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Abstract—Motivated by the emergence of programmable
radios, we seek to understand a new class of communication
system where pairs of transmitters and receivers can adapt their
modulation/demodulation method in the presence of interference
to achieve better performance. Using signal to interference ratio
as a metric and a general signal space approach, we present a
class of iterative distributed algorithms for synchronous systems
which results in an ensemble of optimal waveforms for multiple
users connected to a common receiver (or colocated independent
receivers). That is, the waveform ensemble meets the Welch Bound
with equality and, therefore, achieves minimum average interfer-
ence over the ensemble of signature waveforms. We derive fixed
points for a number of scenarios, provide examples, look briefly
at ensemble stability under user addition and deletion as well
as provide a simplistic comparison to synchronous code-division
multiple-access. We close with suggestions for future work.

Index Terms—Adaptive modulation, code-division multiple-ac-
cess systems, codeword optimization, interference avoidance, mul-
tiuser detection, sum capacity, vector channels.

I. INTRODUCTION

W IRELESS SYSTEM designers have always had to
contend with interference from both natural sources

and other users of the medium. Thus, the classical wireless
communications design cycle has consisted of measuring
or predicting channel impairments, choosing a modulation
method, signal preconditioning at the transmitter, and pro-
cessing at the receiver to reliably reconstruct the transmitted
information. These methods have evolved from simple (like
FM and preemphasis) to relatively complex (like code-division
multiple-access (CDMA) and adaptive equalization). However,
all share a common attribute—once the modulation method
is chosen, it is difficult to change. For example, an amplitude
shift-keying (ASK) system cannot be simply modified to obtain
a phase shift-keying (PSK) system owing to the complexities
of the transmission and reception hardware. Universal radios1

[1]–[5] change this paradigm by providing the communications
engineer with a radio which can be programmed to produce
almost arbitrary output waveforms and act as an almost arbi-
trary receiver type. Thus, it is no longer unthinkable to instruct
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1Also often called software radio.

the transmitting and receiving radios to use a more effective
modulation in a given situation. Of course, practical radios of
this sort are probably many years away. Nonetheless, if Moore’s
law holds true, they are certainly on the not-too-distant horizon.

It is, therefore, probable that wireless systems of the near fu-
ture will have elements which adapt dynamically to changing
patterns of interference by adjusting modulation and processing
methods in much the same way that power control [6]–[10], is
used today, albeit on a possibly slower time scale. Furthermore,
if the release of 300 MHz of unlicensed spectrum in the 5-GHz
range [11] is any indication, one might expect there to be an
abundance of mutually interfering independent systems and no
central control for efficient coordination. This provides added
impetus to understand mutual interference of systems at some
general level and implicit coordination in a multisystem envi-
ronment.

In this paper, we consider radios which can vary their output
waveforms as well as their demodulation method. Our develop-
ment starts with signal space to drive home the point that these
techniques are applicable to a broad variety of communications
scenarios and not only the usual “chip-based” CDMA system
with a nondispersive channel and a single antenna. That is, if the
problem has a signal space description, then interference avoid-
ance can be brought to bear.2

In this context, we consider optimal waveform selection to
maximize the signal-to-interference ratio (SIR) for a power-con-
strained user in the presence of interference. Starting from the
essentially classical approach of whitening [12] and showing the
relation to modern methods (typified by [13]), we then consider
ensembles of users and describe a class of distributed greedy
algorithm which can optimize their shared use of the medium.
That is, through local self-interested action, a social optimum
can usually be reached. Moreover, the algorithms we will de-
scribe are simple and amenable to adaptive implementation.

II. BACKGROUND

Consider the classical continuous time digital communica-
tions model, in which during an interval [ ], a signal
is transmitted where 1 equiprobably, is the received
power, and is the (unit energy/power) signal waveform.
A receiver recovers , where is
an independent interference stochastic waveform that may be
composed of both thermal noise and interfering signals of other
transmitters. For a single bit, the fundamental problem is to

2Section II provides a self-contained development of the basic ideas for
students, those new to the field, and those who like to reread good stories. It
also shows how interference avoidance stems naturally from much older work
(whitening filters) though under a new guise (linear receivers for multiuser
detection). The knowledgeable reader can safely skim Section II with no loss
of continuity.

1536-1276/02$17.00 © 2002 IEEE
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build a receiver which guesseswith minimum probability of
error. Alternatively, when is one bit in a stream of coded bits,
we would like to produce a soft estimate ofwith high signal
to interference ratio (SIR). When is composed of known
waveforms in addition to independent Gaussian noise, that is

, multiuser receivers have been
designed for a variety of objectives, e.g., minimum probability
of error, maximum SIR, or zero interference from other users
[13]. These multiuser systems share the property that the re-
ceiver does as best it can given the set of transmitter signals

.
From the perspective of the receiver for , the interfer-

ence is simply a stochastic process, which we assume
zero-mean with no loss of generality. Ideally, we would like
to obtain a set of uncorrelated (and preferably independent)
sufficient statistics and then optimally combine these either
to detect the bit or to derive an estimate of. When
is Gaussian, these projections would indeed be independent
Gaussian random variables and the optimal detection problem
would be easily solved. A complete and rigorous development
of the ideas can be found in [12]. Here, we provide a brief
recapitulation.

In general, given a stochastic process, we seek an or-
thonormal representation

(1)

with . Note that in (1), the convergence
requirement is not the usual pointwise limit, but thelimit in the
meancriterion. The interested reader is referred to [12] and [14]
for further details. For our purposes, we assume that such an
expansion for exists and converges. Now, we seek a special
set of orthonormal which produce uncorrelated projections.

(2)

Propagating the expectation and defining
, we obtain the integral equation

(3)

The solution to this integral equation requires

(4)

For the interested reader, the properties of (4) are discussed at
some length in [12].

