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Abstract—In this paper we propose a joint reduced-state se-
quence detector (JRSSD) for a multiple-input multiple-output
(MIMO) system. The proposed JRSSD incorporates the set-par-
titioning principle to obtain a reduced-state trellis and is the
space-time extension of the RSSD proposed in [1] for a single-input
single-output (SISO) equalization problem. We show that two
elements are essential in achieving the desired complexity and per-
formance tradeoff for the proposed JRSSD algorithm: 1) a proper
multisymbol set-partition and 2) an efficient space-time structure
that effectively decouples the spatial and temporal processing. We
propose a simple multisymbol uniform set-partition (USP) that
retains certain geometric symmetry in the partitioned subsets. We
also develop two suboptimal algorithms, namely the decorrelating
(DC) and ordered successive (OS) algorithms, to decouple the
spatial multisymbol detection problem inherent in the processing
of parallel transitions, into single-symbol detection problems.
The symmetry in USP, together with the DC or OS algorithm,
guarantees efficient processing of parallel transitions and leads
to a low-complexity JRSSD. Furthermore, numerical simulations
show that the performance of JRSSD is near that of the more
complex delayed decision feedback sequence estimator (DDFSE).

Index Terms—Delayed decision feedback sequence estimator
(DDFSE), DFE, enhanced data rates for GSM evolution (EDGE),
multiple-input multiple-output (MIMO), minimum mean square
error (MMSE), prefilter, receiver, reduced-state sequence de-
tector (RSSD), reduced-state sequence estimator (RSSE), set
partitioning.

1. INTRODUCTION

HE throughput of a M transmit, N receiver antenna

multiple-input multiple-output (MIMO) system can be
greatly improved by transmitting independent data streams
across M different transmit antennas. However, as shown
in Fig. 1, multiple access interference (MAI) exists at the
receiver since each receive antenna receives signals from all
the transmit antennas. This self-introduced MAI complicates
the MIMO receiver design, especially in a system where the
propagation channel is frequency selective and inter-symbol
interference (ISI) is present, such as the enhanced data rates for
GSM evolution (EDGE) system [2]. For example, if the vector
Viterbi algorithm (VVA) [3] is applied to jointly estimate the
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Fig. 1. Air interface of a M transmit, N receive antenna MIMO system.

M data sequences in an EDGE system with 8 PSK modulation,
the receiver complexity is O(8M(£+1)) where L is the channel
memory length. This complexity is far beyond current practical
implementation limits.

The minimum mean square error—delayed decision feed-
back sequence estimator (MMSE-DDFSE) is a well-studied
structure for reducing the complexity of the ISI equalization
problem in a single-input single-output (SISO) system [4], [5].
The extension of this structure to a MIMO receiver is found
in [6], [7]. The MIMO MMSE-DDFSE receiver includes a
prefilter and a DDFSE equalizer (which includes a delayed
feedback filter and a VVA joint sequence estimator), as shown
in Fig. 2. The prefilter attempts to reshape and shorten the
channel impulse response by shifting most of the channel
energy into the first Lg + 1 taps. Consequently, the VVA only
needs to equalize the first Lg + 1 taps since the remaining
low-energy channel taps are accounted for by the feedback filter.
Therefore, the overall MIMO receiver complexity is reduced
to O(8M(Fs+1)) In order to further reduce the complexity, the
optimal joint sequence detector, the VVA, can be replaced by
suboptimal MIMO sequence detectors such as the partitioned
Viterbi algorithm (PVA) [8] or the decoupled Viterbi algorithm
(DVA) [9] where the M sequences are estimated separately.
While operating at a much lower complexity, the performance
penalty is significant for these suboptimal approaches.

In this paper, we propose another suboptimal MIMO
sequence detector, namely the set-partition based joint re-
duced-state sequence detector (JRSSD), to replace the optimal
VVA in the MMSE-DDEFSE receiver shown in Fig. 2. We show
that a JRSSD provides near-optimal performance at very low
complexity, and is a space-time extension of a SISO RSSD,!
which is a systematic complexity reduction approach first
proposed in [1] for a temporal ISI equalization problem. Fur-

INote that in the original paper it was called a reduced-state sequence esti-
mator (RSSE).
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thermore, we show that in the proposed JRSSD, two elements
are essential in achieving the desired complexity and perfor-
mance tradeoff: 1) a proper multisymbol set-partition; and
2) a suboptimal algorithm solving the multisymbol detection
problem associated with each edge in the reduced-state trellis.

The maximum minimum square subset distance (MSSD)
partition [10] is known to be geometrically symmetric for
single-symbol set-partitions and, therefore, allows a simple
threshold detector within a subset, which is a key aspect
of overall complexity reduction [1]. The extension of the
maximum MSSD criteria to the multisymbol set-partitioning
results in the multidimensional set partitioning (MDSP) [11],
[12], where the partition is performed on the vectors that are
Cartesian products of multiple symbols. However, an MDSP
partition is not desirable in a JRSSD since it does not retain
the aforementioned geometric symmetry. Instead, we propose
an alternative multisymbol set-partitioning rule named uniform
set-partitioning (USP) [13]. The same single-symbol set-parti-
tioning is performed uniformly on each symbol to form symbol
partitions in a USP, where the overall multisymbol vector par-
tition is obtained by taking a Cartesian product of these symbol
partitions. Note that USP is also where the proposed JRSSD
differs from [14], where a biased nonuniform set-partition
is used in solving a similar joint equalization problem for a
multiuser time division-synchronous code division multiple
access (TD-SCDMA) system.

