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Abstract—Selective broadcast schemes for point-to-multiple
point transmission of identical information to several selected
users are studied for a code-division multiple-access wireless
system. The channel states for all selected users are assumed
known at both the transmitter and the receivers. The goal is to
minimize total transmit power while satisfying minimum received
signal-to-noise ratio (SNR) requirements. Three designs, namely,
time-only, space–time and space-only, are investigated. In the
time-only design no spatial diversity is available, and we solve
the optimal transmit signature code by developing iterative least
distance programming (ILDP) and linear programming (LP)
algorithms. In the space–time design, transmit antennas are
exploited in addition to the temporal dimension, and we show the
ILDP algorithm is still applicable. The LP algorithm can also be
adapted with the integration of space–time block codes, which
we term the space–time block coding LP (STC-LP) algorithm.
In the space-only design, only the spatial dimension is available
and we study the optimization of the transmit antenna weights to
satisfy the users’ SNR requirements. We show that the STC-LP
algorithm applies in this case. We also propose an iterative spatial
diagonalization algorithm to explore the unique structure of the
space-only problem.

Index Terms—Broadcast, code-division multiple access
(CDMA), multicast, space–time block codes, space–time pro-
cessing, transmit–receive joint optimization.

NOMENCLATURE

Transmit signature code.
Receive filter for th user.
Required signal-to-noise ratio at th user.
Hermitian transpose operator for vectors and matrices.
Complex conjugate operator.
Number of mobile stations in the cell.
Length of the maximum multipath delay in chips.
Number of antennas at the transmitter.
Signature code length, or spreading gain.

I. INTRODUCTION

THE field of wireless communication has been dominated
by study of transmission of unicast information. The term

unicast means that information is intended for only one receiver.
Most voice and data traffic in cellular systems falls into this
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Fig. 1. Base station transmitting identical information toK users.

category. However, there are situations that require selective
broadcast, that is, the same information is intended for mul-
tiple selected receivers. Examples include a base station sending
weather updates, road information to several selected users in a
cell, or a multiuser gaming server updating the game status to all
the users in a cell [1]. Other types of selective broadcast include
the control channel of a cellular system, HDTV broadcasting
[2], and multicasting in ad hoc military wireless networks [3].

In order to contrast broadcast and unicast schemes, consider
the scenario depicted in Fig. 1, where the base station is sending
the same information to all users. We assume that all transmit
and receive antennas are omnidirectional. One signaling scheme
is to transmit this identical information to individual users as
if it was unicast information, via multiplexing methods such as
time-, frequency-, or code-division multiple access (CDMA). In
this case, the same information is transmitted in different signal
space dimensions associated with different users. Contrast this
unicast approach with the simple broadcast approach in which
the same signal space dimension is used to send the identical
information to all the users. Suppose is the transmit power
needed to provide the th user with the required signal-to-noise
ratio (SNR). If a multiplexed unicast scheme is adopted, the total
power required at the transmitter is , whereas
simple broadcasting drops the total power to

[3]. Furthermore, broadcasting uses fewer spectral resources
than unicast since the same signal space dimension is used to
send the identical information to all the users.

In this paper we investigate the optimization of transceiver
designs for selective broadcast in a CDMA wireless system. The
optimization is performed jointly on the transmit signature code
and receive filters. We assume perfect knowledge of the channel
states of all the selected users at the transmitter and receivers.
In a time-division duplex (TDD) system, since the channel is
the same for the uplink and downlink, the downlink channel
states can be estimated at the transmitter if the duplexing time is
small compared with the coherence time of the channel [4]. In
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a frequency-division duplex (FDD) system, on the other hand,
a feedback mechanism can be introduced to bring the channel
state information from receivers to the transmitter [4], [5]. Note
that in all cases we assume that the receiver has a single antenna
while the transmitter may have multiple antennas.

We consider three categories of transceiver designs: time-
only, space–time, and space-only designs. In the time-only de-
sign, a single antenna is assumed at the transmitter. We solve
for the optimal transmit signature code and receive filters to sat-
isfy the SNR requirement for all selected users. Two algorithms
are developed for this problem. The first approach is named
the iterative least distance programming (ILDP) algorithm and
solves for the transmit signature code and receive filters itera-
tively. The second approach is termed the linear programming
(LP) algorithm and reduces the original optimization problem
to an approximate LP problem via simultaneous diagonalization
of channel matrices. The LP algorithm is more computationally
efficient than the ILDP algorithm and offers approximately the
same performance.

