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Subspace-Based Blind Channel Estimation for
OFDM by Exploiting Virtual Carriers

Chengyang Li, Member, IEEE,and Sumit Roy, Senior Member, IEEE

Abstract—Reliable channel estimation is indispensable for
orthogonal frequency-division multiplexing (OFDM) systems
employing coherent detection and adaptive loading in order to
achieve high data rate communications. Several options exist
in practical OFDM systems—including training symbols, cyclic
prefix, virtual carriers, pilot tones, and receiver diversity—to
facilitate channel estimation. In this paper, a subspace blind
channel estimation method based on exploiting the presence of
virtual carriers is proposed for OFDM systems over a time-disper-
sive channel. The method can be applied to conventional OFDM
systems with cyclic prefix as well as OFDM systemswith no cyclic
prefix. The reduction/elimination of cyclic prefix thereby provides
the OFDM systems the potential to achieve higher channel utiliza-
tion than most previously reported cyclic prefix based estimators.
Sufficient channel identifiability condition is developed as well.
Comparison with two other recently reported subspace methods
is presented via computer simulations to support the effectiveness
of the proposed method.

Index Terms—Blind channel estimation, cyclic prefix, or-
thogonal frequency-division multiplexing (OFDM), subspace
approach, virtual carriers.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing [1], [2]
(OFDM) is a promising candidate for high-data-rate

wireless communications due to its many advantages—notably,
its high spectral efficiency, robustness to frequency selective
fading, as well as the feasibility of low-cost transceiver im-
plementations. It is the basis of the European standard for
digital audio/video broadcasting (e.g., DAB and DVB-T, target
rates 1.7 and 20 Mb/s, respectively) and is being developed
internationally for use in high-speed wireless LANs (e.g., IEEE
802.11a [3], target rates 6–54 Mb/s) and wireless-local-loop
applications (1–10 Mb/s).

Coherent detection and adaptive loading (see also [1]) in sup-
port of high speed data communications require reliable estima-
tion of the channel. In practical OFDM systems operating over
a dispersive channel, a cyclic prefix (CP) longer than the antic-
ipated multipath channel spread is usually inserted in the trans-
mitted sequence. It is well known that this converts the linear
(time-domain) convolution between the channel and the input
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into cyclic convolution or equivalently a (complex) multiplica-
tive factor on each sub channel in the frequency domain. This
naturally facilitatescomputationally simple frequency domain
channel estimationby inserting a training sequence to estimate
the factor on each sub channel; see [2], [4] for an overview and
[7], [8] for recent results on these lines.

However, CP-based systems incur a price:significant loss
of channel utilizationthat may be the overriding constraint
for future high-speed services. That provides the motivation
for methods such as those presented in this work. Usually,
the length of CP is conservatively chosen according to the
maximum anticipated multipath spread; for the IEEE 802.11a
standard, this is 25% of an OFDM symbol duration. Addition-
ally, due to the time-varying nature of the channel in some
wireless applications (i.e., those that seek to provide mobility
support), the training sequence needs to be transmitted periodi-
cally, causing further loss of channel throughput. Consequently,
there exists increasing interest in OFDM systems withshort
or no CP. For example, the work [5] and [6] addressed this
issue and proposed multiple-input/multiple-output (MIMO)
equalization scheme for OFDM systemswithout CP.

Literature Review

The above concerns naturally leads to efforts centered
aroundblind channel estimation methods that avoid the need
for training and/or even the CP. The presence of CP has been
utilized to devise methods for blind or semi-blind channel
estimation in [9]–[14]. Among these, the statistically inspired
blind estimators in [9] and [10] rest on the inherent CP-induced
cyclostationarity at the transmitter explicitly or implicitly, while
the estimators in [12] and [13] belong to the class of deter-
ministic subspace approach. Specifically, Heath and Giannakis
[9] proposed a blind method based on the cyclostationarity
property of the time-varying correlation of the received data
samples due to the CP insertion at the transmitter; however, this
approach suffers from slow convergence of the estimator. Caiet
al. [13] developed anoise subspace method[15] by utilizing the
structure of the filtering matrix introduced by the CP insertion
that achieves faster convergence for smaller data records.