The spatial and temporal processing is effectively decoupled
in the space-time JRSSD structure with the help of USP. A
USP-based reduced-state trellis forms the backbone of temporal
IST equalization in this structure, whereas an auxiliary spatial
multisymbol detection problem is solved for each edge in the
reduced-state trellis. In each spatial multisymbol detection
problem, so-called “early-decisions” on the parallel transitions
are made and passed to the reduced-state trellis. Furthermore,
we propose two low-complexity solutions, the decorrelating ()
and ordered successive (OS) algorithms, to decouple the mul-
tisymbol detection problem into M single-symbol detection
problems, where a simple threshold detector may be applied
due to the geometric symmetry inherent in USP. Note that
the OS solution is similar to the approach proposed for the
V-BLAST system [15].

The rest of the paper is organized as follows. Section II
presents the MIMO transmit/receive signal model. The overall
MIMO receiver structure is summarized in Section III. It is fol-
lowed by the detailed description of the JRSSD in Sections IV
and V. The analytical and numerical evaluation of JRSSD
performance is found in Sections VI and VII, respectively.

II. MiMO SIGNAL MODEL

We consider a M transmit, N receive antenna MIMO system
as shown in Fig. 1. For ease of exposition, we use a vector-ma-
trix notation similar to the one used in [16]. Stacking up the re-
ceived samples across all the receive antennas for the £th symbol
interval, we get

L
Yk :ZHlak—l+nk- (1

=0
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Note thatyx = [y? 1,---,¥7 y]7 where each small vector yy ,,
includes all the temporal sami)les within the kth symbol interval
and n denotes receive antenna index. We assume A samples per
symbol and, therefore, yy is of length NVA. Meanwhile, L is the
channel memory length, ay; = [ax_1.1,...,ax_1.0]7 is the
transmitted symbol vector at time k —, and ny, is the (NA) x 1
dimensional white Gaussian noise vector with nj, ~ A (0, o°T).
Note that 02 denotes noise variance and I is the identity ma-
trix. The channel coupling between the transmitter and receiver
is denoted by Hy, ..., Hr where each matrix is of dimension
NA x M. In this paper these channel coefficients are assumed
to be known at the receiver. However, the numerical results in-
clude the effect of estimated channel coefficients. Furthermore,
in order to facilitate the discussion on the MMSE-DDEFSE re-
ceiver, we stack up a block of Ly + 1 received vectors

Yet+Lpk = Hapy L kL + Dptp ok 2

where L ¢ +1 is the length of the prefilter of the MMSE-DDFSE
receiver and

T

Verrn = (Yo, o¥E | o (L + DNAX)

T
NjyLyk = [n£+Lf7-~-~/nﬂ ;o (Ly+1)NA x 1)
T
ApiLpk—L = [ak+Lf- e »aZ—L} » (Lg+L+1)M x 1)
H() HL
H=
Ho HL

is of size ((Ly + 1)NA x (Ly + L+ 1)M). where the dimen-
sions of the matrices are given next to them. Note that to keep
the notation more intuitive, we keep the subscripts at a “block”
level. For instance, yj 1,k is the vector that contains blocks
Yk+L;,---, Yk Where each block is a vector of size NA x 1.

III. MIMO RECEIVER STRUCTURE

The overall receiver structure is shown in Fig. 2. The MIMO
prefilter and feedback filter combine to shorten and reshape the
channel impulse response. Meanwhile, we assume that the VVA
block is replaced by the proposed low-complexity JRSSD block
as in Fig. 2. Note that if we keep the VVA block, we return to a
conventional MMSE-DDFSE receiver.

In this section, we summarize the conventional
MMSE-DDFSE receiver, including the MIMO FIR pre-
filter/feedback filter design and the VVA equalizer. First, we
define an error vector n; = WHyk+Lf:k —BHa.._1, where
the superscript ¥ denotes Hermitian transpose operation, W
is the prefilter matrix and B is the feedback filter matrix. To
be specific, W is of dimension (NA(Ly + 1)) x M and
B is of dimension ((L + 1)M) x M. We can also write
B = [By,...,Br] where each submatrix is of size M x M.
Similar to the treatment in [16], the filters W and B are
optimized according to the MMSE criteria

opt Bopt — in T 4. Bg=1
WPt arg min race(R) s.t. By 3)

}
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Fig. 2. Overall MIMO MMSE-DDEFSE receiver structure. Note that the VVA block is replaced by a proposed JRSSD block in this paper.

where R = E{n;nf} is the error correlation matrix. Note
that F{-} denotes the expectation operation. The solution
to (3) is obtained from Lagrange multipliers: W°Pt =
V_lHk:k(Hng_lHk:k)_l and B°Pt = Hﬁk,LWOPt,
where V. 2 (Hpyp,a1HY 50y + 0°1) and the re-
sulting error correlation matrix is: R = (HE, V-1Hy;)~ L.
Note that here we use the notation Hk+Lf:k+1, H;..
and Hjy_1.,_1 to represent the submatrices of H that
are associated with apyr,.x+1, ar and ap_1x_r in the
expansion of the matrix-vector product Hay iy .z L
Hitr; k1864 L, k41 +Hepar + He—1:p—rak—1.4—1. Fur-
thermore, Hy.,_r is defined as Hy.p—z = [Hpp, Hi_ 10— 1].
After MIMO prefiltering, the effective signal model is described
by

L
H H . -
Xt = W¥ktr,0 = B app—r +ng = ZBlak—l + 1.