Since integral equations are in general difficult to solve, it is
useful to derive an equivalent discrete representation of (4). This
will allow us to use simple methods from linear algebra. Now let
us assume that and, therefore, the function set , can
be well-approximated by afinite set of orthonormal basis func-
tions on the interval [ ]. That is, we assume that the
process has no significant energy outside some finite signal

space. As an example, a process “almost” limited to bandwidth
has a basis function set with about orthonormal

functions [12], [15], [16]. Likewise, for a synchronous CDMA
system with chips per bit, the appropriate orthonormal set
consists of the time-shifted chip pulses. One could also use
a space–time orthogonalization for reception/transmission an-
tenna diversity and/or a frequency-time orthogonalization for a
frequency-hopped system.

Regardless of the specifics, once we assume a convenient fi-
nite basis function set over the interval, the can then be
represented by the finite sum

(5)

Combining (4) and (5) yields

(6)

Further, projecting the right and left hand sides onto
yields

(7)

We may also rewrite the directly in terms of the projections
as

(8)
Thus, (7) is a reduction of the continuous time integral (4) to a
standard matrix eigenvalue/eigenvector equation of the form

(9)

where and . Each eigen-
vector corresponds to an eigenfunction of (4) and it is easily
verified that each eigenvalue is the amount of interference signal
energy carried by that eigenfunction. It is also easy to verify that
since is an autocorrelation function, is symmetric
and positive semidefinite. This implies thathas nonnegative
eigenvalues and an associated full set of orthonormal eigenvec-
tors which span [17].

The receiver observes the signal

(10)

as input on the interval [ ]. Projecting the received signal
onto the interference eigenfunctions , , , we ob-
tain the vector output

(11)

where and have th components ,
and the are mutually uncorrelated.
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If the do not span the signal space, then error-free re-
ception is possible by first augmenting the basis set to span the
signal space (via Gram-Schmidt [18] for example) and, then,
noting that there will be no interference energy projected onto
these augmented basis functions which carry nonzero signal en-
ergy. Thus, with no loss of generality, we assume that the basis
functions also span the signal space for , and con-
tains all available information about .

At this point it is instructive to consider the detection of
when is a Gaussian interference process. Because we chose
the interference eigenfunctions to yield un-
correlated interference components, it is straightforward to
show that the likelihood ratio test for optimal detection ofbe-
comes [12], [14]

say 1

say 0

(12)

where the are the projections of onto the decorre-
lating basis functions . This detection method is called a
whitening filter since it can be written as

say 1

say 0

(13)

which is an initial rescaling of the input to make interference
components ( ), already uncorrelated, have equal energy
( ) – just as would be the case for a white noise
process without rescaling. A matched filter on the rescaled
signal vector components is then performed to com-
plete the detection process.

It is worthwhile to note that in a CDMA system where
consists of the other users’ known signature waveforms and ad-
ditive white Gaussian noise (AWGN), the vectorwith compo-
nents is a scaled version of the well known min-
imum mean squared error (MMSE) linear filter [19] and the de-
cision rule (12) is the MMSE multiuser detector. We see that the
filter output (and decision statistic)

(14)

contains both signal and interference terms and that the output
SIR is

SIR

(15)

It is well known that among all linear filters, the MMSE filter
maximizes the output SIR [19]. However, (15) demonstrates that
it remains possible to obtain a higher output SIR by altering

the components of the desired signal . That is, when
is subject to the unit energy constraint , we

can maximize SIR by choosing for any
. In this case, we have . Equivalently, we

could distribute the signal energy in some arbitrary way over
all such . Regardless, this result has a simple intuitively
pleasing physical interpretation:To obtain maximum SIR, place
all the signal energy where there is least interference. We call
this procedureinterference avoidanceand for a single user with
a given interference process, the method is straightforward. We
now examine the implications of this simple Karhunen-Loeve
inspired rule for an ensemble of users. We will find that the
greedy objective in which a user adapts its signature to improve
its SIR has desirable consequences for multiuser systems.

III. I NTERFERENCEAVOIDANCE FORMULTIPLE USERS

We now consider a multiuser system in which the received
signal explicitly includes users and white Gaussian
noise. Given the existence of a finite set of orthonormal
basis functions for the signal space, we can express the
received signal as the vector

(16)

where is the projection of the AWGN onto the basis. The
classical communications scenario presumes that each user sig-
nature is fixed. Assuming universal radio receivers and
transmitters, we now allow the use of tailored signature wave-
forms . Without loss of generality, we assume each
has unit energy. The relationship between signature selection
and multiuser system capacity has been studied in several papers
[10], [20], [21]. In [20], it is shown that for a set of users’ rates

belonging to the information theoretic achievable
rate region , thesumcapacity is

(17)

In (17), is the identity matrix, is the diagonal
matrix of user’s powers , is the
matrix with columns and is the level of white background
noise. Note that these are the projections of the onto the
arbitrary spanning orthogonal basis so that the may
be called generalized codeword vectors and represent arbitrary
signals inside an arbitrary (but finite) signal space.

A. Maximizing Symmetric/Sum Capacity

When the powers of the users are the same, for all ,
(17) reduces to

(18)

where the last equality follows from the fact that for any two ma-
trices and , . It was
shown in [21] that the sum capacity for equal received powers
is maximized if the signature sequences are chosen such that if

(19)
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and if

(20)

In [10], the usercapacity of a CDMA system is defined in
terms of the maximum number of admissible users. Given the
signal space dimensionality and a common SIR target,
users are said to be admissible if there exist positive powers
and signature sequencessuch that each user has an SIR at
least as large as. The user capacity was found for two kinds
of linear receiver structures in [10]: matched filters and MMSE
filters [19], [22]. It was shown in [10] that the user capacity
with MMSE receivers is maximized if the received powers of
the users are identical and if the signature sequence set satisfies
(19) when and (20) when . When
and (19) is satisfied or when and (20) is satisfied, the
MMSE and matched filters are the same. Thus, reference [10]
concludes that the user capacity of a system with matched filter
receivers is the same as that using MMSE filters.