Other than the CP, there exists another resource that has not
been fully exploited for purposes of channel estimation—the
presence of the virtual carrier (VC),1 as in the IEEE 802.11a
standard that specifies 12 (out of a total of 64 subcarriers)
VCs. While they are intended to aid in shaping of the transmit
spectrum, the VCs can be exploited for the purposes of

1In practical fast Fourier transform (FFT)-based OFDM systems, a shaping
filter is required for spectral masking, i.e., to limit the transmitted signal spec-
trum to the desired band. In order to ease filter implementation, some sub car-
riers in the roll-off region, namely the band edge of the filter are left unmodu-
lated; these are referred to as virtual carriers [4].
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Fig. 1. Baseband OFDM system (with VC) model.

channel equalization or frequency offset estimation, as have
already been shown in [16] and [17]. A method that exploits
the presence of the VCs and the finite alphabet property of
the input data was presented in [18] to develop a maximum
likelihood (ML) joint blind estimator of the channel and the
data symbols. In other related work, [19] reported a subspace
channel estimator based on a multichannel model for non-CP
OFDM systems with receiver oversampling/diversity which
achieves performance comparable to [13], and, recently, [20]
showed a novel blind channel estimator relying on the finite
alphabet property of the information-bearing symbols.

Specific Contribution

In this paper, we propose a new subspace-based (blind)
channel estimator for OFDM systems that exploits VCs and
is applicable to OFDM systemswith and without CP. For
the former (conventional CP systems), the exploitation of VC
brings additional performance gain to the already proposed
blind estimators such as in [13]. Further, the proposed method
can be employed fornon-CP systems where CP-based esti-
mators cannot be used, thereby potentially achieving higher
channel utilization.

The rest of the paper is arranged as follows. A generalized
baseband signal model for the OFDM system withboth VC
and CP is introduced in Section II. The subspace channel es-
timator is developed in Section III, where a sufficient condition
on the channel identifiability is provided. Computer simulations
are presented in Section IV to demonstrate the effectiveness of
the proposed algorithm in comparison to other two subspace
methods [9], [13]. Finally, Section V concludes the paper.

The notation used in this paper follows the usual conven-
tion—vectors are denoted by symbols in boldface and, ,

are complex conjugate, transpose, and conjugate transpose
of , respectively. yields the rank of . and

give respectively the range and Frobenius norm of matrix ar-
gument. stands for the Kronecker product.
denotes a submatrix obtained by extracting rowsthrough
and columns through from matrix . If no specific range
appears at the row or column position in notation

[e.g., or ], then all rows or columns
are accounted for constituting the submatrix.

II. SIGNAL FORMULATION

Consider an OFDM system (see Fig. 1) withsubcarriers, of
which only are modulated by the user’s data symbols; i.e., the
remaining unmodulated carriers constitute VCs. Assume
that the subcarriers numbered to are used for
data, where is the index of the first data carrier. Also assume
that the length of CP is . Let the th block of the “frequency-
domain” information symbols be

(1)

Define a IDFT matrix as

...
...

(2)

with . Multicarrier modulation, which is
implemented by IFFT, yields the “time-domain” signal vector

, where is the
partial IDFT matrix

...
(3)

CP insertion replicates the last elements of the IFFT output
vector in the front and results a ( ) OFDM
symbol vector

(4)



LI AND ROY: SUBSPACE-BASED BLIND CHANNEL ESTIMATION FOR OFDM BY EXPLOITING VIRTUAL CARRIERS 143

Each element or “chip” in the vector is then pulse shaped
by to generate the continuous time signal sent on the
channel

(5)

where is the chip period. Thus, denoting , we
identify ( is the largest integer contained in)
and . Then the transmitted signal can be
rewritten as

(6)

where is an equivalent transmitted “chip” sequence corre-
sponding to the ’s.

During the transmission, the signal passes through a dis-
persive channel with impulse response , is contaminated by
AWGN noise , and finally is input into a front-end receive
filter .

