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Abstract—Motivated by the emergence of programmable the transmitting and receiving radios to use a more effective
radios, we seek to understand a new class of communication modulation in a given situation. Of course, practical radios of
system where pairs of transmitters and receivers can adapt their this sort are probably many years away. Nonetheless, if Moore’s
modulation/demodulation method in the presence of interference ) L .
to achieve better performance. Using signal to interference ratio law hOIdS true, they are certainly on the not-too-distant horizon.
as a metric and a genera| Signa| space approach, we present a It IS, therefore, probable that wireless SyStemS of the near fu-
class of iterative distributed algorithms for synchronous systems ture will have elements which adapt dynamically to changing
which results in an ensemble of optimal waveforms for multiple patterns of interference by adjusting modulation and processing

users connected to a common receiver (or colocated independent ; ;
] ; meth in much th me way th wer control [6]-[10], i
receivers). That is, the waveform ensemble meets the Welch Bound ethods uch the same way that power control [6]-{10], is

with equality and, therefore, achieves minimum average interfer- _used today, albeit on a p055|bly_slower time scale._Furthermore,
ence over the ensemble of signature waveforms. We derive fixed if the release of 300 MHz of unlicensed spectrum in the 5-GHz
points for a number of scenarios, provide examples, look briefly range [11] is any indication, one might expect there to be an
at ensemble stability under user addition and deletion as well gbundance of mutually interfering independent systems and no
as provide a simplistic comparison to synchronous code-division centra| control for efficient coordination. This provides added
multiple-access. We close with suggestions for future work. . .
impetus to understand mutual interference of systems at some
Index Terms—Adaptive modulation, code-division multiple-ac- general level and implicit coordination in a multisystem envi-
cess systems, codeword optimization, interference avoidance, mul-ronmem_
tiuser detection, sum capacity, vector channels. . . . . .
In this paper, we consider radios which can vary their output
waveforms as well as their demodulation method. Our develop-
|. INTRODUCTION ment starts with signal space to drive home the point that these
IRELESS SYSTEM designers have always had t&chniques are applicable to a broad variety of communications
contend with interference from both natural sourcegfenarios and not only the usual “chip-based” CDMA system
and other users of the medium. Thus, the classical wirele¥ih a nondispersive channel and a single antenna. Thatis, if the
communications design cycle has consisted of measuripgblem has a signal space description, then interference avoid-
or predicting channel impairments, choosing a modulatiGiice can be brought to béar.
method, signal preconditioning at the transmitter, and pro-In this context, we consider optimal waveform selection to
cessing at the receiver to reliably reconstruct the transmittBtximize the signal-to-interference ratio (SIR) for a power-con-
information. These methods have evolved from simple (likgrained user in the presence of interference. Starting from the
FM and preemphasis) to relatively complex (like code-divisiogssentially classical approach of whitening [12] and showing the
multiple-access (CDMA) and adaptive equalization). Howevdglation to modern methods (typified by [13]), we then consider
all share a common attribute—once the modulation meth@fsembles of users and describe a class of distributed greedy
is chosen, it is difficult to change. For example, an amplituddgorithm which can optimize their shared use of the medium.
shift-keying (ASK) system cannot be simply modified to obtaid hat is, through local self-interested action, a social optimum
a phase shift-keying (PSK) system owing to the complexiti€an usually be reached. Moreover, the algorithms we will de-
of the transmission and reception hardware. Universal radig§ribe are simple and amenable to adaptive implementation.
[1]-[5] change this paradigm by providing the communications
engineer with a radio which can be programmed to produce [I. BACKGROUND
almost arbitrary output waveforms and act as an almost arbi-C

. - ) ) onsider the classical continuous time digital communica-
trary receiver type. Thus, it is no longer unthinkable to instrugt,

ns model, inwhich during anintervdl [T, a signab,/pS(t)
is transmitted wheré = +1 equiprobablyp is the received
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build a receiver which guessésvith minimum probability of space. As an example, a process “almost” limited to bandwidth
error. Alternatively, wherd is one bit in a stream of coded bits,&=W has a basis function set with abd2iV’I" orthonormal

we would like to produce a soft estimate ioWwith high signal functions [12], [15], [16]. Likewise, for a synchronous CDMA

to interference ratio (SIR). Whe#i(¢) is composed of known system with/N chips per bit, the appropriate orthonormal set
waveforms in addition to independent Gaussian noise, thatcensists of theV time-shifted chip pulses. One could also use
Z(t) = >, bi/piSi(t) + N(t), multiuser receivers have beera space—time orthogonalization for reception/transmission an-
designed for a variety of objectives, e.g., minimum probabilitienna diversity and/or a frequency-time orthogonalization for a
of error, maximum SIR, or zero interference from other usefiequency-hopped system.

[13]. These multiuser systems share the property that the reRegardless of the specifics, once we assume a convenient fi-
ceiver does as best it can given the set of transmitter signaite basis function set over the interval, ti#g(t) can then be

Si(t). represented by the finite sum

From the perspective of the receiver f(¢), the interfer- N
ence Z(t) is simply a stochastic process, which we assume P.(1) — W (t 5
zero-mean with no loss of generality. Ideally, we would like it) nz::ld)m ®)- ®)

to obtain a set of uncorrelated (and preferably independent) .

sufficient statistics and then optimally combine these eith&mPining (4) and (5) yields

to detect the bit or to derive an estimate df. When Z(¢) N T N

is Gaussian, these projections would indeed be independent AiZd)m\Pn(t) :/ Rz(t,T)Z@n\pn(T)dﬁ (6)
Gaussian random variables and the optimal detection problem n=1 0 n=1

would be easily solved. A complete and rigorous development I . :
of the ideas can be found in [12]. Here, we provide a br?l‘—?urther, projecting the right and left hand sides oftg(?)

. . ields
recapitulation.
In general, given a stochastic proce&st) we seek an or- N T T
thonormal representation Xidie =Y d)in/ / Rz (t, 7)Ur(t)Vo(7) dt dr
n— ¥0 0
N ' g
HQ:JTQE:WQQ) 1) N
=1 = Z Tknd)in- (7)
n=1

with a; = fOT Z(t)®;(t)dt. Note that in (1), the convergence
requirement is not the usual pointwise limit, but tteit in the We may also rewrite the,,;. directly in terms of the projections
mearcriterion. The interested reader is referred to [12] and [14],, = fOT Z(t)Pn(t)dt as
for further details. For our purposes, we assume that such an
expansion foZ (¢) exists and converges. Now, we seek a specigllk - E — E[Z170].
set of orthonormad; which produce uncorrelated projections.
8
(@i(t), Z(1)){(2,(t), Z()] = Thus, (7) is a reduction of the continuous time integral (4) to a

E[(®;
T T standard matrix eigenvalue/eigenvector equation of the form
/ / (I)Z(T)Z(T)‘I)J(t)Z(t) dtdr :)‘1621 (2)
0 0

/oT /OT Z(t) Z(T) ¥y () U (T)dtdr

E

E[ZZT] ¢i = R¢i = )\i¢i ()]