In the space–time design, we add multiple transmit antennas
to exploit the spatial dimension. This problem is of interest since
cellular systems often have multiple antennas at the base station.
We show that the ILDP algorithm developed for the time-only
design can be easily extended to the space–time design. On the
other hand, since the channels of different users do not share
a common eigen structure in the spatial dimension, the com-
putationally efficient LP algorithm is not directly applicable in
the space–time design. Nevertheless, the LP algorithm can be
adapted for the space–time design with the integration of the
space–time block codes described in [6] and [7], which we term
space–time block code-based linear programming (STC-LP).
Compared with the computationally more expensive ILDP al-
gorithm, STC-LP suffers a slight performance loss.

In the space-only design, we address the problem of designing
optimal transmit antenna weights, assuming a fixed signature
code at the transmitter and fixed filters at the receivers. We show
that the STC-LP algorithm can be adapted to this problem, but
the ILDP algorithm is not applicable. We also propose an itera-
tive spatial decomposition (ISD) algorithm to exploit the unique
structure of this problem.

We employ chip-rate sampled channel representation for slow
fading wireless CDMA channels. Channel state information is
assumed to be known at both transmitter and receiver. We also
assume that the signature code length is much longer than the
multipath delay length , i.e., , so that intersymbol in-
terference in the system is negligible. Binary phase-shift keying
modulation is adopted throughout this paper. The thermal noise
is assumed to be complex white Gaussian with variance .

II. TIME-ONLY DESIGN

Consider the simple broadcast system shown in Fig. 1. The
base station broadcasts information to mobile users in the
cell simultaneously. Let be the -dimensional
temporal filters used at the receivers and let be the -dimen-
sional temporal signature code used at the transmitter. Note that
since the same information is broadcast to all users, only one
code is used at the transmitter. Our goal is to design a signature

code and a set of receive filters that minimizes the
transmit power needed to achieve the minimum received SNR
requirements. The transmitted signal in its discrete vector form
is

(1)

where is the information bit and is the signature code
of length . Note that is not restricted to be unit norm,
and the norm of reflects the transmit power. Now let

be the channel vector of the user
sampled at chip interval. The -dimensional received signal
vector of the user in its discrete vector form becomes

(2)

where

...
. . .

. . .
. . .

. . .

(3)

is the Toeplitz channel matrix. At the th receiver, the output of
the receive filter is

(4)

and the optimal detector is . The per-
formance of the th user is measured by the SNR as
SNR , where denotes the
noise power. Assuming to be the target SNR for the th
user, we set up the following optimization problem to find the
set of transmit spreading code/receive filters , that
minimizes transmit power while satisfying the SNR constraints
of all users:

such that

and (5)

where and denotes the real part of a com-
plex number . The problem in the form of (5) requires joint
optimization of both transmit signature code and receiver fil-
ters . However, we know that for a given signature
code , the receiver that maximizes the output SNR is a max-
imum ratio combiner (MRC) . Since the
constraint in (5) is a minimum output SNR constraint, and an
MRC receiver filter maximizes the output SNR for a given ,
we conjecture that the MRC is the optimal receiver solution to
(5), and the joint optimization problem of (5) can be organized
into an optimization problem of only. This conjecture turns
out to be true and a formal proof of the conjecture is found in
the following proposition.

Proposition 1: The optimization problem in (5) is equivalent
to

(6)
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and each receiver is an MRC receiver

(7)

Proof: See Appendix I.
Wehavereducedajointmultivariableoptimizationproblem(5)

intoasingle-variableoptimizationproblem(6).Unfortunately,the
quadraticconstraintin(6)isaconcaveconstraint.Asaresult, there
is little one can say about either the convergence or the optimality
of thesolution, ifastandardoptimizationmethod,for instance, the
Lagrange multiplier [8] is directly applied to solve this problem.
In this paper, we develop two algorithms that exploit the unique
structure of this problem to provide solutions that display better
convergence and optimality properties. The first approach is the
ILDP algorithm and iteratively optimizes the transmit signature
code and receivefilters. The second approach is the LP algorithm.
Here the concavely constrained quadratic optimization problem
(6) is reduced to an approximate LP problem by simultaneous di-
agonalization of channel matrices.