Defining the composite channel filter
and the filtered noise where de-

notes linear convolution, the received signal is therefore

(7)

Assume the composite channel to have finite support
where (i.e., it is assumed that the channel

delay spread does not exceed the OFDM symbol duration); this
implies that any intersymbol interference (ISI) is only restricted
to the past neighboring symbol as is generally true for OFDM.
A synchronized rate sampler after yields ( denotes
the sampling phase)

(8)

where .

Let and the channel vector

(9)

Define an Toeplitz matrix constructed from
as

Toeplitz

. . .
. . .

(10)

Consider an observation interval over OFDM symbols
from to .
The resulting received signal vector ( ) is

... ...

...

(11)

where is an identity matrix.
Remarks: For the signal model (11) where the equivalent fil-

tering matrix has dimensions , a necessary
condition for the subspace method is that .
Note that the presence of VCs implies and the necessary
condition can always be satisfied by choosing an appropriate,
which is true even for non-CP OFDM systems. This condition
is assumed to hold throughout the paper.

III. SUBSPACE-BASED CHANNEL ESTIMATION

In this section, we develop a sufficient identifiability condi-
tion for the proposed subspace-based channel estimator.

A. Sufficient Conditions for Identifiability

From (11), ( ) where is an
Toeplitz matrix and is an

matrix. We first demonstrate necessary and sufficient conditions
for the filtering matrix to have full column rank in Theorem
1, as a preliminary step toward the (sufficient) identifiability
condition in Theorem 2.

Theorem 1: For , has full column rank
(i.e., ) if and only if the channel frequency
response has no nulls at any of the data subcarrier frequencies.

Proof: See Appendix B.
In the derivation hereafter, we assume that the above condi-

tions are satisfied. Also, the user’s transmitted information sym-
bols s are i.i.d. sequences with zero mean and known vari-
ance ( without loss of generality). In addition, Nyquist
pulse shaping is employed so that each element of in (11)
is additive white Gaussian noise (AWGN) with zero mean and
variance . After collecting signal vectors, we have

(12)
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Applying the singular value decomposition (SVD) on the un-
perturbed received signal matrix yields

(13)

where is an unitary matrix. The
columns of span the signal subspace, while

column vectors of span the subspace (often known
as the noise subspace as in practice the SVD is applied on the
noise perturbed signal matrix ) orthogonal to the signal sub-
space. is a diagonal matrix con-
sisting of significant singular values corresponding to the
signal subspace. The orthogonality property between the signal
subspace and the noise subspace asserts that

(14)

where is the th column of .
The set of constraints (14) suggests a possible way to identify

the channel vector. However, asserting the uniqueness of the
resulting estimate of (up to a complex scaling factor) requires
some care since is the product of an matrix
and an matrix . The following theorem provides
a characterization of conditions under whichcan be uniquely
identified.

Theorem 2 (Sufficient Condition for Identifiability):Let
and be distinct -dimension vectors and be a matrix
constructed using as with in (11), i.e., . For: 1)

; 2) ; and 3) has no null on any of
the data carrier frequencies, it follows that where is
a complex scalar if .

Proof: See Appendix C.
Remarks on Theorems 1 and 2:

1) The presence of the VCs and/or CPs is necessary for the
subspace method to work.

2) The condition requires that the number
of VC and/or CP be greater than the channel memory. It is
much stronger than (this is necessary
for to be a tall matrix and consequent possible employ-
ment of the subspace method) to assure channel identifi-
ability. This condition is satisfied in typical OFDM appli-
cation scenarios for both CP-OFDM and non-CP OFDM.

3) Conditions for unique channel identification (up to an
unknown complex scalar inherent in second-order blind
methods) is guaranteed by the specific structure offor

. It is worth pointing out that (see the Appendix,
proof of Theorem 2) such uniqueness isnot possible for

, i.e., stacking the received signal over
OFDM symbol durations is required.

4) Note that the cyclospectra [9], [10] or the finite alphabet
property based methods [20] impose no restriction on the
positions of channel spectral null, unlike Theorem 2 in our
work. However, the probability that an exact spectral null
is located on subcarriers is low; it is more likely that some
sub carriers are subject to deep fades. Deep fading of sub-
carriers does not prevent identifiability but does pose is-
sues regarding robustness of our algorithm—such algo-
rithm robustness is verified by extensive computer exper-
iments on a large number of random WSSUS channels.