Propagating the expectat_ion and deﬁnin@z(tm) = whereg, = [pi1 -~ ¢;in]T andZ = [Z; --- Zx]T. Each eigen-
E[Z(t)Z(7)], we obtain the integral equation vector corresponds to an eigenfunction of (4) and it is easily
T T verified that each eigenvalue is the amount of interference signal
/ D, (t) </ Ry(t,7)®:(7) dT) dt = X\;6;;. (3) energy carried by that eigenfunction. Itis also easy to verify that

0 0 sinceRz(t, ) is an autocorrelation functio® is symmetric

and positive semidefinite. This implies thBthas nonnegative

The solution to this integral equation requires . . :
eigenvalues and an associated full set of orthonormal eigenvec-

z tors which spa’™¥ [17].
Ai®i(t) = /0 Ry (t, 7)®i(r)dr. (4) The receiver observes the signal
For the interested reader, the properties of (4) are discussed at r(t) =bS(t) + Z(t) (10)

some length in [12]. ) ) L _ )
Since integral equations are in general difficult to solve, it & INPut on the intervalof T]. Projecting the received signal

useful to derive an equivalent discrete representation of (4). TRIC the interference eigenfunctiofis (¢), ..., ®x(t), we ob-

will allow us to use simple methods from linear algebra. Now [4&/N the vector output

us assume that(¢) and, therefore, the function sgb;(¢)}, can

be well-approximated by fnite set of orthonormal basis func-

tions{W,,(¢)} on the interval {, 7. That is, we assume that thewheres andz haventh components,, = (S(¢), ®,.(¢)), z, =

proces¥(t) has no significant energy outside some finite signdl (¢), ¢,,(¢)) and thez,, are mutually uncorrelated.

F=05+2 (11)
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If the ®,.(¢) do not span the signal space, then error-free rehe components,, of the desired signab(¢). That is, when
ception is possible by first augmenting the basis set to span #ig) is subject to the unit energy constralt, s2 = 1, we
signal space (via Gram-Schmidt [18] for example) and, thecan maximize SIR by choosings,, = 1 for any A,, = A" =
noting that there will be no interference energy projected ontoing ). In this case, we havé(t) = ®,(¢). Equivalently, we
these augmented basis functions which carry nonzero signal eodld distribute the signal energy in some arbitrary way over
ergy. Thus, with no loss of generality, we assume that the baalssuch®,,(¢). Regardless, this result has a simple intuitively
functions®,,(t) also span the signal space ft), andis con- pleasing physical interpretatiofo obtain maximum SIR, place
tains all available information abolf (¢). all the signal energy where there is least interferendée call

At this point it is instructive to consider the detectioniof this procedurénterference avoidancand for a single user with
whenZ(t) is a Gaussian interference process. Because we chaggven interference process, the method is straightforward. We
the interference eigenfunctiofi®, (¢), ..., ®x(¢)} toyieldun- now examine the implications of this simple Karhunen-Loeve
correlated interference components it is straightforward to inspired rule for an ensemble of users. We will find that the
show that the likelihood ratio test for optimal detectiorbdfe- greedy objective in which a user adapts its signature to improve
comes [12], [14] its SIR has desirable consequences for multiuser systems.

say 1

N _

s A sayO

Ill. | NTERFERENCEAVOIDANCE FOR MULTIPLE USERS

We now consider a multiuser system in which the received
signal »(¢) explicitly includes M users and white Gaussian
where the{r,} are the projections of(t) onto the decorre- noise. Given the existence of a finite set &f orthonormal
lating basis function,,(t). This detection method is called abasis functionsl;(¢) for the signal space, we can express the

whitening filter since it can be written as received signal as the vector
M
B B say 1
n (13) r—= Z Vpibis; +n (16)
‘/ VA =1

wheren is the projection of the AWGN onto the basis. The
which is an initial rescaling of the mput to make interferencelassical communications scenario presumes that each user sig-
components {z,.}), already uncorrelated, have equal energyatureS;(t) is fixed. Assuming universal radio receivers and
({Z./v/A.}) — just as would be the case for a white noisttansmitters, we now allow the use of tailored signature wave-
process without rescaling. A matched filter on the rescaléarms S;(t). Without loss of generality, we assume edlit)
signal vector components, /\/\,, is then performed to com- has unit energy. The relationship between signature selection

plete the detection process. and multiuser system capacity has been studied in several papers
It is worthwhile to note that in a CDMA system wheg&t)  [10], [20], [21]. In [20], it is shown that for a set of users’ rates
consists of the other users’ known signature waveforms and d- - - -, /2a7 belonging to the information theoretic achievable

ditive white Gaussian noise (AWGN), the vectowith compo- rate regiorC, thesumcapacity is
nents¢, = s,/\, is a scaled version of the well known min-

imum mean squared error (MMSE) linear filter [19] and the de- ¢, =  max Z R, = log Iy +o7'SPST| (17)
cisionrule (12) is the MMSE multiuser detector. We see that the R Ba)CC
filter output (and decision statistic) In (17), Iy is the N x N identity matrix, P is the diagonal
N matrix of user's powerg;, S = [s1,...,sp]iStheN x M
X —c'f= Z i, = <Z ) Z SnZn (14) matrix with columnss; ando is the level of white background
n An noise. Note that thesg, are the projections of th&;(¢) onto the

contains both signal and interference terms and that the outfRitra"y spanning orthogonal bagi#.(¢)} so that thes; may
SIR is e called generalized codeword vectors and represent arbitrary

signals inside an arbitrary (but finite) signal space.

N\
E <bn§1 AZ) ] A. Maximizing Symmetric/Sum Capacity
SIRy = N 2 When the powers of the users are the sappes p for all £,
E <Z 5‘) ] (17) reduces to
n=1 "
1 1
N N2 Cy = 5 log ‘IN n BSST‘ — 3 log ‘IM +2s7s| (s
52 . (2 (2
B <nz=:1 A) B N 52 15 where the last equality follows from the fact that for any two ma-
TN N o EEa — A, (15) tricesA e andByy i, [Ix + AB| = [Ty + BA|. It was
> X B W W shown in [21] that the sum capacity for equal received powers

) ) ) ) is maximized if the signature sequences are chosen such that if
It is well known that among all linear filter®, the MMSE filter  5; < A

maximizes the output SIR [19]. However, (15) demonstrates that —
it remains possible to obtain a higher output SIR by altering STS =1y (19)
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andifM > N we can conclude that any sgt; } which maximizes (23) must
M also minimize (24) andiice vers@ Therefore, minimization
SST = <N) In. (20) of TSC iscompletely equivalentto maximization ofC;. Of

course it must be emphasized that this result does NOT imply

In [10], the user capacity of a CDMA system is defined inequivalencéetween TSC and sum or symmetric capacity — but
terms of the maximum number of admissible users. Given thely that minimization of TSC implies maximization of sum ca-
signal space dimensionality and a common SIR targgt M  pacity.
users are said to be admissible if there exist positive powers This result is useful since we will find that TSC minimization
and signature sequencgssuch that each user has an SIR &g simple and lends itself to a distributed implementation suit-
least as large a8. The user capacity was found for two kindsable for use in a system of many users.
of linear receiver structures in [10]: matched filters and MMSE i i
filters [19], [22]. It was shown in [10] that the user capacit: Iterative Methods of TSC Reduction
with MMSE receivers is maximized if the received powers of There are a number of methods which might be used to de-
the users are identical and if the signature sequence set satigéesiine codeword sets which minimize TSC [10], [21], [26].
(19) wheniM < N and (20) whenM > N. WhenM < N  Here, we explore simple iterative methods which can be applied
and (19) is satisfied or whei > N and (20) is satisfied, the by each transmitter/receiver pair asynchronously and indepen-
MMSE and matched filters are the same. Thus, reference [Hntly.
concludes that the user capacity of a system with matched filtefFor a single usef, we observe thaBST = Ry + sis]
receivers is the same as that using MMSE filters. whereR;, = E#k s;s; , the correlation matrix of the interfer-