In [21], the unit energy sequence sets satisfying (20) are
called Welch bound equality (WBE) sequence sets. Welch [23]
derived the following lower bound on the sum of the squared
cross correlations, which we will call total squared correlation
(TSC).

TSC Trace (21)

For a simple derivation of the bound (21), see [24] and [25].
Note that sequence sets satisfying (20) satisfy the bound (21)
with equality. We observe that the set of sequences satisfying
either (19) for or (20) for has the property that
the sequence set has minimum TSC. That is, to maximize both
sum capacity and user capacity, we should choose sequence sets
with minimum TSC.

The relationship between sum capacity and TSC can be made
more formal. We start by incorporating the fixed signal power

into the signal vector energy for notational clarity. That
is, instead of requiring , we set . We note
that the sum capacity is then

(22)

Then, we define the eigenvalues of as ,
and rewrite sum capacity as

(23)

essentially as was done in both [21] and [26]. Now consider
TSC. We first note that if are the eigenvalues of

then

Trace (24)

since the eigenvalues of must be [17].
For brevity’s sake, we follow [10], [26] and note that the

function described in (23) is Schur concave while that of (24)
is Schur convex [27]. Since any constraints on the eigenvalues
must be identical, and in fact form a convex set [26], [28], [29],

we can conclude that any set which maximizes (23) must
also minimize (24) andvice versa.3 Therefore, minimization
of TSC is completely equivalentto maximization of . Of
course it must be emphasized that this result does NOT imply
equivalencebetween TSC and sum or symmetric capacity – but
only that minimization of TSC implies maximization of sum ca-
pacity.

This result is useful since we will find that TSC minimization
is simple and lends itself to a distributed implementation suit-
able for use in a system of many users.

B. Iterative Methods of TSC Reduction

There are a number of methods which might be used to de-
termine codeword sets which minimize TSC [10], [21], [26].
Here, we explore simple iterative methods which can be applied
by each transmitter/receiver pair asynchronously and indepen-
dently.

For a single user , we observe that
where , the correlation matrix of the interfer-
ence faced by user, is analogous to the matrix introduced
in Section II. For future use, we note that Trace .
When user replaces its signature vector with a vector ,
the resulting difference in TSC is

Trace Trace (25)

After some linear algebraic manipulations, we find that
iff

(26)

which reduces to

(27)

if as we will hereafter assume. When the interference
faced by user includes AWGN with power spectral density

, we may replace by if desired. As previ-
ously, we note that minimizing Trace is equivalent to
minimizing Trace because the trace of is
fixed at , the total energy in the signal constel-
lation. Thus, in terms of TSC minimization, operations on
or are equivalent.

Note that (27) defines a class of replacement algorithms
whereby a given user can reduce (or at least not increase) the
total squared correlation assuming other users’ codewords
remain fixed during the replacement. Such an algorithm may
be used by each user sequentially until all users have updated
their codewords. At that point the cycle may begin anew.
Cycles (iterations) would then be repeated changes in the TSC
by individual codeword updates. Consideration of this process
begs at least two questions. First, what is an example of such
an algorithm? Second, do such algorithms eventually minimize
TSC?

In answer to the first question, we present two algorithms. The
most obvious method we will call theeigen-algorithm—let

where is a minimum eigenvalue eigenvector of . From
(15), we see that one step of the eigen-algorithm maximizes the
SIR of user by allowing nonzero signal energy only along

3For those unfamiliar with majorization and Schur convexity, an alternate de-
velopment based on Lagrange methods is provided in [28] and [29].
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those basis functions with absolute minimum. From (27),
we see that such a choice guarantees (and thereby no
increase in the TSC) since both the right and left hand sides of
the condition are under-bounded by .

We call the less obvious algorithm theMMSE algorithmsince
we replace by the unit energy MMSE receiver filter

. We note that in the presence of
AWGN, is always invertible. The filter is equivalent to
forming in the decorrelated space and then renor-
malizing where is the eigenvalue matrix of . It is known
that codewords might be adapted for single users to obtain better
mean square error (MSE) performance [30], [31]. The following
theorem, proven in [9], [30], and [32] shows that the MMSE al-
gorithm is indeed an interference avoidance algorithm.

Theorem 1: Replacing with yields , with equality
iff .

Historically, the MMSE algorithm for codewordensemble
optimization is the first proposed interference avoidance algo-
rithm [9], [32], [33].

The question of convergence is addressed next where we
find that the eigen-algorithm and the MMSE algorithm share a
number of common properties.

• Both algorithms decrease the TSC monotonically. Since
TSC is bounded below by the Welch bound, they must
converge in TSC. For the MMSE algorithm, Theorem 1
implies that if TSC converges, then the signatures must
converge [32]. For the eigen-algorithm, formal “conver-
gence in class” of codeword ensembles is shown in [29].
At fixed points of both algorithms, each is an eigen-
vector of .

• For neither algorithm is the resulting codeword set unique.
For example, any rotation of the codeword set will have the
same cross-correlation properties.

• When , the signatures converge to an orthonormal
set. For the MMSE algorithm, this may take several cycles.
For the eigen-algorithm, this occurs after one cycle since
each user chooses an eigenvector orthogonal to the previ-
ously chosen signatures.