Furthermore, we emphasize that no spectral null is only
sufficient andnot necessary condition for identifiability,
as evidenced by simulation (not included in the paper) that
channel with spectral null was uniquely identified via the
proposed method.

5) As stated in Theorem 2, an amplitude/phase ambiguity
exists in the channel estimate—this is inherent to all blind
estimation approaches using second order statistics and
cannot be resolved without further side information. Prac-
tical OFDM systems provide pilot tones for tracking the
carrier frequency offset which can be exploited to resolve
this ambiguity.

B. Blind Channel Estimator

Let

(15)

Exploiting the special structure of yields

(16)

where the dimension matrix is generated from
the vector

Toeplitz (17)

When only an estimate of the noise subspaceis available
in practice, (14) suggests the channel estimator

(18)

But, from (16), we have

(19)

Thus, by defining , and

(20)

the channel information is determined by

(21)

where is the estimate of . It is well known that (or equiva-
lently ) is the eigenvector corresponding to the smallest eigen-
value of the matrix .

IV. SIMULATION RESULTS

Monte Carlo simulations were conducted to assess the effec-
tiveness of the proposed blind estimator with comparison to the
other two subspace channel estimation methods for OFDM [9],
[13]. To evaluate the estimation error, the normalized root mean
square error (RMSE)

RMSE (22)
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is used, where the subscript refers to the th simula-
tion run and denotes the number of runs. Information
sequence ’s are BPSK modulated. SNR is defined

as SNR for a fair comparison, where
is the average OFDM symbol power and

is the average noise power. The ambiguity in the channel
estimate is resolved by assuming that the true channel vector
has unit norm and known phase of the first component. Thus,
the estimate is normalized and the phase of
is used for phase ambiguity resolution and compensation prior
to MSE computations.

The number of subcarriers used in simulations is ,
as used in [9] and [13]. The smoothing factor is set to 2 as
in [13]. Multipath fading channels with order are gener-
ated according to Hoeher’s method [21] by assuming an expo-
nentially decaying power-delay profile ( stands for
path delay) with the rms delay2 and raised cosine
pulse shaping with a roll-off factor 0.25. Also, we set the max-
imum Doppler shift to 0 to get a time-invariant channel, which
is plausible for burst packet transmission in wireless LAN ap-
plications. We tested all methods over 300 randomly generated
channels, i.e., . The average MSE results are shown
below.

Example 1—Estimator’s MSE Dependence on SNR or Data
Record Length : As the proposed estimator is applicable to
systems with or without CP, it was tested on different system
settings:

1) a system with no CP where and number of data
carriers ;

2) system with insufficient CP where (less than channel
order) and ;

3) system with sufficient CP where and .
The results of those settings are then compared with the per-

formance of the methods in [13] (marked “Cai”) and [9] (marked
“Heath”). Note that the estimators in [13] and [9] require the CP,
whose length is set to 4 by convention (i.e., the number of CP
equals as many as 25% of the number of total subcarriers).

Fig. 2 shows the estimator RMSE as a function of SNR for
, and Fig. 3 as a function of the number of data blocks

for SNR dB. As expected, the estimator error of all
methods decreases with increasing SNR and the data record
length . Also notable is that our approach and the methods in
[13] perform better than that of [9] (marked “Heath”), reflecting
the fast convergence property of the noise subspace estimator
for small data record.

Additionally, for a fixed degree of freedom (that equals 4
in this example) through the combination of VCs and/or CPs,
a performance gap exists between the non-CP system (

) and the CP-only system ( ) or
the insufficient CP system ( ). That suggests
that CP is more advantageous for the noise subspace-based esti-
mator than VC is. However, the utilization of VCs provides the
receiver with an extra source of redundancy other than CP and
makes the proposed subspace method feasible for a system with
insufficient CP ( in this example) without increasing the

2As � = 0:6T , a path with a delay larger than3T is negligible since it
has an average power 20 dB lower than that of the path at the origin.