A. Iterative Optimization—ILDP Algorithm

In the ILDP algorithm, we derive an iterative procedure from
the original joint optimization problem (5), rather than the
reduced single-variable optimization problem (6). Observe in
(5) that appear only in the constraints, not in the cost
function. This structure suggests an iterative solution where
the transmit signature code and receive filters are
solved in an iterative fashion.

ILDP algorithm

1) Set iteration index , start
with any set of normalized receive
filters .
2) Solve ;

, . We
show below that this can be converted
into a least distance programming
(LDP) problem [9].
3) Update by setting

, the MRC solution.
4) Define . If

for some , stop; other-
wise set and go to Step 2).

Note that the sequence of cost function values always
converges. To show this, observe that
and are both feasible solutions to
(5), but Step 2) of the algorithm guarantees that is the
optimal solution given ; therefore we have

. Consequently the sequence of cost func-
tion values converges to a limit by the monotone convergence
theorem [10].

Iterative algorithms similar to the ILDP algorithm developed
in this paper are quite commonly used for solving joint opti-
mization problems. A classical example is the Lloyd–Max algo-
rithm [11] for deriving the optimal quantization solution. While
intuitive and easy to implement, the major limitation of such

iterative approaches is that in general they converge to a local
minimum, not the global minimum.

1) LDP Algorithm: We now focus on Step 2) of the ILDP al-
gorithm. In this step, the transmit spreading code is optimized as-
suming known receive filters. We repeat the problem in Step 2)

(8)

for . Now let with
and to rewrite (8) as

(9)

We now formulate this optimization problem in real-valued
space. Let and where the sub-
scripts and denote real and imaginary parts, respectively. We
further define and . Note that

has dimension of 2 1 while has dimension 2 .
Problem (9) can be equivalently written as

(10)

The optimization problem (10) is termed an LDP problem
[9]. It is easy to see that at least one feasible solution [a feasible
solution is a vector that satisfies the constraint in (10)] ex-
ists when . For instance, the minimum norm solution

corresponding to the equality constraint
is one of the feasible solutions for (10). Moreover, within the
set of feasible solutions for (10), many local minimums may
exist. However, the following proposition establishes that all
local minimums have the same performance.

Proposition 2: Every local minimum of (10) is a global min-
imum. A vector is a solution to (10) if and only if there exist
Lagrange multipliers such that1

(11)

Proof: It is easy to see that the cost function in (10) is
convex and the constraint is linear. By the Kuhn–Tucker neces-
sity theorem [12], (11) holds at a local minimum. However, the
Kuhn-Tucker sufficiency theorem dictates that if (11) holds, it
is a global minimizer. Therefore, any solution to (11) yields the
global minimum of (10).

Except for several special cases, a closed-form solution for
Lagrange multipliers in (11) is difficult to obtain. An efficient
iterative algorithm to find the Lagrange multipliers is presented
in [9].

B. Approximate Optimization—LP Algorithm

The major limitations of the ILDP algorithm we developed
in the previous section include a) the computational complexity
can be high if the number of iterations becomes large and b) con-
vergence to a global optimum is not guaranteed. In this section,
we develop an approximate LP algorithm that is more computa-
tionally efficient and that always converges to a global optimum.
As we elaborate later, the approximation comes from the step
where we approximate the Toeplitz channel matrices with cir-
culant matrices.

1
x 2 R means that all elements of x are real and nonnegative
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We start from the simplified single-variable problem (6). As
a consequence of the concave constraint in (6), multiple local
minima may exist and iterative algorithms may be trapped in a
local minimum, if the starting point is not well selected. Nev-
ertheless, we show in the following proposition that due to the
Toeplitz structure of the channel matrices, they can be approxi-
mated by circulant matrices which may be simultaneously diag-
onalized, and therefore we can transform the problem in (6) into
a well-studied LP problem. Furthermore, as a property of the LP
solution, every local minimum of (6) is a global minimum.

Proposition 3: The problem in (6) can be reduced into an LP
problem of the form

(12)

Proof: With the previously mentioned assumption
, the Toeplitz matrix can be well approximated by a circu-

lant matrix, that is

...
. . .

