∣∣∣ ([1, a1], [1, A1])
([b1, 0], [B1, 1])

]
+

α1∑
l1=1

α2∑
l2=1

ρ1ρ2
ϱ1ϱ2

×H0,1:n1,m1:m2+1,n2+1
1,0:q1,p1+1:p2+1,q2+2

[
1−d1γ
ϱ1λ2

Γ1

γ
CR1

λ2

ϱ2

Γ2

∣∣∣∣ (1; 1, 1) : ([1− b1] , [B1]) ; ([1, a2], [1, A2])
− : ([1− a1, 0] , [A1, 1]) ; ([1, b2, 0], [1, B2, 1])

]
(12)

Note that, the CDF expressions of the ID cases can be
obtained by setting κi = 0, ∀i = 1, ..., N in Theorem 2.
Assuming κi = 0, ∀i = 1, ..., N and DGG plus PE and
EGK fading respectively for the FSO and RF channels, the
CDF in (15) respectively simplifies to [30, Eq. (24)] and [11,
Eqs. (25, 28, 32)] earlier obtained for MH FSO, MH RF, MH
mixed FSO-RF, and MH mixed RF-FSO relaying systems.

A. Asymptotic Analysis of AF Relaying

In this section, we obtain the E2E instantaneous SNDR
statistics of FG AF relaying. In contrast with the expression
in (15) which depends on a complicated H-function, we
derive the closed-form expression of CDF as it includes finite
summation of some simple elementary functions. To deeply
explore on the influence of system parameters, such as number
of hops and fading parameters, on the system performance.

More importantly, we estimate the diversity order by using
the slope of CDF against SNR curve in a logarithmic scale.

Theorem 4. At high SNRs when Γi ≫ 1 ∀i = 1, ..., N , the
asymptotic CDF of MH AF relaying with HI is given by

FHI,∞
ΓF (γ) ≈

α1∑
l1=1

m1∑
i1=1

D1,i1AN

(1− d1γ)
β1,i1

(
γ

Γ1

)β1,i1

(16)

where AN is defined in (17), while pFq() is the Hypergeomet-
ric function defined in [26, Eq. (9.111)].

Proof. See Appendix IV.

The diversity order of AF relaying is derived by using the
asymptotic CDF expressions in (16) in the high SNR regime.
Mathematically speaking, if we increase all links’ SNRs with
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FHI,dual
ΓF (γ) ≈

α1∑
l1=1

ρ1
ϱ1

Hm1,n1+1
p1+1,q1+1

[
ϱ1λ2

1− d1γ

γ

Γ1

∣∣∣∣ ([1, a1], [1, A1])
([b1, 0], [B1, 1])

]

+

α1∑
l1=1

α2∑
l2=1

ρ1ρ2
ϱ1ϱ2

Hm1+m2,n1+n2+1
p1+p2+1,q1+q2+1

[
ϱ1ϱ2CR1

1− d1γ

γ

Γ1Γ2

∣∣∣∣ [1, a1, a2] ; [1, A1, A2]
[b1, b2, 0] ; [B1, B2, 1]

]
(13)

FHI
ΓF (γ) ≈

α1∑
l1=1

ρ1
ϱ1

Hm1,n1+1
p1+1,q1+1

[
ϱ1Λ1

1− d1γ

γ

Γ1

∣∣∣∣ ([1, a1], [1, A1])
([b1, 0], [B1, 1])

]
+

N∑
i=2

α2∑
l2=1

...

αi∑
li=1

i∏
j=1

ρj
ϱj

×H
0,1:n1,m1:

i∑
j=2

mj+1,
i∑

j=2
nj+1

1,0:q1,p1+1:
i∑

j=2
pj+1,

i∑
j=2

qj+2


(1−d1γ)
λ1,2ϱ1

Γ1

γ

Λi

λ1,2

i∏
j=2

CRj−1
ϱj

Γj

∣∣∣∣ (1; 1, 1) : ([1− b1] , [B1]) ; ([1, a2,...,i], [1, A2,...,i])
− : ([1− a1, 0] , [A1, 1]) ; ([1, b2,...,i, 0], [1, B2,...,i, 1])

 (14)

FHI
ΓF (γ) ≈

N∑
i=1

α1∑
l1=1

...

αi∑
li=1

i∏
j=1

ρj
ϱj

H

i∑
j=1

mj ,
i∑

j=1
nj+1

i∑
j=1

pj+1,
i∑

j=1
qj+1


i∏

j=1

(
CRj−1

ϱj
)
Λiγ

(1− d1γ)
i∏

j=1

Γj

∣∣∣∣ ([1, a1,...,i], [1, A1,...,i])
([b1,...,i, 0], [B1,...,i, 1])

 (15)

AN ≜ λ
β1,i1
2 +

N−1∑
n=2

α2∑
l2=1

...

αn∑
ln=1

m2∑
i2=1

...

mn∑
in=1

n−1∏
j=2

βj,ijDj,ijDn,inλ
βn,in
n+1

n∏
j=2

(λj−1,j)
βj−1,ij−1

d
βj,ij

j

(
Γj

)βj,ij

×(−1)
−

n∑
j=2

βj,ij
n∏

j=2

1

βj,ij − βj−1,ij−1

n∏
j=2

2F1

(
βj,ij , 1;βj,ij − βj−1,ij−1 + 1, 1 +

λj−1,j

djCRj−1

)

+

α2∑
l2=1

...

αN∑
lN=1

m2∑
i2=1

...

mN∑
iN=1

N−1∏
j=2

βj,ijDj,ijDN,iNC
βN,iN

RN−1

λ
βN,iN

−βN−1,iN−1

N

Γ (1− βN,iN ) Γ
(
βN,iN − βN−1,iN−1

)
Γ
(
1− βN−1,iN−1

)N−1∏
j=2

1
βj,ij

−βj−1,ij−1

× (−1)
−

N−1∑
j=2

βj,ij

N∏
j=2

(
Γj

)βj,ij

N−1∏
j=2

(λj−1,j)
βj−1,ij−1

d
βj,ij

j

N−1∏
j=2

2F1

(
βj,ij , 1;βj,ij − βj−1,ij−1 + 1, 1 +

λj−1,j

djCRj−1

)
(17)

no bound in (10) for AF relaying when γ ≤ 1
λ1−1 , we can

write

ΓF,∞ ≜ lim
Γ1,...,ΓN→∞

ΓF =

(
N∏
i=1

(
1 + κ2

i

)
− 1

)−1

=
1

N∑
i=1

1
i!