Fig. 2. RMSE versus SNR (N = 300).

Fig. 3. RMSE versus number of data blocksN (SNR= 25 dB).

smoothing factor . Note that must be increased in Cai’s
method, which means a larger observation dimension and a sig-
nificant increase in computational complexity3 of the eigen-
structure-based methods (such as ours and Cai’s). Therefore,
from the perspective of low computational complexity, it is de-
sirable to exploit VC. Further, exploiting the additional redun-
dancy of VCs for a sufficient CP system ( )
shows improved performance versus that of the CP-only system.
Finally, it is worth reemphasizing that our proposed method is
applicable to systems without CP, potentially leading to higher
throughput than [13].

From the next example, we will focus on our estimator that
exploits the presence of VC and/or CP. Only results for purely
non-CP system are shown since similar behavior is observed in
systems with both VC and CP.

Example 2 – Robustness to Channel Order Overes-
timation: The proposed estimator is insensitive to the

3The computation complexity of eigenstructure-based methods is essentially
O[(MJ � L) ].
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Fig. 4. RMSE versus SNR for different estimate ofL (non-CP system,N =

300).

overestimation of , as reflected by Fig. 4, where the real
channel order is overestimated by 1 or 2. The system
assumes no CP insertion ( ) and the number of data
carriers is set to 10.

Example 3 – Impact of Number and Location of VCs:The
dependence of the proposed estimator RMSE on the number
and the location of the available VCs is highlighted in Fig. 5,
using SNR dB and . The system assumes no CP
also, and the number of VCs is varied from 3 to 7 (correspond-
ingly, the number of the data carriersgoes from 12 to 8). Re-
sults corresponding to three different locations—on the low-fre-
quency side of the spectrum only ( , marked as
“left”), on the high-frequency side of the spectrum only ( ,
marked as “right”), and on both sides of the spectrum (

, marked as “center”)—are plotted together. From
(14), an increase in the number of VCs increases the ratio of the
noise subspace dimension to the observation space dimension
[ in this case], when the number
of subcarriers and the channel order are fixed. This increase is
advantageous for improving estimation accuracy as it imposes
more constraints on the channel order for estimation as seen in
Fig. 5. Note that no transmit power normalization is employed
(i.e., a transmitted OFDM symbol has constant energy irrespec-
tive of the number of data carriers). In case of power normaliza-
tion, the increase in number of VCs means more power is allo-
cated to each of the fewer data carriers, thus leading to further
performance improvement. While it is observed that the loca-
tion of VCsdoesaffect the performance, the impact is small.

V. CONCLUSION

In this paper, we presented a subspace-based blind channel
estimator for OFDM systems with or without CP by exploiting
the presence of the VCs. A sufficient condition for identifiability
was established as well. The algorithm is attractive due to its po-
tential for enhancing channel utilization as it can be applied to
OFDM systems with insufficient CP or even without CP. Com-
parison of the proposed method with other reported subspace

Fig. 5. RMSE versus the number of VC.

channel estimation methods by computer simulation illustrates
effectiveness of the proposed method with regard to both esti-
mation accuracy and speed of convergence.

APPENDIX

PROOF OFIDENTIFIABILITY CONDITIONS

A. Some Important Relations

First, some important preliminary results are stated prior to
the proofs of Theorems 1 and 2.

Let the frequency response of the channel coefficients4

on the active data carriers be the
vector

(23)

A “rotated” version of the frequency response denoted byis
given by

... (24)

...

(25)

The structure of the matrices (Toeplitz) and allows the
first elements in theth ( ) column of to

4Note that the channel vectorh is defined throughout as[h(L); . . . ; h(0)] .



LI AND ROY: SUBSPACE-BASED BLIND CHANNEL ESTIMATION FOR OFDM BY EXPLOITING VIRTUAL CARRIERS 147

be given as shown in (26), at the bottom of the page. Hence, it
is easy to see that the following relation holds that connects the
channel “rotated” frequency response vectorto the submatrix

:

...

(27)

In order to further reveal the relation betweenand column
rank of filtering matrix , we next transform to some other
forms which are useful in later derivations.