1=0
4)
Furthermore, denoting Lg as the length of shortened
channel memory, the feedback filter is formed as BZ =
[BLo+1,---,Br] and the input to the JRSSD block is obtained
assuming perfect feedbacks ax_r,o—1:k—1, = Qk—Lo—1:k—1

Ls

- S H A ~
Xp =Xt — B &y, 16— = E Biag_;+ni.  (5)
=0

Note that to arrive at (5), we have assumed common tentative de-
cision feedback symbols a;_r,,_1.,—1, associated with the tail
part of the channel impulse response. That is, the feedback sym-
bols are the same for all the states in the trellis. This is an alterna-
tive to another approach that assumes state-dependent feedback
symbols where each state in the trellis keeps track of its own
feedback symbols. The state-dependent approach is optimal but
is more complex because it requires extra memory to store the
feedback symbols for each state, and extra computations for de-
cision feedback subtractions at each state. Furthermore, simu-
lation results show that in the presence of a prefilter, the per-
formance loss associated with the common feedback symbols
is negligible. Therefore, in the scope of this paper we assume
common feedback for simplicity of exposition. Consequently,

the optimal joint equalization of (5), known as the VVA, is ob-
tained by the following maximum likelihood (ML) optimization
problem that effectively maximizes the probability density func-

tion fil,...,ix ()

t t
™G] = arg max fr,,.
X (5(17...75<K|a17...7aK)
_ K 277,
=arg max c-e D ) 6)
ay,..,aK

where K is the burst length, ¢ is a multiplicative constant that
does not depend on ay,...,ag, and d?(k) is the Euclidean
metric at time k: d?(k) = (X — Zleso Biay_ ) TR (%, —
>0 Biak—1).

IV. USP FOR JRSSD

A VVA solution is optimal to (6) but requires a prohibitively
high complexity. To achieve a better complexity and perfor-
mance tradeoff, we extend the RSSD method proposed for SISO
equalization [1], [17] and propose a JRSSD structure as illus-
trated in Fig. 3.

In this structure, the USP-based reduced-state trellis forms
the backbone of temporal ISI equalization whereas an auxiliary
V-BLAST like spatial multisymbol detection problem is solved
for each edge of the reduced-state trellis.

To facilitate the discussions on the USP, we follow a set of
notation that is similar to that of [1]. In the presence of a channel
shortening prefilter described in the previous section, the trellis
states for a VVA are defined as pr, = [ax—1,...,ar_1 4] and the
transition symbol vector is ai. Denoting () as the modulation
size, the number of states in the VVA trellis is Q" ”s and the
number of transitions to and from each state is Q. To reduce
the number of states, we partition the possible signals of each
element a;_; in the state py into J; subsets (each of cardinality
QM /.J;), where a subset is denoted as V(«a;_;) with ag_; : 0 <
ag—; < J;—1being the index to the subset. Overall, all possible
signals of the state pj are partitioned into Hlel J; composite
subsets, where each composite subset is a Cartesian product of
element subsets and is denoted by V(tz) = V(ag_1) X - X
V(ag—r)- Note that t, = [ag—1,...,@k_L] is the index to
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such a composite subset (also known as a subset state). The
cardinality of each composite subset is QL5 /ITL5, J;.

We proceed to discuss the methods of set partitioning. For a
SISO case, the RSSD in [1] uses a partitioning method that is
based on maximum Minimum Square Subset Distance (MSSD)
criteria, or known as Ungerboeck set partitioning criteria [10].
The Ungerboeck maximum MSSD set-partitioning tree for a
single 8 PSK symbol is geometrically symmetric. In a MIMO
case, however, direct extension of the maximum MSSD criteria
leads to Multidimensional Set Partitioning (MDSP), which
maximizes the MSSD between different elements within a
composite subset, as shown in [11] in the context of multidi-
mensional trellis coded modulation. One major disadvantage
of MDSP is that the geometric symmetry in the partitioned
subset is lost once M > 1. To see this, consider the example
where Q = 8, M = 2, Ls = 1, if we choose J; = 16, then the
cardinality of a composite subset (subset state) is 82/16 = 4.
Note that in this case V(t;) = V(ag_1) since Lsg = 1.
Applying the MSSD criteria to the problem, we encounter a

subset that looks like: V(ax—1) = {eies,eses,eses, erer}
where eq, ..., eg denote the constellation points of an §PSK
modulation. Denoting ax_1 = [ak—1,1,ak—1,2] Where ax_1 1

and aj_1 o are the two transmitted symbols at time k — 1, it is
observed that in this particular subset ax_1.1 € {e1, €4, €5, €7}
and ag—12 € {es,es,e2,e7}. Due to the apparent loss of
geometric symmetry, simple threshold detectors, a key factor
in the overall complexity reduction of a RSSD [1], cannot be
used in the processing of parallel transitions.