In [21], the unit energy sequence sets satisfying (20) aeace faced by uséy, is analogous to the matriR introduced
called Welch bound equality (WBE) sequence sets. Welch [28] Section II. For future use, we note that Trfg8 "] = M.
derived the following lower bound on the sum of the squaratfhen usert replaces its signature vectsg with a vectorx,
cross correlations, which we will call total squared correlatiome resulting difference in TSC is

(TSC). A = Tracd(Ry + sy )?] — Tracd(Re +xx" )2, (25)

M M
TSC= Trace[(SST)Q] _ ZZ (siTsj)Q > %2 (21) After some linear algebraic manipulations, we find that> 0
im1 =1 N iff
For a simple derivation of the bound (21), see [24] and [25]. 2s) Risy + [s]? > 2x TRyx + |x|? (26)

Note that sequence sets satisfying (20) satisfy the bound (21)

with equality. We observe that the set of sequences satisfyibich reduces to

either (19) forM < N or (20) forAd > N has the property that siRyse > x ' Ryx 27)

the sequence set has minimum TSC. That is, to maximize both il ft_ When the interf

sum capacity and user capacity, we should choose sequence'g(le’fé = |si| as we will herearter assume. When the inter erence

with minimum TSC. fa2ced by usek includes AWGN with onyver s_pectral densﬁy
The relationship between sum capacity and TSC can be mé&de W€ May replac®;. by Zi, = Ry +o°1if desired. As previ-

IR o s X
more formal. We start by incorporating the fixed signal poweprqs!y’ we n9rte tha; gnTlnlmlz;{ng Tbraﬁ(ss ) r]1 IS equw;lsept_ to
. into the signal vector enerdy;.|? for notational clarity. That minimizing raf\:ﬁ( 2+ o°1)7] ecause-_t € tra_ce IS
is, instead of requiringsx|®> = 1, we set|s;|> = px. We note fixed at & = 3,_, [s«[", the total energy in the signal constel-
that the sum capacity is then lation. Thus, in terms of TSC minimization, operationsRp

or Z;, are equivalent.

C, = llog 1 (oIN + ssT) . (22) Note that (27) defines a class of replacement algorithms
2 g whereby a given user can reduce (or at least not increase) the
Then, we define the eigenvalues @fy + SST as);, i = total squared correlation assuming other users’ codewords
1,..., N and rewrite sum capacity as remain fixed during the replacement. Such an algorithm may
N be used by each user sequentially until all users have updated
C. = _ElogaJrlZlog)\i (23) their codewords. At that point the cycle may begin anew.
2 2 Cycles (iterations) would then be repeated changes in the TSC

essentially as was done in both [21] and [26]. Now consid8l individual codeword ypdate_s. Considgration of this process
TSC. We first note that if \;} are the eigenvalues oIy + begs at least two questions. First, what is an example of such

SST then an algorithm? Second, do such algorithms eventually minimize
N TSC?
Trace[(oLy + SST)?] = Z M (24) In answer to the first question, we present two algorithms. The
i=1 most obvious method we will call tredgen-algorithm—letx =
since the eigenvalues (52Iy + SST)2 must be{\?} [17]. @7, whereg;, is a minimum eigenvalue eigenvectorif,. From

For brevity’s sake, we follow [10], [26] and note that thd15), we see that one s_tep of the eige_n—algorithm maximizes the
function described in (23) is Schur concave while that of (24)/R of userk by allowing nonzero signal energy only along

is Schur convex [27]. Since any constraints on the eigenvalueg:qr those unfamiliar with majorization and Schur convexity, an alternate de-
must be identical, and in fact form a convex set [26], [28], [29}elopment based on Lagrange methods is provided in [28] and [29].
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those basis functions with absolute minimug). From (27), In the eigen-algorithm, uset seeks a minimum eigenvalue
we see that such a choice guarantdes> 0 (and thereby no eigenvectokp; of Ry.
increase in the TSC) since both the right and left hand sides ofThese points, taken together suggest that the class of algo-

the condition are under-bounded @#;) " Ry} rithms governed by (27) could be implemented by blind tech-
We call the less obvious algorithm tMMSE algorithnsince niques at the receiver along with a feedback channel to the trans-
we replaces;, by the unit energy MMSE receiver filter;, = mitter. Specifically, in the MMSE algorithm, the receiver for

(S;—[Zk]_QSk)_l/Q [Z:]~*si. We note that in the presence ofuserk could be a blind adaptive MMSE filter [35] based on
AWGN, Z, is always invertible. The filter;, is equivalent to the observabléZ, = Ry + o2I. Likewise, for the eigen-al-
forming e, = A5 in the decorrelated space and then renogorithm, A of (27) is maximized whex " Ryx, the sum inter-
malizing whereA is the eigenvalue matrix ;. It is known ference experienced by userwith new codewordx, is min-

that codewords might be adapted for single users to obtain betféized — equivalent to minimizing ' Z,x. The vectorx can
mean square error (MSE) performance [30], [31]. The followinglso be found using blind techniques. Thus, interference avoid-
theorem, proven in [9], [30], and [32] shows that the MMSE aRnce algorithms are based on a measurable quantity — the inter-

gorithm is indeed an interference avoidance algorithm. ference/noise signal correlatid),.
Theorem 1: Replacingwith c; yieldsA > 0, with equality ~ In the MMSE algorithm, a codeword replacement by user
iff ¢z, = si. requires first that the receiver filter for uskerconverges. Fur-

Historically, the MMSE algorithm for codewordnsemble ther, the MMSE filtercoeﬁicientsk must be communicated to _
optimization is the first proposed interference avoidance algi transmitter via a feedback channel. Consequently, at each it-
rithm [9], [32], [33]. erative step, the speed of th(_e algorithm is _I|m|ted since: 1) the
. . convergence to the MMSE filter may require several hundred

The question of convergence is addressed next where %YFS and 2) several hundred bits may be needed for the feed-
find that the eigen-algorithm and the MMSE algorithm share a . . .
number of common properties. bz_;\ck transmission of th_e new S|gn_ature. These same conc_lu5|ons

will also hold for the eigen-algorithm. Therefore, these signa-

» Both algorithms decrease the TSC monotonically. Sintere adaptation algorithms operate on a slower time scale than
TSC is bounded below by the Welch bound, they mustie algorithms for multiuser interference suppression. Thus, if
converge in TSC. For the MMSE algorithm, Theorem the channel is not stable for a sufficient number of bit intervals,
implies that if TSC converges, then the signatures musis not clear how much advantage interference avoidance will
converge [32]. For the eigen-algorithm, formal “convereonfer. However, for channels which are stable over a sufficient
gence in class” of codeword ensembles is shown in [29jumber of bit intervals, signature adaptation may offer poten-
At fixed points of both algorithms, ead), is an eigen- tially large capacity increases.
vector ofZ;,.