Define two triangle matrices

...
... (28)

...
... (29)

and two rectangular matrices

(30)

(31)

By exercising the structure exhibited by (27) and the expres-
sion (30), submatrix can be written as

...
...

.. .
. . .

. . .
...

(32)

Thus, we can partition the filtering matrix as shown in (33),
at the bottom of the next page.

In the sequel, we give proofs for the two theorems, where the
structure exhibited in (24) and (33) will be used repeatedly.

B. Proof of Theorem 1

Theorem 1: For , has full column
rank (i.e., ), if and only if channel frequency
response has no nulls at any of the data subcarrier frequencies.

Proof:
Sufficiency: For , we can extract the

rows to (recall )
for from [see (33)] to yield an
submatrix

...

(34)

...
...

...

...

...

... (26)
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Note that the structure in allows

...
...

...
(35)

The first matrix on the right in (35) is a Vandermonde matrix
with unique elements, thus has full column rank
( ). If the channel has no nulls at any of the data subcarrier
frequencies, is nonsingular by (24). Therefore, the matrix

and consequently are nonsingular or, equiva-
lently, .

Since the submatrix results from by row deletion, the
rank inequalitycondition [22] leads to

, i.e., the filtering matrix has full column
rank.

Necessity:We now show that if the channelhasspectral
null at a data subcarrier location, thencannotbe full column

rank. We remark that showing necessity does not readily follow
from the structure of in (33), and an alternate form (as below)
is needed.

Let be an lower triangle matrix that has the
following structure: 1s on the main diagonal and

as the th subdiagonals for
; all other elements are zero. It is obvious that

is nonsingular. Next we transformto a new
matrix

(36)

which has the same column rank as. The first columns of
are shown in (37), at the bottom of the page. in

(37) directly reveals that, if any element of the diagonal matrix
is zero (equivalently, a null data subcarrier exists), then it is

column rank deficient. Thus, necessity of the condition that the
channel hasno spectral null at any of the data subcarriers for
filtering matrix to be full column rank is established.

C. Proof of Theorem 2

Theorem 2: Let be distinct vectors; the matrix
is constructed using as with in (11), i.e., .

...

. . .

(33)

...

(37)
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For: 1) ; 2) ; and 3) has no null at
any of the data carrier frequencies, if ,
then where is a complex scalar.

Comments:It is worth noting the importance of the three
conditions 1)–3). According to Theorem 1, assumptions 2) and
3) ensure that will be full column rank. The new requirement
that arises from the fact that for , cannotbe
uniquely determined. This is clear by studying the structure of

for the case , which is now a matrix

(38)

where the second equation is essentially (27). The above
implies that the signal subspace is completely determined by
the columns of , which is known. Therefore,
the noise subspace method (14) in this case is not able to
give a unique solution to . Hence, in the sequel we assume
that .

Proof: Define an nonsingular matrix
whose main diagonal elements are 1s and

(39)

All other elements of are zeros.
Left-multiplying by and yields ma-

trices and . For being full rank, the knowl-
edge of the column space of characterizes up to a scalar
constant and thus [15]

(40)

By exercising the structure of and [namely, (39) and (33)
again], can be partitioned as shown in (41), at the bottom of

the page, where is a
matrix, is a matrix as

... (42)

the vector (which is part of the th column
of ) is the product of a right lower triangle matrix and the
channel vector , as shown in (43) at the bottom of the page, and

are submatrices with conformable
dimensions.

From the proof of Theorem 1, is full column
rank. Next we will show that is full rank as well. Defining a

vector where

... (44)

the submatrix can be
written as

...
...

(45)

(46)

(41)

...
...

...

...

...

(43)
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It can be seen that, from (45), the submatrix is full rank (once
again note that is full rank). Furthermore, (46)
yields

, where gives the determinant. Hence, is full
rank.

Since , the vector
, which is the th column of

, belongs to also, namely

(47)

where are , , and
vectors while is a scalar. The above implies

(48)

(49)

(50)

The full column rank property of and yields and
. Therefore, or, equivalently, by the structure

of (43), . This concludes the proof of Theorem 2.
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