N∑
j1=1

...

N∑
ji=1︸ ︷︷ ︸

j1 ̸=j2 ̸=... ̸=ji

i∏
t=1

κ2
jt

(18)

An SNDR ceiling appears at low outage regime. This can
significantly limit the performance of AF relaying systems.
Therefore, a CDF floor occurs. In fact, when all links’ SNRs
grow with bound (i.e., by taking the limit Γ1 → ∞ with
Γj = µjΓ1 ∀j = 2, ..., N ), the E2E SNDR in (10) converges
to 1

λ1−1 . This is different from the ID, where lim
Γi→∞

ΓF → ∞,

since in the ID d1 in (10) is equal to zero. Thus, an SNDR
ceiling effect is observed in the low outage regime, which
imposes a limit on the performance of AF relaying system,
where for the threshold SNR lower than the ceiling, the CDF
becomes zero with increasing SNR. Note that the SNDR
ceiling in (18) does not depend on the fading distributions
of the hops and is inversely proportional to the HI level of all
hops’ transceivers. When we assume an equal HI level for all
hops (i.e., κ1 = ... = κN = κ), using (18) the necessary and
not sufficient condition on the HI level for the AF is given by

κ ≤

√
N
√
1 +

1

γ
− 1 (19)

On this basis, the diversity order of system with HI for γ <
1

λ1−1 is estimated. Assuming β′
i ≜ [βi,1, ..., βi,mi

], utilizing
[34, Eq. (1)] and using (16) when Γi ≫ 1 ∀i = 1, ..., N ,
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the diversity orders for AF relays with blind (B) relaying and
semi-blind (SB) relaying are respectively given as

GF,B
d = min

{
β′
1, 2β

′
2, ..., Nβ′

N

}
(20)

GF,SB
d = min

{
β′
1, β

′
2, ..., β

′
N

}
(21)

The diversity order is a function of the number of links and the
parameters of the H-distribution of ith link. As anticipated,
for the ith link in (20), the index i ∀i = 1, ..., N appears as a
weighting coefficient on βi,j for j = 1, ...,mi, while there is
no index i in (21).

B. Outage Probability of AF Relaying

The OP is the probability that the SNR of the E2E system
falls below a predetermined threshold SNDR γth, as given by

PHI,F
out (γth) = Pr

(
ΓF < γth

)
= FHI

ΓF (γth) (22)

C. Average Bit Error Probability of AF Relaying

The average BEP of a variety of modulations can be written
in terms of the CDF of Γ as given by [35]

P e =
δ

2Γ (p)

n∑
k=1

qpk

∞∫
0

γp−1exp (−qkγ)F
X
Γ (γ)dγ, (23)

where δ, p, qk and n indicate various modulation techniques
as given in [35]. By substituting (15) or (16) into (23), the
obtained integral on γ cannot be solved. Therefore, the BEP
for the HI cannot be obtained, analytically. For the ID, we can
use the CDF expression in (15). By substituting (15), when
κi = 0 for i = 1, ..., N , into (23) and using [26, Eq. (3.382.4)],
we can obtain the BEP for FG AF with ID as (24).

D. Ergodic Capacity of AF Relaying

The EC for a MH relaying system is defined as [35]

C
X

=
1

N
EΓX

[
log2

(
1 + cΓX

)]
=

c

N ln (2)

∞∫
0

1− FΓX (γ)

1 + cγ
dγ (25)

where c = e/2π, 1 respectively for the DD and HD methods
[36, Eq. (7.43)]. Note that, the factor 1

N accounts for the
reason that the whole communication needs N time slots
in a N -hop relaying. Due to mathematical intractability, we
cannot apply (15) directly to (25). Therefore, we use an
approximation which is based on the Jensen inequality as in
[15, Eq. (35)]. Thus, by substituting (10) in (25) and using the
Jensen inequality, we obtain

C
F,HI ≤ c

N
log2

[
N∏
i=1

E{Γi}

]
− c

N
log2

[
N∏
i=1

(
1 + κ2

i

)
E{Γi}

−
N∏
i=1

E{Γi}+
N∑
i=1

i−1∏
j=1

CRj

N∏
j=i+1

(
1 + κ2

j

)
E{Γj}

]
(26)

where E{Γi} ∀i = 1, ..., N is obtained by applying [28, Eq.
(2.8)] on (5) as

E{Γi} =

αi∑
li=1

ρi
ϱ2i

mi∏
j=1

Γ (bj +Bj)
ni∏
j=1

Γ (1− aj −Aj)

qi∏
j=mi+1

Γ (1− bj −Bj)
pi∏

j=ni+1

Γ (aj +Aj)

(27)

By applying (18) to (25), we obtain SNDR capacity ceiling of
AF relaying as a function of the level of HI as

C
F,∞

=
1

N
log2

(
1 + cΓF,∞) (28)

For the ID, we can apply (14) directly to (25). Therefore, by
putting (14), when κi = 0 for i = 1, ..., N , in (25) and using
[28, Eq. (1.43)], [26, Eqs. (2.141.1, 3.194.5)], we obtain the
EC of FG AF as (29).

IV. PERFORMANCE ANALYSIS OF DF RELAYING

In this section, we obtain the E2E instantaneous SNDR
statistics of N -hop DF relaying. Based on the SNDR ex-
pression, we obtain the CDF of MH DF relaying with HI in
terms of H-function. Then, the asymptotic CDF of N -hop DF
relaying with HI, the SNDR ceiling and the diversity order are
derived. Additionally, the OP and EC of MH relaying with HI,
the capacity ceiling and the BEP of ID are given in closed-
form expressions.