 For neither algorithm is the resulting codeword set unique.|v. FIxeED POINT PROPERTIES FORGREEDY INTERFERENCE
For example, any rotation of the codeword set will have the AVOIDANCE ALGORITHMS
same cross-correlation properties.

* WhenM < N, the signatures converge to an orthonormal

set. For the MMSE algorithm, this may take several cyclei{. leA f 27 b ull le of
For the eigen-algorithm, this occurs after one cycle sin or example,A from (27) can be zero over a full cycle o

e . . . .
each user chooses an eigenvector orthogonal to the pr&ﬂ- interference avoidance algorithm even though the min-

ously chosen signatures. imum eigenvalues\; might not all be equal as required for

T . . . .
* WhenM > N, the algorithms may converge to a WBESS; . (Mé]\;)I ,;k:n |IITstrac§|ct)rr11 of such a sg'boptm:gl s:gne:I.
signature sef satisfyingSST = (M/N)Iy. Alterna- set is provided in Fig. 1 and the corresponding optimal set in

. . ; ig. 2.
gvﬁ)lglb?;i?manlggltfgrpﬁ.;gul:jn t[fggor[gtzlclzag):] dc?gg?rr?]?l dtéz We now examine the nature of such suboptimal fixed points

conditions are derived under which the MMSE algorithri{! M°"® detaik The convergence properties 9f the MMSE algo-
converges. In [34], MMSE interference avoidgnce igthm are described in [9] and [32]—[34]. In this paper, our focus

shown to always converge stochastically to the optimu ill be on the eigen-algorithm, or more generally, on any greedy
signature set. Empirically, the eigen-algorithm hhgays algorithm which always chooses codeword replacements which

converged to minimum TSC in experiments starting frOIW;:refase Its SIR_(\j/vhen atl all_trilossmlﬁ. Or eqlunf/_ale(;ltly,_f(t)r all
random codeword vectors. In addition, a modification tff < ¢! c1C€ avoldance aigorithms wnose only fixed points are

the procedure called “class warfare” guarantees convé ose such that the equilibrium codewords for agile users are
gence to a global optimum [28], [29]. Further detail fotrninimum eigenvalue eigenvectors of their respechyve This

eigen-algorithm fixed points is provided in Section IV. condition leads easily to simple structural conditions on glob-

R . ) ] . ally optimal algorithm fixed points.
The intuition behind all interference avoidance algorithms y op g P

which obey (27) is embodied by the simple requiremel;&
x"Rix < s]Rysp — the replacement vectat attempts = _
to reduce the interference from the ensemble of other usenVe start with a Lemma.

vectors and noise. From the stan_dpomt of implementation, IMuEor simplicity, we assume no uniform background noise, noting that the min-
the MMSE algorithm, usek must identify (R + oI)~!s;. imization of TSC is the same whether we consiBar or Z,.

Unfortunately, forA/ > N there is no guarantee that
terference avoidance always leads to an optimal fixed point.

Fixed Points for Equal-Power Agile Users
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I case, the minimum eigenvalue Bf; must beX; = A\; — 1.
Suppose, without loss of generality, thigt> X; + 1 for some
J. Thiswould implyA; < A; —1 = A7, which is a contradiction
since by Lemma 1}; is the minimum eigenvalue dk;. For
the second part, we note that sir§8 " is symmetric, distinct
eigenvalues correspond to orthogonal eigenvectors. Since each
of thesy, is also an eigenvector &S ', then the vectors;, as-
| ; ; ; ; —e sociated with given eigenvalues form mutually orthogonal sub-
spaces oY . If these subspaces did not collectively spaiH,
thenSST would have an eigenvect@r with zero eigenvalue.
This would imply that any signaturg, with A7 > 0 could be
replaced byp to reduce TSC, which would be a contradictien.
As an aside which brings closure with the results of [10] and
[21], we provide the following simple corollary to Theorem 2.
T Corollary 1: Let M > N. If the set{s,} comprises a
fixed point with SST having eigenvalueg)\; + 1) = \*,
Fig. 1. Simple suboptimal signal set in two dimensions with three users. & = 1,2,..., N, thenA* = M/N andSST = M/NIy.
That is, since any positive semidefinite matrix suct8&s
is always diagonalizable — as opposed to having a Jordan form
+ [17] —we must hav8ST = QA DQT = A*QQ~* = XL
Since as noted previously, Trd88 "] = M, we must have
\* = M/N.
In summary, there are the optimal fixed points with
1 A =M/N —1fork =1,...,M, and the suboptimal fixed
R points with vectors{s;} in mutually orthogonal subspaces
o T corresponding to each differeAf — which cannot differ from
each other by more than one. If all th¢ are identical, then
the ensemble correlatid®®S T is an identity matrix. That is, the
T ensemble is essentially whitened.
1 Our worry, of course, is that the algorithm will converge to a
suboptimal point. Fortunately, in all our experience with numer-
ical studies suboptimal minima have never been obtained when
T the starting ensemble is chosen randomly. Only when the initial
set is not full rank or when the component vectors can be par-
titioned into mutually orthogonal subspaces does the algorithm
not always converge to an optimal codeword ensemble.

Fig. 2. Simple optimal signal set in two dimensions with three users.

Lemma 1:If {sx} is a fixed point of a greedy interference
avoidance algorithm with minimum eigenvalue ensenddle}, B. Fixed Points for Mixtures of Fixed and Agile Users
the eigenvalue set of eadty, contains\; and{\; + 1} where
A% # M. Furthermore, all corresponding are also eigenvec- It is likely that users with both fixed and agile waveform ra-

tors of Ry. dios may need to occupy the same signal space. We now con-
Proof: Lemma 1: SinceA} isan eigenvalue dR;,R,s; = sider this scenario and find the intuitively pleasing result that
A’s;. Observing thaR ; = Ry +sS; —s;s ) T, wehaveR;s;+ using the eigen-algorithm, the agile users perform a saagef

SiSpSj — stJTsJ = )\*sj Boths,, ands; are eigenvectors of gregate waterfillingover the portion of the signal space with
SST, but since we assumg # Ay, they must be orthogonal. least fixed user energy to achieve an optimum SIR. Put another
This impliesRys; = (A} + 1)51, thus proving the theorers. Way, the fixed users appear as colored noise to the agile users
We then use Lemma 1 to show that interference avoidaneich causes an appropriate Shannonesgque distribution of agile
must produce codeword ensembles which span the signal spag®f signal energy over the signal space. Itis readily understood
as well as provide bounds on the differences in performani@t this feature is of benefign averageto the fixed users as
between codeword SIRs. well since it implies that the agile users avoid the fixed users