. . .
...

. . .
. . .

. . .

(13)

Furthermore, since all circulant matrices are diagonalized by the
discrete Fourier transform (DFT) matrix [13], we have

, where

...
...

...
(14)

is the DFT matrix

. . . (15)

and is the zero-
padded DFT of the channel vector . Let

be the frequency-domain representation of the signa-
ture code and (6) be rewritten as

(16)

for . The above equation can be organized into the
following LP programming problem by defining and

:

such that

and (17)

Fig. 2. Geometric symmetry in the solution space. (a) Solution space with
simultaneously diagonalizable channel matrices. (b) Solution space with
arbitrary channel matrices.

It might seem odd that we are actually able to convert a non-
convex problem (6) into a convex problem (17) via this change
of variable. However, note that this transformation is possible
only when the channels are diagonalizable. With this assump-
tion, the solution space of exhibits a certain geometric sym-
metry. Fig. 2 illustrates this symmetry in a two-dimensional so-
lution space when the number of users is also two. Fig. 2(a)
assumes that the channel matrices are simultaneously diagonal-
ized while Fig. 2(b) does not. In each figure the feasible solution
area is shaded outside the two ellipsoids, which are defined by
the constraints in (6). The intersections of the ellipsoids denotes
the local minima of the optimization problem (6). Furthermore,
note that in Fig. 2(a) the ellipsoids are symmetric about the axes.
As a result all the local minima in Fig. 2(a) have the same vector
norm. And since the norm of the solution completely determines
the cost function in the original problem (6), all local minima are
also global minima. By reformulating the problem in terms of
the norm of we obtain a convex problem.

C. Practical Implementation

This section discusses the information exchange required to
implement these algorithms at the base station (BS) and mobile
station (MS). We first show how the optimal receive filters are
obtained at the MS side. For ease of exposition, we assume that
the optimal transmit signature code is known at the trans-
mitter and is used in broadcasting. At the MS side, since the
MRC receive filters are given by ,
it seems that the MS needs to know the BS code in order
to proceed, which is unrealistic since a reliable communication
link between BS to MS is not yet established at this point. How-
ever, the MS can consider the BS code as a part of the composite
channel , and therefore obtain the MRC receiver by es-
timating this composite channel. Note that in an FDD system,
since the BS requires feedback of channel estimate from the
MS, both and have to be estimated at the th MS.
Thus, the BS needs to transmit two sets of training sequences,
one set using a known pilot code (for example, )
for estimating , and the other set using the optimal BS code

for estimating at the th MS.
A more centralized treatment, however, is required to opti-

mize the transmit signature code at the BS side. This is evi-
dent since for both ILDP and LP algorithms, all the user chan-
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Fig. 3. Algorithm implementation and flow of information exchange. (a) Implementation of ILDP and LP algorithms at BS and MS in an FDD system and (b)
adaptive implementation of ILDP algorithm in an FDD system.

nels are needed to generate the optimal BS code
. The overall flow of information exchange is illustrated in

Fig. 3(a). We assume an FDD system and therefore the channel
state are fed back from MS to the BS. The BS col-
lects all the channel state and optimizes the signature code
with the help of either the ILDP or LP algorithm. Finally, the
receive filters are separately generated at each MS
using an MRC rule.

There is an interesting variation of this implementation that
is possible for the ILDP algorithm. The implementation of the
ILDP algorithm as shown in Fig. 3(a) represents a “block pro-
cessing” approach, where the optimal code is computed
with the iterative algorithm and kept constant for many symbol
intervals, before it is recomputed to account for the variations in
the channel state. However, in realistic systems, the variation in
channel state is usually slow (on the order of ten symbols) over
time, thus allowing an alterative “adaptive” implementation of
the ILDP algorithm, as shown in Fig. 3(b). In the adaptive im-
plementation, only one iteration of LDP algorithm is carried out
within one symbol interval and the convergence to the optimal
BS code is achieved over many symbol intervals. In a sense, the
adaptive implementation provides a low-complexity solution for
tracking the channel state of all the users, even though the rates
of the channel variations may differ significantly for users trav-
elling at different speeds. Note that in the adaptive implemen-
tation, the necessary feedback from the th MS to BS becomes

instead of channel matrix .