If the ith relay can decode the signal, the effective SNDR
is the minimum of the SNDRs between S − R1, R1 −
R2,...,RN−1−D. Under the assumption of DF relaying where
the destination knows the statistics of the fading and distortion
noises of all hops, using (4), the E2E SNDR can be expressed
as

ΓD = min
i∈{1,...,N}

(
Γi

κ2
iΓi + 1

)
(30)

where D represents the DF relaying. Since the fading and
distortion noises of all links are independent, the CDF of N -
hop DF relaying with HI over H-function is given by

FHI
ΓD (γ) = 1−

N∏
i=1

[
1− FΓi

(
γ

1− κ2
i γ

)]
, γ ≤ 1

δ2
,

(31)

and FHI
ΓD (γ) = 1, when γ > 1

δ2 , where δ = max (κ1, ..., κN )
and the CDF of ith link is defined earlier in (6). When γ ≤ 1

δ2 ,
the CDF in (31) can be approximated as

FHI
ΓD (γ) ≈

N∑
i=1

FΓi

(
γ

1− κ2
i γ

)

=

N∑
i=1

αi∑
li=1

ρi
ϱi
Hmi,ni+1

pi+1,qi+1

[
ϱi

1− κ2
i γ

γ

Γi

∣∣∣∣ ([1, ai], [1, Ai])
([bi, 0], [Bi, 1])

]
(32)

by considering the dominant CDF terms of (31), where this
tight approximation becomes exact at high SNRs. This expres-
sion is a tight approximation for the CDF of MH hardware
impaired CSI-assisted AF relaying. Note that, when κi = 0
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P
F,ID

e =
δ

2Γ (p)

n∑
k=1

N∑
i=1

α1∑
l1=1

...

αi∑
li=1

i∏
j=1

ρj
ϱj

H

i∑
j=1

mj ,
i∑

j=1
nj+2

i∑
j=1

pj+2,
i∑

j=1
qj+1


i∏

j=1

CRj−1
ϱj

qk
i∏

j=1

Γj

∣∣∣∣ ([1− p, 1, a1,...,i], [1, 1, A1,...,i])
([b1,...,i, 0], [B1,...,i, 1])

 (24)

C
F,ID ≈

α1∑
l1=1

ρ1
N ln (2) ϱ1

Hm1+2,n1+1
p1+2,q1+2

[
ϱ1
c

∣∣∣∣ ([0, a1, 1], [1, A1, 1])
([0, 0, b1], [1, 1, B1])

]
+

1

N ln (2)

N∑
i=2

α2∑
l2=1

...

αi∑
li=1

i∏
j=1

ρj
ϱj

×H
0,1:n1+1,m1+1:

i∑
j=2

mj+1,
i∑

j=2
nj+1

1,0:q1+1,p1+2:
i∑

j=2
pj+1,

i∑
j=2

qj+2


c

ϱ1Γ1
i∏

j=2

CRj−1
ϱj

Γj

∣∣∣∣ (1; 1, 1) : ([1, 1− b1] , [1, B1]) ; ([1, a2,...,i], [1, A2,...,i])
− : ([1, 1− a1, 0] , [1, A1, 1]) ; ([1, b2,...,i, 0], [1, B2,...,i, 1])

 (29)

for i = 1, ..., N , (32) simplifies to the CDF of MH DF relaying
with ID.

A. Asymptotic Analysis of DF Relaying

For the DF relaying, by applying (7) to (31), the E2E CDF
at high SNRs is given as

FHI
ΓD (γ) ≈

N∑
i=1

αi∑
li=1

mi∑
j=1

Di,j

(1− κ2
i γ)

βi,j

(
γ

Γi

)βi,j

(33)

If we increase all links’ SNRs with no bound in (30) for DF
relaying, an SNDR ceiling appears in the low outage regime.
This can significantly limit the performance of DF relaying
systems. Therefore, a CDF floor occurs. In fact, when the
SNRs of all links grow with no bound (i.e., by taking the
limit Γ1 → ∞ with Γj = µjΓ1 ∀j = 2, ..., N ), the E2E
SNDR in (30) converges to 1

δ2 as

ΓD,∞ ≜ lim
Γ1,...,ΓN→∞

ΓD =
1

max (κ2
1, ..., κ

2
N )

(34)

When the HI level of all hops is equal (i.e., κ1 = ... = κN =
κ), using (34), the necessary and not sufficient condition on
the HI for the DF relaying is given by

κ ≤
√

1

γ
∀i = 1, ..., N (35)

Therefore, assuming κ1 = ... = κN = κ, the SNDR ceiling of
the DF relaying in (34) is almost N times the SNDR ceiling
of the AF relaying given in (18); since using [26, Eq. (1.110)]
we can write

ΓF,∞ =

(
N∏
i=1

(
1 + κ2

)
− 1

)−1

≈ 1

Nκ2
=

1

N
ΓD,∞ (36)

Similar to the AF relaying, we can obtain the diversity order
of the HI system with the DF relaying. Utilizing [34, Eq. (1)]
and using (33) when γ > 1/δ2, it can be shown that when
Γi ≫ 1 ∀i = 1, ..., N , the diversity order for the DF relaying
with the non-ID is given by

GD
d = min

{
β′
1, 2β

′
2, ..., Nβ′

N

}
(37)

which is the same as the diversity order of semi-blind AF
relaying in (21). The diversity order in (20) and (37) can be
reduced to some special cases reported in the literature (see
for example [11]- [14], [30]).