To retain the geometric symmetry in the partitioned subsets,
we propose an alternative set-partitioning rule named uniform
set-partitioning (USP). The idea of USP is somewhat different
from MDSP. In MDSP, each symbol vector aj_; is first formed
as the Cartesian product of M symbols (across the spatial
dimension) and set-partitioning is applied on the M -dimen-
sional vectors according to the maximum MSSD criteria. In
a USP, on the other hand, the same single-symbol set-par-
titioning is performed uniformly on each symbol aj_;,, to
form single-symbol subsets. After that, the overall set-partition
for the multisymbol vector is obtained by taking a Cartesian
product of the single-symbol partitions. To this end, we isolate
the symbol sequence from the mth transmit antenna and let
Pk = [@k—1,m,---,0k—Lg,m] denote the trellis state for the
associated SISO VA trellis. The possible signals of each symbol
ak—i,m are partitioned into Fj,, subsets each of cardinality
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Fig. 4. JRSSD trellis, By =2,J;, =22,Q =8, M =2,Ls = 1.
Q/E, m, and the symbol subsets are denoted as S(ax_i.m)
where a1, is the index to the symbol subset. In a USP, the
partitions are kept the same for all the symbols within a symbol
vector ax_;, meaning that S(ag—i1) = -+ = S(ag_i,m) if
Qg—11 =+ = Q| M- Note that 0 < Qk—1m < El,m — 1 for
m =1,..., M. Consequently, the partition of the multisymbol
vector ay—; = [ak—1 1, - ., Gk—i,0] is the Cartesian product of
the symbol partitions

V(ag—1) = S(ar—1,1) X - -+ X S(ak—1,0m) @)

where the number of subsets is .J; = E’lM and &} = E); =
-+ = Fy pr. Furthermore, in (7) the index aj_; to the vector
subset is related to the indices to the symbol subsets by
M
Qg = Z g m BN, (8)
m=1

A JRSSD-USP trellis with Q = 8, M =2,Lg =1, K] = 2,
J; = 22 is illustrated in Fig. 4.

Unlike the MDSP, the USP does not attempt to maximize
the MSSD within a subset. For the example where Q = 8,
Ls = 1 and E; = 2, it can be shown that as the number
of transmit antennas M increases, the MSSD for USP stays at
dUSP(J; = 2M) = /2 and does not change as M increases.
Therefore, if MSSD is the only concern, the MDSP is more fa-
vorable since in a MDSP the MSSD in general increases with
M. However, MSSD is only one of the contributing factors in
the error probability performance of a JRSSD. And, as we show
in a later section, near-optimal bit-error rate (BER) performance
can be achieved with the simple USP.

V. SPATIAL MULTISYMBOL DETECTION

Once the reduced-state trellis is set-up according to the USP,
the sequence detection is a two-step process. First, a spatial mul-
tisymbol detection problem is solved for each edge in the trellis
to make the so-called “early-decisions” on the parallel transi-
tions associated with this edge; second, the ISI equalization is
carried out in the trellis with the help of these early decisions.
Parallel transitions are the transitions in a reduced-state trellis
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that originate and end in the same subset state. For the example
Q=8 M =2 Ls =1, E;, = 2,J; = 22 as shown in
Fig. 4, if we zoom in on the edge that connects subset states
ty = [ag—1] = [0] and t41 = [ag] = [0], it is comprised of
82 /22 = 16 parallel transitions, each representing a pair of tran-
sition symbols [ag, 1, axr 2] € V(0) = S(0) x S(0). Note that the
symbol partition in this case is given by S(0) = {eq, €2, €4, ¢}
and S(1) = {e1,e3,¢€5,€7}.

We now derive the signal model for the spatial multisymbol
detection problem. For ease of exposition, we use the example
where Q = 8, F1 = 2 but leave both Lg and M as variables.
In this case the number of subset states is given by J; = E =
2M and the number of parallel transitions is 8™ /2M = 4M We
start with the signal model in (4). Since all the parallel transi-
tions originate from the same subset state, they share the same
path ISI history. Therefore, subtracting the ISI terms from the
receiver signal, we get

L;
Zp = Xp — Z B;a;—; = Boax + ng )

i=1

where the transition symbol vector a; € V(o) = S(ag1) X
-+ -x 8(a, ). Note that here we have assumed perfect decision
feedback for notational simplicity. The effects of decision error
propagation are included in the numerical results.

A. Maximum Likelihood Solution (JRSSD-ML)

From (9), the optimal transition azpt is chosen among all the
4M parallel transitions, by solving the following ML optimiza-
tion problem

azpt =arg min (z, — Boay)" R (zx — Boay) (10)
apeV(ay)

which involves 4™ Euclidean distance (ED) computations.
Since there are a total of 2 states and (2M2M) edges be-
tween two neighboring stages, the overall complexity of the
JRSSD-ML method for this example is O((2M2M)4M) ED
computations. Although a significant reduction compared to a
DDEFSE without set-partitioning and state reduction, which re-
quires O(8M8M) ED computations, it does not achieve the full
potential of complexity reduction. In the ensuing subsections,
we propose suboptimal DC and OS algorithms that decouple
the spatial multisymbol detection problem associated with each
edge, into M single-symbol detection problems. Due to the geo-
metric symmetry inherent in the USP, for each single-symbol
detection problem, the symbol to be detected belongs to either
set S(O) = {60, €2, €y, 66} or set S(l) = {61, es, s, 67}. Asa
result, the symbol decision is made with an efficient threshold
detector that does not require any ED computation. Therefore,
after all the symbol decisions are available, only one ED com-
putation is necessary to provide a distance metric for this edge.
The number of ED computations needed for JRSSD-DC and
JRSSD-OS is thus reduced to O(22M) for this example. It is
important to note, however, that the ED computations are only
part of overall complexity needed for DC and OS methods, as
we discuss in detail in Sections V-B and C.
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B. Decorrelating Solution (JRSSD-DC)