Theorem 2:Let {s;} be a fixed point withSST having where possible. We also note that the implied minimization of
eigenvalues{(\: + 1)}. The distinct eigenvalues);, ...\, ensemble TSC (including the fixed user signatures) is equiva-
satisfy |\, — A;| < 1ford, 5 = 1,...,p. Furthermore, the lent to maximization of information theoretic sum capacity [28],
signal vectors associated with each distinct eigenvajuerm  [29], [36].
mutually orthonormal subspaces which collectively sfgdh Formally, we let the sefa; |1 < k < L} be the set of signal

Proof: Theorem 2:Eachsy, is an eigenvector 8S . As-  vectors associated with waveform-agile users.{fgtl < i <
sume the eigenvalue &S T associated withs;, is ;. In this M — L} be the signal vectors associated with fixed-waveform
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users. Greedy interference avoidance will only be applied to theNow suppose that for some= 1,...,N — Q andm =
{a;}. We define N-Q+1,...,N,we haver,, > o,. For thea; (k) fixed, if
M—L we swapg, with ¢,,, the only term in (33) which can change

L
SST = Z aa, + Z ffT = AAT +FF'. (28) Iisthesecondsum on the right-hand side. Since this substitution
et = cannot increase any of they_¢.; we will notincrease anyj,.

We also define the mutually orthoaonal eigenvectoEBTF as In fact, we will reduce);; for at least one value df since there
y 9 9 must exist somé for which «,,, (k) # 0 by the condition that

¢, with associated eigenvalues > 0. T
First consider the case where there are fewer agile uSeréhe space spanned by tfg,}, ¢ - N._ Q+1,...,Nandthe
ace spanned by tHe;, } are coincident.

than dimension&’. The agile users cannot span the entire signa
gre. 'SP . 9 Therefore, unless,, < oy,foré = 1,...,N — @ and
space. Thus, we must ask in what portion of the signal space . .
. ) ; - . m=N—-Q+1,..., N,the interference experienced by at least
should the agile users reside to achieve minimum interference. . o .
s : . one of the agile users can be reduced by the substitution of basis
The answer, though intuitively obvious, is stated as a theorem . X ) . :
and proven vectors described above without increasing the interference seen

Theorem 3: If there areL, < N agile users, then the inter- py the other agile users. Thergforg, to achieve minimum mutual
mé%rference, thday, } must reside in the space spanned by the

ference experienced by at least one agile user can be redu 4" cigenvectors oFET with smallest eigenvalues. Since
(while not increasing the interference seen by other agile use 9 9 '

unless the sefa; } is contained in the space spanned by the thi spaceTls (_:ontamed n the space spanned by, th_genvec-
. T : tors of FF'' with smallest eigenvalues, the theorem is prowed.
eigenvectors oFF ' with the smallest eigenvalues.

Note that Theorem 3 can also be restated in terms of T We can, therefore, assume with no loss of generalityZhat

since reduction of interference for one user while not increasi gn:ef]';gi ]{];,ngt’ vafeoﬁg\?v?rlly r_?ﬁ:;’:etsqe?)pr\?\zerzgv'vn ?Oi?ggzm
that seen by other users clearly reduces TSC. - 9 ' P

Proof: Theorem 3: At equilibrium, we have bound for the minimum TSC. . ,
’ Theorem 4:WhenSS'T = AAT + FF " with F fixed

(AAT + FFT) a; = (A} + |ar]P)ar (29) - 2
for an interference avoidance algorithm. We note that the di- Teo . M- El i u y
mension of the space in which they} reside isQ < L < N,  17aCd(SS )T 2 (N =h") | ——="— | + > _of (34)
=1

and that we can linearly combine thg to derive@ mutually
orthonormal eigenvectors &S . However,SST has a full
set of eigenvectors so there exists an additional séf of @ Where the{s; } are the eigenvalues &F " ordered from largest
eigenvectors each of which is orthogonal to thg.}. If x;,, tosmallest, and* = arg mins(M — S ;)/(N —h). This
i = 1,...,N — Q is one such eigenvector, then it must als§ound is met with equality when the eigenvaluesS&™ are

be an eigenvector &FF " since {01, one ¢t .. ¢} wheree® = (M — 31 o) /(N —

h*) has multiplicity N — h*.

T T _ T — i~

AA X + FF x; =FF X, = nix;. (30) Proof: Theorem 4:First we write SST in terms of the
With no loss of generality, let us assume that the fi¥st @ eigenvectors o' F ' with a; = °1' | a;(k)$; andf,, =

eigenvectors oFF T, are exactly thesg; and that the corre- 377 | vi(m)¢;. Using (28), we have

sponding eigenvalues; are exactly the;;.5 Since the eigen- N L M—L

vectorsg, collectively spanR™ and the eigenvectors; i = ssT — Z < i (k) (k) + Z %(g)%.(g)> ¢Z¢]T,
1,..., N—Q comprise the orthogonal complement of {he }, ig=1 \ke1 =1

we can expand théa, } in¢,, j =N —Q+1,...,N as (35)

Remembering tha ¢; = Tracdg,¢/] = &;, we form

ay = f:ai(k)%_@% (31) (SST)? and then take the trace to obtain 2
i=1 N L M—-L
with o (k) = aZ¢N7Q+i- Trace{(SST)Q]: Z < o (kYo (k) + Z %(K)%’(K))
The interference experienced by ugeis A which we can LI=L k=L =1 (36)

write as We define the agile energy contained i# as pi; =

O+ lax)laxnl* = af (AAT +FFNay,.  (32) Y4, o2(k) and note thaty_" , y; = L the total agile
Using (31), we obtain after some simplification signal enﬁr_gz/. The corresponding energy in the fixed signals is

) 0j = Y1 7;(£) by the definition of thep,. We can then
L 1@ rewrite (36) as
( Z+Iakl2)lakl2=2[ ai(’%‘)%‘(ﬁ)l N /L M-T 2
5=1Qi=1 Tracd(SS")*] =) <Z ai(k)ey (k) > %(z)%(z)>
+3 i (Rov—qgei-  (33) N =
=1

1,...,N.

’