B. Outage Probability of DF Relaying

Using the CDF in (31), the OP of DF relaying can be readily
obtained as

PHI,D
out (γth) = Pr

(
ΓD < γth

)
= FHI

ΓD (γth) (38)

C. Average Bit Error Probability of DF Relaying

Again, due to the statistical dependence between numerator
and denominator in (30), the BEP for the HI cannot be
obtained, analytically. Based on the expression in (32), we can
derive the average BEP of MH relaying with ID. The BEP of
N -hop DF relaying with the ID by substituting (32) in (23)
and assuming κi = 0 ∀i = 1, ..., N , is given by

P
D,ID

e =
δ

2Γ (p)

n∑
k=1

N∑
i=1

αi∑
li=1

ρi
ϱi

×Hmi,ni+2
pi+2,qi+1

[
ϱi
qk

∣∣∣∣ ([1− p, 1, ai], [1, 1, Ai])
([bi, 0], [Bi, 1])

]
(39)

D. Ergodic Capacity of DF Relaying

Similar to the AF relaying, the EC of the DF relaying is
derived. By applying (30) to the PDF definition of the EC in
Section II.D,

C
D,HI

= min
i∈{1,...,N}

1

N
E

{
log2

(
Γi

κ2
iΓi + 1

)}

≈ min
i∈{1,...,N}

1

N
log2

(
E{Γi}

κ2
iE{Γi}+ 1

)
(40)

where we use the Jensen inequality in (40). By applying (34)
to (25), we obtain SNDR capacity ceiling of DF relaying as

C
D,∞

=
1

N
log2

(
1 + cΓD,∞) . (41)
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V. OPTIMIZATION ON THE LEVEL OF HARDWARE
IMPAIRMENTS

In order to have low cost hardware, we formulate the
optimization problem for determining the minimum level of
HI at the ith hop, represented by the decision variable κi, for
AF and DF relaying. The cost of the hardware determines the
level of hardware impairment such that the lower the cost, the
higher the HI. The objective of the optimization problem is to
minimize the outage performance for a fixed cost of HI. Note
that an arbitrary SNDR analysis is intractable, therefore, we
elaborate on the asymptotically low outage regime.

The optimization problem for AF and DF relaying is given
as follows:

min
κi,i∈[1,N ]

FHI
ΓY (γ) (42a)

s.t.

N∑
i=1

κ2
i = A, (42b)

κi ≥ 0, i ∈ [1, N ]. (42c)

where Y ∈ {F,D} and A is a constant. Eq. (42a) represents the
OP as a function of the HI level of the nodes. Eq. (42b) shows
a total constraint on the HI level of all nodes, while Eq. (42c)
states the lower bound of the HI level. Since κi,t, κi,r are the
parameters that express the non-idealities of the transceivers,
the decision variables in the optimization problem in (42) are
κi ∀i = 1, ..., N . Next, we solve this optimization problem for
AF and DF relaying in Sections V.A and V.B, respectively.

A. AF Relaying

For the AF relaying, since the CDF in (16) is twice differen-
tiable with respect to κi ∀i = 1, ..., N and due to convexity
of the optimization problem in (42), we can use Karush-Kuhn-
Tucker (KKT) conditions and obtain (43) ∀j = 1, ..., N − 1

α1∑
l1=1

m1∑
i1=1

D1,i1

(
γ

Γ̄1

)β1,i1

(
A′

N

(1− d1γ)
β1,i1

+
2γANκj

(
κ2
N − κ2

j

)
(d1 + 1)(

1 + κ2
j

)
(1 + κ2

N ) (1− d1γ)
β1,i1

+1

)
= 0, (43)

where A′
N = ∂AN

∂κj
for j = 1, ..., N − 1. However, no closed-

form solution exists for H-distribution. For the analysis of
the Nakagami-m fading channels obtained by setting ms →
∞,β = βs = 2 (same as [23]), the asymptotic CDF (16) can
be approximated by keeping only the first term of (17). Then,
by applying the KKT conditions, we obtain(

κopt
1

)2
=A+N − 1− (N − 1) N

√
1 +

1

γ
, (44a)

(
κopt
i

)2
= N
√
1 +

1

γ
− 1 ∀i = 2, ..., N (44b)

which is independent of the ith link average SNR (Γi ∀i =
1, ..., N ) and fading severities (i.e., mi ∀i = 1, ..., N ), while
the OP depends on them. This is reasonable since the κi

expression in the objective function does not depend on Γi and
mi. The level of HI (κopt

i ∀i = 1, ..., N ) is monotonically

decreasing with respect to N . In addition, as γ increases,
κopt
j ∀j = 2, ..., N decreases, whereas κopt

1 increases. When
γ grows with no bound, the optimal solution is given by
κopt
1 =

√
A, κopt

j = 0 ∀j = 2, ..., N , i.e., we should use
an ID in all hops except the first one. From (44b), we can see
that the equal level of HI is not always the optimal solution.
For the equal level of HI, we should set the threshold SNDR
as γ = NN

(A+N)N−NN .

B. DF Relaying

For the DF relaying employing (33), again, the problem
is convex. Therefore, by using the KKT conditions, we can
obtain

αi∑
li=1

mi∑
j=1

Di,jβi,jκi(
Γi

)βi,j

(
γ

1− κ2
i γ

)βi,j+1

=

αN∑
lN=1

mN∑
j=1

βN,jκN

× DN,j(
ΓN

)βN,j

(
γ

1− κ2
Nγ

)βN,j+1

,∀i = 1, ..., N − 1 (45)

For the i.i.d. fading and symmetric channels where α1 = ... =
αN = α, m1 = ... = mN = m, D1 = ... = DN = D,
β1 = ... = βN = β, and Γ1 = Γ2 = ... = ΓN we can obtain
the optimal values of κi which is κ2

1 = κ2
2=...=κ2

N= A
N . Of

course, for the i.n.i.d. fading, this solution does not hold.
For Nakagami-m fading, which is a special case of EGK
fading with msi → ∞,βi = βsi = 2, i ∈ [1, N ] by assuming
m1 = m2 = ... = mN = m, we obtain

(
κopt
i

)2
=

1

γ
+

Aγ −N

γ

N∏
j=1
j ̸=i

m+1

√
Γ

m
j

N∑
j=1

N∏
k=1
k ̸=j

m+1

√
Γ

m
k

∀i = 1, ..., N

(46)

More hardware quality should be provided for the hops of
lower SNR. Moreover, by increasing N , κopt

i ∀i = 1, ..., N
decreases, where after a certain N , the OP saturates. This
means that from a certain point on, no matter how much we
improve the quality of the hardware, it will have no effect
on reducing the OP. Similar to AF relaying, as γ increases,
κopt
j ∀j = 2, ..., N increases, whereas κopt

1 decreases. When

γ grows with no bound,
(
κopt
i

)2
= A

N∏
j=1
j ̸=i

m+1
√

Γ
m
j

N∑
j=1

N∏
k=1
k ̸=j

m+1
√

Γ
m
k

∀i =

1, ..., N . The equal optimum (i.e.,
(
κopt
i

)2
= A

N ∀i = 1, ..., N )
only occurs when we have equal SNR in all links. On the other
hand, when ith link’s SNR goes to infinity while other links’
SNRs remain constant,

(
κopt
i

)2
= A + 1−N

γ ∀i = 1, ..., N .