Due to the By = I constraint in (3), the transmitted symbols
ay, are spatially decoupled in the received signal model (9). This
suggests a simple suboptimal DC solution to (10) by detecting
ay,m individually from

Zkm = Qo + A form=1,..., M

Y

using the SISO slicer that takes advantage of the geometric sym-
metry in the subset. Although it can be shown that the DC so-
lution is optimal if R is diagonal, a closer examination reveals
that this condition cannot be simultaneously satisfied with the
By = I constraint in the optimization problem (3). Therefore,
the DC solution is always suboptimal in a MMSE-JRSSD re-
ceiver. The performance of the DC solution is characterized by
the SNR of each data stream. For example, v2¢ denotes the
SNR of my;, data stream for the DC solution

Dc:E{|ak7m|2}: 1
" E{lem?t Tim

where 7., », is the mth diagonal element of the matrix R.

The complexity of the JRSSD-DC comprises of two parts: the
ED computations and the slicer operations which we denote as
& and C, respectively. The overall complexity of the JRSSD-DC
is, therefore, given by O(2M2M £+ M2M2M ), where we have
taken into account the fact that M slicer operations are needed
for each parallel transition in the trellis. Note that the notation
for complexity is meant symbolically, since the symbols £ and
C are not numbers and cannot be simply added.

12)

C. Ordered Successive Solution (JRSSD-0S)
In (9), notice By = I and let R = LDU be the LU decom-
position of R where
1 dq

L= and D = (13)

L]\Ll .. 1 d]\[

are lower triangular and diagonal matrices, respectively. Note
L = UZ since R is Hermitian symmetric, and in this case the
LU decomposition is equivalent to the Cholesky decomposition.
We multiply both sides of (9) by L~! to whiten the noise in z;,

zr =L7'z, = L 'a; + 1y, (14)

where n, = L='n; ~ N(0,D). Note that L~} is also lower
triangular with unit diagonal elements. The structure suggests
a successive detection algorithm that uses simple SISO slicer
to detect the symbols in the order of aj.1,...,ar r. At stage
m, the previous decisions on symbols a1, . . . , Gx,m—1 are fed-
back and subtracted from Zj, ,,

m—1

. 1 ~ .
Zen = D (L7 ik j = Gk + 12jm-
=1

15)

Now the simple SISO slicer can be used to detect aj,,,. The
SNR characterization of this successive algorithm is more diffi-
cult due to possible error propagation. However, if we consider
the limiting performance where all the feedback decisions are
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correct, then we can calculate the SNR of each data stream sim-
ilar to the DC solution. With the assumption of perfect feedback,
one can show that the SNR of the mth data stream is given by

oS _ E{|ak,m|2} 1

T B} T
In the successive detection algorithm above, we have fixed the
detection order to be (1,2,..., M) rather arbitrarily. However,
the performance of the successive detection can be improved
by optimizing the detection order [15]. In [15], the detection
order for a similar V-BLAST problem is chosen so that the worst
SNR among M data streams is maximized. In particular, let
w = (wi,...,wy) denote an arbitrary ordering and let 2 be
the set of all possible orderings. The cardinality of the set is
|2] = M! and the following problem is solved to obtain the
optimal ordering

(16)

B =arg max min 790% (w) (17)
we m

where 795 (w) denotes the SNR of the mth data stream given

the detection order w. The ordered successive algorithm is now

complete by combining the optimal ordering of (17) with suc-

cessive detection (15)

Ordered Successive Algorithm

1) Solve (17) for the optimal ordering
and denote it B = (f1,...,0m).

2) Construct a permutation matrix P
such that Pay =a), =[arg,,.-,ak6,]" -
3) In (9), multiply both sides by P

and we get z) = aj +nj where zj =Pz,
nj = Pn, and nj, ~ N(0,PRP#).
Now perform the LU decomposition

R = PRPY L'D’'U’ and follow the
treatment from (13) to (15) to de-
tect aj successively.

1) Optimal Ordering: We focus on solving the optimal
ordering B in Step 1. The direct solution to (17) involves M!
LU decompositions and is not practical when M is large.
A localized optimization process proposed in [15] for a re-
lated V-BLAST problem can be adopted here with some
modification. In the localized optimization process, the op-
timum ordering is obtained by selecting the symbol with
the best SNR at each stage of detection. We start the local
optimization process by finding first symbol to be detected,
i.e, (1. To this end, let (w,P(w)) be the pair of an arbi-
trary ordering and its corresponding permutation matrix. Let
R/(w) = P(w)RP¥ (w) be the “ordered” noise correlation
matrix, and R/(w) = L/(w)D’(w)U’(w) be its LU decompo-
sition. We try to find the w that maximizes the SNR of the first
symbol to be detected

1
w°P' = arg maxvY® (w) = arg max ——— (18)
wes

weN dll (w)

where d} (w) is the first diagonal element of D’(w) and we have
used (16) here. Once w°P" is obtained, 3; is given by 3; = w‘fpt.