N
SWe then note thap, might not be an eigenvector BST forj = N-Q+ + Z(Nj + Uj)2~ (37)
Jj=1
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The terms in the Alreft-hand sum are nonnegative, thudfith p;, = |si|?, we have
THACA(SS ] 2 32ma(ps - oy)7, which Is Comvex in the (T o1y, — (] + o]+ pi)si = pad + s (40)
;. Since we requirgy; > 0 andzj:1 wu; = L, application o . . . ) )
of standard constrained optimization techniques [37]-[39]€ Quantitys;; = Aj + o/py. is the inverse of the signal-to-in-
provides a classical waterfilling result. Defining the “wateferference-plus noise ratio (SINR) achieved _byltF_réuser. We
level” asc* = (M — EZL:I o;)/(N — h*) with h* as defined choosg_i; as small as poss_|ble which in turn |mpllgs we chpose
in the theorem statement, we have = 0 wheno; > ¢* and the minimum eigenvalue eigenvector$$ " as previously dis-
T M
ju; = ¢* — o; otherwise. Thus cussed. We also have Trg88 | = E whereE = 3., pi.
Likewise, Trac§SS")?] is not increased by an interference
L avoidance algorithm which replaceswith anx of equal power
Tracd(SST)’] > (N = h*)(¢" Y’ +Y_of  (38) [see (26)]. ’ P P
=1 Since the interference avoidance algorithm cannot increase
thereby, proving the first part of the theorem. Nowlracg(SST)?], we now seek alower bound for Tr4e8S™)?].
Tracd(SST)?] = 3,_, A2 where the); are eigenvalues We have Trac¢SST)?] = 37 x2 where the{x, } are the
of SST. Using the eigenvalues f&S " defined in the theorem eigenvalues oSS T. Consider then that for any signal with
statement completes the proef. power pi, the corresponding eigenvalue 88" is at least
Experimentally, for randomly chosen initial codeword vecpx. This forms the basis for the constraint on the eigenvalues
tors {a;} and{f;,}, invariably the lower bound of Theorem 4of SST mentioned in Section Ill-A and is identical to the
was attained. Analytically, the existence of such signal setsdgnstraint on the\; derived for sum capacity in [26]. That is,
guaranteed by application of a variant of tigen-algorithm SSTsi = Rysi + sesisr = (A; + pr)si and we have in
[28], [29]. As for agile-only users, a modification to the algogeneral
rithm guarantees convergence to the optimum. Thus, greedy in- N
terference avmdgnce algorithms seek a minimum mutual inter- Tracd(SST)?] = Z(ci +p)? (41)
ference set of agile vectors by “water filling” the energy levels
provided by the fixed users, and avoiding completely energetic , .
interference above a certain threshold. with ¢; '2 0 and assuming ordered energigs> p;+1. Further
Also note that as a byproduct, we have also shown that fgSuming ordered eigenvalues > ;1 we haver; > pj,
algorithm seeks a minimum mutual interference set of vectdrs_ _1’ 2, N N
in a background of colored noise. That is, the effect of the fixed Since the eigenvalues must sump ¥V82 have)_;_, (ci +
users came into play only through the eigenvalues and eigenv&e-= £- The minimization of TracgSS ' )*] requiresc; = 0
tors of FF T which could be considered as the autocorrelatidf] pi > c"ande; = ¢ —p; whenp; < c*. Once again, the

=1

matrix of some arbitrary colored noise process. water level”c* which satisfies the power constraint equation is
Finally, we note that as in the agile-only case, there are op- g R

timal fixed points where the agile users obtain uniformly max- . - Z; Dbi

imum SIR, and suboptimal fixed points where groups of dif- T TN (42)

ferent agile users obtain differing SIRs. In the suboptimal castnere
it is easily shown that once again, the agile users are partitioned

into mutually orthogonal subspaces according to the SIR ob- E_ Zh: s
tained. Fortunately, also as with the agile-only case, random =
choice of initial vectorga; } precluded convergence to a sub-
optimum minimum in all our numerical experiments.

(43)

h* = argmin = —————.
= TN
Thus,c* is an eigenvalue d8S T with multiplicity N — A* and

) o
C. Fixed Points for Interference Avoidance With Unequal e complete set of eigenvaluesS8  is

Power {p1,- o pne, . ) (44)
In this section, we consider the case where each user hasbm (40), we see that

bitrary but fixed received power,. We will find that interfer- o k< h*

ence avoidance achieves eigenvalues$®F identical to those B = {’(’;J’rcﬁ_pk) . (45)

shown in [26] to maximize the sum capacity. We explicitly add e h* <k <M.

white Gaussian background noise so that capacity is well-deng pr > E/N, we then have the usual uniform solution of
fined although this is not a necessary feature for interferenge— p/n (n* = 0) and consequently

avoidance to be effective. We remind the reader that we assume - E

at least as many usefd as signal dimension&’ since in the Br=—+— -1 (46)

eventM < N, the users will confine themselves i dimen- pr - pelV _

sions. Note also once again that we have incorporated the sigR¥grall, these results have a facetious but memorable interpre-

powerp;, into the code vectas;; i.e., sx|? = pr. tation Might makes rightThat is, those users with greater re-
In an AWGN background, at equilibrium, we require ceived powerp;, obtain better performance. In fact, the exces-

sively energetié* users command private channels. Such users
(SST —sis) +0I) sk = (Af +0)su, (39) are calledoversizedn [26], a term coined by S. Verdu.
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W

Fig. 3. Vector plot of five signal vectors in three-space after five cycIeEig- 4. \Vector plot of five signal vectors (three agile and two fixed) after five

of interference avoidance. Signal vectors are represented as hollow inveff¥gies of interference avoidance. Notice the coplanarity of the three agile signal
pyramids for greater clarity of the 3-dimensional (3-D) representation. vectors in avoidance of a strong fixed interferer component along the remaining
dimension.

It is worth noting again that minimizing Trag&S™)?
also minimizes TradéSS"™ + oIx)?]. Since minimizing
Tracd(SS" 4 oIy)?] under constraints on the eigenvalues i
equivalent to maximizing the sum capacity (see Section IlI-A
under the same constraints, the eigenvalueS®f given in
(44) imply a codeword set which can achieve the sum capaci
Furthermore, when n@;, > E/N, we haveh* = 0 and
Ay = A* Vk. This implies an absolute minimum TSC which in
turn implies an absolute maximum sum capacity. This rest
is in agreement with that provided in [26] where an existenc
proof for such codeword sets can also be found.

Finally we note, once again, that suboptimal minima may b
obtained in which users are partitioned into mutually orthogoni
subspaces with differing SINR characteristics. Also as befor ...
these subpoptimal fixed points seem to be avoided by starti %+
from initially random codewords and that convergence to of
timum can be forced by a modification of the greedy interfer
ence avoidance procedure [28], [29].

V. DisCussION Fig.5. Vector plot of four signal vectors, three with power 1 and the remaining

. . . . with power 4. Notice the coplanarity of the three power 1 vectors in avoidance
A. Eigen-Algorithm: Numerical Examples of the strong interferer with power 4.

Here, we provide example applications of interference avoid-
ance to the scenarios analyzed in this paper. Fig. 3 shows CDMA, Fig. 4, we allow only the first three signals to be agile and

chip sequences for five agile users with three chips after fiyg e remaining two. After five cycles the three agile users re-
interference avoidance cycles. The resultant associfiédis gije in a space of dimension 2 (coplanar) achieving approxi-

approximately diagonal mately\* = 1.6 and a concomitant signal to interference ratio
1.667 —0.00035 —0.00002 of approximately A\* —1)~! = 1. 66. They avoid a strong fixed
SST = | —0.00035 1.666 0.00017 user interference component (with energy 1.8) in the remaining
—0.00002  0.00017 1.666 dimension.