When Γj = µΓi ∀j ̸= i with µ > 1 and Γi → ∞,
(
κopt
i

)2
=

1
γ +

Aγ−N
γ

µ
m

m+1

µ
m

m+1 +N−1
. This means that the lower the values of

Γi are, the better the hardware quality should be. To maintain
the optimized HI level within the 3GPP limit, we can select
proper values of A and γ.
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Figure 2. OP versus SNR for both ID and HI.

VI. PERFORMANCE EVALUATION

The goal of this section is to validate the accuracy of the
analysis with Monte-Carlo (MC) simulations by numerically
evaluating H-functions and illustrate the concepts of SNDR
and capacity ceilings, the necessary conditions, the guidelines
for designing the MH hardware impaired systems and the
optimization results.

We use MATLAB, where the fading channel coefficient, and
the distortion and receiver noises of all links are randomly
generated. Then, the received signal at the destination node
is derived respectively for AF and DF relaying using (3) and
(4). For all cases, 106 realizations of the RVs are generated
to perform the MC simulations. We consider respectively for
weak, moderate, and strong turbulence conditions of each
DGG+PE distributed FSO link Ω1 = 1.0676,Ω2 = 1.06,α1 =
2.1,α2 = 2.1,β1 = 4,β2 = 4.5; Ω1 = 1.5793,Ω2 =
0.9671,α1 = 2.169,α2 = 1,β1 = 0.55,β2 = 2.35;
Ω1 = 1.5074,Ω2 = 0.928,α1 = 1.8621,α2 = 1,β1 =
0.5,β2 = 1.8; [30]. Unless otherwise stated, we assume equal
average SNR for all links, Γi = SNR ∀i ∈ {1, ..., N}.

Fig. 2 shows the E2E OP as a function of SNR for both
ID and HI cases with the AF relay. The OP in this figure
is given in Eq. (15). We have used N = 2 FSO links for
both PE and no pointing errors (NPE) and both HD and DD.
For the HI, we assume κ1 = κ2 = 0.3, γth = 22 − 1 = 4.
According to [37], 3rd generation partnership project (3GPP)
5G new radio (5G NR) has impairment requirements in the
range κt ∈ [0.035, 0.175] (κ ∈ [0.0495, 0.2475]), where to
achieve the highest values of the spectral efficiency, smaller
values of HI are required. The HI degrades the OP by 5 dB,
since the distortion noises of HI reduce the E2E SNDR of the
multi-hop system. Besides, the complex HD receiver performs
better than DD by 10 dB. On the other hand, PE degrades
the performance by 7 dB in the medium SNRs and by 20
dB at high SNRs. The diversity orders confirm the derived
expression of (20). Furthermore, the non-ID has the same slope
(i.e. diversity order) as the ID; hence, HI causes only a shift
of the OP curve to the right.

Fig. 3 shows the E2E OP as a function of SNDR threshold
with AF and DF relays. The OP in this figure is given in Eq.
(15). We consider ID and hardware with impairments of level
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Figure 3. OP versus γth for both ID and HI.

of κ1 = κ2 = 0.15 and κ1 = κ2 = 0.3. We have used the
N = 3 THz links with α = 1.4,µ = 1.5 [17] and PE with
ξ = 2.34. The OPs for low thresholds have not decreased much
by HI. However, there is an opposite action as the threshold
SNR increases: the ID case slowly approaching to the full
outage, meanwhile the HI undergo a rapid approach toward
the designated SNDR ceilings. The values of these ceilings
are consistent with our derived expressions in (18) for AF, i.e.,
−10 log

(
κ2
1κ

2
2κ

2
3 + κ2

1κ
2
2 + κ2

1κ
2
3 + κ2

2κ
2
3 + κ2

1 + κ2
2 + κ2

3

)
=

11.6 and 5.3 dB for κi = 0.15 and κi = 0.3, respectively. For
DF relaying, the values of these ceilings for κi = 0.15 and
κi = 0.3 are equal to −20 log (max (κ1, κ2, κ3)) = 16.5 and
10.5 dB, respectively.

Fig. 4 shows the E2E OP of hardware-impaired dual-hop
relaying as a function of κ1 over moderate and weak F with
PE for both semi-blind FG AF and DF relay. The OP in this
figure is given in Eq. (15) for the AF relaying and in Eq. (31)
for the DF relaying. We assume different levels of impairments
κ1, κ2 for which κ1 + κ2 = 1. For moderate and weak F
turbulence, we respectively consider a = 2.3378, b = 4.5323;
and a = 4.5916, b = 7.0941 [38]. Despite the asymmetric
SNRs (SNR1 = 30 dB, SNR2 = 20 dB), the OP of AF case
has been minimized by setting κ1 = κ2 = 0.5. However,
the OP of DF case has been minimized when the hop with
the lower SNR has much more hardware quality. Furthermore,
when either the first hop or the second hop is ideal (i.e., κ1 = 0
or κ2 = 0, respectively), the system cannot work; therefore,
equipping the best quality hardware for one hop and neglecting
the other one doesn’t improve the OP at all.