III. JOINT SPACE–TIME DESIGN

In this section we study the case where multiple transmit an-
tennas are incorporated in the system. We show that the ILDP
algorithm is still applicable for space–time optimization. How-
ever, the LP algorithm cannot be applied directly since the chan-
nels of different users in the spatial dimension do not share a
common eigen structure and thus cannot be jointly diagonal-
ized. To circumvent this limitation, we develop a method of in-

tegrating the LP algorithm with the space–time block codes de-
scribed in [6] and [7] and term it STC-LP algorithm.

Similar to (5), we set up the joint transmit/receive optimiza-
tion problem as

such that

and (18)

Note that in this case is a space–time
transmit signature code of dimension 1, with being
the number of transmitter antennas and being the spreading
code at antenna. Accordingly,
becomes a matrix, where is the channel matrix
coupling the transmit antenna and the th receiver. Note
that although each has a Toeplitz structure, the overall
channel matrix does not.

A. ILDP Algorithm

It is evident that (18) is similar to (5) and thus can be solved
by the same ILDP algorithm we developed in Section II-A with
slight modifications to and . Again, in general this itera-
tive algorithm converges to a local minimum of the optimization
problem.

B. STC-LP Algorithm

In Section II-B, it is shown that due to the approximate circu-
lant structure of the channel matrices in the temporal dimension,
they can be simultaneously diagonalized. This enables the orig-
inal problem (5) to be transformed into the convex LP problem
given in (17). This transformation, however, is not possible in
a space–time channel since the overall space–time channel ma-
trices do not share a common eigen structure in the spatial
dimension. As a result, the LP algorithm is not directly appli-
cable in this case.

In this section, we explore a different path to obtain a com-
putationally efficient, yet suboptimal, LP algorithm by incorpo-
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rating space–time block codes from orthogonal design, as de-
scribed in [6] and [7]. Instead of sending out the same bit across
all the transmit antennas at a certain time slot, we consider a
block of bits and send them out over time slots in a pat-
tern that is known to both the transmitter and receivers. Note
that is the number of antennas at the transmitter. The result
of this operation is the introduction of “controlled” self-interfer-
ence at each time slot, which can be eliminated after all the
bits are received. After the elimination of the self-interference,
the detection of each bit in the sequence can be reduced to an
LP problem similar to the one that we solved in the time-only
optimization. The “controlled” self-interference, however, also
results in a slight performance degradation compared with the
ILDP algorithm.

For ease of exposition we assume in the discussion below
that the number of transmit antennas is two. The extension to
an arbitrary number of antennas requires a more sophisticated
orthogonal design of space–time block code as described in [6].
In the case of two transmit antennas, the space–time block code
pairs up two bits and and transmits them over two time
slots. With the so-called orthogonal design [6], we assure that
the controlled self-interference can be eliminated by jointly pro-
cessing the two time slots at the receiver. To see this, let ,
be the transmit signature codes at the two transmit antennas and
let

(19)

be the orthogonal code matrix. At time slot , the th
antenna will transmit information bit , the

bit in th row and th column of matrix . Let , be
the Toeplitz matrices that couple receiver with transmit
antennas 1 and 2. We further assume that the channel is constant
over the two time slots and denote the received vector at the two
time slots by and . Stacking up and and defining

, we get

(20)

In (20), the “controlled” self-interference is represented by the
cross terms in matrix . However, since each is an orthog-
onal matrix, we can cancel the self-interference by multiplying
with

(21)

where

Consequently, the maximum likelihood detectors for and
are given by , . The
corresponding SNRs are

SNR SNR SNR

Hence an optimization problem similar to (6) can be formulated
to minimize the overall transmit power while satisfying the SNR
requirement of all users

such that

(22)

We solve this problem in the frequency domain by letting
, , and ,

. Furthermore, let be the concate-
nated frequency-domain space–time signature code and let

(23)

be the overall frequency domain channel matrix where and
are the frequency-domain channel matrix for antennas 1

and 2, respectively, as defined in (15). With these definitions the
optimization problem (22) may be rewritten as

such that

(24)

which is in exactly the same form as (16). Therefore, by Propo-
sition 3, it can be converted into an LP problem analogous to
(17).