Since d (w) is a function of the overall ordering w, it looks like
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the enumeration of all M! possible w is inevitable, even if we
only want to find the first symbol (3;. However, borrowing the
results of Proposition 1 from next section, one can show that
7105 = 1/(Rl(w))171 = I/Twhwl where Twywr = (R)whww
and reduce (18) into

(1 = arg max
w1

(19)
Twi,wi

which is solved by simply picking the w; that gives the smallest
Twy wy - Once 31 is obtained, we fix the first element of w as w; =
(1, and obtain 35 by maximizing the second post-detection SNR
95 (w) = 1/db(w) for all w € Q(F1) where Q(41) = {w :
w1 = (1 }. To avoid searching over the whole space of Q(3),
we again invoke Proposition 1 and get

!
1

7% () = (Ro(w) ™11 =

= T, (20)

81,81 Twa wo — T8y waTws, By

/ / / /
T11722 = T12721

where Rj(w) is the 2 x 2 primary submatrix of R’ (w), 7} ; =

(R/(w)); j and 7; ; = (R); ;. It follows that 3 is obtained by
solving the following single-variable optimization problem

1

_ Irﬂl ,wo |2
TB1,81

(2 = arg max

wy

1)

1
/
Twy »W2

where the denominator is the Schur complement of the 2 x 2
first primary submatrix of R/(w). The solution to (2 involves
M — 1 computations of the Schur complement of 2 x 2 sub-
matrices. In fact, if we extend this algorithm to solve for
B3, - - ., B, then the solution of 3, will involve M — m + 1
computations of Schur complements of m X m submatrices.
In a JRSSD-OS, in addition to the ED computations and the
slicer operations, a total of (1/2) M (M —1) additions are needed
for each parallel transition in the trellis. If we denote the addition
as A, then the overall complexity for a JRSSD-OS is given by
O2M2Mg 4 M2M2MC + (1/2)M (M — 1)2M2M A).

VI. SNRS OF THE MULTISYMBOL DETECTION SOLUTIONS

In this section, we compare the performance of the ML, OS
and DC solution for the optimization problem shown in (10).
Without loss of generality, we assume a detection order of 8 =
1,2,..., M for the OS method. The SNR of the DC solution is
given by y2¢ = 1/ry, ., from earlier discussion. We show in
the following proposition that the SNR of the ordered successive
solution is y9° = (R;,})m.m where R, is the m x m primary
submatrix of R.

Proposition 1: The SNR of the ordered successive solution
is given by 79° = (R,,}) . m Where R, is the n x mn primary
submatrix of R.

Proof: See Appendix A.

We now compute the SNR of the ML solution. In ML, all
the symbols ay, 1, ..., ar,ar are detected jointly and, therefore,
it is not obvious how to calculate the SNR associated with the
detection of a single symbol. Here we again look at the SNR
in a limiting situation: while computing the SNR for a given
symbol, for example ay, a7, we assume all the other symbols
a1, .-, 0, M—1 are correctly detected. With this assumption,
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it is easy to see that for ay s the SNR of ML solution is the
same as that of the ordered successive solution

mE =20 = Ry ) = R Y- (22)

Furthermore, one can show that in general the SNR of ML so-
lution is ML = (R71),,.m forany 1 < m < M. To see this,
let P,,, be the left permutation matrix that swaps the mth and
Mth element for a vector of size M X 1, then multiply both sides
of (9) by P,,, and we get z; = aj, + nj, where z; = Pz,
nj = P,,n; and n} ~ N(0,R’ = P,,RP%). Furthermore,
let (7/)}4L denote the Mth SNR for the new vector a},, then
ML — (4L by definition. It follows from (22) that

m =" = (R)™arar = (PuRPE) ™ arur
=PnR P)ay = (R D
Note that we have implicitly used the property that
P,, = P2 = P>l We have now obtained the SNR of

the three different solutions as functions of the noise correlation
matrix R

) _ _ 1
=R Vs 5% = (R mm and 70¢ = —
(23)

It remains to be seen how the SNRs, or equivalently the per-
formance of the three methods, are related. An interesting ob-
servation is that v¢ = {5 and fyj\%s = fy]]\‘;[[L which shows
that these SNRs are closely related. Moreover, among the three
methods, one would expect ML to be the best, and the decorre-
lating solution to be the worst due to the diagonal approxima-
tions in that solution. This intuition is verified in the following
proposition.
Proposition 2: 5 <408 < ML forany 1 <m < M.
Proof: See Appendix B.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
JRSSD algorithm with numerical simulations. The simulations
are carried out in a practical link-level EDGE simulator. We
focus on a two transmit, two receive antenna MIMO system,
i.e, M = N = 2, with 8PSK modulation. We assume that each
antenna encounters independent fading channels. Two channel
models are used in the simulations: the 6-tap (L = 6) typ-
ical urban (TU) model and the 6-tap rural area (RA) model
as defined in European Telecommunications Standard Institute
(ETSI) Global System for Mobile Communication (GSM) stan-
dard [18]. Note that in our simulations, we fix the mobile sta-
tion speed at 50 km/h for TU channels and 100 km/h for RA
channels. Note that an over-sampling factor A = 2 is used
throughout our simulations, and the numerical results include
the effect of estimated channel coefficients.