Fig. 5 shows the E2E OP of dual-hop relaying as a function
of κi = κ ∀i = 1, ..., N for both semi-blind FG AF and
DF relay. The OP in this figure is given in Eq. (15) for the
AF relaying and in Eq. (31) for the DF relaying. We assume
Nakagami-m fading with mi = 2 and the SNDR equal 15. This
figure shows the necessary but not sufficient conditions that
behave as upper limits on the level of hardware defects when
the OP is lower than one. These necessary but not sufficient
conditions determine the range in which the level of impair-
ments must be. For N = 2, 3, 4 and AF relaying, the HI levels

are κ ≤
√√

1 + 1
x − 1 = 0.18, κ ≤

√
3

√
1 + 1

x − 1 = 0.15,
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Figure 4. OP versus asymmetric levels of impairments.
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Figure 5. OP versus symmetric levels of hardware impairments.

κ ≤
√

4

√
1 + 1

x − 1 = 0.13, respectively; while for the DF

relaying, it is equal to κ2 ≤ 1
x = 0.26. Focusing on the

four lower curves and requiring that Pout(15) ≤ 10−1, we
can identify two possible hardware operating regimes: 1) FG
AF relaying with κ ≤ 0.14, for N = 2; 2) DF relaying with
κ ≤ 0.24, 0.23, 0.22 respectively for N = 2, 3, 4. The different
acceptable levels of impairments show that DF relaying is
more robust to HI comparing with AF relaying, hence, can
work with lower quality hardware. By using multiple hops,
we gain more coverage.

Fig. 6 shows the E2E BEP of triple-hop AF relaying as a
function of SNR over different combinations of fading (i.e.,
RF, FSO, and THz). We have used the on-off keying (OOK)
modulation which works in both radio wireless and optical
wireless systems. The BEP in this figure is given in Eq. (24).
We assume 7 different cases of FSO-FSO-FSO, FSO-RF-FSO,
THz-FSO-THz, RF-FSO-RF, RF-THz-FSO, RF-RF-FSO, and
RF-RF-RF. For the RF links, we have shadowed EGK with
m = ms = β = βs = 2. For the FSO links, we consider
ξ = 1.22, r = 2, and strong DGG turbulence with α1 =
1.8621,α2 = 1,β1 = 0.5,β2 = 1.8,Ω1 = 1.5074,Ω2 =
0.928. For the THz links, α = 1.4,µ = 1.5, and ξ = 1.22.
FSO-FSO-FSO combination has the worst performance, while
RF-RF-RF combination has the best performance, since the
FSO links are under strong turbulence, while RF links are
subject to weak fading channels.
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Figure 6. BEP of triple-hop AF relaying versus SNR.
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Figure 7. OP of AF relaying versus SNR for different values of N and x.

Fig. 7 shows the approximated OP of N -hop AF relaying as
a function of SNR for different values of N and the threshold
SNDR. The OP in this figure is given in Eq. (16). We assume
dual-hop (N = 2) and triple-hop (N = 3) relaying with x =
1, x = 15 and κi = 0.1 ∀i = 1, ..., N . The approximated
OP expression in (16) predicts well the simulation results,
with perfect match at high SNRs. As expected, by increasing
the threshold SNDR x, the performance degrades. In addition,
if we put more relays between source and destination, the
performance improves. In fact, using multiple relays reduces
the OP by scaling the fading.

Fig. 8 shows the E2E OP as a function of SNR for N FSO
with DD receiver and AF relay over Malaga turbulence chan-
nels for different values of PE and different relay locations.
The OP in this figure is given in Eq. (15). We assume a 3000m
distance between the source and the destination with dual-hop
(N = 2) and triple-hop (N = 3) relaying with ξ = 1.22, 7.35.
For N = 2, the link lengths are L=[2500 500], L=[1500 1500],
and L=[500 2500]. For N = 3, the link lengths are L=[1000
1000 1000], and L=[500 1000 1500]. The closer the first relay
to the source, the better the performance.

Fig. 9 shows the EC of dual-hop and triple-hop relaying as a
function of SNR over multiple FSO links with 3000m distance
between the source and the destination for both AF and DF
relay. The EC in this figure is given in Eq. (29) for the AF re-
laying with ID, in Eq. (26) for the AF relaying with HI, and in
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Figure 8. OP versus SNR for different relay locations and ξ.
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Figure 9. EC versus SNR for the ID and HI cases.

Eq. (40) for the DF relaying with HI and ID. For hardware with
impairments, we assume κi = 0.1 ∀i = 1, ..., N . We can see
a perfect match between simulation and analytical results at
medium and high SNRs which indicates the accuracy of the
derived analytical expressions. As observed, the EC of HI sat-

urates and approaches 1
N log2

(
1 +

(
N∏
i=1

(1 + κi)− 1

)−1
)

and 1
N log2 (1 + min (κ1, ..., κN )) respectively for AF and DF

relaying, as we proved in Section III.D and Section IV.D. As
the asymptotic EC is assessed by the HI level, it increases
when κi for i = 1, ..., N decreases. For the ID, as the SNR
increases, the performance gets better with no bound. As
expected, HI’s influence at low SNRs is small in contrast
with high SNRs. More importantly, increasing the number
of relays from 1 to 2 leads to a performance degradation.
More precisely, at SNR=40 dB, the EC of HI is equal to 2.8
Bits/Sec/Hz for dual-hop AF relaying, while this reduces to
1.7 Bits/Sec/Hz for triple-hop AF relaying. This is because the
performance degradation due to the imperfection of hardware
in triple-hop case dominates the advantage of reducing the
links’ length. Similar to the OP, the EC performance of HI
with DF relaying is better than the HI with the AF relaying.

Fig. 10 shows the OP of multi-hop DF relaying versus SNR
for N = 2, 3, 4. We consider both the optimal solution as
in (46) and equal κi for Nakagami-m fading channels. We
assume Γ1 = SNR, Γi = 5Γ1 ∀i > 1. Other parameters are
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Figure 10. OP versus SNR with the optimal and equal κi.

A = 0.3, m = 2, and γ = 2Nr − 1 with r = 1 (i.e., 1
bit/channel use). As observed, the optimal solution has more
than one dB performance gain than the equal solution which
verifies the supremity of the optimization problem on κi. This
is reasonable since the optimal solution needs to satisfy the
demand of all the links according to their SNR. For example,
at SNR=20 dB, the optimal OP of N = 2 is 0.003, while the
non-optimal OP is 0.0055. The optimal OP of N = 3 is 0.05,
while the non-optimal OP is 0.09. Also, it can be seen that
the relative distance between the curves increases for higher
values of the N . This implies that the impact of N becomes
increasingly more pronounced.