IV. SPACE-ONLY DESIGN

In previous sections we designed optimal space–time
transmit signature codes and receive filters for a selective
broadcast system. In this section we optimize only over the
spatial dimension, that is, we design transmit antenna weights
assuming a fixed signature code at the transmitter and fixed
filters at the receivers. This problem is relevant if the temporal
signature code in a system is predetermined and not subject
to any optimization. Note that in this section we assume a flat
fading channel to simplify the discussion. Now let

be the unit-norm transmit spreading code. Since , it
is easily shown that is the MRC solution at the th
receiver. Let be the weight vector at the
transmit antennas. The transmitted signal at the th antenna is

, and the received signal of the user is

(25)

Projecting the received signal onto the code , we get
, where is independent identically dis-

tributed with variance for . Similar to the ap-
proach adopted in the previous sections, we pose the following
optimization problem to minimize the transmit power while sat-
isfying the minimum received SNRs:

such that

(26)

A. STC-LP and ILDP Algorithms

The STC-LP algorithm developed for space–time optimiza-
tion can be applied in this case with minor modifications. Good
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performance is achieved with this algorithm, as will be shown
in the simulation results. On the other hand, the ILDP algorithm
we developed for the time-only and space–time design cannot
be applied to the space-only optimization problem. The reason
is that the receive filter is fixed in the space-only optimization
problem and the transmitter–receiver iterative procedure is not
applicable.

B. Iterative Spatial Diagonalization (ISD) Algorithm

We now propose an algorithm for obtaining that exploits
the structure of the spatial optimization problem (26), assuming
the number of users is less than or equal to the number of
antennas . We show that this solution is optimal when
and is a good suboptimal approximation when . First we
aim to find a spatial diagonalization matrix that satisfies

...
. . .

...

...
...

Here is an matrix whose
columns are the channel vectors. Now we define
to be the singular value decomposition (SVD) of , and

to be the diagonal matrix whose
diagonal elements are the desired SNRs. It follows that can
be constructed as

(27)

Denoting , it can be shown that (26) reduces to

such that (28)

We now define , . Furthermore, we
use and to denote the amplitudes of complex variables

and , and and to denote the phase angles of and
. We may then write the cost function in the following form:

(29)

where and . Since
is bounded between 1 and 1, it will be ideal if we can

find a set of such that all the for any
, , which means , and . However, if

one write this set of equations into a matrix form for

(30)

it is easy to see that is of rank 2, and therefore no solution ex-
ists for . The best approximation one may get is a pseu-
dosolution where denotes the pseudoinverse of

.
Since a simple closed-form solution can not be obtained, we

again resort to an iterative process. Letting be an initial esti-
mation and let , we write (28) as

(31)

where and is a positive semidefinite matrix
with elements , . Equation (31)
defines a least squares with inequality constraint (LSI) problem.
It is similar to the LDP problem we discussed previously and can
be solved by the LSI algorithm described in [9]. Once is ob-
tained by the LSI algorithm, we iterate by solving (29) for the
phase angles using the steepest decent algorithm to
minimize . This iterative approach is summa-
rized below as an ISD algorithm.

Iterative Spatial Diagonalization
(ISD) Algorithm

1) Set iteration index ,
get an initial estimate of

by solving
(30).
2) For given , solve (31) using
LSI algorithm to update .
3) For given , obtain by
minimizing (29) with the steepest de-
scent algorithm.
4) If for some ,
stop; otherwise set and go to
Step 2).

V. SIMULATION RESULTS

In this section we evaluate the effectiveness of the algorithms
developed in this paper via numerical simulations. We follow
the classification adopted in the previous sections and divide the
simulation results into time-only, space–time, and space-only
design subsections. The results show a 3.0 dB transmit power re-
duction with the ILDP or LP algorithm, compared with a simple
broadcast scheme. The transmit power can be further reduced by
2–2.5 dB via ILDP or STC-LP algorithm when the number of
transmit antennas is increased from one to two. It is also shown
that the algorithms are robust when the estimated channel coef-
ficients are corrupted by estimation errors or feedback delays.