• When , the algorithms may converge to a WBE
signature set satisfying . Alterna-
tively, both algorithms could theoretically converge to
a local minimum for TSC. In [9], [32], and [33] mild
conditions are derived under which the MMSE algorithm
converges. In [34], MMSE interference avoidance is
shown to always converge stochastically to the optimum
signature set. Empirically, the eigen-algorithm hasalways
converged to minimum TSC in experiments starting from
random codeword vectors. In addition, a modification to
the procedure called “class warfare” guarantees conver-
gence to a global optimum [28], [29]. Further detail for
eigen-algorithm fixed points is provided in Section IV.

The intuition behind all interference avoidance algorithms
which obey (27) is embodied by the simple requirement

– the replacement vector attempts
to reduce the interference from the ensemble of other user
vectors and noise. From the standpoint of implementation, in
the MMSE algorithm, user must identify .

In the eigen-algorithm, user seeks a minimum eigenvalue
eigenvector of .

These points, taken together suggest that the class of algo-
rithms governed by (27) could be implemented by blind tech-
niques at the receiver along with a feedback channel to the trans-
mitter. Specifically, in the MMSE algorithm, the receiver for
user could be a blind adaptive MMSE filter [35] based on
the observable . Likewise, for the eigen-al-
gorithm, of (27) is maximized when , the sum inter-
ference experienced by userwith new codeword , is min-
imized – equivalent to minimizing . The vector can
also be found using blind techniques. Thus, interference avoid-
ance algorithms are based on a measurable quantity – the inter-
ference/noise signal correlation .

In the MMSE algorithm, a codeword replacement by user
requires first that the receiver filter for userconverges. Fur-
ther, the MMSE filter coefficients must be communicated to
the transmitter via a feedback channel. Consequently, at each it-
erative step, the speed of the algorithm is limited since: 1) the
convergence to the MMSE filter may require several hundred
bits and 2) several hundred bits may be needed for the feed-
back transmission of the new signature. These same conclusions
will also hold for the eigen-algorithm. Therefore, these signa-
ture adaptation algorithms operate on a slower time scale than
the algorithms for multiuser interference suppression. Thus, if
the channel is not stable for a sufficient number of bit intervals,
it is not clear how much advantage interference avoidance will
confer. However, for channels which are stable over a sufficient
number of bit intervals, signature adaptation may offer poten-
tially large capacity increases.

IV. FIXED POINT PROPERTIES FORGREEDY INTERFERENCE

AVOIDANCE ALGORITHMS

Unfortunately, for there is no guarantee that
interference avoidance always leads to an optimal fixed point.
For example, from (27) can be zero over a full cycle of
an interference avoidance algorithm even though the min-
imum eigenvalues might not all be equal as required for

. An illustration of such a suboptimal signal
set is provided in Fig. 1 and the corresponding optimal set in
Fig. 2.

We now examine the nature of such suboptimal fixed points
in more detail.4 The convergence properties of the MMSE algo-
rithm are described in [9] and [32]–[34]. In this paper, our focus
will be on the eigen-algorithm, or more generally, on any greedy
algorithm which always chooses codeword replacements which
increase its SIR when at all possible. Or equivalently, for all
interference avoidance algorithms whose only fixed points are
those such that the equilibrium codewords for agile users are
minimum eigenvalue eigenvectors of their respective. This
condition leads easily to simple structural conditions on glob-
ally optimal algorithm fixed points.

A. Fixed Points for Equal-Power Agile Users

We start with a Lemma.

4For simplicity, we assume no uniform background noise, noting that the min-
imization of TSC is the same whether we considerR orZ .
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Fig. 1. Simple suboptimal signal set in two dimensions with three users.

Fig. 2. Simple optimal signal set in two dimensions with three users.

Lemma 1: If is a fixed point of a greedy interference
avoidance algorithm with minimum eigenvalue ensemble ,
the eigenvalue set of each contains and where

. Furthermore, all corresponding are also eigenvec-
tors of .

Proof: Lemma 1: Since is an eigenvalue of ,
. Observing that , we have

. Both and are eigenvectors of
, but since we assume , they must be orthogonal.

This implies , thus, proving the theorem.
We then use Lemma 1 to show that interference avoidance

must produce codeword ensembles which span the signal space
as well as provide bounds on the differences in performance
between codeword SIRs.

Theorem 2: Let be a fixed point with having
eigenvalues . The distinct eigenvalues,
satisfy for , . Furthermore, the
signal vectors associated with each distinct eigenvalueform
mutually orthonormal subspaces which collectively span.

Proof: Theorem 2:Each is an eigenvector of . As-
sume the eigenvalue of associated with is . In this

case, the minimum eigenvalue of must be .
Suppose, without loss of generality, that for some
. This would imply , which is a contradiction

since by Lemma 1, is the minimum eigenvalue of . For
the second part, we note that since is symmetric, distinct
eigenvalues correspond to orthogonal eigenvectors. Since each
of the is also an eigenvector of , then the vectors as-
sociated with given eigenvalues form mutually orthogonal sub-
spaces of . If these subspaces did not collectively span,
then would have an eigenvector with zero eigenvalue.
This would imply that any signature with could be
replaced by to reduce TSC, which would be a contradiction.

As an aside which brings closure with the results of [10] and
[21], we provide the following simple corollary to Theorem 2.

Corollary 1: Let . If the set comprises a
fixed point with having eigenvalues ,

, then and .
That is, since any positive semidefinite matrix such as

is always diagonalizable – as opposed to having a Jordan form
[17] – we must have .
Since as noted previously, Trace , we must have

.
In summary, there are the optimal fixed points with

for , and the suboptimal fixed
points with vectors in mutually orthogonal subspaces
corresponding to each different – which cannot differ from
each other by more than one. If all the are identical, then
the ensemble correlation is an identity matrix. That is, the
ensemble is essentially whitened.