VII. CONCLUSION

We investigate the performance of multi-hop communi-
cations for both hardware imperfection and ID cases. By
assuming the H-fading model, which includes many fading
models (e.g., RF, FSO, THz and MMW models), we derive
closed-form expressions of OP, BEP, and EC in terms of
single-variate and bivariate H-functions. We also pursue an
asymptotic analysis and derive the diversity order of system
for different relaying protocols. The derived expressions ac-
curately describe the effects of HI and show that substantive
ceilings of SNDR and capacity exists. These ceilings cannot
be eliminated by altering the fading conditions or using more
signal power. The SNDR threshold for the DF relaying is
almost N times the SNDR of FG AF relaying, when we
assume equal level of HI in all nodes. Moreover, DF relaying
is more robust to the HI at the cost of higher complexity
compared to the AF relaying. Furthermore, SNDR ceiling
exists in the high SNR regions and the value of this ceiling has
an inverse relationship with the level of HI. This finding shows
that hardware flaws intimately constrain both AF and DF
relaying systems. Likewise, there is a capacity ceiling on the
top of the EC. The results demonstrate that the optimal level of
HI depends on the number of links and the threshold SNDR
for AF relaying while it is independent of links’ SNRs and
fading parameters. For the DF relaying, the optimal level of
HI depends on all links’ SNRs and fading severity in addition
to the number of links and the threshold SNDR. In the future,
we plan to work on the analysis of the HI systems with full-
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duplex relaying, while incorporating imperfect channels and
imposing co-channel interferers on the relay nodes.

APPENDIX I: PROOF OF THEOREM 1

By applying the average operator in (9), we obtain

ΓF =

N∏
j=1

G2
j−1h

rj
j P1

N∑
j=1

(
σ2
j +

N∑
j=1

E
{
η2j
}
h
rj
j

)
N∏

k=j+1

G2
k−1h

rk
k

(47)

From si+1 = Giyi, we have Pi+1 = G2
iE
{
y2i
}

. Knowing
ηi ∼ CN (0;κ2

iPi), we obtain E
{
y2i
}

. Since yi = (hi)
ri
2 si +

(hi)
ri
2 ηi + vi, we can write

E
{
y2i
}
= G2

i−1h
ri
i

(
1 + κ2

i

)
E
{
y2i−1

}
+ σ2

i

= P1

i∏
k=1

G2
k−1h

rk
k

(
1 + κ2

k

)
+

i+1∑
j=2

σ2
j

i∏
k=j

[
G2

k−1h
rk
k

(
1 + κ2

k

)]
(48)

This leads to variance of the aggregated distortion noise for
the ith hop as follows:

E
{
η2i+1

}
= κ2

i+1P1

i∏
k=1

[
G2

kh
rk
k

(
1 + κ2

k

)]
+ κ2

i+1

i+1∑
l=2

σ2
l−1

i+1∏
k=l

[
G2

k−1

] i∏
k=l

[
hrk
k

(
1 + κ2

k

)]
(49)

The ith relay’s amplification gain of the FG AF relaying can
be written as

G2
i =

Pi+1

PiE {hri
i } (1 + κ2

i ) + σ2
i

=
Pi+1/σ

2
i

(1 + κ2
i )E {Γi}+ 1

(50)

Defining CRi ≜
(
1 + κ2

i

)
E {Γi}+ 1, we can obtain the gain

as G2
i = Pi+1

σ2
iCRi

.
By multiplying the nominator and denominator of (47) with

N∏
k=2

Pk

N∏
k=1

[G2
k−1σ

2
k]

, and putting (49) and (50) into (47), we obtain

ΓF =

N∏
j=1

[Γj ][
N∑
j=1

κ2
j

j−1∏
k=1

(
1 + κ2

k

) N∏
k=1
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j=1

j−1∏
k=1

CRk

N∏
k=j+1
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j=2
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l=2

l−2∏
k=1

CRk
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) N∏
k=l

Γk

]
(51)

Finally, after some simple algebraic manipulations, we have

ΓF =

 N∏
j=1

[Γj ]

 /

 N∏
j=1

Γ′
j +

N∑
j=1

j−1∏
k=1

CRk

N∏
k=j+1

Γ′
k

 (52)

which is (10).

APPENDIX II: PROOF OF THEOREM 2
The closed-form CDF expression of the dual-hop FG AF

relaying with the imperfection of hardware is provided to
evaluate the OP. By doing so, we are able to obtain the CDF
of MH relaying using an inductive argument.

The E2E instantaneous SNDR of dual-hop relaying, by
putting N = 2 in (10), is obtained as

ΓHI,dual
F =

Γ1Γ2

d1Γ1Γ2 + λ2Γ2 + CR1

, (53)

where d1 = λ1 − 1 = κ2
1 + κ2

2 + κ2
1κ

2
2, λ2 = 1 + κ2

2 and
CR1

≜ E [Γ1] (1 + κ2
1) + 1.

By substituting (53) into the OP definition, we have

FHI,dual
ΓF (γ) = Pr

(
Γ1Γ2

d1Γ1Γ2 + λ2Γ2 + CR1

≤ γ

)
, (54)

After some straightforward mathematical manipulations, we
obtain

FHI,dual
ΓF (γ) = Pr

(
Γ1 ≤ λ2Γ2 + CR1

(1− d1γ)Γ2
γ

)
, γ < 1/d1

(55)

As anticipated, when γ ≥ 1/d1, the CDF simplifies to one.
Therefore, we assume the CDF threshold is strictly inferior to
1/d1 (i.e., γ < 1/d1).
Because of independency of Γ1 and Γ2, the outage expression
in (55) can be written as follows:

FHI,dual
ΓF (γ) =

∫ ∞

0

∫ λ2
(1−d1γ)

γ

0

fΓ1 (y) fΓ2 (x) dydx

+
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γ+
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(1−d1γ)x
γ

λ2
(1−d1γ)

γ

fΓ1
(y) fΓ2

(x) dydx.