A. Time-Only Design

In this section we evaluate the performance of the ILDP and
LP algorithms for temporal optimization. The transmit signa-
ture code is assumed to have length and the multipath
spread of the channel is assumed to be chips long. The
channel coefficient vector for user is assumed to be com-
plex Gaussian , where is the
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Fig. 4. Comparison of algorithms for temporal optimization.L = 4,P = 16.
The ILDP and LP algorithms hold a similar 3 dB gain compared with nonoptimal
broadcast.

1 1 identity matrix. Fig. 4 illustrates the depen-
dence of required transmit power on the number of users for dif-
ferent algorithms. The curve “No Optimization” in Fig. 4 stands
for the simple broadcast scheme described in the introduction

. It is observed that both the ILDP and
LP algorithms have a significant 3 dB gain against the simple
nonoptimal broadcast algorithm. It is also evident in Fig. 4 that
ILDP and LP curves almost overlap with each other. The small
discrepancy between the two curves is mainly due to the circu-
lant approximation of the Toeplitz channel matrix. Fig. 5 further
illustrates the convergence of ILDP algorithm. In most realiza-
tions, ILDP converges in 10–20 iterations.

1) Sensitivity Against Channel Estimate Delays: It is as-
sumed in the algorithms that the channel coefficients are known
at the transmitter via channel estimation or feedback. However,
in realistic situations these channel coefficients can be erro-
neous due to estimation errors or feedback delays. To evaluate
the robustness of the algorithms, we study the performance
of the LP algorithm given delayed channel estimates. The
autoregressive process of order one (AR-1) model used in [14]
is adopted for channel state evolution. Define as the delayed
version of and assume that evolve independently, we
have for and

(32)

where , with being the zero-order Bessel
function of the first kind. is the Doppler spread in hertz and

is the amount of delay in seconds. It is obvious that the cor-
relation between and decreases with a larger Doppler
spread (higher vehicle speed) and longer feedback delay .

The LP algorithm is used to design the transmit signature
and receive filters based on instead of . The impact
of the channel estimate delay is manifested in the amount of ad-
ditional power needed to satisfy the SNR requirements for the

Fig. 5. Convergence of ILDP to LP. L = 4, P = 16. Convergence usually
takes 10–20 iterations.

Fig. 6. Robustness of the algorithm with delayed channel estimates at the
transmitter. L = 4, P = 16. The performance loss is insignificant with a
reasonably small delay (less than 50 symbols).

users. The parameters of the numerical simulations are: speed
of all users 50 km/h, carrier frequency 2 GHz, data symbol rate
100 kHz, and the feedback delay is set at 50, 100, and 200 sym-
bols, respectively. Fig. 6 shows the comparison of the transmis-
sion power needed with these three delay parameters. With 50
symbol delay, the additional power needed is only about 0.6 dB.
However, with a 200 symbol delay, the performance of the LP
algorithm almost degrades to the level of simple broadcast algo-
rithm. Therefore, it is critical to have a reasonably fast feedback
mechanism in order to reap the benefits of optimal broadcast al-
gorithms.

2) Peak to Average Power Ratio: Unlike a conventional bi-
nary spreading code, the BS signature code we designed takes
arbitrary complex values. One practical concern is whether this
complex signature code will result in a high peak-to-average
ratio (PAR) at the transmitter. As shown in [15], the PAR is a
probabilistic notion and is usually described by its complemen-
tary cumulative distribution function (CCDF). The closed-form



2048 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004

Fig. 7. Peak to average power ratio at the transmitter for P = 16, L = 4,
K = 9. The probability of PAR exceeding 6.5 dB is about 10%.

Fig. 8. Space–time optimization: N = 2, L = 4, P = 16. A 2–2.5 dB total
transmit power is saved with the addition of another transmit antenna.

CCDF of PAR in our broadcast problem is hard to obtain, and
we resort to numerical simulations to illustrate the behavior of
PAR. In Fig. 7, the CCDF is simulated for a nine-user system
with spreading code length and channel length .
In this case, the probability of PAR exceeding 6.5 dB is only
about 10%, which is fairly reasonable for a realistic system, con-
sidering that the probability of PAR exceeding 11 dB is about
10% for a typical 256 subcarrier orthogonal frequency-division
multiplexing system [15].