Our worry, of course, is that the algorithm will converge to a
suboptimal point. Fortunately, in all our experience with numer-
ical studies suboptimal minima have never been obtained when
the starting ensemble is chosen randomly. Only when the initial
set is not full rank or when the component vectors can be par-
titioned into mutually orthogonal subspaces does the algorithm
not always converge to an optimal codeword ensemble.

B. Fixed Points for Mixtures of Fixed and Agile Users

It is likely that users with both fixed and agile waveform ra-
dios may need to occupy the same signal space. We now con-
sider this scenario and find the intuitively pleasing result that
using the eigen-algorithm, the agile users perform a sort ofag-
gregate waterfillingover the portion of the signal space with
least fixed user energy to achieve an optimum SIR. Put another
way, the fixed users appear as colored noise to the agile users
which causes an appropriate Shannonesque distribution of agile
user signal energy over the signal space. It is readily understood
that this feature is of benefit,on average, to the fixed users as
well since it implies that the agile users avoid the fixed users
where possible. We also note that the implied minimization of
ensemble TSC (including the fixed user signatures) is equiva-
lent to maximization of information theoretic sum capacity [28],
[29], [36].

Formally, we let the set be the set of signal
vectors associated with waveform-agile users. Let

be the signal vectors associated with fixed-waveform
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users. Greedy interference avoidance will only be applied to the
. We define

(28)

We also define the mutually orthogonal eigenvectors of as
with associated eigenvalues .
First consider the case where there are fewer agile users

than dimensions . The agile users cannot span the entire signal
space. Thus, we must ask in what portion of the signal space
should the agile users reside to achieve minimum interference.
The answer, though intuitively obvious, is stated as a theorem
and proven.

Theorem 3: If there are agile users, then the inter-
ference experienced by at least one agile user can be reduced
(while not increasing the interference seen by other agile users)
unless the set is contained in the space spanned by the
eigenvectors of with the smallest eigenvalues.

Note that Theorem 3 can also be restated in terms of TSC
since reduction of interference for one user while not increasing
that seen by other users clearly reduces TSC.

Proof: Theorem 3:At equilibrium, we have

(29)

for an interference avoidance algorithm. We note that the di-
mension of the space in which the reside is ,
and that we can linearly combine the to derive mutually
orthonormal eigenvectors of . However, has a full
set of eigenvectors so there exists an additional set of
eigenvectors each of which is orthogonal to the . If ,

is one such eigenvector, then it must also
be an eigenvector of since

(30)

With no loss of generality, let us assume that the first
eigenvectors of , are exactly these and that the corre-
sponding eigenvalues are exactly the .5 Since the eigen-
vectors collectively span and the eigenvectors

comprise the orthogonal complement of the ,
we can expand the in , as

(31)

with .
The interference experienced by useris which we can

write as

(32)

Using (31), we obtain after some simplification

(33)

5We then note that��� might not be an eigenvector ofSS for j = N�Q+

1; . . . ; N .

Now suppose that for some and
, we have . For the fixed, if

we swap with , the only term in (33) which can change
is the second sum on the right-hand side. Since this substitution
cannot increase any of the we will not increase any .
In fact, we will reduce for at least one value of since there
must exist some for which by the condition that
the space spanned by the , and the
space spanned by the are coincident.

Therefore, unless for and
, the interference experienced by at least

one of the agile users can be reduced by the substitution of basis
vectors described above without increasing the interference seen
by the other agile users. Therefore, to achieve minimum mutual
interference, the must reside in the space spanned by the

eigenvectors of with smallest eigenvalues. Since
this space is contained in the space spanned by theeigenvec-
tors of with smallest eigenvalues, the theorem is proved.

We can, therefore, assume with no loss of generality that
– since if not, we simply recast the problem in a space of

dimension following Theorem 3. We now provide a
bound for the minimum TSC.

Theorem 4: When with fixed

Trace (34)

where the are the eigenvalues of ordered from largest
to smallest, and . This
bound is met with equality when the eigenvalues of are

where
has multiplicity .
Proof: Theorem 4:First we write in terms of the

eigenvectors of with and
. Using (28), we have

(35)
Remembering that Trace , we form

and then take the trace to obtain

Trace

(36)
We define the agile energy contained in as

and note that the total agile
signal energy. The corresponding energy in the fixed signals is

by the definition of the . We can then
rewrite (36) as

Trace

(37)
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The terms in the left-hand sum are nonnegative, thus,
Trace , which is convex in the

. Since we require and , application
of standard constrained optimization techniques [37]–[39]
provides a classical waterfilling result. Defining the “water
level” as with as defined
in the theorem statement, we have when and

otherwise. Thus

Trace (38)

thereby, proving the first part of the theorem. Now,
Trace where the are eigenvalues
of . Using the eigenvalues for defined in the theorem
statement completes the proof.

Experimentally, for randomly chosen initial codeword vec-
tors and , invariably the lower bound of Theorem 4
was attained. Analytically, the existence of such signal sets is
guaranteed by application of a variant of theeigen-algorithm
[28], [29]. As for agile-only users, a modification to the algo-
rithm guarantees convergence to the optimum. Thus, greedy in-
terference avoidance algorithms seek a minimum mutual inter-
ference set of agile vectors by “water filling” the energy levels
provided by the fixed users, and avoiding completely energetic
interference above a certain threshold.

Also note that as a byproduct, we have also shown that the
algorithm seeks a minimum mutual interference set of vectors
in a background of colored noise. That is, the effect of the fixed
users came into play only through the eigenvalues and eigenvec-
tors of which could be considered as the autocorrelation
matrix of some arbitrary colored noise process.

Finally, we note that as in the agile-only case, there are op-
timal fixed points where the agile users obtain uniformly max-
imum SIR, and suboptimal fixed points where groups of dif-
ferent agile users obtain differing SIRs. In the suboptimal case,
it is easily shown that once again, the agile users are partitioned
into mutually orthogonal subspaces according to the SIR ob-
tained. Fortunately, also as with the agile-only case, random
choice of initial vectors precluded convergence to a sub-
optimum minimum in all our numerical experiments.