In the JRSSD, the shortened channel memory length is chosen
to be Ls = 1. Meanwhile, the number of subsets for each
symbol is F; = 2 in the simulations, and the number of subset
states in the trellis is .J; = 2M = 22. The three algorithms con-
cerning the processing of parallel transitions, the ML, OS and
DC algorithms, are simulated and compared. The complexity
of these different algorithms is compared in Table I. Note we
have also included the complexity of the DDFSE with trellis
memory length Ls = 1 for comparison. For the complexity
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TABLE 1
COMPARISON OF ALGORITHM COMPLEXITIES. HERE £ DENOTES EUCLIDEAN
DISTANCE COMPUTATION, C DENOTES SLICER OPERATION AND .4 DENOTES
COMPLEX ADDITION

# of States Complexity
DDFSE 82 O(8%-82%¢)
JRSSD-ML 22 0(22 - 82¢)
JRSSD-0S 22 O(22 226 42-22.22C +22.224)
JRSSD-DC 22 022226 +2-22.220)

11 I 1 I 1 1 1
6 8 10 12 14 16 18 20
Eb/No (dB)

Fig. 5. Minimum symbol SNR for a TU50 channel.

contributed by the ED computations, two levels of complexity
reduction are observed: 1) a 16—fold reduction from DDFSE to
JRSSD-ML, which is solely attributed to the multisymbol USP;
and 2) another 16—fold reduction from JRSSD-ML to JRSSD-
DC/JRSSD-OS, which results from the suboptimal decoupling
of the spatial multisymbol detection problem. Note that in gen-
eral the numerical complexity of an ED computation is much
higher than a slicer operation or an addition. Therefore, we em-
phasize the reduction in the ED computations.

A. Minimum Symbol SNR Performance

In Fig. 5, the minimum symbol SNRs resulting from various
algorithms are compared for a TU 50 channel, as a function
of the transmit SNR denoted by Energy per Bit versus Noise
(Ey/Ny). The SNR gaps between the ML, OS and DC methods
are fairly uniform for the transmit SNR region simulated. The
gap between ML and DC is about 3.5-4 dB in the TU channel.
On the other hand, the gap between OS and ML is a little less
than half of the gap between ML and DC. Note that, although
the SNR results partially characterize the BER behavior of the
algorithms of interest, the SNR gaps do not directly translate
into gaps in the BER curves, as we show in Section VII-B. Fur-
thermore, we note that the SNR results for the RA channel are
similar to those for the TU channel.

B. BER Performance in Noise-Limited Environment

In Figs. 6 and 7, the BER comparisons are presented for a
noise-limited TU 50 and RA 100 channel, respectively. A noise-
limited situation arises when a mobile station is near the center
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Fig. 7. BER comparison for a noise-limited RA100 channel.

of a cell, where we are able to model the sum of co-channel in-
terferences from all other base stations as white Gaussian noise.
Note that in addition to the JRSSD algorithm results, we have
included in the comparison the DDFSE results, the interference
suppression based suboptimal DVA [9] results, and results of a
SISO EDGE system assuming conventional MMSE-RSSD with
Q = 8, Ls = 1 and the number of subsets F/; = 2.

Under both channel conditions, the performance difference
between the JRSSD-ML and the optimal DDFSE is negligible,
meaning that almost no performance penalty is associated with
the ED reduction due to USP alone (a reduction from O(4096¢)
to O(256€) in this case). On the other hand, if OS or DC al-
gorithm is adopted in the processing of parallel transitions, the
ED computations are further reduced to O(16€) at the cost of
some performance loss. For example, the loss of the DC method
(against ML) is significant at about 1 and 4 dB for TU and RA
channels (at 1 % BER operation point), respectively. On the
other and, the OS is almost lossless in TU channel and loses
about 0.7 dB in RA channel (at 1 percent BER operation point).
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The reason for OS to behave differently in TU and RA is that
in an RA channel, most of the channel energy is in the first tap,
therefore, the overall BER performance is dominated by the per-
formance of the spatial multisymbol detection problem, whose
SNR gap (between OS and ML) is directly reflected in the BER
performance; whereas in a much-longer TU channel, the perfor-
mance of the spatial multisymbol detection problem dominates
less in the overall BER performance and the signal-to-noise ratio
(SNR) gap is less visible in the BER curves. Note that, both
OS and DC outperform the interference suppression based DVA
method, where the transmit sequences are decoupled before the
equalization step.

In the noise-limited situations, both JRSSD-ML and
JRSSD-OS results are significantly better than the SISO
RSSD results for the full E, /Ny range. This implies that in a
noise-limited situation, for both TU and RA channel, a MIMO
configuration with M = N = 2 is essentially able to double
the data rate of a SISO configuration, provided that either the
JRSSD-ML or JRSSD-OS algorithm is used. Note that, al-
though we have not shown the block error rate (BLER) results,
the numerical results based on BLER show similar trends as
the BER curves.