In Fig. 5, we assume four users, one of whom has much larger
and each unit energy user achieves a signal to interference ratiaver than the otherg{ = 4). This energetic user commands a
of approximatelyN/M — N = 1.5. private channel and the remaining three users are forced to share
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Square Difference Histogram for Codeword Addition Square Difference Histogram for Codeword Deletion
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Fig. 6. Histogram of norm squared difference between initial and convergdfig. 7. Histogram of norm squared difference between initial and convergent
waveforms after addition of a single new user to an optimal signal set of 24 usesa/eforms after deletion of a single user from an optimal signal set of 24 users
in 16 signal dimensions. The central interval (0.2,3.7) over which there were imal6 signal dimensions. The central interval (0.4,3.5) over which there were no
occurrences was compressed for clarity. occurrences was compressed for clarity.

are . 2
two dimensions of the signal space — again the weaker users are IRandom Initial - WBE Finall
coplanar — and havs* = 3/2 for a shared SIR of two. 500 "

B. Addition and Deletion of Users: Convergence Speed and

Codeword Stability 375 1

We have not conducted rigorous convergence-speed exper-
iments for greedy interference avoidance algorithms. For the
MMSE algorithm, however, the settling time seems rapid [9],
[33] with near-convergence to minimum TSC within a three or
four iteration cycles. In 100 trials usiny/ = 24 andN =
16, the evolution of TradéSS " )?] for the eigen-algorithm also
converged within a few iteration cycles.

However, much more interesting from a system standpoint
is the issue of what occurs when a given set of users are dis-
turbed by the addition or deletion of a user. How rapidly does
the system settle after the perturbation? Perhaps even moref-8. Histogram of norm squared difference between initial and convergent
portant is the question of how much the signatures change simggeforms for 24 users in 16 signal dimensions.
large signature adjustments may imply large signaling load on
the codeword feedback channel. seem to indicate that codeword adaptation under arrivals and de-

After one hundred trials where a single user was either addealtures could be more orderly and rapid than might initially be
to or deleted from an already settled system with 24 usersiinagined.

16 dimensions, we found that convergence was once agairfFor comparison, we also provide a histogram (Fig. 8) which
rapid and occurred within three ensemble waveform updatkows the difference between initial random codewords and the
cycles. The magnitude squared of the difference betwe®/BE-converged ensemble. Note that the difference between
the preaddition/deletion codewords and the final converganitial and final codewords is much more pronounced than in
codewords was used as a measure of codeword volatility.FAgs. 6 or 7. However, it is also apparent that there are also
square difference of zero or four implies respectively, identicalany codewords which do not differ greatly from their initial
initial and final codewords, or codewords which differ onlyandomly chosen value{0), or only in sign é& 4). Thus, even

in sign. A square difference of two implies a final codeworduring system startup, the amount of feedback to transmitters
orthogonal to the initial. might not be excessive.

The results are plotted as histograms in Figs. 6 and 7. AsWe close this section with a caveat. Studies of convergence
can be seen, the post deletion codewords are more volatile thate based on perfect information are chimeric. In practical
the post addition codewords. However, neither convergent sgstems where information is imperfect, stochastic convergence
often differs much from their preaddition/deletion counterpartstudies [8] are necessary, and as a general rule, the convergence
Where they do differ significantly (square difference approxrate is much slower. Nonetheless, perfect information can
mately four), the original codeword has simply been invertedften be used to suggest an upper bound on convergence
We believe this to be an artifact of the manner in which eigeproperties. That is, were convergence slow and codewords
vectors are chosen for the eigen-algorithm although we hawaatile, there would be little hope of rapid and stable behavior
not pursued the issue carefully. Regardless, these limited resutisier imperfect information. However, it should also be noted
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that imperfect measurements tend to randomize the codewergergy from all other cells as white over the signal space with
replacement process slightly which, following our results faxggregate interference energ .

random initial codewords, would tend to favor convergence to The SIR for each user assuming matched filters and random
the optimum. In fact, it is exactly this property which guaranteesignatures is

MMSE interference avoidance convergence to optimal [34]. 1 N

Y= T S = — (48)
C. A Simple Comparison to S-CDMA G+ My (DM -1
Suppose that in an interference limited system (assume f@h@ user capacity of
background noise) a signal to interference ratier & required N9 N+~
for each user. The maximum number of users which can be sup- Mcpma = = (49)

plied the requisitey is called theuser capacityof the system ) vl ) v(v+1) o
[10]. The work presented, thus, far begs a comparison to CDMAUnfortunately, a direct comparison to a system employing in-
systems since the basic ideas — spreading users over the silfiffrence avoidance is as yetimpossible since the multiple base
space — are very similar. interference avoidance problem has not yet been solved. How-
Since exact comparisons are difficult even between systeR¥", We note that for a given cell with other-cell noise energy
with known operating characteristics (i.e., the raging debate B, the worst interference spectral structure from a capacity
tween TDMA and CDMA), we opt for the high road and conStandpoint would be white since interference avoidance could
sider only simple measures for comparison. Furthermore, &4Ploit the structure of nonwhite interference. Thus, taking on
will ignore such issues as relative immunity to various channf@ith (and limited empirical observations under specific sce-
impairments. We will also not attempt to make estimates of rBarios) that fixed points indeed exist for multiple base systems
ceiver complexity in any real sense since with changing tecRMPloying interference avoidance, we see that at each base,
nology, what is complex today may be standard tomorrow. THe “worst case” attglnqble !nterference-to-3|gnal ratio (ISR) is
most obvious comparison is single-base system capacity. AL +vM /N — 1 which implies
though it is well known that CDMA is inefficient in this regard N(v+1)
and we all expect almost any system which attempts to orthog- M = Y +1) (50)
onalize user signatures to be far superior, the single-base com-

parison will aid us in comparing simple measures of multibagaC%N?;peaed improvement of1 ++)/(1 +7/N) over

performance. Thi roximate comparison, even if flawed by the unknown
For a synchronous CDMA (S-CDMA) system with randoml S approximate comparison, even it awed by the unkno
havior of interference avoidance in a multiple base setting,

chosen/V-chip signature sequences, the user capacity Wlsu ests that exploration of interference avoidance as ameans to
simple matched filters is upper bounded By'y [40]. For a 'ncgrgases stempca acity will merit further investigation. Of par-
system employing interference avoidance with matched filtefS Y pacity 9 - OtP

we have determined that at convergence, the user Capagﬁé)larmterestwnlbesome of the issues raised previously, prin-

is N(v + 1)/~. The ratio of user capacity of interference” al among them, whether interference avoidance can be used

avoidance to S-CDMA systems is, therefore, at least effegtlvely with _d|sp_er5|ve chan_nels_. Recent work [41] where a
version of multicarrier modulation is adopted suggests the an-

n=vy+1. (47) sweris yes.

We note that this improvement is identical to that obtained
where MMSE filters as opposed to matched filters are used
with random codewords [40]. Starting from a general signal space foundation, we have de-

For~ = 1 (0 dB) the gain is approximately two. Fer= 4 rived a class adiihterference avoidancagorithms whereby indi-

(6 dB), the gain is approximately five. Thus, as expected, signadual users asynchronously adjust their transmitted waveforms
tures generated by interference avoidance greatly increasedhd corresponding matched filter receivers to minimize inter-
single-base user capacity of S-CDMA systems. Furthermoference from other sources, including other users. This method
the basic receiver structure (again, conveniently excluding theesupposes that transmitters and receiversvakeform agile
machinery necessary to calculate and disseminate the sigaswould be the case assuming universal radios [1]-[5] are in-
tures) is conceptually simple — a matched filter. expensive and ubiquitous.