C. Fixed Points for Interference Avoidance With Unequal
Power

In this section, we consider the case where each user has ar-
bitrary but fixed received power . We will find that interfer-
ence avoidance achieves eigenvalues for identical to those
shown in [26] to maximize the sum capacity. We explicitly add
white Gaussian background noise so that capacity is well-de-
fined although this is not a necessary feature for interference
avoidance to be effective. We remind the reader that we assume
at least as many users as signal dimensions since in the
event , the users will confine themselves to dimen-
sions. Note also once again that we have incorporated the signal
power into the code vector ; i.e., .

In an AWGN background, at equilibrium, we require

(39)

With , we have

(40)

The quantity is the inverse of the signal-to-in-
terference-plus noise ratio (SINR) achieved by theth user. We
choose as small as possible which in turn implies we choose
the minimum eigenvalue eigenvector of as previously dis-
cussed. We also have Trace where .
Likewise, Trace is not increased by an interference
avoidance algorithm which replaceswith an of equal power
[see (26)].

Since the interference avoidance algorithm cannot increase
Trace , we now seek a lower bound for Trace .
We have Trace where the are the
eigenvalues of . Consider then that for any signal with
power , the corresponding eigenvalue of is at least

. This forms the basis for the constraint on the eigenvalues
of mentioned in Section III-A and is identical to the
constraint on the derived for sum capacity in [26]. That is,

and we have in
general

Trace (41)

with and assuming ordered energies, . Further
assuming ordered eigenvalues we have ,

.
Since the eigenvalues must sum to, we have

. The minimization of Trace requires 0
if and when . Once again, the
“water level” which satisfies the power constraint equation is

(42)

where

(43)

Thus, is an eigenvalue of with multiplicity and
the complete set of eigenvalues of is

(44)

From (40), we see that

(45)

If no , we then have the usual uniform solution of
( ) and consequently

(46)

Overall, these results have a facetious but memorable interpre-
tation Might makes right. That is, those users with greater re-
ceived power obtain better performance. In fact, the exces-
sively energetic users command private channels. Such users
are calledoversizedin [26], a term coined by S. Verdu.
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Fig. 3. Vector plot of five signal vectors in three-space after five cycles
of interference avoidance. Signal vectors are represented as hollow inverted
pyramids for greater clarity of the 3-dimensional (3-D) representation.

It is worth noting again that minimizing Trace
also minimizes Trace . Since minimizing
Trace under constraints on the eigenvalues is
equivalent to maximizing the sum capacity (see Section III-A)
under the same constraints, the eigenvalues of given in
(44) imply a codeword set which can achieve the sum capacity.
Furthermore, when no , we have 0 and

. This implies an absolute minimum TSC which in
turn implies an absolute maximum sum capacity. This result
is in agreement with that provided in [26] where an existence
proof for such codeword sets can also be found.

Finally we note, once again, that suboptimal minima may be
obtained in which users are partitioned into mutually orthogonal
subspaces with differing SINR characteristics. Also as before,
these subpoptimal fixed points seem to be avoided by starting
from initially random codewords and that convergence to op-
timum can be forced by a modification of the greedy interfer-
ence avoidance procedure [28], [29].

V. DISCUSSION

A. Eigen-Algorithm: Numerical Examples

Here, we provide example applications of interference avoid-
ance to the scenarios analyzed in this paper. Fig. 3 shows CDMA
chip sequences for five agile users with three chips after five
interference avoidance cycles. The resultant associatedis
approximately diagonal

and each unit energy user achieves a signal to interference ratio
of approximately 1.5.

Fig. 4. Vector plot of five signal vectors (three agile and two fixed) after five
cycles of interference avoidance. Notice the coplanarity of the three agile signal
vectors in avoidance of a strong fixed interferer component along the remaining
dimension.

Fig. 5. Vector plot of four signal vectors, three with power 1 and the remaining
with power 4. Notice the coplanarity of the three power 1 vectors in avoidance
of the strong interferer with power 4.

In Fig. 4, we allow only the first three signals to be agile and
fix the remaining two. After five cycles the three agile users re-
side in a space of dimension 2 (coplanar) achieving approxi-
mately 1.6 and a concomitant signal to interference ratio
of approximately 1. 66. They avoid a strong fixed
user interference component (with energy 1.8) in the remaining
dimension.

In Fig. 5, we assume four users, one of whom has much larger
power than the others ( 4). This energetic user commands a
private channel and the remaining three users are forced to share
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Fig. 6. Histogram of norm squared difference between initial and convergent
waveforms after addition of a single new user to an optimal signal set of 24 users
in 16 signal dimensions. The central interval (0.2,3.7) over which there were no
occurrences was compressed for clarity.

two dimensions of the signal space – again the weaker users are
coplanar – and have for a shared SIR of two.

B. Addition and Deletion of Users: Convergence Speed and
Codeword Stability

We have not conducted rigorous convergence-speed exper-
iments for greedy interference avoidance algorithms. For the
MMSE algorithm, however, the settling time seems rapid [9],
[33] with near-convergence to minimum TSC within a three or
four iteration cycles. In 100 trials using 24 and
16, the evolution of Trace for the eigen-algorithm also
converged within a few iteration cycles.

However, much more interesting from a system standpoint
is the issue of what occurs when a given set of users are dis-
turbed by the addition or deletion of a user. How rapidly does
the system settle after the perturbation? Perhaps even more im-
portant is the question of how much the signatures change since
large signature adjustments may imply large signaling load on
the codeword feedback channel.