C. BER Performance in Interference-Limited Environment

Since the cochannel interference from other-cell base stations
experience different fading and shadowing effects, the interfer-
ence from one or a few base stations may become much stronger
than the others at any given moment. In these so-called interfer-
ence-limited situations, a simple white Gaussian noise model is
not appropriate for the sum of all interference. In [19], a more re-
alistic interference model is proposed where the overall interfer-
ence is broken into two parts, where the first component remains
white Gaussian noise and the second component is modeled as a
dominant interfering base station. A parameter called dominant
to rest of interference power ratio (DIR) is introduced to de-
scribe the relative power ratio of these two components. In this
paper we adopt this interference model and set DIR = 15 dB in
our simulations to focus on the situation where the interference
is highly structured.

Since the noise is no longer white in an interference-lim-
ited environment, some form of noise whitening (interference
suppression) capability is necessary in the receiver. In our ap-
proach, interference suppression is achieved by incorporating
the second-order noise correlation structure in the MMSE filter
optimization. Specifically, the white Gaussian noise ny . in
(2) becomes a zero-mean random noise vector with a second-
order correlation matrix R,,,, = E{nk+Lf:knf+Lf:k}. Conse-
quently, the V matrix, which is defined after (3), becomes V N
(Hk+Lf k1 HkH+Lf ket 1 +R.,.»). Note that in practice, the noise
correlation matrix R,,,, is estimated together with channel ma-
trices M, using the training sequences embedded in the middle
of data bursts.

In Figs. 8 and 9, the BER comparisons are presented for an
interference-limited TU 50 and a RA 100 channel, respectively.
Note that in the figures the term C/I(dB) is read as “carrier to
interference ratio in decibels,” and we have assumed only one
transmit antenna at the interfering base station. It is observed
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Fig. 8. BER comparison for an interference-limited TU50 channel, DIR =
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Fig. 9. BER comparison for an interference-limited RA100 channel, DIR =
15 dB.

that the relative performance comparisons for the MIMO algo-
rithms resemble those of the noise-limited case. However, it is
observed that in the interference-limited situation, the MIMO
results actually slightly under-perform the SISO result at the
low C/T range for both TU and RA channels, and there is a
cross-over point after which MIMO starts to outperform. One
major reason for this behavior might be due to the fact that in the
presence of strong interference, the degradation in the quality of
both the channel estimate and the noise correlation estimate is
greater for a MIMO configuration. Consequently, the benefit of
the interference suppression algorithm described in the previous
paragraph is less significant. One possible means of improving
these estimates is to increase the length of the training sequences
in a MIMO configuration.

VIII. CONCLUSION

In this paper, we propose a MIMO JRSSD joint equalizer that
achieves near-optimal performance at a very low complexity.
We show that two elements are essential in achieving the desired
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complexity and performance tradeoff in the proposed JRSSD:
1) a multisymbol USP set-partition that retains the geometric
symmetry; and 2) a space-time structure that effectively decou-
ples the spatial and temporal processing. In an example EDGE
system with a set-partition of .J; = 22, the ED computations
required by the JRSSD-OS is a mere O(16£), which is a dra-
matic reduction from O(4096¢), the complexity of a conven-
tional DDFSE receiver. Meanwhile, the performance penalty as-
sociated with JRSSD-OS ranges from 0-0.7 dB for the channel
conditions studied.

APPENDIX A
PROOF OF PROPOSITION 1

We first define a partition of R and the corresponding parti-
tioned LU decomposition

_Rm Rt
R=[R0 n
-5 [P o[ u] e

which provides the LU decomposition of the primary submatrix
R,.:R,, = L,,D,,U,,. From (16), we have y0° = 1/d,, =
1/(Dm)m,m- Now all we need to do is to find dp, = (Do), m.-
To this end, notice

R, =U.'D. 'L} (25)
where U1 and L' are upper and lower triangular matrices
with unit diagonals, respectively. Therefore, from (25) we get
(DY mm = (R m,m after some algebra. Furthermore, we
know 1/d,, = (D;,!)sm.m since D,, is diagonal. Therefore, we
have proved that

1
795 = — = R, Ymm- (26)

i

APPENDIX B
PROOF OF PROPOSITION 2

The first inequality is easy to show since by the matrix inver-
sion theorem [20], we have
1

05 _ -1 _
’Ym - (Rm )mum - Tm,m _ cHG—lc (27)
where
G c
R, = [CH rm"m] (28)

and G is a positive semidefinite matrix. It follows that
P < 495 On the other hand, the second inequality is more
difficult to prove as we need to show v9° = (R mm <

(R™Y)mm = ML, To this end, we obtain the following
partition for both R and R~!:

(29)

n= (B B no= [l V.

R? R, | A2
Furthermore, we construct the following “block” LU decompo-
sition of R~! where A, B, C are unknown submatrices

wr= e[ ] L o]

{B — AAH ACH}
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Considering (29) and (30) together, we get C = CH = Vi/ 2,
A=V,CY2andB=V,, —AA" =V, - V,VIVE,
Furthermore, by inverting both side of (30) we get

R:(R*)‘l:{}; c} [B_l 1] [I ég]

B! B-lAH
:[AB—l AB—lAH+CéH] @1

where A, C can be solved as functions of A and C. Comparing
(31) and (29) and we have R,,, = B~!, which leads to R, =
B =V, -V, V;'VE Note V;V;1VE is a positive semi-
definite matrix and has nonnegative diagonals. Therefore, we

get (R;f)mﬂn < (Vi)mm = (R’l)m,m and proved 79° <
A ML
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