Of course, it would be more interesting to compare the multi- The interference avoidance procedure, based on SIR as
base performance of these systems. The current thinking is tbpposed to individual capacity maximization, minimizes total
although single-base CDMA is inefficient, when multiple consquare correlation (TSC). We pursued the relation between
tiguous coverage regions are added, CDMA is more efficiestim capacity maximization [10], [25], [26] and minimization
and robust than other modulation methods such as TDMA of TSC and found equivalence (see Section IlI-A) in a white
FDMA. The details of any rigorous comparison lie outside theoise environment. Specifically, minimization of total square
scope of this paper, so again we opt for simplicity. correlation results in signature sets which can also be used to

Thus, consider an S-CDMA system model where each calthieve sum channel capacity (through Gaussian signaling).
carriesM users and the total other-cell interference energy for The minimization/maximization is often achieved through a
any given cell isM /N per dimension where is some non- satisfyingly information theoretic “waterfilling” of the signal
negative constant. That is, we approximate all the interferensigace by the ensemble of users. Note that this waterfilling is

VI. SUMMARY AND CONCLUSION
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essentially an “emergent” property of the ensemble since which suboptimal fixed points are escaped through perturbation.
dividual users seek not to maximize their capacity (via watelt-has been shown that for MMSE interference avoidance this
filling), but rather, only seek to maximize their own SINR. Comproperty is a result of stochastic convergence and that MMSE
binations of fixed and agile users (or agile users in colored bagkterference avoidance must converge with probability 1 to op-
ground noise, see Section IV-B) as well as users with uneqtiahal fixed points in the cases considered [34]. In fact, a modi-
received powers (Section IV-C) were analyzed as examples fication of greedy interference avoidance called “class warfare”

Numerical experiments were conducted which corroboratedn be used to escape the finite number of local minima and re-
the basic analytic results. Further experiments, aimed at det&uits in provable convergence to minimum TSC [28], [29]. But
mining whether interference avoidance might be used in prdodstratingly, a general proof for greedy interference avoidance
tical systems were also conducted. These included measwvbich reflects the uncannily uniform convergence seen in prac-
ments of convergence speed and codeword set volatility undiee without escape methodemains elusive.
the addition or deletion of a single user. In all cases the resultsThe issue of codeword representation and fidelity in a real
were encouraging. It is also worth noting that experimentallyoftware/universal radio has been considered only empirically
suboptimal sets weraeverobtained when starting from ran-at present [51], [52]. Specifically, instead of uniform-amplitude
domly chosen codewords and no modifications of the basic imedeword “chips,” interference avoidance presumes real-valued
terference avoidance procedure (as in [28] and [29]) were néchips” or more generally, real-valued coefficients for a set of
essary. orthonormal signal basis functions used by the transmitter and

Simple comparisons to synchronous CDMA show that forr@ceiver. To be effective, these values must be communicated to
single cell, the number of users serviceable at reasonable SiRstransmitter, and the amount of information which may be fed
is much greater and scales approximately with the required Skick to the transmitter will determine quantization methods for
This is not surprising since almost any scheme which attemgtsdewords. It is not currently known how quantization affects
to orthogonalize signature waveforms will have much greattite performance of interference avoidance, although empirical
capacity than a single-base CDMA system. More telling is thavestigation seems to indicate that in the vecinity of four-bits
comparison of systems for multiple bases where rough calqer chip using Gaussian quantization is sufficient.
lations suggest substantial improvement may be had using inFinally, it must be emphasized that only a single receiver
terference avoidance methods, although these results mus{drecolocated multiple receivers) were assumed for this study.
interpreted in light of the fact that the behavior of multiple baseimited experiments with multiple receivers and power control
interference avoidance is as yet unknown. Furthermore, asgl®wed unstable behavior when interference avoidance was di-
from the assumption of waveform agility and the necessity oéctly applied and some art was required to achieve reasonable
measuring interference to calculate the optimal signature, tiisxeed points. An understanding of the multiple receiver problem
optimum linear transmit and receive methods are very simptg therefore, paramount in determining the utility of interfer-
— matched filter detection. ence avoidance in real systems.

We close with a (nonexhaustive) sampling of problem areas,Nevertheless, owing to the simplicity of the concept and the
both theoretical and practical, which must be addressed if iaver increasing sophistication of radio hardware, we expect that
terference avoidance is to become a useful tool for wirelesgerference avoidance will afford an interesting new perspec-
system design. First, the issue of the proper venue for interféize which might even evolve into a practical method for wire-
ence avoidance must be established. By virtue of the necestgiys system design. If so, we expect it to be especially useful in
for interference measurement over a large number of bit intemlicensed bands such as the U-NII, where users can mutually
vals for each waveform update and the asynchronicity of tieterfere with officially sanctioned impunity [11].
algorithm over multiple users, it is not obvious whether inter-
ference avoidance can be effective in situations where the wire-
less channel is changing significantly over, say 1000 or 10000,
bit intervals, though there are hints that even in such circum-[1] “Special issue on software radidZEE Personal Commun. Magol.

stances, IA affords some improvement [42]. Regardless, a fixed_ 6 n0. 4, Aug. 1999.
P [ ] 9 [2] 1. Seskar and N. Mandayam, “Software Defined Radio Architectures for

Wir_eless enVironmefnt might be most appropriate for application Interference Cancellation in DS-CDMA Systemi&EE Pers. Commun.
of interference avoidance methods. Mag, vol. 6, pp. 26—34, Aug. 1999.

We note that despite the assumption of perfect channeld3] |- Seskar and N. B. Mandayam, “A Software Radio Architecture for

din thi irel h | . v di . Linear Multiuser Detection,TEEE J. Select. Areas Communmol. 17,
used In this paper, wireless channels are notoriously dispersive, pp. 814-823, May 1999.

and when signal energy for each bit is not contained within a[4] J. Mitola, “The software radio architecturdEEE Commun. Magvol.

single received bit interval, the problem formulation changes. 38 p- 26, May 1995.
hel | h hat i . id E] S. Sheng, R. Allmon, L. Lynn, I. O’'Donnell, K. Stone, and R. Brodersen,
Nonetheless, recent results show that interference avoidanc “A Monolithic CMOS Radio System for Wideband CDMA Communi-

methods seem to be robust and are applicable to dispersive cations,” inProc. Infopad FTP Archivel998.

Systems’ asynchronous Systems and multlple antenna Syster{@ S. V. Hanly, "An algo”thm for combined cell-site selection and power
Il 141 0 control to maximize cellular spread spectrum capacl&FE J. Select.
as well [41]-[50]. - ] ] Areas Communvol. 13, pp. 1332-1340, Sept. 1995.
As noted, we have found the speed and stability with which [7] R. Yates, “A framework for uplink power control in cellular radio sys-
codeword ensembles converge surprising. Especially intriguing ~ tems,”IEEE J. Select. Areas Communol. 13, pp. 13411348, Sept.

. . . . 1995.
is the seemingly certain convergence to an optimal set WheqS] S. Ulukus and R. Yates, “Stochastic power control for cellular radio sys-

starting from a randomly chosen starting set and the ease with  tems,”IEEE Trans. Commupvol. 46, pp. 784-798, June 1998.
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