After one hundred trials where a single user was either added
to or deleted from an already settled system with 24 users in
16 dimensions, we found that convergence was once again
rapid and occurred within three ensemble waveform update
cycles. The magnitude squared of the difference between
the preaddition/deletion codewords and the final convergent
codewords was used as a measure of codeword volatility. A
square difference of zero or four implies respectively, identical
initial and final codewords, or codewords which differ only
in sign. A square difference of two implies a final codeword
orthogonal to the initial.

The results are plotted as histograms in Figs. 6 and 7. As
can be seen, the post deletion codewords are more volatile than
the post addition codewords. However, neither convergent set
often differs much from their preaddition/deletion counterparts.
Where they do differ significantly (square difference approxi-
mately four), the original codeword has simply been inverted.
We believe this to be an artifact of the manner in which eigen-
vectors are chosen for the eigen-algorithm although we have
not pursued the issue carefully. Regardless, these limited results

Fig. 7. Histogram of norm squared difference between initial and convergent
waveforms after deletion of a single user from an optimal signal set of 24 users
in 16 signal dimensions. The central interval (0.4,3.5) over which there were no
occurrences was compressed for clarity.

Fig. 8. Histogram of norm squared difference between initial and convergent
waveforms for 24 users in 16 signal dimensions.

seem to indicate that codeword adaptation under arrivals and de-
partures could be more orderly and rapid than might initially be
imagined.

For comparison, we also provide a histogram (Fig. 8) which
shows the difference between initial random codewords and the
WBE-converged ensemble. Note that the difference between
initial and final codewords is much more pronounced than in
Figs. 6 or 7. However, it is also apparent that there are also
many codewords which do not differ greatly from their initial
randomly chosen value ( ), or only in sign ( ). Thus, even
during system startup, the amount of feedback to transmitters
might not be excessive.

We close this section with a caveat. Studies of convergence
rate based on perfect information are chimeric. In practical
systems where information is imperfect, stochastic convergence
studies [8] are necessary, and as a general rule, the convergence
rate is much slower. Nonetheless, perfect information can
often be used to suggest an upper bound on convergence
properties. That is, were convergence slow and codewords
volatile, there would be little hope of rapid and stable behavior
under imperfect information. However, it should also be noted
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that imperfect measurements tend to randomize the codeword
replacement process slightly which, following our results for
random initial codewords, would tend to favor convergence to
the optimum. In fact, it is exactly this property which guarantees
MMSE interference avoidance convergence to optimal [34].

C. A Simple Comparison to S-CDMA

Suppose that in an interference limited system (assume no
background noise) a signal to interference ratio ofis required
for each user. The maximum number of users which can be sup-
plied the requisite is called theuser capacityof the system
[10]. The work presented, thus, far begs a comparison to CDMA
systems since the basic ideas – spreading users over the signal
space – are very similar.

Since exact comparisons are difficult even between systems
with known operating characteristics (i.e., the raging debate be-
tween TDMA and CDMA), we opt for the high road and con-
sider only simple measures for comparison. Furthermore, we
will ignore such issues as relative immunity to various channel
impairments. We will also not attempt to make estimates of re-
ceiver complexity in any real sense since with changing tech-
nology, what is complex today may be standard tomorrow. The
most obvious comparison is single-base system capacity. Al-
though it is well known that CDMA is inefficient in this regard
and we all expect almost any system which attempts to orthog-
onalize user signatures to be far superior, the single-base com-
parison will aid us in comparing simple measures of multibase
performance.

For a synchronous CDMA (S-CDMA) system with randomly
chosen -chip signature sequences, the user capacity with
simple matched filters is upper bounded by [40]. For a
system employing interference avoidance with matched filters,
we have determined that at convergence, the user capacity
is . The ratio of user capacity of interference
avoidance to S-CDMA systems is, therefore, at least

(47)

We note that this improvement is identical to that obtained
where MMSE filters as opposed to matched filters are used
with random codewords [40].

For 1 (0 dB) the gain is approximately two. For 4
(6 dB), the gain is approximately five. Thus, as expected, signa-
tures generated by interference avoidance greatly increase the
single-base user capacity of S-CDMA systems. Furthermore,
the basic receiver structure (again, conveniently excluding the
machinery necessary to calculate and disseminate the signa-
tures) is conceptually simple – a matched filter.

Of course, it would be more interesting to compare the multi-
base performance of these systems. The current thinking is that
although single-base CDMA is inefficient, when multiple con-
tiguous coverage regions are added, CDMA is more efficient
and robust than other modulation methods such as TDMA or
FDMA. The details of any rigorous comparison lie outside the
scope of this paper, so again we opt for simplicity.

Thus, consider an S-CDMA system model where each cell
carries users and the total other-cell interference energy for
any given cell is per dimension where is some non-
negative constant. That is, we approximate all the interference

energy from all other cells as white over the signal space with
aggregate interference energy .

The SIR for each user assuming matched filters and random
signatures is

(48)

for a user capacity of

CDMA (49)

Unfortunately, a direct comparison to a system employing in-
terference avoidance is as yet impossible since the multiple base
interference avoidance problem has not yet been solved. How-
ever, we note that for a given cell with other-cell noise energy

, the worst interference spectral structure from a capacity
standpoint would be white since interference avoidance could
exploit the structure of nonwhite interference. Thus, taking on
faith (and limited empirical observations under specific sce-
narios) that fixed points indeed exist for multiple base systems
employing interference avoidance, we see that at each base,
the “worst case” attainable interference-to-signal ratio (ISR) is

which implies

IA (50)

—an expected improvement of over
S-CDMA.

This approximate comparison, even if flawed by the unknown
behavior of interference avoidance in a multiple base setting,
suggests that exploration of interference avoidance as a means to
increase system capacity will merit further investigation. Of par-
ticular interest will be some of the issues raised previously, prin-
cipal among them, whether interference avoidance can be used
effectively with dispersive channels. Recent work [41] where a
version of multicarrier modulation is adopted suggests the an-
swer is yes.