B. Space–Time Design

Both ILDP and STC-LP algorithms are evaluated for
transmitter antennas and the results are shown in Fig. 8. The
results from the LP algorithm for the single antenna case are
also given as a reference. The other parameters stay the same
at and . It is observed that with spa-
tial dimensions, both ILDP and STC-LP algorithms perform
significantly better than the single antenna LP algorithm. At

Fig. 9. Spatial optimization: N = 8, flat fading channel. ISD algorithm is
more likely to be trapped in a local minimum when the number of users is large.

, the performance gain achieved by adding an antenna is
2.6 dB with ILDP algorithm and 2.1 dB with STC-LP algorithm.
Here the tradeoff between the ILDP and STC-LP is better per-
formance versus more efficient implementation. Although the
STC-LP sustains about 0.5 dB loss in performance compared
with the ILDP algorithm, it is much faster and simpler to imple-
ment.

C. Space-Only Design

In this section we examine the performance of the STC-LP
and ISD algorithm for the spatial optimization problem. Fig. 9
shows the results for transmit antennas. When the
number of users is small, ISD perform better than STC-LP.
This is expected due to the suboptimal nature of the STC-LP
algorithm. However, as the number of users goes up, the ISD
algorithm performance degrades much faster than the STC-LP
algorithm. This suggests that as the number of users increases,
ISD algorithm is more likely to be trapped in a local minimum.
On the other hand, the STC-LP algorithm performs quite well
as the number of users increases. It only requires a moderate
2.3 dB of additional transmit power when the number of users
increases from two to seven.

We next examine the performance gain obtained by adding
more transmit antennas to the system. The STC-LP algorithm
is used in this simulation. Fig. 10 shows when the number of
transmit antennas goes from to , there is a gain
of approximately 2 dB for the entire range of the number of
users considered. Equivalently, the power needed to satisfy five
users when is enough to satisfy 17 users when .
Also note that another advantage of the STC-LP algorithm is
that it can be used even when the number of users far exceeds the
number of transmit antennas. For instance, in Fig. 10 the number
of users is much larger than the number of antennas
( or ). The independence of the number of users
makes the STC-LP algorithm more intuitively pleasing since
one would expect that as the transmit power goes to infinity, we
can satisfy an arbitrary number of users with arbitrary channel
conditions and SNR requirements.
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Fig. 10. Adding more antennas in spatial optimization. FromN = 4 toN =

8, the transmit power required to satisfy minimum received SNR drops by about
2 dB.

VI. CONCLUSION

The problem of optimal selective broadcast in a wireless
CDMA system is studied in this work. It is shown that the
optimal broadcasting scheme is more power efficient than
the individual multiplexing transmission schemes and simple
nonoptimal broadcasting schemes. We assume the channel state
of all users are known at the transmitter, to facilitate the opti-
mization of both the transmit signature code and receive filters.
Space–time transmission methods for optimal broadcast are de-
veloped by investigating three different cases corresponding to
time-only, space–time, and space-only design. The algorithms
we developed include ILDP, LP/STC-LP, and ISD algorithms
and offer tradeoffs between performance and complexity. We
show that ILDP is applicable in both time-only and space–time
design, whereas LP is initially developed for time-only design
but can be extended to the STC-LP algorithm in space–time
problem. We also develop an ISD algorithm that exploits the
unique structure of the space-only design. The performance of
various algorithms is evaluated by numerical simulation. The
results show a 3.0 dB transmit power reduction with the ILDP
or LP algorithm, compared to a simple nonoptimal broadcasting
scheme. The transmit power can be further reduced by 2–2.5 dB
via ILDP or STC-LP algorithm when the number of transmit
antennas is increased from 1 to 2.

APPENDIX I
PROOF OF PROPOSITION 1

We prove by contradiction. Suppose there is another set of
vectors that is a global minimizer for
(5) and that performs better than
as defined in (6) and (7). This means ,

, and for . Now
look at the set of vectors , where

. We claim that performs the same as .
We demonstrate this by noting that when going from to a)
the cost function remains the same and b) none of the constraints

is violated. It is apparent that condition a) holds by definition of
. Meanwhile, it is easy to see that condition b) holds since

is nonnegative real by definition, and
. The first inequality is a

consequence of the Cauchy–Schwartz inequality. However, this
also means is just one of the feasible solutions for the problem
stated in (6). Therefore, since is the
minimum solution to (6). This contradicts the assumption and
the proposition is proved.
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