(56)

By interchanging the order of integral, the outage in (56) can
be obtained as

FHI,dual
ΓF (γ) =FΓ1

(
λ2

(1− d1γ)
γ

)

+

∫ ∞

λ2
(1−d1γ)

γ

fΓ1 (y)FΓ2

 CR1

(1−d1γ)
γ

y − λ2

(1−d1γ)
γ

 dy.

(57)

After the change of integral variable y − λ2

(1−d1γ)
γ → y, we

have

FHI,dual
ΓF (γ) =1−

∫ ∞

0

fΓ1

(
y +

λ2

(1− d1γ)
γ

)
×
(
1− FΓ2

(
CR1

(1− d1γ)y
γ

))
dy. (58)

Due to independency of both link’s SNR distributions, after
some algebraic manipulations, the CDF in (58) can be ex-
pressed as

FHI,dual
ΓF (γ) =FΓ1

(
λ2γ

1− d1γ

)
+

∫ ∞

0

fΓ1

(
y +

λ2γ

1− d1γ

)
×FΓ2

(
CR1γ

(1− d1γ)y

)
dy (59)
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By substituting (5) and (6) into (59), then expanding H-
functions as in [26, Eq. (9.301)] to solve the integral in (59) we
end up with (60), where C1 and C2 are the s1-plane and the
s2-plane contours, respectively. Using the change of integral
orders, we obtain (61) given in the next page. We can solve the
integral on y in (61) by using [26, Eq. (3.194.3)]. The result
can be written in terms of Gamma function by using [26,
Eq. (8.384.1)] given in (62). By change of integral variable
s1 → −s1 and using [28, Eq. (2.57)], we obtain (12).
By expanding of the Mellin-Barnes integrals involved in the
bivariate H-function, the approximation can be obtained by
calculating the residue of the corresponding integrands at the
nearest pole to the contour. Using the Cauchy’s residue theo-
rem, (62) can be approximated as (63). Finally, by applying
[29, Eqs. (1.1.1, 1.1.2)] to (63) and using (59), we obtain (13).

APPENDIX III: PROOF OF THEOREM 3

The closed-form CDF expression of hardware impaired
systems is provided to evaluate the OP, BEP, and EC of MH
relaying networks. For a dual-hop relaying, we can write

ΓF
N−1,N =

(
dN−1 +

λN

ΓN−1
+

CRN−1

ΓN−1ΓN

)−1

(64)

where dN−1 =
(
1 + κ2

N−1

) (
1 + κ2

N

)
− 1 and λN = 1+ κ2

N .
The CDF of ΓF

N−1,N can be obtained using (13) with some
variable changes. Then, the SNDR in (10) can be rewritten as

ΓF
n,...,N =

(
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Γn
+

CRn

ΓnΓF
n+1,...,N

)−1

, (65)

∀n ∈ [1, N − 2], where λn,n+1 = λn+1 + CRn
(1− λn+1),

dn =
N∏
i=n

(
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i

)
− 1 = λn − 1, λN−1,N = λN and
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(66)

Using (59), we can write the CDF of ΓF
n,...,N for n =

1, ..., N − 2 as

FΓF
n,...,N

(γ) =FΓn

(
λn,n+1γ

1− dnγ

)
+

∫ ∞

0

fΓn

(
y +

λn,n+1γ

1− dnγ

)
×FΓF
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(
CRn

γ

(1− dnγ) y

)
dy (67)

In the first step, we assume n = N − 2. However, we obtain
an integral where there is no closed-form solution. If we use
an approximation dnγ ≪ 1 in the denominator of the integral
in (67) and follow the same procedure as the proof of (13),
we obtain the CDF for triple-hop relaying. Similarly, we can
obtain the CDF of N -hop relaying with a recursive procedure,
where the CDF of ΓF

n,...,N can be obtained from ΓF
n+1,...,N .

Using the inductive argument, we can obtain the CDF of N -
hop AF relaying with HI over H-fading. Following the same
procedure as the proof of (12) and (13), we obtain (14) and
(15). The details are omitted due to space limitations.

APPENDIX IV: PROOF OF THEOREM 4
The asymptotic CDF of MH relaying systems with the im-

perfection of hardware is provided to evaluate the asymptotic
OP and the diversity order. For the sake of completeness, we
don’t use the approximation of dnγ ≪ 1. For N = 2, using
(10), we can write

FHI
ΓF
1,2

(γ) =FΓ1

(
λ2γ

1− d1γ

)
+

∫ ∞

0

fΓ1

(
y +

λ2γ

1− d1γ

)
×FΓ2

(
CR1

γ

(1− d1γ) y

)
dt (68)

At high SNRs, by applying [29, Eqs. (1.8.4, 1.8.5)] to (6)
and (5) and substituting the result into (68) and employing
[26, Eq. (3.194.3)], the CDF is obtained as in (69). where
β2,i2 − β1,i1 /∈ Z, λ1 =

(
1 + κ2

1

) (
1 + κ2

2

)
, and λ2 =(

1 + κ2
2

)
.

Again, we can use (69) and derive the CDF of triple-hop
relaying as

FHI
ΓF
1,2,3

(γ) =FΓ1

(
λ1,2γ

1− d1γ

)
+

∫ ∞

0

fΓ1

(
y +

λ1,2γ

1− d1γ

)
×FHI

ΓF
2,3

(
CR1γ

(1− d1γ) y

)
dy (70)

where FHI
ΓF
2,3

(γ) is the same as (69) with parameter change of
indices from 1 and 2, to 2 and 3, respectively. Using [26, Eq.
(3.197.1)], we can solve the integral in (70) and obtain

FHI,∞
ΓF
1,2,3

(γ) ≈
α1∑

l1=1

m1∑
i1=1

D1,i1A3

(1− d1γ)
β1,i1

(
γ

Γ1

)β1,i1

(71)

where A3 is defined in (72) with β3,i3 − β2,i2 /∈ Z. Following
an inductive argument, we can derive the asymptotic OP for
N -hop relaying. The closed-form expression is given in (16).
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