VI. SUMMARY AND CONCLUSION

Starting from a general signal space foundation, we have de-
rived a class ofinterference avoidancealgorithms whereby indi-
vidual users asynchronously adjust their transmitted waveforms
and corresponding matched filter receivers to minimize inter-
ference from other sources, including other users. This method
presupposes that transmitters and receivers arewaveform agile
as would be the case assuming universal radios [1]–[5] are in-
expensive and ubiquitous.

The interference avoidance procedure, based on SIR as
opposed to individual capacity maximization, minimizes total
square correlation (TSC). We pursued the relation between
sum capacity maximization [10], [25], [26] and minimization
of TSC and found equivalence (see Section III-A) in a white
noise environment. Specifically, minimization of total square
correlation results in signature sets which can also be used to
achieve sum channel capacity (through Gaussian signaling).

The minimization/maximization is often achieved through a
satisfyingly information theoretic “waterfilling” of the signal
space by the ensemble of users. Note that this waterfilling is
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essentially an “emergent” property of the ensemble since in-
dividual users seek not to maximize their capacity (via water-
filling), but rather, only seek to maximize their own SINR. Com-
binations of fixed and agile users (or agile users in colored back-
ground noise, see Section IV-B) as well as users with unequal
received powers (Section IV-C) were analyzed as examples.

Numerical experiments were conducted which corroborated
the basic analytic results. Further experiments, aimed at deter-
mining whether interference avoidance might be used in prac-
tical systems were also conducted. These included measure-
ments of convergence speed and codeword set volatility under
the addition or deletion of a single user. In all cases the results
were encouraging. It is also worth noting that experimentally,
suboptimal sets wereneverobtained when starting from ran-
domly chosen codewords and no modifications of the basic in-
terference avoidance procedure (as in [28] and [29]) were nec-
essary.

Simple comparisons to synchronous CDMA show that for a
single cell, the number of users serviceable at reasonable SIRs
is much greater and scales approximately with the required SIR.
This is not surprising since almost any scheme which attempts
to orthogonalize signature waveforms will have much greater
capacity than a single-base CDMA system. More telling is the
comparison of systems for multiple bases where rough calcu-
lations suggest substantial improvement may be had using in-
terference avoidance methods, although these results must be
interpreted in light of the fact that the behavior of multiple base
interference avoidance is as yet unknown. Furthermore, aside
from the assumption of waveform agility and the necessity of
measuring interference to calculate the optimal signature, the
optimum linear transmit and receive methods are very simple
— matched filter detection.

We close with a (nonexhaustive) sampling of problem areas,
both theoretical and practical, which must be addressed if in-
terference avoidance is to become a useful tool for wireless
system design. First, the issue of the proper venue for interfer-
ence avoidance must be established. By virtue of the necessity
for interference measurement over a large number of bit inter-
vals for each waveform update and the asynchronicity of the
algorithm over multiple users, it is not obvious whether inter-
ference avoidance can be effective in situations where the wire-
less channel is changing significantly over, say 1000 or 10000,
bit intervals, though there are hints that even in such circum-
stances, IA affords some improvement [42]. Regardless, a fixed
wireless environment might be most appropriate for application
of interference avoidance methods.

We note that despite the assumption of perfect channels
used in this paper, wireless channels are notoriously dispersive,
and when signal energy for each bit is not contained within a
single received bit interval, the problem formulation changes.
Nonetheless, recent results show that interference avoidance
methods seem to be robust and are applicable to dispersive
systems, asynchronous systems and multiple antenna systems
as well [41]–[50].

As noted, we have found the speed and stability with which
codeword ensembles converge surprising. Especially intriguing
is the seemingly certain convergence to an optimal set when
starting from a randomly chosen starting set and the ease with

which suboptimal fixed points are escaped through perturbation.
It has been shown that for MMSE interference avoidance this
property is a result of stochastic convergence and that MMSE
interference avoidance must converge with probability 1 to op-
timal fixed points in the cases considered [34]. In fact, a modi-
fication of greedy interference avoidance called “class warfare”
can be used to escape the finite number of local minima and re-
sults in provable convergence to minimum TSC [28], [29]. But
frustratingly, a general proof for greedy interference avoidance
which reflects the uncannily uniform convergence seen in prac-
tice without escape methodsremains elusive.

The issue of codeword representation and fidelity in a real
software/universal radio has been considered only empirically
at present [51], [52]. Specifically, instead of uniform-amplitude
codeword “chips,” interference avoidance presumes real-valued
“chips” or more generally, real-valued coefficients for a set of
orthonormal signal basis functions used by the transmitter and
receiver. To be effective, these values must be communicated to
the transmitter, and the amount of information which may be fed
back to the transmitter will determine quantization methods for
codewords. It is not currently known how quantization affects
the performance of interference avoidance, although empirical
investigation seems to indicate that in the vecinity of four-bits
per chip using Gaussian quantization is sufficient.

Finally, it must be emphasized that only a single receiver
(or colocated multiple receivers) were assumed for this study.
Limited experiments with multiple receivers and power control
showed unstable behavior when interference avoidance was di-
rectly applied and some art was required to achieve reasonable
fixed points. An understanding of the multiple receiver problem
is, therefore, paramount in determining the utility of interfer-
ence avoidance in real systems.

Nevertheless, owing to the simplicity of the concept and the
ever increasing sophistication of radio hardware, we expect that
interference avoidance will afford an interesting new perspec-
tive which might even evolve into a practical method for wire-
less system design. If so, we expect it to be especially useful in
unlicensed bands such as the U-NII, where users can mutually
interfere with officially sanctioned impunity [11].
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